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Problem Formulation

1. Let X = {Xk}k≥1 be a first order stationary Markov process over a
binary alphabet,
with transition matrix P = {πab}a,b∈{01,};

πab = PX(Xk=b|Xk−1=a)

.

2. Let E = {Ek}k≥1 be a Bernoulli (binary i.i.d.) noise process independent
of X, such that

P (Ei = 1) = ε

.

3. Define Z = {Zk}k≥1 such that

Zk = Xk ⊕ Ek, k ≥ 1,

where ⊕ denotes addition modulo 2 (exclusive-or).

Ek

Zk = Ek ⊕ XkXk
 ⊕



Hidden Markov Process

The process Z is, in a sense, one of the simplest examples of a hidden
Markov process (HMP).

Basic question: what is the entropy rate of such a process?

In general, a HMP is a process resulting from observing any discrete-
time, finite state homogeneous Markov chain through a discrete-time
memoryless channel.

In particular, Z = f(X, E) for a Markov process X, i.i.d. E, and a function
f .

Applications:
data compression
automatic character recognition
speech recognition
statistics
communications and information theory
DNA sequencing
denoising
performance of digital trees.



Application: Tries
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Figure 1: A trie and its parameters.

Hidden Markov Source: Binary sequences generated by a Markov source
with an i.i.d. error sequence.



Some Previous Works

Blackwell derived in 1957 an expression for the entropy of HMP in terms of
a measure Q, which solves an integral equation. The measure is hard to
extract from the equation in any explicit way.

Ordentlich and Weissman in 2003 obtained explicit formulas for the entropy
rate when πab → 0.

In contrast, our study focuses on the regime where the channel parameter
(noise) ε → 0 is small.



Joint Distribution of P (Zn
1 )

For any sequence {Yk}k≥1, let

Y j
i = YiYi+1 . . . Yj.

Also Ȳ = 1 ⊕ Y .
In particular, Zi = Xi if Ei = 0 and Zi = X̄i if Ei = 1.

We have

P (Z
n
1 , En) = P (Z

n
1 , En−1 = 0, En) + P (Z

n
1 , En−1 = 1, En) =

= P (Z
n−1
1 , Zn, En−1 = 0, En) + P (Z

n−1
1 , Zn, En−1 = 1, En)

= P (Zn, En|Zn−1
1 , En−1 = 0)P (Z

n−1
1 , En−1 = 0) +

P (Zn, En|Zn−1
1 , En−1 = 1)P (Z

n−1
1 , En−1 = 1)

= P (En)PX(Zn ⊕ En|Zn−1)P (Z
n−1
1 , En−1 = 0)

+ P (En)PX(Zn ⊕ En|Z̄n−1)P (Z
n−1
1 , En−1 = 1)



Entropy as a Product of Random Matrices

Let
pn = [P (Zn

1 , En = 0), P (Zn
1 , En = 1)]

and

M(Zn−1, Zn) =

»
(1−ε)PX(Zn|Zn−1) εPX(Z̄n|Zn−1)

(1−ε)PX(Zn|Z̄n−1) εPX(Z̄n|Z̄n−1)

–
where the expressions PX(Zi|Zi−1) are the Markov transition probabilities

computed on the components of the HMP Z.

From the previous slide we conclude that

pn = pn−1M(Zn−1, Zn).

Since P (Zn
1 ) = pn1t (1t = (1, . . . , 1)) we finally obtain

P (Zn
1 ) = p1M(Z1, Z2) · · ·M(Zn−1, Zn)1

t,

that is, product of random matrices since PX(Zi|Zi−1) are random
variables.



Entropy Rate as a Lyapunov Exponent

Theorem 1 (Furstenberg and Kesten, 1960). Let M1, . . . , Mn form a
stationary ergodic sequence and E[log+ ||M1||] < ∞ Then

lim
n→∞

1

n
E[log ||M1 · · ·Mn||] = lim

n→∞
1

n
log ||M1 · · ·Mn|| = µ a.s.

where µ is called top Lyapunov exponent.

Corollary 1. Consider the HMP Z as defined above. The entropy rate 1

h(Z) = lim
n→∞

E[−1

n
log P (Zn

1 ) ]

= lim
n→∞

1

n
E[− log

“
p1M(Z1, Z2) · · ·M(Zn−1, Zn)1

t
”
]

is a top Lyapunov exponent of M(Z1, Z2) · · ·M(Zn−1, Zn).

Unfortunately, it is notoriously difficult to compute top Lyapunov
exponents as proved in Tsitsiklis and Blondel. Therefore, in next we derive
an explicit asymptotic expansion of the entropy rate h(Z).

1When no base is specified, logarithms are to base 2; ln x will denote the natural logarithm of x.



Main Result - Asymptotic Expansion

We now assume that P (Ei = 1) = ε → 0 is small.

Theorem 2. The entropy rate of the process Z is

h(Z) = lim
n→∞

1

n
Hn(Z

n
) = h(X) + f1(π01, π10)ε + O(ε

2
),

with

f1(π01, π10) = D (PX(z1z2z3)||PX(z1z̄2z3))

=
X

z1z2z3

PX(z1z2z3) log
PX(z1z2z3)

PX(z1z̄2z3)
,

where h(X) is the entropy rate of the Markov process X, D denotes the
Kullback-Liebler divergence, and the summation is over all binary triplets.



Example

Consider a Markov process with symmetric transition probabilities π01 =
π10 = π, π00 = π11 = 1−π. This process has stationary probabilities
PX(0) = PX(1) = 1

2.

The probabilities PX(z3
1) of binary triplets are readily computed as

PX(000) = PX(111) =
1

2
(1 − π)2,

PX(001) = PX(011) = PX(100) = PX(110) =
1

2
π(1 − π),

PX(010) = PX(101) = π
2
.

Thus we obtain from out Theorem

f1(π, π) = 2(1 − 2π) log
1 − π

π
,

and

h(Z) = −π log π − (1 − π) log(1 − π) + ε2(1 − 2π) log
1 − π

π
+ O(ε2).



Experimental Verification

HMPs for various values of the parameters ε and π01 = π10 = π
were simulated, generating pseudo-random HMP sequences of lengths
between n = 108 and n = 4 · 109. For each generated sequence zn

1 ,
the probability PZ(zn

1 ) assigned by the hidden Markov model of the given
parameters was computed, and −1

n log PZ(zn
1 ) was taken as an estimate

for the entropy rate.

Parameters Calculated Empirical
h(X)+

ε π n h(X) f1(π, π) f1(π, π)ε −1
n log PZ(zn

1 )

0.001 0.005 4 · 109 0.045 15.121 0.061 0.056
0.001 0.010 4 · 109 0.080 12.994 0.094 0.091
0.001 0.025 1 · 109 0.168 10.042 0.179 0.177
0.01 0.050 1 · 108 0.286 7.646 0.363 0.349
0.01 0.100 1 · 108 0.469 5.072 0.520 0.514
0.01 0.300 1 · 108 0.881 0.978 0.891 0.891

Table 1: First order approximation of h(Z) according to our Theorem and
empirical estimation.



Figure

Figure 2: Values of f1 and empirical estimation of ∂h/∂ε|ε=0 as a function
of π.



Sketch of the Proof

1. Instead of computing entropy H(Zn
1 ) we evaluate the following sum

R(s, ε) =
X
zn
1

P s
Z(zn

1 ),

where s is a complex variable. Observe that

H(Zn
1 ) = E [− log P (Zn

1 )] = −(ln 2)
∂

∂s
R(s, ε)

˛̨̨
˛
s=1

.

The entropy of the underlying Markov sequence is

H(X
n
1 )=(− ln 2)

∂

∂s
R(s, 0)|s=1

and
R(s, 0) =

X
zn

P
s
X(z

n
1 ) = π(s)Pn−1

(s)1t
.



Proof

2. By Taylor expansion

R(s, ε) = R(s, 0) + ε
∂

∂ε
R(s, ε)|ε=0 + O(Rε,ε(s, ε

′
)ε

2
).

We can prove that

Rε,ε,s(1, ε
′
) = O(n) (IMPORTANT!)

where Rε,ε,s(1, ε′) is the first derivative with respect to s at s = 1 of
Rε,ε(s, ε′).
Thus

H(Zn
1 ) = H(Xn

1 ) − (ln 2)ε
∂2

∂s∂ε
R(s, ε)

˛̨̨
˛̨
ε=0,s=1

+ O(nε2)

= H(Xn
1 ) − (ln 2)ε

X
zn
1

∂

∂s

∂

∂ε
P s

Z(zn
1 )

˛̨̨
˛
ε=0,s=1

+ O(nε2).



Another Matrix Representation

3. We introduce a decomposition of Mi as follows

Mi = M(zi, zi+1) =

»
(1 − ε)PX(zi+1|zi) εPX(z̄i+1|zi)

(1 − ε)PX(zi+1|z̄i) εPX(z̄i+1|z̄i)

–

=

»
PX(zi+1|zi) 0

PX(zi+1|z̄i) 0

–
+ ε

» −PX(zi+1|zi) P (z̄i+1|zi)

−PX(zi+1|z̄i) P (z̄i+1|z̄i)

–
def
= M(0)

i + εM(1)
i ,

Then
PZ(zn

1 ) = P (Zn
1 = zn

1 ) = p0M1M2 · · ·Mn−11
t =

(M(0)
0 +εM(1)

0 )(M(0)
1 +εM(1)

1 )(M(0)
2 +εM(1)

2 ) · · · (M(0)
n−1+εM(1)

n−1)1
t.



Estimating Derivatives

4. To compute the derivative of P s
Z(zn

1 ) at ε = 0, we first differentiate both
sides of the above equation, obtaining

∂

∂ε
PZ(zn

1 )

˛̨̨
˛
ε=0

=
n−1X
i=0

M(0)
0 M(0)

1 · · ·M(0)
i−1M

(1)
i M(0)

i+1 · · ·M(0)
n−1 1.

And after some algebra we arrive at

∂

∂ε
PZ(zn

1 )

˛̨̨
˛
ε=0

= PX(zn
1 )

n−1X
i=0

(gi(z
n
1 ) − 1),

where

gi(z
n
1 ) =

PX(z̄i+1|zi)PX(zi+2|z̄i+1)

PX(zi+1|zi)PX(zi+2|zi+1)
=

PX(ziz̄i+1zi+2)

PX(zizi+1zi+2)



A Better Matrix Representation

5. Thus

∂

∂ε
P s

Z(zn
1 )

˛̨̨
˛
ε=0

=

"
sP s−1

Z (zn
1 )PX(zn

1 )
n−1X
i=0

(gi(z
n
1 ) − 1)

#
ε=0

.

thus, in a matrix form, we obtain

∂

∂ε
R(s, ε)

˛̨̨
˛
ε=0

= sπ(s)
n−1X
i=1

Pi−1(s)
“
Q1(s)Q2(s) − P2(s)

”
Pn−i−2(s)1t

where

Q1(s) =

»
π00π

s−1
01 π01π

s−1
00

π10π
s−1
11 π11π

s−1
10

–
, Q2(s) =

»
π00π

s−1
10 π01π

s−1
11

π10π
s−1
00 π11π

s−1
01

–
.

and

P(s) =

»
πs

00 πs
01

πs
10 πs

11

–
,

Observe that
Q1(1)Q2(1) = P 2(1)

.



Finishing Up ...

6. To find the linear term in the Taylor expansion for entropy, we use the
spectral representation of the matrix P(s). Let
λ(s) – be the main eigenvalue of P(s)
rt
1(s), l1(s) – the corresponding right and left main eigenvectors,

µ(s) – be the second eigenvalue,
rt
2(s), l2(s) – the respective right and left eigenvectors.

The matrix spectral representation yields

Pk(s) = λk(s) rt
1(s)l1(s) + µk(s) rt

2(s)l2(s).

Using this we finally obtain

∂2

∂ε∂s
R(s, ε)

˛̨̨
˛̨
ε=0,
s=1

= n π(1)rt
1(1) l1(1)1

t l1(1)

× ∂

∂s

“
Q1(s)Q2(s) − P2

(s)
”˛̨̨

˛
s=1

rt
1(1),

since Q1(1)Q2(1) = P 2(1).



Renyi’s Entropy

Let Hs(Z
n
1 ) denote the Rényi’s entropy of order s, that is,

Hs(Z
n
1 ) =

log
P

zn
1

P s(zn
1 )

1 − s
.

Then the entropy rate is

hs(Z) = hs(X) +
ε

(1 − s)λ(s)
l1(s)

“
Q(s) − P2(s)

”
r1(s) + O(ε2),

where the Markov Renyi’s entropy rate is

hs(X) =
1

1 − s
log λ(s).


