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Structural Information

Information Theory of Data Structures: Following Ziv (1997) we propose to

explore finite size information theory of data structures (i.e., sequences,

graphs), that is, to develop information theory of various data structures

beyond first-order asymptotics. We focus here on information of graphical

structures (unlabeled graphs).

F. Brooks, jr. (JACM, 50, 2003, “Three Great Challenges for . . . CS”):

“We have no theory that gives us a metric for the Information embodied in

structure. This is the most fundamental gap in the theoretical underpinnings

of information science and of computer science.”

Networks (Internet, protein-protein interactions, and collaboration network)

and Matter (chemicals and proteins) have structures.

They can be abstracted by (unlabeled) graphs.
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Graphs with Locally Correlated Labels

How many bits are required to describe the unlabeled graph on the left,

and how many additional bits one needs to represent the correlated labels

on the right?



The Real Stuff ...

Figure 1: Protein-Protein Interaction Network with BioGRID database
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Graph and Structural Entropies

Information Content of Unlabeled Graphs:

A structure model S of a graph G is defined for an unlabeled version.

Some labeled graphs have the same structure.

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

G1 G2 G3 G4

G5 G6 G7 G8

S1 S2

S3 S4

Graph Entropy vs Structural Entropy:

The probability of a structure S is: P (S) = N(S) · P (G)
where N(S) is the number of different labeled graphs having the same

structure.

HG = E[− logP (G)] = −
∑

G∈G
P (G) logP (G), graph entropy

HS = E[− logP (S)] = −
∑

S∈S
P (S) logP (S) structural entropy



Relationship between HG and HS

d e

b c

a

Two labeled graphs G1 and G2 are called isomorphic

if and only if there is a one-to-one mapping from

V (G1) onto V (G2) which preserves the adjacency.

Graph Automorphism: For a graph G its automorphism

is adjacency preserving permutation of vertices of G
(i.e., graph perspective is the same).

The collection Aut(G) of all automorphism of G is

called the automorphism group of G.

Lemma 1. If all isomorphic graphs have the same

probability, then

HS = HG − logn! +
∑

S∈S
P (S) log |Aut(S)|,

where Aut(S) is the automorphism group of S.

Proof idea: Using the fact that

N(S) =
n!

|Aut(S)|.



Erdös-Rényi Graph Model and Symmetry

Our random structure model is the unlabeled version of the binomial

random graph model also known as the Erdös–Rényi random graph model.

The binomial random graph G(n, p) generates graphs with n vertices, where

edges are chosen independently with probability p.

If a graph G in G(n, p) has k edges, then (where q = 1 − p)

P (G) = pkq(
n
2)−k.

Lemma 2 (Kim, Sudakov, and Vu, 2002). For Erdös-Rényi graphs and all p
satisfying

lnn

n
≪ p, 1 − p ≫ lnn

n
a random graph G ∈ G(n, p) is symmetric (i.e., Aut(G) ≈ 1) with probability

O
(
n−w

)
for any positive constant w, that is, for w > 1

P (Aut(G) = 1) ∼ 1 − O(n
−w

).



Symmetry of Preferential Attachment Graphs?

Figure 2: |Aut(G)|: For m = 1 (left), m = 4 (middle), defect (right).

Theorem 1 (Symmetry Results for m = 1, 2). Let graph Gn be generated by

the preferential model with parameter m = 1 or m = 2. Then

Pr[|Aut(Gn)| > 1] > C

for some C > 0.

Conjecture For m ≥ 3 a graph Gn generated by the preferential model is

asymmetric whp, that is

Pr[|Aut(Gn)| > 1]
n→∞−−−→ 0.



Symmetry of Preferential Attachment Graphs?

Figure 3: |Aut(G)|: For m = 1 (left), m = 4 (middle), defect (right).

Theorem 2 (Symmetry Results for m = 1, 2). Let graph Gn be generated by

the preferential model with parameter m = 1 or m = 2. Then

Pr[|Aut(Gn)| > 1] > C

for some C > 0.

Theorem [Luczak, Magner, WS, 2016] For m ≥ 3 a graph Gn generated by

the preferential model is asymmetric whp, that is

Pr[|Aut(Gn)| > 1]
n→∞−−−→ 0.



Structural Entropy for Erdös-Rényi Graphs

Theorem 3 (Choi, W.S 2009). For large n and all p satisfying lnn
n ≪ p and

1 − p ≫ lnn
n (i.e., the graph is connected w.h.p.), for some a > 0

HS =
(n

2

)

h(p)−logn!+O

(
logn

na

)

=
(n

2

)

h(p)−n logn+n log e+O(log n),

where h(p) = −p log p − (1 − p) log (1 − p) is the entropy rate.

AEP for structures: 2−(n2)(h(p)+ε)+log n! ≤ P (S) ≤ 2−(n2)(h(p)−ε)+log n!.

Proof idea:

1. HS = HG − log n! +
∑

S∈S P (S) log |Aut(S)|.

2. HG =
(n
2

)
h(p)

3.
∑

S∈S P (S) log |Aut(S)| = o(1) by asymmetry of G(n, p).
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Structural Zip (SZIP) Algorithm

Compression Algorithm called Structural zip, in short SZIP – Demo.

http://www.cs.purdue.edu/homes/spa/talks/szip.pdf


Asymptotic Optimality of SZIP for Erdös-Rényi Graphs

Theorem 4 (Choi, W.S., 2012). Let L(S) = |B̃1| + |B̃2| be the code length.

(i) For large n,

E[L(S)] ≤
(n

2

)

h(p) − n logn + n (c + Φ(logn)) + o(n),

where c is an explicitly computable constant, and Φ(x) is a fluctuating

function with a small amplitude or zero.

(ii) Furthermore, for any ε > 0,

P (L(S) − E[L(S)] ≤ εn logn) ≥ 1 − o(1).

(iii) The algorithm runs in O(n + e) on average, where e # edges.



Asymptotic Optimality of SZIP for Erdös-Rényi Graphs

Theorem 4 (Choi, W.S., 2012). Let L(S) = |B̃1| + |B̃2| be the code length.

(i) For large n,

E[L(S)] ≤
(n

2

)

h(p) − n logn + n (c + Φ(logn)) + o(n),

where c is an explicitly computable constant, and Φ(x) is a fluctuating

function with a small amplitude or zero.

(ii) Furthermore, for any ε > 0,

P (L(S) − E[L(S)] ≤ εn logn) ≥ 1 − o(1).

(iii) The algorithm runs in O(n + e) on average, where e # edges.

Table 1: The length of encodings (in bits)
Networks # of # of our adjacency adjacency arithmetic

nodes edges algorithm matrix list coding

R
e

a
l-
w

o
rl
d

US Airports 332 2,126 8,118 54,946 38,268 12,991
Protein interaction (Yeast) 2,361 6,646 46,912 2,785,980 1 59,504 67,488

Collaboration (Geometry) 6,167 21,535 115,365 19,012, 861 55 9,910 241,811
Collaboration (Erdös) 6,935 11,857 62,617 24,043,645 308,2 82 147,377

Genetic interaction (Human) 8,605 26,066 221,199 37,0 18,710 729,848 310,569
Internet (AS level) 25,881 52,407 301,148 334,900,140 1,572, 210 396,060



Analysis of SZIP: Recurrences for E[B1] and E[B2]
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{a, b, c, d, e, f, g, h, j}

{a, b, c, e, h}{d, g, j}

{a, e, h}{b, c}{g, j}

{a, e, h}{b}{c}{g}

{a, e}{h}{b}{c}

{b} {h} {e} {a}

{h} {e} {a}

{e} {a}

{a}

Let Nx be the number of vertices that passed

through node x in Tn.

|B1| =
∑

x ∈ Tn and Nx > 1

⌈log(Nx + 1)⌉

|B2| =
∑

x ∈ Tn and Nx = 1

⌈log(Nx + 1)⌉

=
∑

x ∈ Tn and Nx = 1

1.



Analysis of SZIP: Recurrences for E[B1] and E[B2]

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

{a, b, c, d, e, f, g, h, j}

{a, b, c, e, h}{d, g, j}

{a, e, h}{b, c}{g, j}

{a, e, h}{b}{c}{g}

{a, e}{h}{b}{c}

{b} {h} {e} {a}

{h} {e} {a}

{e} {a}

{a}

Let Nx be the number of vertices that passed

through node x in Tn.

|B1| =
∑

x ∈ Tn and Nx > 1

⌈log(Nx + 1)⌉

|B2| =
∑

x ∈ Tn and Nx = 1

⌈log(Nx + 1)⌉

=
∑

x ∈ Tn and Nx = 1

1.

Both E[|B1|] and E[|B2|] satisfy

two-dimensional recurrences for some d ≥ 0:

an+1,0 = cn +
∑n

k=0

(n
k

)
pkqn−k(ak,0 + an−k,k),

an,d = cn +
∑n

k=0

(n
k

)
pkqn−k(ak,d−1 + an−k,k+d−1).

for some cn (e.g., cn = ⌈log(n + 1)⌉ or cn = n).



Another Look – (n, d)-tries

1. The root of a tree contains n balls.

2. Balls independently move down to the

left subtree (with probability p) or the right

subtree (with probability 1 − p).

3. For a non-negative integer d, at level d or

greater one ball is removed from the leftmost node.



Another Look – (n, d)-tries

1. The root of a tree contains n balls.

2. Balls independently move down to the

left subtree (with probability p) or the right

subtree (with probability 1 − p).

3. For a non-negative integer d, at level d or

greater one ball is removed from the leftmost node.

For example for cn = n:

a(n, d) =
1

h
n logn+

1

h

[

γ +
h2

2h
+ Φ(logp n)

]

n+
1

2h log p
log2 n+

d

h
logn+O(1)

where h = −p log p − q log q, h2 = p log2 p + q log2 q, γ is the Euler constant, and Φ(x) is

the periodic function.
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Structural Binary Symmetric Channel (SBSC)



Structural Binary Symmetric Channel (SBSC)

Example: Graph G1 = {A,B,C,D} transmitted with output G2.

Adjacency matrices are: G1 =

∣
∣
∣
∣
∣
∣
∣
∣

0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

∣
∣
∣
∣
∣
∣
∣
∣

, G2 =

∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

∣
∣
∣
∣
∣
∣
∣
∣

.

How much structural information can be reliably transmitted over a noisy

channel?



Capacity of SBSC

Capacity of SBSC is defined as

C = lim
n→∞

1
(n
2

) max
0≤p≤1

I(S;S
′
)

where I(S;S′) is the mutual information between the output structure S′

and the input structure S.

Theorem 5. Capacity of the the structural Binary Symmetric Channel SBSC(ǫ)

of Erdös-Rényi graphs is

C = 1 − h(ǫ)

where ε is the error bit rate and

h(ε) = −ε log ε − (1 − ε) log(1 − ε)

is the binary entropy.



Outline

1. Structural Compression

2. Tree Compression with Correlated Vertex Names

• Motivation

• Plane vs Non-Plane Trees

• Entropy Computation

• Lossless Compression Algorithms

3. Boltzmann Sequence-Structure Channel



Tree with Correlated Names: Motivating Example

Figure 4: Linnaean taxonomy of hominoid

Data in modern applications has various types of structure:

• Topographic maps

• Social/biological networks

• Phylogenetic trees



Tree with Correlated Names: Motivating Example

Figure 4: Linnaean taxonomy of hominoid

Data in modern applications has various types of structure:

• Topographic maps

• Social/biological networks

• Phylogenetic trees

This motivates the study of information content/compression of data

structures with correlated names or in general multimodal data structures.



Source models for trees

Probabilistic models for rooted binary plane trees:

Random binary trees on n leaves:

• At time t = 0: Add a node.

• At time t = 1, ..., n: Choose a leaf uniformly at random and attach 2

children.



Source models for trees

Probabilistic models for rooted binary plane trees:

Random binary trees on n leaves:

• At time t = 0: Add a node.

• At time t = 1, ..., n: Choose a leaf uniformly at random and attach 2

children.

Equivalent formulation:

• Initially, add a node with label n.

• While there is a leaf with label ℓ > 1, choose a number ℓ′ uniformly at

random from [ℓ− 1] and add a left and right child with labels with ℓ′ and

ℓ − ℓ′, respectively.

4
1 3

1

2 1

1

1 1

1



Source Models for Non-Plane Trees

Non-plane trees: Ordering of siblings doesn’t matter. Formally, a non-plane

tree is an equivalence class of trees, where two trees are equivalent if one

can be converted to the other by a sequence of rotations.

Example of two equivalent trees:



Source models for vertex names

Parameters for vertex names:

• A: The (finite) alphabet.

• m ≥ 0: the length of a name.

• P : transition matrix for a Markov chain with state space A.

• π: stationary distribution associated with P .

Generating vertex names given a tree structure:

• Generate a name for the root by taking m letters from a memoryless

source with distribution π on A.

• Given a name a1a2, . . . , am for an internal node, generate names

for its two children b1, . . . bm and b′1, . . . , b
′
m such that the jth letter,

j = 1, ...,m, of each child, is generated according to the distribution

P (bj|aj).

LTn: a binary plane tree on n leaves with vertex names generated as

above.



Entropy for Plane-Oriented Trees with Names

Theorem 6. The entropy of a plane tree with names, generated according

to the model with fixed length m, is given by

H(LTn) = log2(n − 1) + 2n
n−1∑

k=2

log2(k − 1)

k(k + 1)
+ 2(n − 1)mh(P ) + mh(π)

= n ·
(

2

n−1∑

k=2

log2(k − 1)

k(k + 1)
+ 2mh(P )

)

+ O(log n).

where h(π) = − ∑

a∈A
π(a) log π(a).

• log2(n− 1): The choice of the number of leaves in the left subtree of the

root.

• 2n
n−1∑

k=2

log2(k−1)

k(k+1) : The accumulated choices of the number of leaves in left

subtrees.

• 2(n−1)mh(P ): The choices of vertex names given those of their parents.

• mh(π): The choice of the vertex name for the root.



Sketch of Proof

Observe that

H(LTn|Fn(r)) = log2(n − 1) + 2mh(P ) +
2

n − 1

n−1∑

k=1

H(LTk|Fk(r))

and H(LTn) = H(LTn|Fn(r)) + H(Fn(r)), where Fn(r) is the name

assigned to the root r.



Sketch of Proof

Observe that

H(LTn|Fn(r)) = log2(n − 1) + 2mh(P ) +
2

n − 1

n−1∑

k=1

H(LTk|Fk(r))

and H(LTn) = H(LTn|Fn(r)) + H(Fn(r)), where Fn(r) is the name

assigned to the root r.

The above recurrence has a simple solution as shown in the lemma below.

Lemma 3. The recurrence x1 = 0,

xn = an +
2

n − 1

n−1∑

k=1

xk, n ≥ 2

has the following solution for n ≥ 2:

xn = an + n
n−1∑

k=2

2ak

k(k + 1)
.



Entropy for Non-plane Trees

Entropy for non-plane trees is more difficult: let Sn denote a random non-

plane tree on n leaves according to our model.

Theorem 7 (Entropy rate for non-plane trees).

H(Sn) = (h(t) − h(t|s)) · n + o(n) ≈ 1.109n

where

h(t) = 2
∞∑

k=1

log2 k

(k + 1)(k + 2)
, h(t|s) = 1 −

∞∑

k=1

bk

(2k − 1)k(2k + 1)
,

and (the coincidence probability)

bk =
∑

tk∈Tk

(Pr[Tk = tk])
2
.

Remark: It turns out that bn satisfies for n ≥ 2 the following recurrence

bn =
1

(n − 1)2

n−1∑

j=1

bjbn−j

with b1 = 1.

Remark. The sequence bk is related to the Rényi entropy of order 1 of Tk.



Sketch of Proof

1. Observe that H(Tn) − H(Sn) = H(Tn|Sn).



Sketch of Proof

1. Observe that H(Tn) − H(Sn) = H(Tn|Sn).

2. For s ∈ S and t ∈ T : t ∼ s means the plane tree t is isomorphic to s.

We write: [s] = {t ∈ T : t ∼ s}.
3. We have

Pr(Sn = s) = |[s]|Pr(Tn = t), Pr(Tn = t|Sn = s) = 1/|[s]|.

4. X(t): number of internal vertices of t with unbalanced subtrees;

Y (t): number of internal vertices with balanced, non isomorphic subtrees.

Since |[s]| = 2X(s)+Y (s), thus

H(Tn|Sn) = −
∑

t∈Tn,s∈Sn
Pr(Tn = t, Sn = s) log Pr(Tn = t|Sn = s) = EXn + EYn

5. Let Z(t) be number of internal vertices of t with isomorphic subtrees.

Obviously, X(t) + Y (t) + Z(t) = n − 1. Let Zn(t) =
∑

s
Zn(s). Then

EZn(s) = EI (Tn ∼ s ∗ s) + 2
n−1

n−1∑

k=1

EZk(s)

where

EI (Tn ∼ s ∗ s) = I (n = 2∆(s))
Pr2(Tn/2∼s)

n−1 .



Compression algorithms: Arithmetic Encoding

Optimal algorithm for compression of LTn: arithmetic encoding.

Pr[LTn = lt] = Pr[ name of root] · Pr[# of nodes in left subtree]

· Pr[LT
L
n = lt

L|root name, # of nodes in left subtree]

· Pr[LTR
n = ltR|root name, # of nodes in left subtree]

Expected code length: E[C(1)
n ] ≤ H(LTn) + 2.



Compression algorithms: Arithmetic Encoding

Optimal algorithm for compression of LTn: arithmetic encoding.

Pr[LTn = lt] = Pr[ name of root] · Pr[# of nodes in left subtree]

· Pr[LT
L
n = lt

L|root name, # of nodes in left subtree]

· Pr[LTR
n = ltR|root name, # of nodes in left subtree]

Expected code length: E[C(1)
n ] ≤ H(LTn) + 2.

Suboptimal algorithm for non-plane tree compression: Naı̈ve tweak of the

algorithm for LTn. At each stage, encode the smaller subtree first.

Expected code length: E[C(2)
n ] ≤ H(Sn) + 2 + E[Yn].

Yn: the number of internal nodes with balanced but not isomorphic

subtrees. Exact (but complicated) series formula for E[Yn] yields

E[C
(2)
n ] ≤ 1.013H(Sn).

Optimal algorithm for non-plane tree compression: E[C(3)
n ] ≤ H(Sn) + 2.

Better compression, worse running time O(n2).
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Boltzmann Sequence-Structure Channel

P (f |s) :=
e−βE(s,f)

Z(s, β)
Z(s, β) :=

∑

f∈F
e−βE(s,f)

Sequences: S = (S1, . . . SN), i.i.d. with P (Si = H) = p = 1 − P (Si = P ).

β: a parameter that is meant to represent inverse temperature.

Folds: FN denotes the set of self-avoiding walks of length N filling a square

in Z
2 of size N , starting at (0, 0) and ending at (

√
N − 1,

√
N − 1).

Energy: E(s, f) denotes energy for a fold f computed as follows: for a given

symmetric 2 × 2 scoring matrix Q = {Qij}i,j∈{1,2} define

E(f, s) = 2(Q11cHH + Q22cPP + Q12cHP) =: Xi(f, s) (1)

where cxy denotes the number of (non-adjacent) contacts in a fold.



Information Theoretic Quantities

Capacity :

C = max
P (S)

I(S;F ) = max
P (S)

[H(F ) − H(F |S)]

where conditional entropy is

H(F |S) = −
∑

s∈SN

p(s)
∑

f∈FN

p(f |s) log p(f |s) = E[logZ(S, β)] + β
∑

s,f

p(f, s)E(f, s)

= E[logZ(S, β)] + βE[Eβ,S(F )],

where the Boltzmann energy Eβ,S(F ) becomes:

E[Eβ,S(F )] =
∑

s,f

p(f, s)E(f, s) = − d

dβ
E[logZ(S, β)].
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P (S)
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where conditional entropy is

H(F |S) = −
∑
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∑
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p(f |s) log p(f |s) = E[logZ(S, β)] + β
∑
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= E[logZ(S, β)] + βE[Eβ,S(F )],

where the Boltzmann energy Eβ,S(F ) becomes:

E[Eβ,S(F )] =
∑

s,f

p(f, s)E(f, s) = − d

dβ
E[logZ(S, β)].

This energy should be distinguished from E[E(f, S)] for given f which is

E[E(f, S)] =
∑

i

E[Xi(f, S)] = Nα + O(
√
N) ≥ E[Eβ,S(F )]

since Boltzmann distribution gives higher probability to lower energy.



Information Theoretic Quantities

Capacity :

C = max
P (S)

I(S;F ) = max
P (S)

[H(F ) − H(F |S)]

where conditional entropy is

H(F |S) = −
∑

s∈SN

p(s)
∑

f∈FN

p(f |s) log p(f |s) = E[logZ(S, β)] + β
∑

s,f

p(f, s)E(f, s)

= E[logZ(S, β)] + βE[Eβ,S(F )],

where the Boltzmann energy Eβ,S(F ) becomes:

E[Eβ,S(F )] =
∑

s,f

p(f, s)E(f, s) = − d

dβ
E[logZ(S, β)].

This energy should be distinguished from E[E(f, S)] for given f which is

E[E(f, S)] =
∑

i

E[Xi(f, S)] = Nα + O(
√
N) ≥ E[Eβ,S(F )]

since Boltzmann distribution gives higher probability to lower energy.

Example: For Q =

(
H P

H 0 1

P 1 0

)

we find E[E(f, S)] = 2pqN + O(
√
N).



Capacity Conjecture



Biological Motivation

Protein Folds in Nature

For each possible cardinality of

protein families (x axis), count

the number of protein folds (or

sequences) observed in nature

which are associated with that

number of families. Plot on y axis the

fraction of protein folds.

In nature, we observe lots of

sequences with few associated

folds and few sequences with lots of

associated folds.

• The channel is a model of protein folding.

• Sequence distribution in nature exhibits a power law. In the channel

model, such distributions (empirically) almost achieve capacity (nature

prefers to avoid ambiguity!): capacity may have biological significance.



Biological Motivation

Protein Folds in Nature

For each possible cardinality of

protein families (x axis), count

the number of protein folds (or

sequences) observed in nature

which are associated with that

number of families. Plot on y axis the

fraction of protein folds.

In nature, we observe lots of

sequences with few associated

folds and few sequences with lots of

associated folds.

• The channel is a model of protein folding.

• Sequence distribution in nature exhibits a power law. In the channel

model, such distributions (empirically) almost achieve capacity (nature

prefers to avoid ambiguity!): capacity may have biological significance.

Magner, Szpankowski, Kihara, “On the Origin of Protein Superfamilies and

Superf olds”, Scientific Reports, 2015.



Back to Theory . . .

Recall that

H(F |S) = E[logZ(S, β)] + βE[Eβ,S(F )],

where we set

α∗(β,N) = α∗(β) =
E[Eβ,S(F )]

N
= − d

dβ

E[logZ(S, β)]

N
.

Furthermore, define free energy γ(β, S) as

γN(β, S) =
E[logZ(S, β)]

log |FN | , γ(β, S) = lim sup
N→∞

γN(β, S).

By submultiplicativity property of FN we may conclude (needs a proof)

lim sup
N→∞

log |FN|
N

= µ > 1.

Then

E logZ(S, β) ∼ log |FN | · γ(β, S) ∼ Nµ · γ(β, S)

leading to

H(F |S) ∼ N [γ(β, S)µ + βα
∗
(β)].



Main Results - Phase Transition

Theorem 8. For any distribution over SN , β > 0, and scoring matrix Q

satisfying a “niceness” condition, there exists σ2 > 0 such that

Var[E(f, S)] ∼ Nσ2 > 0.

Then we have the following phase transition:

lim sup
N→∞

H(F |S)

N
≤

{

µ + 1
2σ

2β2 − β(α − α∗) β > 0

β
√

2σ2µ − β(α − α∗) β ≥ β∗ =
√
2µ
σ .

The conditional entropy phase transition is a consequence of the free

energy phase transition:

µ · γ(β, S) ≤
{

µ − βα + 1
2σ

2β2 β <
√
2µ
σ

β(
√

2σ2 logµ − α) β ≥
√
2µ
σ

Remark. There is an information-theoretic upper bound on H(F |S):

H(F |S) ≤ H(F ) ≤ log |FN | = Nµ

which may beat the upper bound above since we know that α − α∗ > 0!



Matching Lower Bound?

Finding a lower matching bound is very challenging. It depends on the

covariance between energies of two folds f and g.

Let K denote the number of shared contacts between two folds f, g chosen

uniformly at random with replacement.

Theorem 9 (Free energy lower bound for high temperature). There exists a

scoring matrix for which we have for large N

H(F |S)

N
≥ µ − β(α − α∗(β)) +

1

2
β
2
σ

2 − o(1),

provided β = o(1/
√
N logN).

Remark. For Q satisfying Theorem 9 and β = o(1/
√
N logN) we observe

that

α − α∗ ∼ βσ2

leading to

H(F |S) ∼ N

(

µN − 1

2
σ

2
β
2

)

for small β < β∗.



Back to Capacity Conjecture and CounterExample

Corollary 1. With p and the scoring matrix Q are as above, and βN =

o(N−2/3 log−1/3 N), then

I(F ;S) = o(1).



Back to Capacity Conjecture and CounterExample

Corollary 1. With p and the scoring matrix Q are as above, and βN =

o(N−2/3 log−1/3 N), then

I(F ;S) = o(1).

There are scoring matrices for which there is no phase transition, as shown in

the next theorem.

Theorem 10. Let Q be the scoring matrix which maps:

HH 7→ −1/2, HP/PH 7→ −1/4, PP 7→ 0.

Then, for arbitrary sequence distributions, the free energy is given by

γ(β) = 1 + β lim sup
N→∞

E[DS(H)]

log |FN | ,

where DS(H) is the number of i for which Si = H. In the case of Bernoulli

S∼BN(p), this becomes

γ(β) = 1 +
βp

µ
= 1 − βα

µ
.

That is, there is no phase transition!



That’s It

THANK YOU



Outline Update

1. Structural Compression

2. Structure of Markov Fields

• One Dimensional Markov Types

• One-Dimensional Universal Types.

• Markov Fields and Tilings

3. Sequence-Structure Channel



Large Systems with Local Interactions

These local interactions are often represented by shapes and tiles leading

to a Markov field.

Markov Field Types:

Two Markov fields have the same type if they have the same empirical

distribution.

The method of types is a powerful technique in information theory; it reduces

calculations of the probability of rare events to combinatorics.



Outline Update

1. Structural Compression

2. Structure of Markov Fields

• One Dimensional Markov Types

• One-Dimensional Universal Types.

• Markov Fields and Tilings

3. Sequence-Structure Channel



Let’s Begin . . . One-Dimensional Markov Chains

One-Dimensional Markov: Sequences xn = x1 . . . xn over A =

{1, 2, . . . ,m} alphabet. Define

T n(x
n) = {yn : P (xn) = P (yn)}, and Pn := Pn(m) class of distributions.

Consider a Markov source with the transition matrix P = {pij}m
i,j=1. Then

P (xn
1) = p

k11
11 · · · pkmm

mm =
∏

i,j∈A
p
kij
ij ,

where kij is the number of pair symbols (ij) in xn
1 , that is, i followed by j.



Let’s Begin . . . One-Dimensional Markov Chains

One-Dimensional Markov: Sequences xn = x1 . . . xn over A =

{1, 2, . . . ,m} alphabet. Define

T n(x
n) = {yn : P (xn) = P (yn)}, and Pn := Pn(m) class of distributions.

Consider a Markov source with the transition matrix P = {pij}m
i,j=1. Then

P (xn
1) = p

k11
11 · · · pkmm

mm =
∏

i,j∈A
p
kij
ij ,

where kij is the number of pair symbols (ij) in xn
1 , that is, i followed by j.

For circular strings (i.e., after the nth symbol we re-visit the first symbol of xn
1 ),

the matrix k = [kij] satisfies the following constraints denoted as Fn(m) :

∑

1≤i,j≤m kij = n,
∑m

j=1 kij =
∑m

j=1 kji

For example: m=3

k11 + k12 + k13 + k21 + k22 + k23 + k31 + k32 + k33 = n

k12 + k13 = k21 + k31

k12 + k32 = k21 + k23

k13 + k23 = k31 + k32



Markov Types and Eulerian Cycles

Example: Let A = {0, 1} and

k =

[
1 2

2 2

]



Markov Types and Eulerian Cycles

Example: Let A = {0, 1} and

k =

[
1 2

2 2

]

Pn(m) – Markov types but also . . .

a set of all connected Eulerian di-graphs G = (V (G), E(G)) such that

V (G) ⊆ A and |E(G)| = n.

En(m) – set of connected Eulerian digraphs on A.

Fn(m) – balanced matrices but also . . .

set of (not necessary connected) Eulerian digraphs on A.

Asymptotic equivalence: |Pn(m)| = |Fn(m)| + O(nm2−3m+3) ∼ |En(m)|.



Main Results for One-Dimensional Markov Chains

Theorem 11. (i) For fixed m and n → ∞ the number of Markov types is

|Pn(m)| = d(m)
nm2−m

(m2 − m)!
+ O(nm2−m−1)

where d(m) is a constant that also can be expressed as

d(m) =
1

(2π)m−1

∫ ∞

−∞
· · ·

∫ ∞

−∞
︸ ︷︷ ︸

(m−1)−fold

m−1∏

j=1

1

1 + ϕ2
j

·
∏

k 6=ℓ

1

1 + (ϕk − ϕℓ)2
dϕ1dϕ2 · · · dϕm−1.

(ii) When m → ∞ we find that

|Pn(m)| ∼
√
2m3m/2em

2

m2m22mπm/2
· nm2−m

provided that m4 = o(n).

Example. The coefficients at nm2−m are very small.

For m = 4 the coefficient is 1.767043356 10−11.



Outline Update

1. Structural Compression

2. Tree Compression

• One Dimensional Markov Types

• One-Dimensional Universal Types

• Markov Fields and Tilings

3. Sequence-Structure Channel
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• One Dimensional Markov Types

• Markov Fields and Tilings

3. Sequence-Structure Channel



(Cyclic) Markov Fields and Tilings

d-Dimensional Markov Fields:

Consider a d-dimensional box (n1, . . . , nd) with N = n1 · · ·nd.

A circular representation of such a box is a torus that we denote as On.

The shape of interaction is S ⊂ Zd.

A tile t is t : S → A and T = {t : S → A}.

Markov Field Type X n = {xn : On → A}:

Define the frequency vector of dimension D = |T | = m|S|:

k(t) ≡ kS(t) = |{s ∈ On : x|S+s = t}| , t ∈ T .

Example:

A set of Markov field types or tile types is:

Pn(m,S) = {k : ∃x∈Xn x
n
is of type k}.



Conservation Laws

Conservation Laws:
∀∅6=S′⊂S, s∈Zd:(S′+s)⊂S ∀t′:S′→A kS′(t

′) = kS′+s(t
′)

with shift s ∈ Zd subject to (S′ + s) ⊂ S.

Example:



Conservation Laws

Conservation Laws:
∀∅6=S′⊂S, s∈Zd:(S′+s)⊂S ∀t′:S′→A kS′(t

′) = kS′+s(t
′)

with shift s ∈ Zd subject to (S′ + s) ⊂ S.

Example:

The conservation laws can be viewed as linear equations with a 1 × D row

denoted as C({(S′, s, t′)}).
The matrix C∗ is hugely over determined! Our goal is to find C such that the

conservation laws can be written as

Ck = 0.

Example 1. d = 1-dimensional Markov over A = {1, 2}.

Tiles are ((11), (21), (12), (22)) and the conservation laws are

k(11) + k(12) = k(1∗) = k(∗1) = k(11) + k(21),

k(21) + k(22) = k(2∗) = k(∗2) = k(12) + k(22).

leading to one conservation law k(12)− k(21) = 0 that in the matrix form is

(0,−1, 1, 0) · k = 0.



Dimension of the Frequency Vectors

The conservation laws make the vector count k ∈ ZD to reside in a space

of dimensionality

µ = D − rk(C) − 1.

where rk(C) is the rank of matrix C. I

Theorem 12. The matrix C has rank

rk(C) =
∑

S′∈S0

(|{s : (S
′
+ s) ⊂ S}| − 1)(m − 1)

|S′|

and consists of a complete set of linearly independent rows.

In particular, for the box shape S = Il1 × Il2 × . . . × Ild we find

µ = D − 1 − rk(C) =
∑

s∈{0,1}d
m

∏

i(li−si) · (−1)
∑

i si.



Dimension of the Frequency Vectors

The conservation laws make the vector count k ∈ ZD to reside in a space

of dimensionality

µ = D − rk(C) − 1.

where rk(C) is the rank of matrix C. I

Theorem 12. The matrix C has rank

rk(C) =
∑

S′∈S0

(|{s : (S
′
+ s) ⊂ S}| − 1)(m − 1)

|S′|

and consists of a complete set of linearly independent rows.

In particular, for the box shape S = Il1 × Il2 × . . . × Ild we find

µ = D − 1 − rk(C) =
∑

s∈{0,1}d
m

∏

i(li−si) · (−1)
∑

i si.

Example: For d = 2 and a 2× 2 square shape we have µ = m4 − 2m2 +m,

while for a 3 × 2 rectangular shape we find µ = m6 − m4 − m3 + m2.



Geometry

We view the count vector k = {k(t)}t∈T in the D = m|S| space.

C = {k ∈ ND : Cm(S) · k = 0}
F = {k ∈ C :

∑

i ki = N}
F̂ = {k̂ ∈ {(RD

+ : C · k̂ = 0,
∑

i k̂i = 1}
FN = {N k̂ : k̂ ∈ F̂ , N k̂ ∈ ZD}

The polytope FN is of dimension µ.

Topological Closure of (normalized) P̂ is a convex subset of F̂ .



Geometry

We view the count vector k = {k(t)}t∈T in the D = m|S| space.

C = {k ∈ ND : Cm(S) · k = 0}
F = {k ∈ C :

∑

i ki = N}
F̂ = {k̂ ∈ {(RD

+ : C · k̂ = 0,
∑

i k̂i = 1}
FN = {N k̂ : k̂ ∈ F̂ , N k̂ ∈ ZD}

The polytope FN is of dimension µ.

Topological Closure of (normalized) P̂ is a convex subset of F̂ .

The lattice FN consists of all integer points inside F̂ scaled by N .

Volume of FN is of order Nµ with integer points growing as Nµ.

Theorem 13 (Ehrhart, 1967). If F̂ is a convex polytope with vertices in QD,

where Q is the set of rational numbers, then that cµ,j 6= 0 for some j

|FN| = aµ,jN
µ + aµ−1,jN

µ−1 + ...a0,j N ≡ j (mod p).



Main Result for Markov Types

Theorem 14. Consider the torus On. There exists 0 < cmin ≤ cmax such that

cminNµ ≤ |Pn(m,S)| ≤ cmaxNµ
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cminNµ ≤ |Pn(m,S)| ≤ cmaxNµ

Lemma 4. There exist µ + 1 linearly independent periodic tilings.



Main Result for Markov Types

Theorem 14. Consider the torus On. There exists 0 < cmin ≤ cmax such that

cminNµ ≤ |Pn(m,S)| ≤ cmaxNµ

Lemma 4. There exist µ + 1 linearly independent periodic tilings.

a1k̂
1+..+aµ+1k̂

µ+1

a1+···+aµ+1
: ∀i ai ∈ N,

∑

i ai = N

(N+µ−1
µ

)
= O(Nµ)



That’s It

THANK YOU


