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Poisson Transform

Let {g,}nen be asequence of complex numbers such that

|gn| = exp(O(n)).

The Poisson transform of { g, }.c v is defined as

G =Y e @)
gn G(#)
1 1
nn—1)---(n — k) ZFH
(_1)n €—2z
a” exp((a — 1)z)
n! e “/(1 — 2)

Basic Problem: How to recover g,, from asymptotics of
G(z).




Some Properties of Poisson Transform

Assumption:
The Poisson transform G (z) is an entire function.

Table 1. Some Properties of Poisson Transform

sequence Poisson transform
angn é(OAZ)
>k () gr _G(z)e”
> (1) g fo—n G(z)F(z)e”
In+1 %G(z) + G(z)
g | 2 () 25

Example: Let
n —
an = (k)pkq “ g

with p + g = 1. Then ~ B B
A(z) = F(pz)G(qz).



Probabilistic vs Analytic Depoissonization

Let N be an integer variable with Poisson distribution of parameter A:

k

Observe that iy
\E .
E[gn] = > gnpye = G(V)

n>0
This constitutes the basis for the probabilistic poissonization/depoissonization.

Thus Poisson transform G (z) is an analytic continuation of G(\) to complex
plane.

Remark: It seems to us that probabilistic poissonization was introduced by
M. Kac (1949) (limited to real arguments).



Applications: Digital Trees

Digital trees are data structures suitable to store data (keys)
represented by a sequence of symbols from a finite alphabet.

There are three types of digital trees, namely: trie, Patricia trie (PAT),
and digital search tree (DST). These structures are recalled below.

trie Patricia DST

Figure 1. A trie, Patricia trie and a digital search tree (DST) built from the
following four strings

S; =11100... ,
S, = 10111... ,
Ss = 00110... ,

S4 = 00001 ....



Generic Example

a(z)
- contribution of the root

zP i

F(zp) F(zq)

Figure 2: Generic Situation

F(2) za(z){ j }F(zp){ j }F(zq)—l—intitial conditions .



Tries and Their Parameters

The parameters of interests are:

e typical depth D,, i.e., the length of a path from the root to a randomly
selected (external) node,

e height H,, i.e., maximum path from the root to a terminal node,

e (otal path length L., i.e., sum of all paths from the root to (external)
nodes,

e size of the tree S,,, i.e., number of nodes.



Recurrences and Functional Equations

Average Depth: L,, = nE[D,]:
L() =0, L =1, and

L, =n+ Z (Z) pkqn_k(Lk + Ln—k)
k

Poisson transform:

L(z) = z+ L(pz) + L(qz) — ze ~

The bivariate Poisson generating function for the depth D, (u) = E[u

and and the total path length L,,(u) = E[«*"] (e.g.,
~ © Zn —
D(z,u) = nZ:O Dn(u)me

and similar for L(z, u)).
They satisfy the following functional equations:

D(zu) = w(pD(zp,u) +qD(2g,u)) + (1 — w)e™,
L(z,u) = L(zup,u)L(zuq,u) + z(1 —u)e .

(2)

Dn]’



Size of Tries

Average Size: s, = E[S,,]:
sp = s; = 1 and
n —
s, =1+ Z (k)pkq k(sk + Sn_k)-

k

Poisson transform:

S(z) =14+ S(pz) + S(gz) —2(1 + z)e ~

Bivariate Poisson GF:

S(z,u) = uS(zp,u)S(zq, u) + (1 — u)e .

3)



Example: Digital Search Trees

The exponential generating functions for digital search tree parameters
satisfy the following equations:

oD
é?“) = u(pD(zp,u) + qD(zq,u)) + 1,
dH"”
dz(Z) = H"'(zp)H" '(g2),
oL
% = L(zup,u)L(zuq,u) .
zZ

with H°(z) = (1 + 2).

Above equations come from corresponding recurrences. For example:
L, (u) = E[u""] satisfies

Lopr(w) =u" 7 ()"0 (Liw) + Lo-i(w)).
k=0



Leader election algorithm

Figure below explains how a randomized leader election algorithm works

(Prodinger, DM, 1993)

acf

The loser ->

Figure 3: An incomplete trie for the elimination process starting with 7
players.

Height H,, is the number of steps needed to find a leader (loser).



Leader Election — Poisson Transform

Let H,(u) = E[u”] and H(z,u) = 3,50 Ha(2) %

The following functional equations are easy to derive

()= 5 - (k)H’“(u> T
H(z,u) = u(l+ e_z/z)ﬁ[ <§, u)

+ e~ [(1 +2)(1 —u) — uez/z] :



Generalized Probabilistic Counting

In several algorithms on databases a major determinant of efficiency is
the cardinality of the underlying set, say M. Generalized Flajolet & Martin
idea works as follows.

e Consider an empty bitmap string with all positions filled by zeros.

e Assume that N objects (e.g., data, persons, etc.) can randomly insert
(hit) a 1 at any position of the bitmap, however, the probability of hitting
the j > 0 position is equal to 277 1.

e Every object can hit only one time.

e In terms of probablllstlc counting, the probablllty of the occurrence of
the pattern like 0’1 - - - isequal to 277! since 0 and 1 are equally likely.

e We count the number of hits in any position of the bitmap, but we count
the number of hits only up to some value d + 1, where d is a given
parameter.

e The bitmapis a d + 1-ary string. Clearly, the bitmap will contain a lot of
d + 1’s at the beginning of the string.



Parameter of Interest

The cardinality of M can be estimated based on

Ryag = min{k: BITMAP(k)<d+1
and forall0<i<k BITMAP(i) =d+1}.

Example: For d = 3 we may have bitmap = 44444444444, 34100000. Then

R;Vr,3
Ry3 = 11.
Functional Equations
Let F,(u) = E[u""d]. Then
d n—d—1
) =30 (32 " e 30 ()2 k)
oo o

and the Poisson transform satisfies

F(z,u) = ufa(2/2)F(2/2,u) + (u — 1)(fa(2/2) — 1) .

where

1 d

fa(z) =1 —eq(z)e® and  e4(z) = 1+%+-.-+%.



Basic Idea of Depoissonization

Basic Problem: How to recover g,, from asymptotics of

~ Zn s
G(z) = Z gn—€

n>0

when G(z) is only known in the cone as z — .

Example. From Table 1 we know thatfor g, = n(n—1)--- (n—k+1) ~ n”
we have B B
G(z)=2" = g,~G(n).



Does Depoissonization Always Work?
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For g, = (—1)" the Poisson transform is G(z) = e 2% g,, & G(n).



What about this one?
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Figure 4: Poisson Transform of sin?(log n).



Algebraic Depoissonization

In the exact or algebraic depoissonization one extracts g,, from its Poisson
transform, that is,

gn = n![z"] (ezé(z)) :

Example: Consider »n balls (items) thrown randomly and uniformly into
m urns. What is the probability Px(n) that precisely k specified urns are
empty?
In the Poisson model we replace stream of balls by a Poisson process with
mean z. Each urn receives an independent Poisson processes of mean
z/m.

Pk(Z) _ e—kz/m(l . e—z/m)m—k _ e—z(ez/m . 1)m—k

Depoissonizing it we have

Pr{empty urns = k} = nl[z"](e’Px(2))

2] (n!(ez/m - 1)’”—’“)

(m — k)! n
- mm {m—k}’

where {7} denote the Stiring numbers of the second kind.




Analytic Depoissonization — Heuristics

We first propose a heuristic derivation. As we observed G(z) = E[gn],
where N is a Poisson with mean z = n.

Taylor’s expansion around n is

9(N) = g(n) + (N = n)g'(n) + 9" (n)(N =)+ -+
Taking the expectation we obtain
G(n) = G(2)ls=n = Blg(N)] = g(n) + 59" () + -
since E[N — n] = 0 and E[N — n]? = n. Solving the above for g(n) = g,
9. % G(n) = ng"(n) + -+ = G(n) + O(ng"(n).
Provided that
ng"(n) = o(g(n)),

we have N
gn ~ G(n).



Examples

Consider the following examples:

e Let g(n) = n” for which G(n) = n® + O(n’71), and ¢"(n) = O(n°~2),

thus
gn = G(n) + O(ng"(n)) = G(n) + O(n"™),

which is true.

e Consider now g(n) = o™ with a > 1. This time G(z) = e*“ Y ¢"(n) =
a"log® a, and itis not true that g, ~ G(n).

e Now we assume g,, = e”ﬁ. In this case, it is harder to find the Poisson
transform, but one suggests that G(z) ~ ¢*’. We also have g'(n) =

O(n25_2e”6). Observe that

gn = G(n) + O(ng"(n)) = G(n) + O(n* e

and the erroris smallaslong as 0 < 8 < % (the so called exponential
depoissonization.



Basic Depoissonization Theorem

Theorem 1. Let G(z) be an entire function and let Sy be a complex cone
around real axis with 6 < 3. If the following two conditions hold:

() z € Sy: G(z) = O(zP) for some j3;
(O) z ¢ Sy: G(z)e* = O(e®?!) forsome o < 1,

then N
gn = G(n) + O(n" ).

Even better B
gn = G(n) + O(n"™h.

(0,n)

Sp.,




Sketch of the Proof

From the Cauchy and Stirling formulas we have
B n! 7{ é(z)ezd
In B 271 zntl ?

= / G(ne") exp (ne”) e "t

n"27me

= (1 +00).(t) + En(t))

where

L.(t) = \/g/z G(ne”, u) exp (n (eit —1-— zt)) dt
\/g/ue[e,w] G(ne", u) exp (n (eit —1-— zt)) dt

Outside the Cone Sy:

E,.(t)

|
En(t) = 0(%6“”) — 0(e 1" 4



Saddle Point

i
ARSI
hi7
227 \\\k\\“

oftﬁ'ﬁgﬂ’

Inside the Cone Sy (Saddle point method):

I, =L b v é(neit/ﬁ)exp (n (eit/‘/H —1-— it/\/ﬁ))dt.



exp Ai Am&\,\m

@T@m&\/\mv

G(n) + itv/nG'(n) + °An(t),
O(z"1




Counterexamples to (1) and (O)

Example: (Violation of (O))
Let
gn = (_1)n é(z) — 6_2Z .
Condition (1) inside the cone is true. But, in this case the condition (O)
outside the cone Sy does not hold because

G(z)e* = el for arg(z) = .
Clearly, g, # G(n).

Example: (Violation of (1))
Take now

g=0+8"  G(z)=¢".
Condition outside (O) the cone Sy holds for some 6 such that (14t¢) cos 8 <
1. But the condition inside (I) the cone Sy does not hold since G(z) has not
a polynomial growth. Again g,, % G(n).



Full Asymptotic Expansion

Theorem 2. Under same conditions as in Theorem 1, we have the following
full expansion that holds for every fixed m:

m  i+m

gn = Z Z bwnzé<3>(n) —|— O(’I’Lﬁ_m_l)

i=0 ;=0

where b;; are coefficients of
> _ij bijz'y’ = exp(zlog(l + y) — zy).

Remark: Gonnet-Munro (84) produced this expansion but without the
validity conditions.

Proof: 1. Use expansion of G(z) knowing that G* (z) = O(z°%);
2. Use dominating convergence argument to prove that there is an
expansion of g, as 3_ b;;n'GY (n) for some b;;.

The first few terms of the above expansion are

~ 1 ~ 1 ~ 1 5~ 1 ~ 1 5~
gn = G(n)-— —nG<2><n) + —nG<3>(n) + —n2G<4>(n) - nGY(n) - 6n2G(5)(n) -
1
~ 11 17 1 ~ 1
_ZnG® n2a (7 3G (®) ell) G (10)
6n (n) — (n) = oggn & (n) = G(n) — —om (7



Example

We are interested in asymptotic expansion of

gn = zooj (1 (11— 2"‘6") .
k=0

The Poisson transform of g, is

G(z) = i (1 — e‘Z2k> ,

k=0

~ . . . _k
and the jth derivative is GV (z) = (=1)7** 3222, 277%¢~*2 ", By Theorem
2 one proves

i

n = logon +——
g g2 log 2

1
+ 5 + Po(logy n)s

+ Z Z(—1)k+i+1bi,k+in_kPk+i(log2 n) 4+ O(n " 'logn)

k=1 =1



where

1 —2millogo x
Py(log, ) = log 2 ZP(QW@E/ log 2)e 21082
10
1 E . . —2millogo x .
Pj(log,xz) = log 2 Z ['(j + 27t/ log2)e g2r. 5> 1.

l=—00



Exponential Depoissonization

Theorem 3. Let f(n) be a sequence whose Poisson transform is F(z).

(i) Assume that for = — oo the following holds:
() For z € Sy B

|F'(2)] < Aexp(B|z|")
where 0 < v < 1/2,and A, B > 0 are constants.
(O) Forz ¢ Sy N

[F(2)e”| < Ay exp(w|z])
forw < 1 and Ay > 0. Then forn — oo

f(n) = F(n)+ O (n_(1_2y) eXp(BnV)) :

(i) Let conditions (1) and (O) hold again except that now v in (l) satisfies
+ < v < 1. Then colorblue

log f(n) = log F(n) + O(n* ).

Proof. Use the fact that |F'* (2)| < A|z|** =Y exp(B|z]").



Example

Let us study C,, defined below that appears in the analysis of the height of

PATRICIA:
e, 4§nj(n) 2" - > 9
n — ; n -~
‘s \k)n—k+1 "

with Cy = 1. Its Poisson transform satisfies

G(z) = 2(1 _ )@ (g) |

and then F(z) = log 22C(z) /2 has the following asymptotics in Sy as » —
oo (using Mellin transform)

1log?
exp|F'(z)] ~ AVz2 Y P exp | —= 08" (2) + Y(log, z) | ,
2 log?2
2 2
where ¥(z) is a fluctuating function and A = exp (7(1)“10@22_7‘ /12).
Exponential Depoissonization leads to
1log™()

1
C, ~ A=n’/?o71/12 exp | —
2 2 log2

+ U(log, n)] :



Poisson Mean and Variance

For a random variable X, define by X (z) and V (z) the Poisson mean and
Poisson variance, respectively. Thatis, they are the mean and the variance
of X where N is Poisson distributed.

How the Bernoulli moments E[X,] and Var[X,] related to the
corresponding Poisson moments X (z) and V (z)?.

Theorem 4. Under previous hypotheses we have

~ 1 ~
E[X,] = X(n)-— 5nx<2>(n) +0(n"™?),
Var[X,] = V(n)—n[X'(n)]>+0n")
Example: Let Z4, ..., Z,, be a sequence of independently and identically

distributed random variables with generating function P(u) = Ev?! and
mean p and variance v. Then

E[X,] = nu, Var[X,] = nv.

But - N
X)) =z, V() = (b + )z,
thus Var[X,] = V(n) — n[X'(n)]* = (¢ + v)n — nu® = vn.



Application: Variance of Tries Size

Consider the size S,, of a trie. Let ¢,, = E[Si], and the Poisson variance is
Vi(z) = Q(z) — (S(2))? where Q(z) is Poisson transform of ¢,,.
Observe that V (z) satisfies

V(z) =V(pz) + V(gz) + (2S(z) =1+ (1 4+ 2)e “)(1 + z)e””
One proves (Jacquet-Regnier 87)
V(z) = Ciz(1 + Py(log 2)) + O(1) (p = q = 1/2)
and Q(z) = O(z?). Then
vn = qn— (sn)
= Q) = 5Q%(n) — (S(n) = 25 + 0(1)

= V(n) - 5(5'(n)’ +0(1).

Term n(S’(n))? is of the same order as V' (n) and cannot be neglected:

Poisson variance differs from the Bernoulli variance on the second term
asymptotics.



Limiting Distributions

Depoissonization techniques can also be used to derive Ilimiting

distributions.
Such extension requires to analyze a double-index sequence g, ;; for

example
gn,k — PI‘{Xn — ]{:}7 or gn,k — E[etXTL/ SQTth]'

Then Poisson transform is

- o0 an, o0
Gzu) = Bu*N = 3" e 5 g,

n=0 """ k=0

but often it is better to analyze a sequence of Poisson transforms

—~ > P
Gi(z) = Z gmk—'e_z.
— n!

How to infer limiting distribution (equivalently g,, ;) from
G(z,u) or G(z)?.




A Simple Depoissonization

Theorem 5. Let G (z, u) satisfy the hypothesis of previous depoissonization
theorems, i.e., for some numbers 0 < w/2, A, B, £ > 0,3, and a < 1 ()
and (O) hold for all u in a setUd. Then

Gn(u) = G(n,u) + O(n"™h
uniformly foru € U.

Theorem 6. Suppose ék(z) =5, gn,kjl—Te_Z, for k belonging to some set
IC. If the following two conditions hold:

() z € Sy: Gi(z) = O(zP) for some B;
(O) z ¢ Sp: Gr(z)e* = O(e*?!) forsome o < 1,

then uniformly in k € IC
gni = Gi(n) + O(n” ) (4)

and the error estimate does not depend on K.



Example — PATRICIA Depth

Example: Depth in PATRICIA.
The depth D,, in PATRICIA satisfies

5(2, u) = u(pﬁ(zp, u)
+ qD(zq,u))(1 —u)(pD(zp,u)e” " + ¢D(zq,u)e ™).

One can prove that conditions (I) and (O) hold (e.g., ﬁ(z, u) = O(z°)
inside a cone).
Using Mellin transform as z — oo we prove that

e—t)?(z)/a(z)ﬁ(Z7 et/a(z)) — et2/2(1 + 0(1/0(2)))7

for u = €', ¢ complex, where X (z) = O(log z) and o%(z) = O(log z)
(prowded the source is biased).

By previous result we can prove that E[D,] ~ X(n) and Var[D,] ~
o?(n). This suffices to establish the next result.
Theorem 7 (Rais, Jacquet and S., 1993). For complex t

e_tE[Dn]/\/WE |: tDn/\/m] t /2(]_ -+ O(]./ \/ log n))

thatis, (D,, — E[D,])/+/Var[D,] converges in distribution and in moments
to the standard normal distribution.



Diagonal Depoissonization

When proving Central Limit Theorem we must deal with g,, ., = E[e'*"/V k],
But often we are only interested in g,, ,,.
Diagonal Depoissonization is useful in this case.

Theorem 8. Let G, (2) = 3 gn,m%ez be a sequence of Poisson transforms.
If there exists a cone Sy and constants B, D > 0 and «« < 1 such that

() z € Sy, |2| € (n— Dn,n+ Dn):|Gn(2)| < Bn”
(O) 2 ¢ Sy, |z| =n: |Gn(2)e”]| < e
Then
m i+m o
Inn = Z Z bijnZfo>(n) + O(nﬁ_m_l)
i=0 j=0

Gn(n) +O(n” ™)



Diagonal Exponential Depoissonization

Theorem 9. Sequence of Poisson transforms G,(z). There exists a cone Sy
where log(G,(z)) exists. Let g € (1/2,2/3) and A, B > 0, a < 1.

() z € Sy, |2l € (n — Dn,n+ Dn):
| log G (2)| < Bn”
(O) 2 ¢ Sy, |z| =n: |Gu(2)e?| < en A"
then N
=~ n G’(n) 2 38—2
gn,n:Gnn EXP\——=(—= 1+ O(n .
(n) exp( Q(G(n)) )( ( )

Even more sophisticated depoissonization theorems can be proved
with a combination of algebraic cones, diagonal and exponential
dePoissonization.



Leader Election Distribution

Consider the Poisson transform
G(z,u) = u(l + e_z/z)é <§, u) +e [(1+2)(1—u)-— uez/2] :

Using Mellin transform we

. log u
G(z,u) ~ — 5 (1 —uw)I'(1 —logu)C(1 —logu) + P(logu))
n
and then .
~ .. 2/2
Gr(z) =(1—ce )ez/2k o

After applying the residue theorem, and depoissonization P(H, < j) ~
G;(n) we arrive at

p(n)—k 1
Prify, < logn +k} = exp (2000 F) — 1 o (ﬁ) '

where p(n) = logn — |logn|. Observe that this does not give a limiting
distribution.



Probabilistic Counting Asymptotic Distribution

We have the following Poisson transform for the estimate R,, 4

Gz, u) = ufa(z/2)G(2/2,u) + (u — 1) fu(2/2)

where f;(z) = 1 — e4(z) and eq4(2) is truncate exponential function. Then:

S (Gew ez

Gi(z) = [ ]( o ) =

where - . |
e(z) = [T fuz2") =[] (1 - ed<z2j>e‘”3> |

This would lead to the following asymptotic distribution if we can prove the
depoissonization:

Pr{Rn,d S loan + m — 1} =1 — p (2—m—p(n)) + O<n_1/2) :

where p(n) = log,n — |log, n|.



Distribution of Size of a Trie

Let s, (u) = E[u”"]. Then so(u) = s1(u) = u,
Spn = U Z (:) pkqn_ksksn—k
k

which reads as (Jacquet and Regnier, 1987)

S(z,u) = uS(pz,u)S(qz,u) — (u> — Du(l + z)e ”

e Melin analysis log(S(z, ¢)) = S(2)t + V(2)5 + O(=t"),
e Diagonal dePo: G, (z) = e #*n/Ving(z, et/vVin),
e when z = O(n):
log Gin(2) = exp(S(z) noy V(z>t2/2 +o(nY?)) = O(n/?);

e Diagonal exponentlal dePo: e tn/Ving (et/Vin) = exp(log Gn(n) —
2((log Gu(n)))?)(1 + O(n™?)).

e since log G,(n) = —524% + O(n"Y/?) and (log G,(n)) = “12¢ +
O(n~') then
B o / 2 /9 t2
log G,,(n) = v(n) nv(s (n))”/ t2/2 I O(n—1/2) == I O(n—l/z)

and the distribution is asymptotically normal.



Digital Search Trees

Define L, (u) = E[u""]. Then

Lusa(w) = u" D7 ()" a"  (Lu(w) + Lu-i(w)
k

which leads to particularly differential-function equation

0
a—L(z, u) = L(puz,u)L(quz, u) .
z

with L(z,u) = L(z, u)e* (exponential PGF).

e (Ugly nd dirty) asymptotic analysis provides log L(z, e') = O(z"(t)) with
(pe))"® + (ge")"" = 1.

e Similarly to tries size but harder analysis that requires polynomial cone
(not a linear cone) in order to prove limiting normal distribution.

This result was used to find redundancy of Ziv-Lempel compression
algorithm (Louchard, S., 1997)



