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Motivation - Biology & String Matching

Biological world is highly stochasticand innomogeneous (8. Salzberg).

Start codon codons Donor site

/N

CGCCATGCCCTTCTCCAACAGGTGAGTGAGC

Transcription
start
Exon

Promoter 5' UTR CCTCCCAGCCCTGCCCAG
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Ve //
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Motivation - Google & Subsequence Matching

GU Slt‘ tree estimation probability theory

Weh Images Shopping Videos MNews Maore = Search tools

About 54 900000 results (038 seconds)

Scholarly articles for tree estimation probability theory
Detection, estimation, and modulation theory - Van Trees - Cited by 9276

.. discrete probability distributions with dependence trees - Chow - Citad by 1975
Estimation of failure probability of il and gas .. - Yuhua - Cited by 163

Estimation theory - Wikipedia, the free encyclopedia

en wikipedia org/wiki/Estimation_theory ~ Vikipedia

It iz also possible for the parameters themselves to have a probability distrbution {e.g.
Bayesian FMumerous fields reguire the use of estimation theory

Bayes' theorem - Wikipedia, the free encyclopedia

en. wikipedia org/wiki/Bayes' theorem = Wikipedia -

In probability theory and statistics. Bayes' theorem (alternatively Bayes law . The
role of Bayes's theorem is best visualized with tree diagrams, as shown to the right
"Bayes Estimate/Risk/Solution”, "Empincal Bayes”, and "Bayes Factor”



Motivation - Intrusion Detection & Hidden Paiterns

Convert all color commands to blaor
Since Pos&cript files are often extremely
large, it m&essense to try to compress
themwith either the zip or gzip programs.
In such a case, the eps file is replace by a
file with extensio zip or eps gz, or eps-
gz. Two problems now arise: first LATEX
cannot read such files to obtain the bound-
ing box informationand secondly, the
driver needs to unplcuch a file to
include it in the final outut. Ths can be
accomplished with, for example: Declare-
GraphicsRule.eps.gzeps.eps.bbgunzig
which stablees the graphics types aps
with the bounding tx information in the
file of thesame name and extens. Con:
vrt all color commands to blaor white.

How to know whether this subsequence observed in an audit file constitutes
an attack or is merely a result of randomness?

Goal: Minimize the number of false positives!



Motivation - Twitter & String Complexity

"allow users to download an entire movie in one second.” | need
this http://t.co/3fbNfKEkah

Green energy boss accuses Govt of obstructing renewable energy
development http://t.co/v5Lg2Jx1GQ

Figure 1: Two similar twitter texts have many common words
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Figure 2: Twitters Classification
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Pattern Matching

Let W and T be (set of) strings generated over a finite alphabet A.

We call W the patftern and T the text. The fext T' is of length n and is
generated by a probabilistic source.

Text: T" =Ty ... Th.
Pattern: W=w;...w,, w; €A
Set of patterns: W = { W, ..., Wy} with W, € A™i,

Basic question:

how many times VvV occurs in T’ (or how long fo wait until Vv occurs in T').

Define |
On(W) — #{Z : Tz'z_m_i_l — W, m S ) S n}
as the number of w occurrences in the text T7".

Our goal: Study probabilistic behavior of O, (W) for various pattern
matching problems using tools of analyfic combinatorics.



Variations on Pattern Matching

(Exact) String Matching: In the exact string matching the pattern
W = wi...w,

is a given string (i.e., consecutfive sequence of symbols).

Generalized String Matching: In the generalized patftern matching a set of
patterns (rather than a single pattern) is given, that is,

W:(Wo,Wl,...,Wd), W, € A

where VW, itself for ¢ > 1 is a subset of A™4,
The set W, is called the forbidden set.

Three cases to be considered:

Wy = 0 — interest in the number of patterns from VW occurring in the text.

Wy # 0 — we study the number of W;, ¢ > 1 pattern occurrences under
the condition that no pattern from YW, occurs in the text.

W, =0,1> 1, Wy # () — restricted pattern matching.



Pattern Matching Problems

Hidden Words or Subsequence Pattern Matching: We search for @
subsequence W = w; ... w,, rather than a sfring in a text.
Thatis, there areindices 1 < i1 < 19 < - -+ < 1,, < m Such that

T, = wi, Tiy = wa, -+, 15, = Wy,
We also say that the word VW is "hidden” in the text.
For example:

YW = date
T = hidden pattern

occurs four times as a subsequence in the text as hidden pattern.

Joint String Complexity: For a given string X, we ask how many distinct
subwords it contains. This is called string complexity.

For two sfrings X and Y, we want to know how many common and disfinct
subwords they contain. This is called joint string complexity.
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New Book on Pattern Matching

How do you distinguish a cat from a dog by their DNA
Did Shakespeare really write all of his plays?

Philippe Jacquet and
Wojciech Szpankowski

Pattern matching techniques can offer answers to these questions and to
many others, from molecular biology, to telecommunications, to classifyi
Twitter content.

(]
This book for researchers and graduate students demonstrates the
probabilistic approach to pattern matching, which predicts the performance #&
of pattern matching algorithms with very high precision using analytic 7’
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Book Contents

Chapter 1: Probabilistic Models

Chapter 2: Exact String Matching

Chapter 3: Constrained Exact String Matching
Chapter 4: Generalized String Matching

Chapter §: Subsequence String Matching
Chapter 6. Algorithms and Data Structures
Chapter 7 Digital Trees

Chapter 8: Suffix Trees & Lempel-Ziv’'77

Chapter 9: Lempel-Ziv’'78 Compression Algorithm

Chapter 10: String Complexity
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Analysis: Exact String Matching

Memoryless Source: The tfext is generated by a memoryless source with
probability of seeing a € A equal to P(a).

Tools. Symbolic calculus and analytic tfools of languages:
() Language L is a collection of words satisfying some properties.
(i) Generating function L(z) of language L is defined as

L(z) = Z P(u)zlul.

ueLl



Analysis: Exact String Matching

Memoryless Source: The tfext is generated by a memoryless source with
probability of seeing a € A equal to P(a).

Tools. Symbolic calculus and analytic tools of languages:
() Language L is a collection of words satisfying some properties.
(i) Generating function L(z) of language L is defined as

L(z) =Y P(u)z"l

ueLl

Autocorrelation Polynomial: For VW define the autocorrelation set S as:
m k m
S = {wk-i—l - Wy = wm—k+1}7

and WW is the set of positions k satisfying w} = w_, ...
S

Wy W Wimk+1  Wm

The generatfing function S(z) of S is called the autocorrelation polynomial:

S(z) = > P(wp)z""

keww

Example: For W = bab, we have WWW = {1,3} and § = {e, ab}.



Language 7.. and Associated Languages

Define 7, as set of words containing exactly » > 1 occurrences of W:
T, =R -M~".U.

which can be illustrated for T, as follows

T,

R M M M U



Language 7.. and Associated Languages

Define 7, as set of words containing exactly » > 1 occurrences of W:
T, =R -M~".U.

which can be illustrated for T, as follows

T,

R M M M U

() Language R: setft of words confaining only one occurrence of W,
located at the right end. Forexample: for VW = aba, we have ccaba € R.

(i Language U:

U={u: W u €T}

thatis,aword v € U if VW -« has exactly one occurrence of W at the left
end of W - u. For example: bba € U (since ababba € T7) butf ba & U

(ii) Language M:
M ={u: W -u € Ty and W occurs at the right of W - u},

thatis, M is a language such that WM has exactly fwo occurrences of
W at the left and right end of a word from M.
For example: ba € M since ababa).



Language Relations & Generating Functions

Lemma 1. (i) The languages M, U and 'R satisfy:

U-A = M+U-—{e},
M = A" W+S—{e}, W M=A-R—-(R-W),

k>1

where A* is the set of all words.



Language Relations & Generating Functions

Lemma 1. (i) The languages M, U and 'R satisfy:

U-A = M+U-—{e},
M = A" W+S—{e}, W M=A-R—-(R-W),

k>1
where A* is the set of all words.

(ii) The generating functions associated with languages M, U and R satisfy
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1 z™m m
T M (2) = Sw(z)+ P(W):, R(z) = PW)z" - Uw(z)




Language Relations & Generating Functions

Lemma 1. (i) The languages M, U and 'R satisfy:

M = A" W+S—{e}, W M=A-R—-(R-W),

k>1
where A* is the set of all words.

(ii) The generating functions associated with languages M, U and R satisfy

Up(z) = Miz_); 1
1 2™ -
M) Sw(z) + P(W):, R(z) = P(W)z" - Uw(z)
(iif) The generating functions T,(z) = > <,Pr{O,(W) = r}z" and
T(z,u) = >, T.(z)u" satisfy -
T,(z) = R(z)My, (2)Uw(z), r>1
T(z,u) = R(z)1 — uM(z)UW(Z)'



Main Results: Asymptotics

Theorem 1 (Regnier and W.S.). (i) Moments. forn > m we have
E[O,(W)] = P(W)(n — m+ 1), Var[O,(W)] = nc1 + ¢
with

cic = PW)(2S(1)—-1—-2m —1)PW). —(m —1)(25(1) — 1) —25'(1)).
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E[O,(W)] = P(W)(n — m+ 1), Var[O,(W)] = nc1 + ¢
with
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r+1 . n .
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where pyy is the smallest roof of Dyy(z) = (1 — 2)Sw(z) + 2™ P(W) = 0.



Main Results: Asymptotics

Theorem 1 (Regnier and W.S.). (i) Moments. forn > m we have
E[O,(W)] = POW)(n —m + 1), Var[O,(W)] = nc1 + ¢
with

cic = POW)2S(1)—1—(2m —1)PW). — (m —1)(25(1) — 1) — 25'(1)).

(ii) Probability. Forr = O(1)

r+1 n '
Pr{O,(W) =1}~ (-1)a (j K 1)05\5"“)

where pyy is the smallest roof of Dyy(z) = (1 — 2)Sw(z) + 2" P(W) = 0.
Cenfral Limit Law: Forr = E[O,| + z+/VarO,, forx = O(1)

1 1.2 1
Pr{O,(W) = =———=e€ 2" ([1+0(— :
O] =7} V2ren ( " (x/ﬁ>>
Large Deviations: For Caser = (1 + 6)EO,, witha = (1 4+ 6)P(W) we have

e—(n—m+1)[(a)+5a

where I(a) = aw, + p(w,) and p(t) to be the root of 1 — e' My, (e”) = 0.



Biology — Weak Signals and Artifacts

Denise and Regnier (2002) observed that in biological sequence whenever
a word is overrepresented, then its subwords are also overrepresented.
Forexample, if Wy = AAT AAA, then

Wo = ATAAAN

is also overrepresented.
Overrepresented subwords are called artifact, and it is important fo
disregard automatically noise created by artifacts.
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New Approach:

Once a dominating signal has been detected, we look for a weaker
signal by comparing the number of observed occurrences of patterns
to the conditional expectations not the regular expectations.



Biology — Weak Signals and Artifacts

Denise and Regnier (2002) observed that in biological sequence whenever
a word is overrepresented, then its subwords are also overrepresented.
Forexample, if W, = AAT AAA, then

Wo = ATAAAN

is also overrepresented.
Overrepresented subwords are called artifact, and it is important fo
disregard automatically noise created by artifacts.

New Approach:

Once a dominating signal has been detected, we look for a weaker
signal by comparing the number of observed occurrences of patterns
to the conditional expectations not the regular expectations.

This harder question needs a new approach thru Generalized Patftern
Matching to show that

When W, is overrepresented « differs significantly from E[O,,(Ws].



Polyadenylation Signals in Human Genes

Beaudoing et al. (2000) studied several variants of the well known AAUAAA
polyadenylation signal in mRNA of humans genes.

Using our approach Denise and Regnier (2002) discovered/eliminated all

artifacts and found in a much simpler and reliable way.
Hexamer Obs. Rk Exp. Z-SC. Rk Cd.Exp. Cd.Z-sc. Rk
AAUAAA 3456 1 363.16 167.03 1 1
AAAUAA 1727 D 363.16 71.25 2 1678.53 1.04 1300
AUAAAA 1530 3 363.16 61.23 3 1311.03 6.05 404
UuuuuU 1105 4 416.36 33.75 8 373 .30 37.87 2
AUAAAU 1043 5 373.23 34.67 6 1529.15 12.43 4078
AAAAUA 1019 6 363.16 34.41 7 848.76 5.84 420
UAAAAU 1017 7 373.23 33.32 0 780.18 8.48 211
AUUAAA 1013 | 373.23 33.12 10 385.85 31.93 3
AUAAAG 972 9 184.07 58.03 4 503.90 15.51 34
UAAUAA 022 10 373.23 28.41 13 1233.24 ~8.86 4034
UAAAAA 922 11 363.16 29.32 12 922.67 9.79 155
UUAAAA 863 12 373.23 25.35 15 374.81 25.21 4
CAAUAA 847 13 185.50 48.55 5 613.24 .44 167
AAAAAA 841 12 353.37 25.94 14 496.38 15.47 36
UAAAUA 805 15 373.23 22.35 21 1143.73 ~10.02 4068
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Hidden Patterns

In the subsequence pattern or a hidden word VW occurs as a subseqguence:
T, = wi, T;) = wo, ..., T; = wp,.
where we put additional constraints that
iip1 — 15 < dj.
The I = (é1,...,in)-tuple is called a position and D = (di,...,dn

constitutes the constraints.
If all d; are finite, then we have the constrained problem.



Hidden Patterns

In the subsequence pattern or a hidden word VW occurs as a subseqguence:
T, = wi, T;) = wo, ..., T; = wp,.
where we put additional constraints that
iip1 — 15 < dj.
The I = (é1,...,in)-tuple is called a position and D = (di,...,dn
constitutes the constraints.

If all d; are finite, then we have the constrained problem.

Let O,,(W) be the number of W occurrences in T'. Observe that

O,(W) =) X,

where
Xr:=1 4if VYW occurs at position I in T,
and 0 otherwise.



How to Analyze It - De Bruijn Automata

1. The (W,D) constrained subsequence problem is viewed as the
generalized string matching.
Example: If (W, D) = a#-2b,then W = {ab, aab, abb}.
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How to Analyze It - De Bruijn Automata

1. The (W,D) constrained subsequence problem is viewed as the
generalized string matching.
Example: If (W, D) = a#-2b,then W = {ab, aab, abb}.

2. de Bruijn Automaton. Let M = max{length(VV)} — 1. Define a de Bruijn
automaton over B where

B =AY
De Bruijn automaton is built over B.

3. Letb € Band a € A. Then the fransition from the stafe b upon scanning
symbol a of the textisto b € B such that

ba — b = bybs - - - bysa.

For example
\a\b//\g// — bba, .
B A B
4. The Transitfion Matrix: T(w) is a complex-valued transitfion matrix defined
as:
[T ()], := P(a)uM+10D=OMO[h = bobs - - - byra]

where O,,(b) is the number of pattern occurrences WV in the text b.



Example

5. Example. Let W = {ab, aab, aba}. Then M = 2, and the the de Bruijn
graph and matrix T(w) are shown below

aa ab ba bb

aa P(a) P(b)u? 0 0
T(u) = g 0 0  Pla)u P(b)
ba P(a) P(b) 0 0

bb 0 0 P(a) P(b)




Generating Functions

6. Using properties of product of matrices we conclude that
On(u) = E[u”""™] = b'(u)T"(u)T
where b(w) is an initial vectorand I = (1, ...,1).

7. Spectral Decomposition
Let A(u) be the largest eigenvalue of T'(w). Then

On(u) = c(u)A"(u)(1 4+ O(A"))

for some A < 1. This proves that the generating function O, (u) satisfies the
so called guasi-power law.

8. The above formula suggests that we deal with weakly dependent random
variables described by the generating function A(w). Hence, for example

E[O,] = n)\' (1) + O(1).



Final Results

Mean and Variance

E[O,(W)] = nA(0)+O0(1) =nP(W)+ O(1),
Var[O,(W) = nA"(0)+ O(1) = na’(W) + O(1)

where A(s) = log A(e?)
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Central Limit Theorem
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Final Results

Mean and Variance

E[O,(W)] = nA(0)+O0(1) =nP(W)+ O(1),
Var[O,(W) = nA"(0)+ O(1) = na’(W) + O(1)

where A(s) = log A(e?)
Central Limit Theorem
Pr{on—np(w) < x} N L/w ey
O'(W)\/H V21 J 0o

Large Deviations
If T(w) is primifive, then

1
Pr{0,,(W) = aE[O,]} ~ ————¢ ™!(®)H0a

OaV2TNn

where I(a) can be explicitly computed, and 6, is a known constant.

Based on: Flgjolet, W.S. and Vallee, JACM, 2006.



Some Experiments

The complete works of Shakespeare are found under
http://the-tech.mit.edu/Shakespeare/.

We first extracted the full text of Hamlet stripped of all the comments and
searched for

W = thelawisgaussian

w = Thelawisgaussian | w = naissuagsiwalent

d Expected (F) | Occurred (O,,) O, /FE | Occurred (O,) O,/FE
13 9.195E+01 0 0.00 18 0.19
14 2.794E+02 693 2.47 371 1.32
15 7.866E+02 1,526 9.46 2,379 3.02
18 1.211E+04 31,385 2.58 14,123 1.16
20 5.886E+04 124,499 2.11 41,066 0.69
25 1.673E+06 2,527,148 1.51 1,277,584 0.76
30 2.577E+07 40,001,240 1.556 25,631,589 0.99
40 1.928E+09 2,757,171,648 1.42 2,144,491,367 1.11
50 5.482E+10 76,146,232,395 1.38 48,386,404,680 0.88
oo 1.330E+48 1.36664E+48  1.03 1.38807E+48 1.04

Figure 3: Observed occurrences (0,,) versus predicted values (expectations,
E) in the alphabetical characters of Hamlet,



Reliable Threshold for Intrusion Detection

We argued that one needs a reliable threshold for infrusion detection. If
false alarms are to be avoided, the problem is of finding a threshold
oy = ag(W;n, 3) such that

PO, (W) > an) < B(=107°).

Our results shows that

@ = nPW) + zoo(W)Vn, B = —— / ot22g o Loadr2
x() Io

o(gap=0), @"(gap=11)
T T T

Figure 4: Pattern=wojciech, window=100 (cf. Gwadrea at al. (2004).
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Some Definitions

String Complexity of a single sequence is the number of disfinct substrings.

Throughout, we write X for the string and denote by 1 (X)) the set of distinct
subsfrings of X over alphabet A.

Example. If X = aabaa, tThen
I(X) = {e,a, b, aa, ab, ba, aab, aba, baa, aaba, abaa, aabaa},
sO |[I(X)| = 12. Butif X = aaaaa, then
I(X) = {e, a, aa, aaa, aaaa, aaaaa},

so |[I(X)| = 6.



Some Definitions

String Complexity of a single sequence is the number of disfinct substrings.

Throughout, we write X for the string and denote by 1 (X)) the set of distinct
subsfrings of X over alphabet A.

Example. If X = aabaa, tThen
I(X) = {e,a, b, aa, ab, ba, aab, aba, baa, aaba, abaa, aabaa},
sO |[I(X)| = 12. Butif X = aaaaa, then
I(X) = {e, a, aa, aaa, aaaa, aaaaa},
so |[I(X)| = 6.

The string complexity is the cardinality of I(X) and we study here the
average string complexity

E[II(X)]]= > PX)(X)]

XeAn

where X is generated by a memoryless/Markov source.,



Suffix Trees and String Complexity

a b a a b a b a $
O O O O O O O O O (1]
$ $
(8]
b a S
O 4]
a b a b a $
O O O (3]
b a a b a b a $
O O O O {2]
b a $
O {5]
S
$

1 2 3 4 5 6 7 8 9
abaababas$

Non-compact suffix trie for X = abaababa and string complexity 1(X) = 24.

a b a ababas a ba ababas
O {a @ {a
$ $ $ $
(8] (6] (8] (6]
ba$ ba$
4] 4]
k@ ababa$ & ababa$
b a ababa$s ba ababa$
2] {z]

NNNNN

1 2 3 4

abaababa$

String Complexity = # infernal nodes in a non-compact suffix tree.



Some Simple Facts

Let O(w) denote the number of fimes that the word w occurs in X. Then

I(X)| = ) min{l,O0(w)}.

weA*

Since between any two positions in X there is one and only one substring:

(X1 + DIX]
w;m ) = >
Hence (X + 1) X
1x) = ¢ +2 X1 S~ max{0,0(w) — 1.

weA*
Define: C,:=E[[I(X)] | |X]|=mn] Then

o, =t 1)” — 5 S (k= 1)P(Ou(w) = k).

weA* k>2

We need fo study probabilistically O,,(w): that is:

numiber of w occurrences in a text X generated a probabilistic source.




Methodology and Some Results

Last expression allows us to write

o — (nZl)n

+ E[Sy] — E[Ly)]

where E|[S,,| and E[L,] are, respectively, the average size and path length
in the associated (compact) suffix trees.
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We know that (Jacquet & Regnier, 1989; W.S., 2001)

n logn

E[S,] = %(n + W(logn)) +o(n), E[L,]= ; + nWsy(logn) + o(n),

where ¥(log n) and Wy (log n) are periodic functions. Therefore,
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Methodology and Some Results

Last expression allows us to write

(n+ 1)n
2

C, = + E[S,] — E[L,]

where E[S,,] and E[L,]| are, respectively, the average size and path length
in the associated (compact) suffix trees.

Poissonization | Mellin = Inverse Mellin (SP) — De-Poissonization

We know that (Jacquet & Regnier, 1989; W.S., 2001)

E[S,] = %(n + U(logn)) + o(n), E[L,] = — lzg L Ws(log n) + o(n),

where ¥(log n) and W, (log n) are periodic functions. Therefore,

_(n+1)n
2

C, — %(h)gn — 14+ Qo(logn) + o(1))

Theorem 2 (Janson, Lonardi, W.S., 2004). For unbiased memoryless source:

+ 1 1 1 —
C, = (n ) —nlogign+ |-+ ! + Q1(logj4n) | n+ O(y/nlogn)
2 2  In|A|

where v =~ 0.577 is Euler’s constant and Q. is a periodic function.



Joint String Complexity

For X and Y. let J(X,Y) be the set of common words between X and Y.

The joint string complexity is
|J(X,Y)| = [I(X) N I(Y)]

Example. If X = aabaa and Y = abbba, then J(X,Y) = {e, a, b, ab, ba}.

Goal. Estimate
Jnm = E[[J(X,Y)]]

when | X| =nand |Y| = m.



Joint String Complexity

For X and Y. let J(X, Y) be the set of common words between X and Y.

% — % —: The joint string complexity is
é_, = E._, = |J(X,Y)| = [I(X)NI(Y)]
Example. If X = aabaa and Y = abbba,then J(X,Y) = {¢, a, b, ab, ba}.

Goal. Estimate
Jn.m = B[|J(X,Y)]]
when | X| =nand |Y| = m.

Some Observations. For any word w € A*

[J(X,Y)| = ) min{l,Ox(w)} - min{1, Oy (w)}.

weA*

When | X| = nand |Y| = m, we have

Jom =E[J(X, V)] —1= S P(O}(w) > 1)P(O%(w) > 1)
weA*—{e}

where O! (w) is the number of w-occurrences in a string of generated by
source: = 1, 2 (i.e., X and Y) which we assume to be memoryless sources.



Independent Joint String Complexity

Consider two sets of n independently generated (memoryless) strings.

Let Q,,"(w) be the number of strings for which w is a prefix when the n strings
are generated by a source i = 1, 2 define

Cnm = Z P(quz(w) > 1)P(an(w) > 1)
weA*—{e}

Theorem 3. There exists e > 0 such that
Jnm — Cpm = O(min{n, m} )

for large n.
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Main Results

Assume that Va € A we have Pi(a) = Px(a) = pa.

Theorem 4. for a biased memoryless source, the joint complexity is
asymptoftically

2log 2

Chn=mn

+ Q(logn)n + o(n),

where Q(x) is a small periodic function (with amplitude smaller than 107°)

which is nonzero only when the log p,, a € A, are rafionally related, that is,
log pa/logpy € Q.



Main Results

Assume that Va € A we have Pi(a) = Px(a) = pa.
Theorem 4. for a biased memoryless source, the joint complexity is

asymptoftically ,
2 log 2
5 + Q(logn)n + o(n),

where Q(z) is a small periodic function (with amplitude smaller than 10~°)
which is nonzero only when the log p,, a € A, are rafionally related, that is,

log p./ log py € Q.

Chn=mn

Assume that P (a) # P (a).
Theorem 5. Define v = min . jccqp2{(—s1 — s2)} < 1, where s; and s;
are roofs of

H(s1,82) =1 = > (Pi(a)) " (P2(a))”" = 0.

acA
Then
nK F(Cl)F(Cz)
C, ., = 1 O(1/1 ,
’ Viogn (MwAH(cl, c2)V H(cy, c2) + Qllogn) + O(1/log n))

where Q is a double periodic function.



Classification of Sources

The growth of C,, ,, is:
e O(n) foridentical sources;
o O(n"/+/logn) for non idenfical sources with k < 1.

x10*
2500 , . . 25 : : :
EnRealOverFrSim EnRealOverEnSim
EnRealOverGrSim FrRealOverFrSim
EnRealOverPISim GrRealOverGrSim
2000 - EnRealOverFnSim 2 PIRealOverPISim
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> 9 .
a 1500 o "
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o @]
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o 1000 R
c £ .
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” > /
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(@) (b)

Figure 5. Joint complexity: (a) English text vs French, Greek, Polish, and
Finnish texts; (b) real and simulated texts (3rd Markov order) of English,
French, Greek, Polish and Finnish language.



Acknowledgments

My French Connection:

Philippe Flajolet (1948-2011)
Analytic Combinatorics



Acknowledgments

My French Connection:

Philippe Flajolet (1948-2011)
Analytic Combinatorics

My Iltalian Connection:

Alberto Apostolico:
The Master froon whom | learned Stringology and More!



Acknowledgments

My French Connection:

Philippe Flajolet (1948-2011)
Analytic Combinatorics

My Iltalian Connection:

Alberto Apostolico:
The Master froon whom | learned Stringology and More!

... and ALL my co-authors.



That’s It

THANK YOU



