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Motivation – Biology & String Matching

Biological world is highly stochasticand inhomogeneous (S. Salzberg).

Start codon codons Donor site

 CGCCATGCCCTTCTCCAACAGGTGAGTGAGC

Transcription
      start

Exon

Promoter 5’ UTR CCTCCCAGCCCTGCCCAG

Acceptor site

Intron

Stop codon

GATCCCCATGCCTGAGGGCCCCTC
GGCAGAAACAATAAAACCAC

Poly-A site

3’ UTR



Motivation – Google & Subsequence Matching



Motivation – Intrusion Detection & Hidden Patterns

Convert all color commands to black or
Since PostScript files are often extremely
large, it makessense to try to compress
themwith either the zip or gzip programs.
In such a case, the eps file is replace by a
file with extension zip or eps gz, or eps-
gz. Two problems now arise: first LATEX
cannot read such files to obtain the bound-
ing box information,and secondly, the
driver needs to unpack such a file to
include it in the final output. This can be
accomplished with, for example: Declare-
GraphicsRule.eps.gzeps.eps.bbgunzip
which stablizes the graphics type as eps
with the bounding box information in the
file of thesame name and extension. Con-
vrt all color commands to black or white.

How to know whether this subsequence observed in an audit file constitutes

an attack or is merely a result of randomness?

Goal: Minimize the number of false positives!



Motivation – Twitter & String Complexity

Figure 1: Two similar twitter texts have many common words

Figure 2: Twitters Classification
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Pattern Matching

Let W and T be (set of) strings generated over a finite alphabet A.

We call W the pattern and T the text. The text T is of length n and is

generated by a probabilistic source.

Text: T n
m = Tm . . . Tn.

Pattern: W = w1 . . . wm, wi ∈ A;

Set of patterns: W = {W1, . . . ,Wd} with Wi ∈ Ami.

Basic question:

how many times W occurs in T (or how long to wait until W occurs in T ).

Define

On(W) = #{i : T
i
i−m+1 = W, m ≤ i ≤ n}

as the number of w occurrences in the text T n
1 .

Our goal: Study probabilistic behavior of On(W) for various pattern

matching problems using tools of analytic combinatorics.



Variations on Pattern Matching

(Exact) String Matching: In the exact string matching the pattern

W = w1 . . . wm

is a given string (i.e., consecutive sequence of symbols).

Generalized String Matching: In the generalized pattern matching a set of

patterns (rather than a single pattern) is given, that is,

W = (W0,W1, . . . ,Wd), Wi ∈ Ami

where Wi itself for i ≥ 1 is a subset of Ami.

The set W0 is called the forbidden set.

Three cases to be considered:

W0 = ∅ — interest in the number of patterns from W occurring in the text.

W0 6= ∅ — we study the number of Wi, i ≥ 1 pattern occurrences under

the condition that no pattern from W0 occurs in the text.

Wi = ∅, i ≥ 1, W0 6= ∅ — restricted pattern matching.



Pattern Matching Problems

Hidden Words or Subsequence Pattern Matching: We search for a

subsequence W = w1 . . . wm rather than a string in a text.

That is, there are indices 1 ≤ i1 < i2 < · · · < im ≤ n such that

Ti1 = w1, Ti2 = w2, · · · , Tim = wm.

We also say that the word W is “hidden” in the text.

For example:

W = date

T = hidden pattern

occurs four times as a subsequence in the text as hidden pattern.

Joint String Complexity: For a given string X, we ask how many distinct

subwords it contains. This is called string complexity.

For two strings X and Y , we want to know how many common and distinct

subwords they contain. This is called joint string complexity.
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How do you distinguish a cat from a dog by their DNA? 

Did Shakespeare really write all of his plays? 

Pattern matching techniques can offer answers to these questions and to 
many others, from molecular biology, to telecommunications, to classifying 
Twitter content. 

This book for researchers and graduate students demonstrates the 
probabilistic approach to pattern matching, which predicts the performance 
of pattern matching algorithms with very high precision using analytic 
combinatorics and analytic information theory.  Part I compiles known 
results of pattern matching problems via analytic methods. Part II focuses on 
applications to various data structures on words, such as digital trees, suffix 
trees, string complexity and string-based data compression. The authors use 
results and techniques from Part I and also introduce new methodology such 
as the Mellin transform and analytic depoissonization. 

More than 100 end-of-chapter problems help the reader to make the link 
between theory and practice.

Philippe Jacquet is a research director at INRIA, a major public research 
lab in Computer Science in France. He has been a major contributor to the 
Internet OLSR protocol for mobile networks. His research interests involve 
information theory, probability theory, quantum telecommunication, 
protocol design, performance evaluation and optimization, and the analysis 
of algorithms. Since 2012 he has been with Alcatel-Lucent Bell Labs as head 
of the department of Mathematics of Dynamic Networks and Information. 
Jacquet is a member of the prestigious French Corps des Mines, known for 
excellence in French industry, with the rank of “Ingenieur General”. He is 
also a member of ACM and IEEE.

Wojciech Szpankowski is Saul Rosen Professor of Computer Science and (by 
courtesy) Electrical and Computer Engineering at Purdue University, where 
he teaches and conducts research in analysis of algorithms, information 
theory, bioinformatics, analytic combinatorics, random structures, 
and stability problems of distributed systems. In 2008 he launched the 
interdisciplinary Institute for Science of Information, and in 2010 he became 
the Director of the newly established NSF Science and Technology Center 
for Science of Information. Szpankowski is a Fellow of IEEE and an Erskine 
Fellow. He received the Humboldt Research Award in 2010.

Cover design: Andrew Ward
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Analysis: Exact String Matching

Memoryless Source: The text is generated by a memoryless source with

probability of seeing a ∈ A equal to P (a).

Tools. Symbolic calculus and analytic tools of languages:

(i) Language L is a collection of words satisfying some properties.

(ii) Generating function L(z) of language L is defined as

L(z) =
∑

u∈L
P (u)z

|u|
.



Analysis: Exact String Matching

Memoryless Source: The text is generated by a memoryless source with

probability of seeing a ∈ A equal to P (a).

Tools. Symbolic calculus and analytic tools of languages:

(i) Language L is a collection of words satisfying some properties.

(ii) Generating function L(z) of language L is defined as

L(z) =
∑

u∈L
P (u)z

|u|
.

Autocorrelation Polynomial: For W define the autocorrelation set S as:

S = {wm
k+1 : w

k
1 = w

m
m−k+1},

and WW is the set of positions k satisfying wk
1 = wm

m−k+1.

w1 wk wm-k+1 wm

S

The generating function S(z) of S is called the autocorrelation polynomial:

S(z) =
∑

k∈WW
P (wm

k+1)z
m−k.

Example: For W = bab, we have WW = {1, 3} and S = {ǫ, ab}.



Language Tr and Associated Languages

Define Tr as set of words containing exactly r ≥ 1 occurrences of W :

Tr = R · Mr−1 · U.

which can be illustrated for T4 as follows

R M M M U

T4



Language Tr and Associated Languages

Define Tr as set of words containing exactly r ≥ 1 occurrences of W :

Tr = R · Mr−1 · U.

which can be illustrated for T4 as follows

R M M M U

T4

(i) Language R: set of words containing only one occurrence of W ,

located at the right end. For example: for W = aba, we have ccaba ∈ R.

(ii) Language U :

U = {u : W · u· ∈ T1}
that is, a word u ∈ U if W ·u has exactly one occurrence of W at the left

end of W · u. For example: bba ∈ U (since ababba ∈ T1) but ba /∈ U
(iii) Language M:

M = {u : W · u ∈ T2 and W occurs at the right of W · u},

that is, M is a language such that WM has exactly two occurrences of

W at the left and right end of a word from M.

For example: ba ∈ M since ababa).



Language Relations & Generating Functions

Lemma 1. (i) The languages M, U and R satisfy:

U · A = M + U − {ǫ},
⋃

k≥1

Mk
= A∗ · W + S − {ǫ}, W · M = A · R − (R − W) ,

where A∗ is the set of all words.
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Lemma 1. (i) The languages M, U and R satisfy:

U · A = M + U − {ǫ},
⋃

k≥1

Mk
= A∗ · W + S − {ǫ}, W · M = A · R − (R − W) ,

where A∗ is the set of all words.

(ii) The generating functions associated with languages M,U and R satisfy

UW(z) =
M(z) − 1

z − 1
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1 − M(z)
= SW(z) + P (W)
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1 − z
, R(z) = P (W)zm · UW(z)



Language Relations & Generating Functions

Lemma 1. (i) The languages M, U and R satisfy:

U · A = M + U − {ǫ},
⋃

k≥1

Mk
= A∗ · W + S − {ǫ}, W · M = A · R − (R − W) ,

where A∗ is the set of all words.

(ii) The generating functions associated with languages M,U and R satisfy

UW(z) =
M(z) − 1

z − 1

1

1 − M(z)
= SW(z) + P (W)

zm

1 − z
, R(z) = P (W)zm · UW(z)

(iii) The generating functions Tr(z) =
∑

n≥0 Pr{On(W) = r}zn and

T (z, u) =
∑∞

r=1 Tr(z)u
r satisfy

Tr(z) = R(z)M
r−1
W (z)UW(z) , r ≥ 1

T (z, u) = R(z)
u

1 − uM(z)
UW(z).



Main Results: Asymptotics

Theorem 1 (Regnier and W.S.). (i) Moments. for n ≥ m we have

E[On(W)] = P (W)(n − m + 1), Var[On(W)] = nc1 + c2

with

c1 = P (W)(2S(1) − 1 − (2m − 1)P (W). − (m − 1)(2S(1) − 1) − 2S′(1)).
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(ii) Probability. For r = O(1)

Pr{On(W) = r} ∼
r+1∑

j=1

(−1)
j
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( n

j − 1

)

ρ
−(n+j)
W

where ρW is the smallest root of DW(z) = (1 − z)SW(z) + zmP (W) = 0.



Main Results: Asymptotics

Theorem 1 (Regnier and W.S.). (i) Moments. for n ≥ m we have

E[On(W)] = P (W)(n − m + 1), Var[On(W)] = nc1 + c2

with

c1 = P (W)(2S(1) − 1 − (2m − 1)P (W). − (m − 1)(2S(1) − 1) − 2S
′
(1)).

(ii) Probability. For r = O(1)

Pr{On(W) = r} ∼
r+1∑

j=1

(−1)jaj

( n

j − 1

)

ρ
−(n+j)
W

where ρW is the smallest root of DW(z) = (1 − z)SW(z) + zmP (W) = 0.

Central Limit Law: For r = E[On] + x
√
VarOn for x = O(1)

Pr{On(W) = r} =
1√

2πc1n
e
−1
2x

2
(

1 + O

(
1√
n

))

.

Large Deviations: For Case r = (1+ δ)EOn with a = (1+ δ)P (W) we have

Pr{On(W) ∼ (1 + δ)EOn} =
e−(n−m+1)I(a)+δa

σa

√
2π(n − m + 1)

where I(a) = aωa + ρ(ωa) and ρ(t) to be the root of 1 − etMW(eρ) = 0.



Biology – Weak Signals and Artifacts

Denise and Regnier (2002) observed that in biological sequence whenever

a word is overrepresented, then its subwords are also overrepresented.

For example, if W1 = AATAAA, then

W2 = ATAAAN

is also overrepresented.

Overrepresented subwords are called artifact, and it is important to

disregard automatically noise created by artifacts.



Biology – Weak Signals and Artifacts

Denise and Regnier (2002) observed that in biological sequence whenever

a word is overrepresented, then its subwords are also overrepresented.

For example, if W1 = AATAAA, then

W2 = ATAAAN

is also overrepresented.

Overrepresented subwords are called artifact, and it is important to

disregard automatically noise created by artifacts.

New Approach:

Once a dominating signal has been detected, we look for a weaker
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Biology – Weak Signals and Artifacts

Denise and Regnier (2002) observed that in biological sequence whenever

a word is overrepresented, then its subwords are also overrepresented.

For example, if W1 = AATAAA, then

W2 = ATAAAN

is also overrepresented.

Overrepresented subwords are called artifact, and it is important to

disregard automatically noise created by artifacts.

New Approach:

Once a dominating signal has been detected, we look for a weaker

signal by comparing the number of observed occurrences of patterns

to the conditional expectations not the regular expectations.

This harder question needs a new approach thru Generalized Pattern

Matching to show that

E[On(W2)|On(W1) = k] ∼ αn.

When W1 is overrepresented α differs significantly from E[On(W2].



Polyadenylation Signals in Human Genes

Beaudoing et al. (2000) studied several variants of the well known AAUAAA

polyadenylation signal in mRNA of humans genes.

Using our approach Denise and Regnier (2002) discovered/eliminated all

artifacts and found new signals in a much simpler and reliable way.

Hexamer Obs. Rk Exp. Z-sc. Rk Cd.Exp. Cd.Z-sc. Rk

AAUAAA 3456 1 363.16 167.03 1 1

AAAUAA 1721 2 363.16 71.25 2 1678.53 1.04 1300

AUAAAA 1530 3 363.16 61.23 3 1311.03 6.05 404

UUUUUU 1105 4 416.36 33.75 8 373 .30 37.87 2

AUAAAU 1043 5 373.23 34.67 6 1529.15 12.43 4078

AAAAUA 1019 6 363.16 34.41 7 848.76 5.84 420

UAAAAU 1017 7 373.23 33.32 9 780.18 8.48 211

AUUAAA 1013 l 373.23 33.12 10 385.85 31.93 3

AUAAAG 972 9 184.27 58.03 4 593.90 15.51 34

UAAUAA 922 10 373.23 28.41 13 1233.24 –8.86 4034

UAAAAA 922 11 363.16 29.32 12 922.67 9.79 155

UUAAAA 863 12 373.23 25.35 15 374.81 25.21 4

CAAUAA 847 13 185.59 48.55 5 613.24 9.44 167

AAAAAA 841 14 353.37 25.94 14 496.38 15.47 36

UAAAUA 805 15 373.23 22.35 21 1143.73 –10.02 4068
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Hidden Patterns

In the subsequence pattern or a hidden word W occurs as a subsequence:

Ti1
= w1, Ti2

= w2, . . . , Tim = wm.

where we put additional constraints that

ij+1 − ij ≤ dj.

The I = (i1, . . . , im)-tuple is called a position and D = (d1, . . . , dm

constitutes the constraints.

If all dj are finite, then we have the constrained problem.



Hidden Patterns

In the subsequence pattern or a hidden word W occurs as a subsequence:

Ti1
= w1, Ti2

= w2, . . . , Tim = wm.

where we put additional constraints that

ij+1 − ij ≤ dj.

The I = (i1, . . . , im)-tuple is called a position and D = (d1, . . . , dm

constitutes the constraints.

If all dj are finite, then we have the constrained problem.

Let On(W) be the number of W occurrences in T . Observe that

On(W) =
∑

I

XI

where

XI := 1 if W occurs at position I in Tn

and 0 otherwise.



How to Analyze It – De Bruijn Automata

1. The (W,D) constrained subsequence problem is viewed as the

generalized string matching.

Example: If (W,D) = a#2b, then W = {ab, aab, abb}.
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How to Analyze It – De Bruijn Automata

1. The (W,D) constrained subsequence problem is viewed as the

generalized string matching.

Example: If (W,D) = a#2b, then W = {ab, aab, abb}.

2. de Bruijn Automaton. Let M = max{length(W)} − 1. Define a de Bruijn

automaton over B where

B = AM
.

De Bruijn automaton is built over B.

3. Let b ∈ B and a ∈ A. Then the transition from the state b upon scanning

symbol a of the text is to b̂ ∈ B such that

ba 7→ b̂ = b2b3 · · · bMa.

For example

abb︸︷︷︸
B

a︸︷︷︸
A

7→ bba︸︷︷︸
B

.

4. The Transition Matrix: T(u) is a complex-valued transition matrix defined

as:

[T(u)]b,b̂ := P (a)u
OM+1(ba)−OM (b)

[[ b̂ = b2b3 · · · bMa ]]

where OM(b) is the number of pattern occurrences W in the text b.



Example

5. Example. Let W = {ab, aab, aba}. Then M = 2, and the the de Bruijn

graph and matrix T(u) are shown below

T(u) =

aa ab ba bb

aa

ab

ba

bb







P (a) P (b) u2 0 0

0 0 P (a) u P (b)

P (a) P (b) 0 0

0 0 P (a) P (b)







.

ab

aa

bb

ba

(b,u2)

(b,u0)

(a,u)

(a,u0)

(b,u0)

(a,u0)

(b,u0)

(a,u0)



Generating Functions

6. Using properties of product of matrices we conclude that

On(u) = E[uOn(W)] = b
t(u)Tn(u)~1

where bt(u) is an initial vector and ~1 = (1, . . . , 1).

7. Spectral Decomposition

Let λ(u) be the largest eigenvalue of T(u). Then

On(u) = c(u)λ
n
(u)(1 + O(A

n
))

for some A < 1. This proves that the generating function On(u) satisfies the

so called quasi-power law.

8. The above formula suggests that we deal with weakly dependent random

variables described by the generating function λ(u). Hence, for example

E[On] = nλ′(1) + O(1).



Final Results

Mean and Variance

E[On(W)] = nΛ
′
(0) + O(1) = nP (W) + O(1),

Var[On(W) = nΛ′′(0) + O(1) = nσ2(W) + O(1)

where Λ(s) = log λ(es)
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Final Results

Mean and Variance

E[On(W)] = nΛ
′
(0) + O(1) = nP (W) + O(1),

Var[On(W) = nΛ′′(0) + O(1) = nσ2(W) + O(1)

where Λ(s) = log λ(es)

Central Limit Theorem

Pr

{
On − nP (W)

σ(W)
√
n

≤ x

}

∼ 1√
2π

∫ x

−∞
e
−t2/2

Large Deviations

If T(u) is primitive, then

Pr{On(W) = aE[On]} ∼ 1

σa

√
2πn

e−nI(a)+θa

where I(a) can be explicitly computed, and θa is a known constant.

Based on: Flajolet, W.S. and Vallee, JACM, 2006.



Some Experiments

The complete works of Shakespeare are found under

http://the-tech.mit.edu/Shakespeare/.

We first extracted the full text of Hamlet stripped of all the comments and

searched for

W = thelawisgaussian

w = thelawisgaussian w̃ = naissuagsiwaleht

d Expected (E) Occurred (On) On/E Occurred (On) On/E

13 9.195E+01 0 0.00 18 0.19

14 2.794E+02 693 2.47 371 1.32

15 7.866E+02 1,526 5.46 2,379 3.02

18 1.211E+04 31,385 2.58 14,123 1.16

20 5.886E+04 124,499 2.11 41,066 0.69

25 1.673E+06 2,527,148 1.51 1,277,584 0.76

30 2.577E+07 40,001,940 1.55 25,631,589 0.99

40 1.928E+09 2,757,171,648 1.42 2,144,491,367 1.11

50 5.482E+10 76,146,232,395 1.38 48,386,404,680 0.88

∞ 1.330E+48 1.36554E+48 1.03 1.38807E+48 1.04

Figure 3: Observed occurrences (On) versus predicted values (expectations,

E) in the alphabetical characters of Hamlet.



Reliable Threshold for Intrusion Detection

We argued that one needs a reliable threshold for intrusion detection. If

false alarms are to be avoided, the problem is of finding a threshold

α0 = α0(W;n, β) such that

P (On(W) > αth) ≤ β(= 10
−5

).

Our results shows that

αth = nP (W) + x0σ(W)
√
n, β =

1√
2π

∫ ∞

x0

e
−t2/2

dt ∼ 1

x0

e
−x20/2.

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

number of attacking signatures

Ω∃ (gap=0), Ω∃ (gap=11)

Threshold 

Figure 4: Pattern=wojciech, window=100 (cf. Gwadrea at al. (2004).
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Some Definitions

String Complexity of a single sequence is the number of distinct substrings.

Throughout, we write X for the string and denote by I(X) the set of distinct

substrings of X over alphabet A.

Example. If X = aabaa, then

I(X) = {ǫ, a, b, aa, ab, ba, aab, aba, baa, aaba, abaa, aabaa},

so |I(X)| = 12. But if X = aaaaa, then

I(X) = {ǫ, a, aa, aaa, aaaa, aaaaa},

so |I(X)| = 6.



Some Definitions

String Complexity of a single sequence is the number of distinct substrings.

Throughout, we write X for the string and denote by I(X) the set of distinct

substrings of X over alphabet A.

Example. If X = aabaa, then

I(X) = {ǫ, a, b, aa, ab, ba, aab, aba, baa, aaba, abaa, aabaa},

so |I(X)| = 12. But if X = aaaaa, then

I(X) = {ǫ, a, aa, aaa, aaaa, aaaaa},

so |I(X)| = 6.

The string complexity is the cardinality of I(X) and we study here the

average string complexity

E[|I(X)|] =
∑

X∈An

P (X)|I(X)|.

where X is generated by a memoryless/Markov source.



Suffix Trees and String Complexity

a a b b aa b

$

b

a

a $

$
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Non-compact suffix trie for X = abaababa and string complexity I(X) = 24.
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String Complexity = # internal nodes in a non-compact suffix tree.



Some Simple Facts

Let O(w) denote the number of times that the word w occurs in X. Then

|I(X)| =
∑

w∈A∗
min{1, O(w)}.

Since between any two positions in X there is one and only one substring:

∑

w∈A∗
O(w) =

(|X| + 1)|X|
2

.

Hence

|I(X)| = (|X| + 1)|X|
2

−
∑

w∈A∗
max{0, O(w) − 1}.

Define: Cn := E[|I(X)| | |X| = n]. Then

Cn =
(n + 1)n

2
−
∑

w∈A∗

∑

k≥2

(k − 1)P (On(w) = k).

We need to study probabilistically On(w): that is:

number of w occurrences in a text X generated a probabilistic source.



Methodology and Some Results

Last expression allows us to write

Cn =
(n + 1)n

2
+ E[Sn] − E[Ln]

where E[Sn] and E[Ln] are, respectively, the average size and path length

in the associated (compact) suffix trees.
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We know that (Jacquet & Regnier, 1989; W.S., 2001)

E[Sn] =
1

h
(n + Ψ(log n)) + o(n), E[Ln] =

n log n

h
+ nΨ2(log n) + o(n),

where Ψ(log n) and Ψ2(logn) are periodic functions. Therefore,

Cn =
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2
− n

h
(log n − 1 + Q0(log n) + o(1))
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We know that (Jacquet & Regnier, 1989; W.S., 2001)

E[Sn] =
1

h
(n + Ψ(log n)) + o(n), E[Ln] =

n log n

h
+ nΨ2(log n) + o(n),

where Ψ(log n) and Ψ2(logn) are periodic functions. Therefore,

Cn =
(n + 1)n

2
− n

h
(log n − 1 + Q0(log n) + o(1))

Theorem 2 (Janson, Lonardi, W.S., 2004). For unbiased memoryless source:

Cn =
(n + 1

2

)

−n log|A| n+

(
1

2
+

1 − γ

ln |A| + Q1(log|A| n)

)

n+O(
√

n log n)

where γ ≈ 0.577 is Euler’s constant and Q1 is a periodic function.



Joint String Complexity

For X and Y , let J(X, Y ) be the set of common words between X and Y .

The joint string complexity is

|J(X, Y )| = |I(X) ∩ I(Y )|

Example. If X = aabaa and Y = abbba, then J(X, Y ) = {ε, a, b, ab, ba}.

Goal. Estimate

Jn,m = E[|J(X, Y )|]
when |X| = n and |Y | = m.
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The joint string complexity is

|J(X, Y )| = |I(X) ∩ I(Y )|

Example. If X = aabaa and Y = abbba, then J(X, Y ) = {ε, a, b, ab, ba}.

Goal. Estimate

Jn,m = E[|J(X, Y )|]
when |X| = n and |Y | = m.

Some Observations. For any word w ∈ A∗

|J(X, Y )| =
∑

w∈A∗
min{1, OX(w)} · min{1, OY (w)}.

When |X| = n and |Y | = m, we have

Jn,m = E[|J(X, Y )|] − 1 =
∑

w∈A∗−{ε}
P (O1

n(w) ≥ 1)P (O2
m(w) ≥ 1)

where Oi
n(w) is the number of w-occurrences in a string of generated by

source i = 1, 2 (i.e., X and Y ) which we assume to be memoryless sources.



Independent Joint String Complexity

Consider two sets of n independently generated (memoryless) strings.

Let Ωn
i(w) be the number of strings for which w is a prefix when the n strings

are generated by a source i = 1, 2 define

Cn,m =
∑

w∈A∗−{ε}
P (Ω1

n(w) ≥ 1)P (Ω2
m(w) ≥ 1)

Theorem 3. There exists ε > 0 such that

Jn,m − Cn,m = O(min{n,m}−ε
)

for large n.
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with C0,m = Cn,0 = 0.
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Main Results

Assume that ∀a ∈ A we have P1(a) = P2(a) = pa.

Theorem 4. For a biased memoryless source, the joint complexity is

asymptotically

Cn,n = n
2 log 2

h
+ Q(logn)n + o(n),

where Q(x) is a small periodic function (with amplitude smaller than 10−6)

which is nonzero only when the log pa, a ∈ A, are rationally related, that is,

log pa/ log pb ∈ Q.
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Assume that ∀a ∈ A we have P1(a) = P2(a) = pa.

Theorem 4. For a biased memoryless source, the joint complexity is

asymptotically

Cn,n = n
2 log 2

h
+ Q(logn)n + o(n),

where Q(x) is a small periodic function (with amplitude smaller than 10−6)

which is nonzero only when the log pa, a ∈ A, are rationally related, that is,

log pa/ log pb ∈ Q.

Assume that P1(a) 6= P2(a).

Theorem 5. Define κ = min(s1,s2)∈K∩R2{(−s1 − s2)} < 1, where s1 and s2
are roots of

H(s1, s2) = 1 −
∑

a∈A
(P1(a))

−s1(P2(a))
−s2 = 0.

Then

Cn,n =
nκ

√
log n

(

Γ(c1)Γ(c2)
√

π∆H(c1, c2)∇H(c1, c2)
+ Q(log n) + O(1/ logn)

)

,

where Q is a double periodic function.



Classification of Sources

The growth of Cn,n is:

• Θ(n) for identical sources;

• Θ(nκ/
√
log n) for non identical sources with κ < 1.

(a) (b)

Figure 5: Joint complexity: (a) English text vs French, Greek, Polish, and

Finnish texts; (b) real and simulated texts (3rd Markov order) of English,

French, Greek, Polish and Finnish language.
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