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Poisson Transform

Let fgngn2N be a sequence of complex numbers such that

jgnj = exp(O(n)):

The Poisson transform of fgngn2N is defined as

eG(z) =X
n�0
gn
zn

n!
e�z (1)

gn eG(z)

1 1

n z

n(n� 1) � � � (n� k) zk+1

(�1)n e�2z

�n exp((� � 1)z)

n! e�z=(1 � z)

Basic Problem: How to recover gn from asymptotics ofeG(z).



Some Properties of Poisson Transform

Assumption:
The Poisson transform G(z) is an entire function.

Table 1: Some Properties of Poisson Transform
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Example: Let

an =
X

k

�n
k

�
pkqn�kgkfn�k

with p+ q = 1. Then eA(z) = eF (pz) eG(qz):



Probabilistic vs Analytic Depoissonization

Let N be an integer variable with Poisson distribution of parameter �:

P (N = k) =

�k
k!
e��:

Observe that
E[gN] =
X

n�0
gn
�k

k!
e�� := eG(�)

This constitutes the basis for the probabilistic poissonization/depoissonization.

Thus Poisson transform eG(z) is an analytic continuation of eG(�) to complex
plane.

Remark: It seems to us that probabilistic poissonization was introduced by
M. Kac (1949) (limited to real arguments).



Applications: Digital Trees

Digital trees are data structures suitable to store data (keys)
represented by a sequence of symbols from a finite alphabet.

There are three types of digital trees, namely: trie, Patricia trie (PAT),
and digital search tree (DST). These structures are recalled below.
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Figure 1: A trie, Patricia trie and a digital search tree (DST) built from the
following four strings

S1 = 11100 : : : ,

S2 = 10111 : : : ,

S3 = 00110 : : : ,

S4 = 00001 : : :.



Generic Example

F(z)

F(zp) F(zq)

zp
zq

a(z)
contribution of the root

Figure 2: Generic Situation
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+
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�
F (zp)
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+
?

�
F (zq) + intitial conditions :



Tries and Their Parameters

The parameters of interests are:

� typical depth Dn, i.e., the length of a path from the root to a randomly
selected (external) node,

� height Hn, i.e., maximum path from the root to a terminal node,

� total path length Ln, i.e., sum of all paths from the root to (external)
nodes,

� size of the tree Sn, i.e., number of nodes.



Recurrences and Functional Equations

Average Depth: Ln = nE[Dn]:

L0 = 0, L1 = 1, and

Ln = n+
X

k

�n
k

�
p
k
q
n�k
(Lk + Ln�k)

Poisson transform:
eL(z) = z + eL(pz) + eL(qz)� ze�z (2)

The bivariate Poisson generating function for the depth Dn(u) = E[uDn],
and and the total path length Ln(u) = E[uLn] (e.g.,

eD(z; u) =

1X
n=0
Dn(u)
zn

n!
e�z

and similar for eL(z; u)).
They satisfy the following functional equations:

eD(z; u) = u(p eD(zp; u) + q eD(zq; u)) + (1 � u)e
�z
;eL(z; u) = eL(zup; u)eL(zuq; u) + z(1� u)e

�z
:



Size of Tries

Average Size: sn = E[Sn]:

s0 = s1 = 1 and

sn = 1 +
X

k

�n
k

�
p
k
q
n�k
(sk + sn�k):

Poisson transform:

S(z) = 1 + S(pz) + S(qz)� 2(1 + z)e�z (3)

Bivariate Poisson GF:

eS(z; u) = ueS(zp; u)eS(zq; u) + (1� u)e
�z
:



Example: Digital Search Trees

The exponential generating functions for digital search tree parameters
satisfy the following equations:

@D(z; u)

@z

= u(pD(zp; u) + qD(zq; u)) + 1 ;

dHk(z)

dz

= H
k�1
(zp)H
k�1
(qz) ;

@L(z; u)

@z

= L(zup; u)L(zuq; u) :

with H0(z) = (1 + z).

Above equations come from corresponding recurrences. For example:

Ln(u) = E[uLn] satisfies

Ln+1(u) = un

nX
k=0

�n
k

�
pkqn�k(Lk(u) + Ln�k(u)):



Leader election algorithm

Figure below explains how a randomized leader election algorithm works
(Prodinger, DM, 1993)
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Figure 3: An incomplete trie for the elimination process starting with 7
players.

Height Hn is the number of steps needed to find a leader (loser).



Leader Election – Poisson Transform

Let Hn(u) = E[uHn] and eH(z; u) =
P

n�0Hn(z)
zn

n! .

The following functional equations are easy to derive

Hn(u) =

u
2n

nX
k=1

�n
k

�
Hk(u) +
uHn(u)

2n

eH(z; u) = u(1 + e
�z=2
) eH �z

2
; u
�

+ e
�z
h

(1 + z)(1� u) � ue
z=2
i

:



Generalized Probabilistic Counting

In several algorithms on databases a major determinant of efficiency is
the cardinality of the underlying set, say M. Generalized Flajolet & Martin
idea works as follows.

� Consider an empty bitmap string with all positions filled by zeros.

� Assume that N objects (e.g., data, persons, etc.) can randomly insert
(hit) a 1 at any position of the bitmap, however, the probability of hitting
the j � 0 position is equal to 2�j�1.

� Every object can hit only one time.

� In terms of probabilistic counting, the probability of the occurrence of
the pattern like 0j1 � � � is equal to 2�j�1 since 0 and 1 are equally likely.

� We count the number of hits in any position of the bitmap, but we count
the number of hits only up to some value d + 1, where d is a given
parameter.

� The bitmap is a d+ 1-ary string. Clearly, the bitmap will contain a lot of

d+ 1’s at the beginning of the string.



Parameter of Interest

The cardinality of M can be estimated based on

RN;d = minfk : BITMAP (k) < d+ 1

and for all 0 � i < k BITMAP (i) = d+ 1g :

Example: For d = 3 we may have bitmap = 44444444444| {z }
RN;3

34100000. Then

RN;3 = 11.

Functional Equations

Let Fn(u) = E[uRn;d]. Then

Fn(u) =

dX
k=0

�n
k

�
2�n + u

n�d�1X
k=0

�n
k

�
2�nFk(u) :

and the Poisson transform satisfies

eF (z; u) = ufd(z=2) eF (z=2; u) + (u� 1)(fd(z=2) � 1) :

where

fd(z) = 1� ed(z)e
�z and ed(z) = 1 +
z1

1!
+ � � �+ zd

d!
:



Basic Idea of Depoissonization

Basic Problem: How to recover gn from asymptotics of

eG(z) =X
n�0
gn
zn

n!
e
�z

when eG(z) is only known in the cone as z !1.

Example. From Table 1 we know that for gn = n(n�1) � � � (n�k+1) � nk

we have eG(z) = z
k ) gn � eG(n):



Does Depoissonization Always Work?
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For gn = (�1)n the Poisson transform is eG(z) = e�2z gn 6� eG(n):



What about this one?
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Figure 4: Poisson Transform of sin2(log n).



Algebraic Depoissonization

In the exact or algebraic depoissonization one extracts gn from its Poisson
transform, that is,

gn = n![z
n
]
�

e
z eG(z)� :

Example: Consider n balls (items) thrown randomly and uniformly into

m urns. What is the probability Pk(n) that precisely k specified urns are
empty?
In the Poisson model we replace stream of balls by a Poisson process with
mean z. Each urn receives an independent Poisson processes of mean

z=m.

Pk(z) = e�kz=m(1� e�z=m)m�k = e�z(ez=m � 1)m�k:

Depoissonizing it we have

Prfempty urns = kg = n![zn] (ezPk(z))

= [z
n
]
�

n!(e
z=m � 1)
m�k
�

=

(m � k)!

mn

n n
m� k

o
;

where

�n
k
	

denote the Stirling numbers of the second kind.



Analytic Depoissonization – Heuristics

We first propose a heuristic derivation. As we observed eG(z) = E[gN ],
where N is a Poisson with mean z = n.

Taylor’s expansion around n is

g(N) = g(n) + (N � n)g
0
(n) +
1

2
g
00
(n)(N � n)
2
+ � � � :

Taking the expectation we obtain

eG(n) = eG(z)jz=n = E[g(N)] = g(n) +
1

2
g00(n)n+ � � �

since E[N � n] = 0 and E[N � n]2 = n. Solving the above for g(n) = gn

gn � eG(n)� 1
2
ng
00
(n) + � � � = eG(n) +O(ng
00
(n)):

Provided that

ng
00
(n) = o(g(n));

we have

gn � eG(n):



Examples

Consider the following examples:

� Let g(n) = n� for which eG(n) = n� + O(n��1), and g00(n) = O(n��2),
thus

gn = eG(n) + O(ng00(n)) = eG(n) +O(n��1);

which is true.

� Consider now g(n) = �n with � > 1. This time eG(z) = ez(��1), g00(n) =

�n log2 �, and it is not true that gn � eG(n).

� Now we assume gn = en
�
. In this case, it is harder to find the Poisson

transform, but one suggests that eG(z) � ez
�

. We also have g00(n) =

O(n2��2en
�

). Observe that

gn = eG(n) + O(ng
00
(n)) = eG(n) +O(n
2��1
e
n�
)

and the error is small as long as 0 < � < 1
2 (the so called exponential

depoissonization.



Basic Depoissonization Theorem

Theorem 1. Let eG(z) be an entire function and let S� be a complex cone
around real axis with � < �

2 . If the following two conditions hold:

(I) z 2 S�: eG(z) = O(z�) for some �;
(O) z =2 S�: eG(z)ez = O(e�jzj) for some � < 1,

then

gn = eG(n) +O(n��1=2):

Even better
gn = eG(n) +O(n
��1
):

y
6

- x�n

(0; n)

w = nei�n

C(h)

S�n



Sketch of the Proof

From the Cauchy and Stirling formulas we have

gn =

n!
2�i

I eG(z)ez
zn+1

dz

z=neit

=

n!

nn2�i
Z �

��
eG(neit) exp�neit� e�nitdt

= (1 +O(n))(In(t) + En(t))

where

In(t) =

r
n

2�
Z �

��
eG(neit; u) exp�n�eit � 1� it
��

dt

En(t) =

r
n

2�
Z

jtj2[�;�]
eG(neit; u) exp�n�eit � 1� it
��

dt

Outside the Cone S�:

En(t) = O(
n!

nn
e
�n
) = O(e
�(1��)n
)!1



Saddle Point
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Inside the Cone S� (Saddle point method):

In
t0=t=pn

=

1p
2�

Z �
p

n

��pn
eG(neit=pn)exp�n�eit=pn � 1� it=
p

n
��

dt:



e
x
p �
n �
e
it= p
n

�

1�
it= p
n ��

=

e �
t 2
=
2  
1�
it
3

6 p
n
+

t
4

2
4
n
�
t
6

7
2
n
+
O  
lo
g
9
n

n p
n !!

eG
(n
e
it= p
n
)

=

eG
(n
)
+
it p
n eG
0(n
)
+
t
2�

n
(t);

eG
0(z
)

=

O
(z
��
1)



Counterexamples to (I) and (O)

Example: (Violation of (O))
Let

gn = (�1)n eG(z) = e
�2z
:

Condition (I) inside the cone is true. But, in this case the condition (O)
outside the cone S� does not hold because

eG(z)e
z
= e
jzj for arg(z) = � :

Clearly, gn 6� eG(n).
Example: (Violation of (I))
Take now

gn = (1 + t)
n eG(z) = e
tz
:

Condition outside (O) the cone S� holds for some � such that (1+t) cos � <

1. But the condition inside (I) the cone S� does not hold since eG(z) has not
a polynomial growth. Again gn 6� eG(n).



Full Asymptotic Expansion

Theorem 2. Under same conditions as in Theorem 1, we have the following
full expansion that holds for every fixed m:

gn =

mX
i=0

i+mX
j=0
bijn
i eGhji
(n) +O(n
��m�1
)

where bij are coefficients ofP
ij bijx
iyj = exp(x log(1 + y)� xy):

Remark: Gonnet-Munro (84) produced this expansion but without the
validity conditions.

Proof: 1. Use expansion of eG(z) knowing that eGhki(z) = O(z��k);
2. Use dominating convergence argument to prove that there is an
expansion of gn as

P
bijn
i eGhji(n) for some bij.

The first few terms of the above expansion are

gn = eG(n) � 1
2
n eG(2)(n) +
1

3
n eG(3)(n) +
1

8
n2 eG(4)(n) � 1

4
n eG(4)(n) � 1

6
n2 eG(5)(n)�

� 1
48
n
3 eG(6)
(n) +
1

5
n eG(5)
(n) +
13

72
n
2 eG(6)
(n) +

1
24
n
3 eG(7)
(n) +

1
384
n
4 eG(8)
(n) �

�1
6
n eG(6)(n) � 11

60
n2 eG(7)(n)� 17

288
n3 eG(8)(n)� 1

144
n4 eG(9)(n) � 1

3840
n5 eG(10)(n



Example

We are interested in asymptotic expansion of

gn =

1X
k=0

�
1� (1 � 2�k)n
�

:

The Poisson transform of gn is
eG(z) = 1X

k=0
�

1� e
�z2�k
�

;

and the jth derivative is eG(j)(z) = (�1)j+1P1
k=0 2
�jke�z2
�k

: By Theorem
2 one proves

gn = log2 n+



log 2
+
1

2
+ P 0(log2 n)s

+

mX
k=1

kX
i=1

(�1)k+i+1bi;k+in
�kP k+i(log2 n) +O(n�m�1 log n)



where

P 0(log2 x) =

1
log 2
X

`6=0
�(2�i`= log 2)e
�2�i` log2 x

P j(log2 x) =

1
log 2

1X
`=�1

�(j + 2�i`= log 2)e�2�i` log2 x; j � 1:



Exponential Depoissonization

Theorem 3. Let f(n) be a sequence whose Poisson transform is eF (z).
(i) Assume that for z !1 the following holds:
(I) For z 2 S�

j eF (z)j � A exp(Bjzj�)

where 0 � � < 1=2, and A;B > 0 are constants.
(O) For z =2 S�

j eF (z)ezj � A1 exp(!jzj)

for ! < 1 and A1 > 0. Then for n!1

f(n) = eF (n) +O
�

n
�(1�2�)
exp(Bn
�
)
�

:

(ii) Let conditions (I) and (O) hold again except that now � in (I) satisfies

1
2 < � < 1. Then colorblue

log f(n) = log eF (n) +O(n2��1):
Proof. Use the fact that j eF hki(z)j � Ajzjk(��1) exp(Bjzj�).



Example

Let us study Cn defined below that appears in the analysis of the height of
PATRICIA:

Cn = 4

nX
k=2

�n
k

� 2�n

n� k + 1
Ck; n � 2

with C2 = 1. Its Poisson transform satisfies

eC(z) =

8
z
(1� e
�z=2
) eC �z

2
�

;

and then F (z) = log z2 eC(z)=2 has the following asymptotics in S� as z !

1 (using Mellin transform)

exp[F (z)] � A
p

z2
�1=12
exp
"

�1
2

log2(z)

log 2

+ 	(log2 z)
#

;

where 	(z) is a fluctuating function and A = exp
�


(1)+
2=2��2=12

log 2

�

.
Exponential Depoissonization leads to

Cn � A
1

2
n
5=2
2
�1=12
exp
"

�1
2

log2(j)

log 2

+ 	(log2 n)
#

:



Poisson Mean and Variance

For a random variableXn define by eX(z) and eV (z) the Poisson mean and
Poisson variance, respectively. That is, they are the mean and the variance
of XN where N is Poisson distributed.

How the Bernoulli moments E[Xn] and Var[Xn] related to the
corresponding Poisson moments eX(z) and eV (z)?.

Theorem 4. Under previous hypotheses we have

E[Xn] = eX(n)� 1
2
n eXh2i
(n) +O(n
��2
);

Var[Xn] = eV (n)� n[ eX 0(n)]2 +O(n��1)

Example: Let Z1; : : : ; Zn be a sequence of independently and identically
distributed random variables with generating function P (u) = EuZ1 and
mean � and variance v. Then

E[Xn] = n�; Var[Xn] = nv:

But eX(z) = z�; eV (z) = (�
2
+ v)z;

thus Var[Xn] = eV (n)� n[ eX 0(n)]2 = (�2 + v)n � n�2 = vn.



Application: Variance of Tries Size

Consider the size Sn of a trie. Let qn = E[S2
n], and the Poisson variance is

V (z) = Q(z)� (S(z))2 where Q(z) is Poisson transform of qn.
Observe that V (z) satisfies

V (z) = V (pz) + V (qz) + (2S(z) � 1 + (1 + z)e
�z
)(1 + z)e
�z

One proves (Jacquet-Regnier 87)

V (z) = C1z(1 + P4(log z)) +O(1) (p = q = 1=2)

and Q(z) = O(z2). Then

vn = qn � (sn)
2

= Q(n)� n
2
Q
h2i
(n)� (S(n) � n

2
S
h2i
)
2
+ O(1)

= V (n)� n
2
(S0(n))2 +O(1):

Term n(S0(n))2 is of the same order as V (n) and cannot be neglected:

Poisson variance differs from the Bernoulli variance on the second term
asymptotics.



Limiting Distributions

Depoissonization techniques can also be used to derive limiting
distributions.
Such extension requires to analyze a double-index sequence gn;k; for
example

gn;k = PrfXn = kg; or gn;k = E[e
tXn= sqrtVk]:

Then Poisson transform is
eG(z; u) = EuXN =

1X
n=0

zn
n!
e�z

1X
k=0
gn;ku
k;

but often it is better to analyze a sequence of Poisson transforms

eGk(z) =

1X
n=1
gn;k
zn

n!
e
�z
:

How to infer limiting distribution (equivalently gn;k) fromeG(z; u) or eGk(z)?.



A Simple Depoissonization

Theorem 5. Let eG(z; u) satisfy the hypothesis of previous depoissonization
theorems, i.e., for some numbers � < �=2, A, B, � > 0, �, and � < 1 (I)
and (O) hold for all u in a set U . Then

Gn(u) = eG(n; u) +O(n
��1
)

uniformly for u 2 U .

Theorem 6. Suppose eGk(z) =
P1

n=0 gn;k
zn

n! e
�z, for k belonging to some set

K. If the following two conditions hold:

(I) z 2 S�: eGk(z) = O(z�) for some �;
(O) z =2 S�: eGk(z)e

z = O(e�jzj) for some � < 1,

then uniformly in k 2 K
gn;k = eGk(n) +O(n��1) (4)

and the error estimate does not depend on K.



Example – PATRICIA Depth

Example: Depth in PATRICIA.
The depth Dn in PATRICIA satisfies

eD(z; u) = u(p eD(zp; u)

+ q eD(zq; u))(1 � u)(p eD(zp; u)e
�qz
+ q eD(zq; u)e
�pz
) :

One can prove that conditions (I) and (O) hold (e.g., eD(z; u) = O(z")

inside a cone).
Using Mellin transform as z !1 we prove that

e
�t eX(z)=�(z) eD(z; e
t=�(z)
) = e
t2=2
(1 +O(1=�(z)));

for u = et, t complex, where eX(z) = O(log z) and �2(z) = O(log z)

(provided the source is biased).

By previous result we can prove that E[Dn] � eX(n) and Var[Dn] �

�2(n). This suffices to establish the next result.
Theorem 7 (Rais, Jacquet and S., 1993). For complex t

e�tE[Dn]=
p

Var[Dn]
E

�
etDn=
p

Var[Dn]
�

= et
2=2(1 +O(1=
p

log n)) ;

that is, (Dn�E[Dn])=
p

Var[Dn] converges in distribution and in moments
to the standard normal distribution.



Diagonal Depoissonization

When proving Central Limit Theorem we must deal with gn;k = E[etXn=
p

Vk].
But often we are only interested in gn;n.

Diagonal Depoissonization is useful in this case.

Theorem 8. Let eGm(z) =
P

gn;m
zn

n! e
z be a sequence of Poisson transforms.

If there exists a cone S� and constants B, D > 0 and � < 1 such that

(I) z 2 S�, jzj 2 (n�Dn; n+Dn): j eGn(z)j � Bn�

(O) z =2 S�, jzj = n: j eGn(z)e
zj � en�n
�

Then

gn;n =

mX
i=0

i+mX
j=0
bijn
i eGhji

n (n) +O(n��m�1)

= Gn(n) +O(n
��1
)



Diagonal Exponential Depoissonization

Theorem 9. Sequence of Poisson transforms eGn(z). There exists a cone S�

where log( eGn(z)) exists. Let � 2 (1=2; 2=3) an d A, B > 0, � < 1.

(I) z 2 S�, jzj 2 (n�Dn; n+Dn):

j log eGn(z)j � Bn
�

(O) z =2 S�, jzj = n: j eGn(z)e
zj � en�An
�

,

then

gn;n = eGn(n) exp(�
n

2
(
eG0(n)eG(n) )2)(1 +O(n

3��2
)):

Even more sophisticated depoissonization theorems can be proved
with a combination of algebraic cones, diagonal and exponential
dePoissonization.



Leader Election Distribution

Consider the Poisson transform
eG(z; u) = u(1 + e
�z=2
) eG�z

2
; u
�

+ e
�z
[(1 + z)(1� u)� ue
z=2
] :

Using Mellin transform we

eG(z; u) � �z
log u

ln 2
((1� u)�(1� log u)�(1 � log u) + P (log u))

and then eGk(z) = (1� e
�z
)

z=2k

ez=2k � 1
:

After applying the residue theorem, and depoissonization P (Hn < j) �eGj(n) we arrive at

PrfHn � log n+ kg = 2�(n)�k

exp(2�(n)�k)� 1
+O
�

1p
n

�
:

where �(n) = log n � blog nc. Observe that this does not give a limiting
distribution.



Probabilistic Counting Asymptotic Distribution

We have the following Poisson transform for the estimate Rn;d

eG(z; u) = ufd(z=2) eG(z=2; u) + (u � 1)fd(z=2)

where fd(z) = 1� ed(z) and ed(z) is truncate exponential function. Then:
eGk(z) = [u
k
]
 eG(z; u)

1� u
!

=

'(z2�k�1)

'(z)

;

where

'(z) =

1Y
j=0
fd(z2
j) =

1Y
j=0

�
1� ed(z2
j)e�z2
j
�

:

This would lead to the following asymptotic distribution if we can prove the
depoissonization:

PrfRn;d � log2 n+m� 1g = 1� '
�

2
�m��(n)
�

+O(n
�1=2
) ;

where �(n) = log2 n� blog2 nc.



Distribution of Size of a Trie

Let sn(u) = E[uSn]. Then s0(u) = s1(u) = u,

sn = u
X

k

�n
k

�
pkqn�ksksn�k

which reads as (Jacquet and Regnier, 1987)

S(z; u) = uS(pz; u)S(qz; u)� (u
2 � 1)u(1 + z)e
�z
:

� Mellin analysis log(S(z; et)) = S(z)t+ V (z)t
2

2 +O(zt3),

� Diagonal dePo: eGn(z) = e�tsn=
p

vnS(z; et=
p

vn),

� when z = O(n):

log eGn(z) = exp(S(z)�snp
vn

+ V (z)

vn

t2=2 + o(n�1=2)) = O(n1=2);

� Diagonal exponential dePo: e�tsn=
p

vnsn(e
t=
p

vn) = exp(log eGn(n) �

n
2((log
eGn(n))
0)2)(1 +O(n�1=2)).

� Since log eGn(n) = �v(n)

2vn
t2 + O(n�1=2) and (log eGn(n))
0 = s0(n)p

vn
t +

O(n�1) then

log eGn(n) =

v(n)� n(s0(n))2=2

vn

t2=2 + o(n�1=2) =

t2
2
+ o(n�1=2)

and the distribution is asymptotically normal.



Digital Search Trees

Define Ln(u) = E[uLn]. Then

Ln+1(u) = u
n
X

k

�n
k

�
p
k
q
n�k
(Lk(u) + Ln�k(u)

which leads to particularly differential-function equation
@

@z
L(z; u) = L(puz; u)L(quz; u) :

with L(z; u) = eL(z; u)ez (exponential PGF).

� (Ugly nd dirty) asymptotic analysis provides logL(z; et) = O(z�(t)) with

(pet)�(t) + (qet)�(t) = 1.

� Similarly to tries size but harder analysis that requires polynomial cone
(not a linear cone) in order to prove limiting normal distribution.

This result was used to find redundancy of Ziv-Lempel compression
algorithm (Louchard, S., 1997)


