Minimax Redundancy for Large Alphabets by Analytic Methods

Wojciech Szpankowski
Purdue University
W. Lafayette, IN 47907

March 20, 2012

NSF STC Center for Science of Information

CISS, Princeton 2012

*Joint work with M. Weinberger
Outline

1. Source Coding: The Redundancy Rate Problem
2. Universal Memoryless Sources
 (a) Finite Alphabet
 (b) Unbounded Alphabet
3. Universal Renewal Sources
Source Coding and Redundancy

Source coding aims at finding codes $C : \mathcal{A}^* \to \{0, 1\}^*$ of the shortest length $L(C, x)$, either on average or for individual sequences.

Known Source P: The pointwise and maximal redundancy are:

$$ R_n(C_n, P; x_1^n) = L(C_n, x_1^n) + \log P(x_1^n) $$

$$ R^*(C_n, P) = \max_{x_1^n} [L(C_n, x_1^n) + \log P(x_1^n)] $$

where $P(x_1^n)$ is the probability of $x_1^n = x_1 \cdots x_n$.

Unknown Source P: Following Davisson, the maximal minimax redundancy $R^*_n(S)$ for a family of sources S is:

$$ R^*_n(S) = \min_{C_n} \sup_{P \in S} \max_{x_1^n} [L(C_n, x_1^n) + \log P(x_1^n)]. $$
Source Coding and Redundancy

Source coding aims at finding codes $C: \mathcal{A}^* \rightarrow \{0, 1\}^*$ of the shortest length $L(C, x)$, either on average or for individual sequences.

Known Source P: The pointwise and maximal redundancy are:

$$R_n(C_n, P; x_1^n) = L(C_n, x_1^n) + \log P(x_1^n)$$

$$R^*(C_n, P) = \max_{x_1^n} [L(C_n, x_1^n) + \log P(x_1^n)]$$

where $P(x_1^n)$ is the probability of $x_1^n = x_1 \cdots x_n$.

Unknown Source P: Following Davisson, the maximal minimax redundancy $R^*_n(S)$ for a family of sources S is:

$$R^*_n(S) = \min_{C_n} \sup_{P \in S} \max_{x_1^n} [L(C_n, x_1^n) + \log P(x_1^n)].$$

Shtarkov’s Bound:

$$d_n(S) := \log \sum_{x_1^n \in \mathcal{A}^n} \sup_{P \in S} P(x_1^n) \leq R^*_n(S) \leq \log \sum_{x_1^n \in \mathcal{A}^n} \sup_{P \in S} P(x_1^n) + 1$$
Maximal Minimax Redundancy R^*_n

For the maximal minimax redundancy define

$$Q^*(x^n_1) := \frac{\sup_{P \in S} P(x^n_1)}{\sum_{y^n_1 \in A^n} \sup_{P \in S} P(y^n_1)}.$$

the maximum likelihood distribution. Observe that (Shtarkov, 1976):

$$R_n^*(S) = \min_{C_n \in C} \sup_{P \in S} \max_{x^n_1} (L(C_n, x^n_1) + \log P(x^n_1))$$

$$= \min_{C_n \in C} \max_{x^n_1} \left(L(C_n, x^n_1) + \sup_{P \in S} \log P(x^n_1) \right)$$

$$= \min_{C_n \in C} \max_{x^n_1} \left(L(C_n, x^n_1) + \log Q^*(x^n_1) \right) + \log \sum_{y^n_1 \in A^n} \sup_{P \in S} P(y^n_1)$$

$$= R_n^{GS}(Q^*) + \log \sum_{y^n_1 \in A^n} \sup_{P \in S} P(y^n_1) = \log \sum_{y^n_1 \in A^n} \sup_{P \in S} P(y^n_1) + O(1).$$

where $R_n^{GS}(Q^*)$ is the redundancy of the optimal generalized Shannon code. Also,

$$d_n(S) = \log \left(\sum_{x^n_1 \in A^n} \sup_{P \in S} P(x^n_1) \right) := \log D_n(S).$$
Learnable Information and Redundancy

1. \(S := \mathcal{M}^k = \{ P_\theta : \theta \in \Theta \} \) set of \(k \)-dimensional parameterized distributions. Let \(\hat{\theta}(x^n) = \arg \max_{\theta \in \Theta} \log \frac{1}{P_\theta(x^n)} \) be the ML estimator.
Learnable Information and Redundancy

1. $S := \mathcal{M}^k = \{ P_\theta : \theta \in \Theta \}$ set of k-dimensional parameterized distributions. Let $\hat{\theta}(x^n) = \arg \max_{\theta \in \Theta} \log \frac{1}{P_\theta(x^n)}$ be the ML estimator.

2. Two models, say $P_\theta(x^n)$ and $P_{\theta'}(x^n)$ are indistinguishable if the ML estimator $\hat{\theta}$ with high probability declares both models are the same.

3. The number of distinguishable distributions (i.e, $\hat{\theta}$), $C_n(\Theta)$, summarizes then learnable information, $I(\Theta) = \log_2 C_n(\Theta)$.
Learnable Information and Redundancy

1. \(S := \mathcal{M}^k = \{ P_\theta : \theta \in \Theta \} \) set of \(k \)-dimensional parameterized distributions. Let \(\hat{\theta}(x^n) = \arg \max_{\theta \in \Theta} \log 1 / P_\theta(x^n) \) be the ML estimator.

2. Two models, say \(P_\theta(x^n) \) and \(P_{\theta'}(x^n) \) are indistinguishable if the ML estimator \(\hat{\theta} \) with high probability declares both models are the same.

3. The number of distinguishable distributions (i.e., \(\hat{\theta} \)), \(C_n(\Theta) \), summarizes then learnable information, \(I(\Theta) = \log_2 C_n(\Theta) \).

4. Consider the following expansion of the Kullback-Leibler (KL) divergence

\[
D(P_{\hat{\theta}}||P_\theta) := E[\log P_{\hat{\theta}}(X^n)] - E[\log P_\theta(X^n)] \sim \frac{1}{2}(\theta - \hat{\theta})^T I(\hat{\theta})(\theta - \hat{\theta}) \approx d_I^2(\theta, \hat{\theta})
\]

where \(I(\theta) = \{ I_{ij}(\theta) \}_{ij} \) is the Fisher information matrix and \(d_I(\theta, \hat{\theta}) \) is a rescaled Euclidean distance known as Mahalanobis distance.

5. Balasubramanian proved the number of distinguishable balls \(C_n(\Theta) \) of radius \(O(1/\sqrt{n}) \) is asymptotically equal to the minimax redundancy:

\[
\text{Learnable Information} = \log C_n(\Theta) = \inf_{\theta \in \Theta} \max_{x^n} \log \frac{P_{\hat{\theta}}}{P_\theta} = R_n^*(\mathcal{M}^k)
\]
Outline Update

1. Source Coding: The Redundancy Rate Problem
2. Universal Memoryless Sources
 (a) Finite Alphabet
 (b) Unbounded Alphabet
3. Universal Renewal Sources
Maximal Minimax for Memoryless Sources

For a memoryless source over the alphabet $\mathcal{A} = \{1, 2, \ldots, m\}$ we have

$$P(x_1^n) = p_1^{k_1} \cdots p_m^{k_m}, \quad k_1 + \cdots + k_m = n.$$

Then

$$D_n(M_0) := \sum_{x_1^n} \sup_{p(x_1^n)} P(x_1^n)$$

$$= \sum_{x_1^n} \sup_{p_1, \ldots, p_m} p_1^{k_1} \cdots p_m^{k_m}$$

$$= \sum_{k_1 + \cdots + k_m = n} \binom{n}{k_1, \ldots, k_m} \sup_{p_1, \ldots, p_m} p_1^{k_1} \cdots p_m^{k_m}$$

$$= \sum_{k_1 + \cdots + k_m = n} \binom{n}{k_1, \ldots, k_m} \left(\frac{k_1}{n} \right)^{k_1} \cdots \left(\frac{k_m}{n} \right)^{k_m}.$$

since the (unnormalized) likelihood distribution is

$$\sup_{P(x_1^n)} P(x_1^n) = \sup_{p_1, \ldots, p_m} p_1^{k_1} \cdots p_m^{k_m} = \left(\frac{k_1}{n} \right)^{k_1} \cdots \left(\frac{k_m}{n} \right)^{k_m}.$$
Generating Function for $D_n(M_0)$

We write

$$D_n(M_0) = \sum_{k_1 + \cdots + k_m = n} \binom{n}{k_1, \ldots, k_m} \left(\frac{k_1}{n}\right)^{k_1} \cdots \left(\frac{k_m}{n}\right)^{k_m} = \frac{n!}{n^n} \sum_{k_1 + \cdots + k_m = n} \frac{k_1^{k_1}}{k_1!} \cdots \frac{k_m^{k_m}}{k_m!}$$

Let us introduce a tree-generating function

$$B(z) = \sum_{k=0}^{\infty} \frac{k^k}{k!} z^k = \frac{1}{1 - T(z)}, \quad T(z) = \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} z^k$$

where $T(z) = z e^{T(z)} (= -W(-z)$, Lambert’s W-function) that enumerates all rooted labeled trees. Let now

$$D_m(z) = \sum_{n=0}^{\infty} z^n \frac{n^n}{n!} D_n(M_0).$$

Then by the convolution formula

$$D_m(z) = [B(z)]^m - 1.$$
Asymptotics for FINITE m

The function $B(z)$ has an algebraic singularity at $z = e^{-1}$, and

$$\beta(z) := B(z/e) = \frac{1}{\sqrt{2(1 - z)}} + \frac{1}{3} + O(\sqrt{1 - z}).$$

By Cauchy’s coefficient formula

$$D_n(M_0) = \frac{n!}{n^n} [z^n][B(z)]^m = \sqrt{2\pi n}(1 + O(1/n)) \frac{1}{2\pi i} \oint \frac{\beta(z)^m}{z^{n+1}} dz.$$
Asymptotics for FINITE m

The function $B(z)$ has an algebraic singularity at $z = e^{-1}$, and

$$\beta(z) := B(z/e) = \frac{1}{\sqrt{2(1 - z)}} + \frac{1}{3} + O(\sqrt{(1 - z)}).$$

By Cauchy’s coefficient formula

$$D_n(\mathcal{M}_0) = \frac{n!}{n^n} [z^n][B(z)]^m = \sqrt{2\pi n} (1 + O(1/n)) \frac{1}{2\pi i} \oint \frac{\beta(z)^m}{z^{n+1}} dz.$$

For finite m, the singularity analysis of Flajolet and Odlyzko implies

$$[z^n](1 - z)^{-\alpha} \sim \frac{n^{\alpha-1}}{\Gamma(\alpha)}, \quad \alpha \notin \{0, -1, -2, \ldots\}$$

$$R_n^*(\mathcal{M}_0) = \frac{m - 1}{2} \log \left(\frac{n}{2} \right) + \log \left(\frac{\sqrt{\pi}}{\Gamma \left(\frac{m}{2} \right)} \right) + \frac{\Gamma \left(\frac{m}{2} \right) m}{3\Gamma \left(\frac{m}{2} - \frac{1}{2} \right)} \cdot \frac{\sqrt{2}}{\sqrt{n}}$$

$$+ \left(\frac{3 + m(m - 2)(2m + 1)}{36} - \frac{\Gamma^2 \left(\frac{m}{2} \right) m^2}{9\Gamma^2 \left(\frac{m}{2} - \frac{1}{2} \right)} \right) \cdot \frac{1}{n} + \cdots$$
Outline Update

1. Source Coding: The Redundancy Rate Problem
2. Universal Memoryless Sources
 (a) Finite Alphabet
 (b) Unbounded Alphabet
3. Universal Renewal Sources
Now assume that m is unbounded and may vary with n. Then

$$D_{n,m}(\mathcal{M}_0) = \sqrt{2\pi n} \frac{1}{2\pi i} \oint \frac{\beta(z)^m}{z^{n+1}} dz = \sqrt{2\pi n} \frac{1}{2\pi i} \oint e^{g(z)} dz$$

where $g(z) = m \ln \beta(z) - (n + 1) \ln z$.
Now assume that m is unbounded and may vary with n. Then

$$D_{n,m}(\mathcal{M}_0) = \sqrt{2\pi n} \frac{1}{2\pi i} \oint \frac{\beta(z)^m}{z^{n+1}} dz = \sqrt{2\pi n} \frac{1}{2\pi i} \oint e^{g(z)} dz$$

where $g(z) = m \ln \beta(z) - (n + 1) \ln z$.

The saddle point z_0 is a solution of $g'(z_0) = 0$, that is,

$$g(z) = g(z_0) + \frac{1}{2} (z - z_0)^2 g''(z_0) + O(g'''(z_0)(z - z_0)^3).$$

Under mild conditions satisfied by our $g(z)$ (e.g., z_0 is real and unique), the saddle point method leads to:

$$D_{n,m}(\mathcal{M}_0) = \frac{e^{g(z_0)}}{\sqrt{2\pi |g''(z_0)|}} \times \left(1 + O \left(\frac{g'''(z_0)}{(g''(z_0))^{\rho}} \right) \right),$$

for some $\rho < 3/2$.

Redundancy for LARGE m
Saddle Points

\[m = o(n) \]
\[m = n \]
\[n = o(m) \]
Main Results – Large Alphabet

Theorem 1 (Orlitsky and Santhanam, 2004, and W.S. and Weinberger, 2010). For memoryless sources \mathcal{M}_0 over an m-ary alphabet, $m \to \infty$ as n grows, we have:

(i) For $m = o(n)$

$$R^*_{n,m}(\mathcal{M}_0) = \frac{m - 1}{2} \log \frac{n}{m} + \frac{m}{2} \log e + \frac{m \log e}{3} \sqrt{\frac{m}{n} \frac{1}{2}} - O \left(\sqrt{\frac{m}{n}} \right)$$

(ii) For $m = \alpha n + \ell(n)$, where α is a positive constant and $\ell(n) = o(n)$,

$$R^*_{n,m}(\mathcal{M}_0) = n \log B_\alpha + \ell(n) \log C_\alpha - \log \sqrt{A_\alpha} + O(\ell(n)^2 / n)$$

where $C_\alpha := 0.5 + 0.5 \sqrt{1 + 4/\alpha}$, $A_\alpha := C_\alpha + 2/\alpha$, $B_\alpha = \alpha C_\alpha^{\alpha + 2} e^{-\frac{1}{C_\alpha}}$.

(iii) For $n = o(m)$

$$R^*_{n,m}(\mathcal{M}_0) = n \log \frac{m}{n} + \frac{3 n^2}{2 m} \log e - \frac{3 n}{2 m} \log e + O \left(\frac{1}{\sqrt{n}} + \frac{n^3}{m^2} \right).$$
Consider the following generalized source \tilde{M}_0:

- alphabet is $\mathcal{A} \cup \mathcal{B}$, where $|\mathcal{A}| = m$ and $|\mathcal{B}| = M$;
- probabilities p_1, \ldots, p_m of \mathcal{A} are unknown, while the probabilities q_1, \ldots, q_M of \mathcal{B} are fixed;
- define $q = q_1 + \cdots + q_M$ and $p = 1 - q$.

Our goal is to compute the minimax redundancy $R_{n,m,M}(\tilde{M}_0)$. Recall

$$R_{n,m,M}(\tilde{M}_0) = \log(D_{n,m,M}) + O(1), \quad D_{n,m,M} = 2^{d_{n,m,M}}.$$

Lemma 1.

$$D_{n,m,M} = \sum_{k=0}^{n} \binom{n}{k} p^k (1 - p)^{n-k} D_{k,m_k}.$$

where $D_{n,m} = R_{n,m}(M_0) + O(1)$ is the minimax redundancy over \mathcal{A} as presented in Theorem 1.

Proof. It basically follows from

$$D_{n,m,M} = \sum_{x \in (\mathcal{A} \cup \mathcal{B})^n} \sup_{P} P(x) = \sum_{y \in \mathcal{A}^{n-i}} \sum_{z \in \mathcal{B}^i} \sup_{P_{n-i}} P_n(y) P_i(z)$$
Consider the following binomial sum

\[S_f(n) = \sum_{k=0}^{n} \binom{n}{k} p^k (1 - p)^{n-k} f(k) \]

In our case, \(f(k) = D_{n,m,M} = 2^{d_{n,m,M}} \).

Case: \(f(k) = O(n^a \log^b n) = o(e^{\sqrt{n}}) \):

\[S_f(n) = f(np)(1 + O(1/n)) \]

(cf. Jacquet & W.S. (1999), and Flajolet (1999)).

Case: \(f(k) = (\alpha^k) \)

\[S_f(n) \sim (p\alpha + 1 - p)^n. \]

Case: \(f(k) = O(k^{k^\beta}) \)

\[S_f(n) \sim p^nf(n). \]
Main Results for the Constrained Model $\tilde{\mathcal{M}}_0$

Theorem 2 (W.S and Weinberger, 2010). Write m_n for m depending on n.

(i) $m_n = o(n)$. Assume:
(a) $m(x) := m_x$ and its derivatives are continuous functions.
(b) $\Delta_n := m_{n+1} - m_n = O(m'(n))$, $m'(n) = O(m/n)$, $m''(n) = O(m/n^2)$.
If $m_n = o(\sqrt{n}/\log n)$, then

$$R^*_{n,m,M} = \frac{m_{np} - 1}{2} \log \left(\frac{np}{m_{np}} \right) + \frac{m_{np}}{2} \log e - \frac{1}{2} + O \left(\frac{1}{\sqrt{m_n}} + \frac{m_n^2 \log^2 n}{n} \right).$$

Otherwise,

$$R^*_{n,m,M} = \frac{m_{np}}{2} \log \left(\frac{np}{m_{np}} \right) + \frac{m_{np}}{2} \log e + O \left(\log n + \frac{m_n^2 \log^2 n}{n} \right).$$

(ii) Let $m_n = \alpha n + \ell(n)$, where α is a positive constant and $\ell(n) = o(n)$.

$$R^*_{n,m,M} = n \log (B_{\alpha}p + 1 - p) - \log \sqrt{A_{\alpha}} + O \left(\ell(n) + \frac{1}{\sqrt{n}} \right),$$

where A_{α} and B_{α} are defined in Theorem 1.

(iii) Let $n = o(m_n)$ and assume m_k/k is a nondecreasing sequence. Then,

$$R^*_{n,m,M} = n \log \left(\frac{pm_n}{n} \right) + O \left(\frac{n^2}{m_n} + \frac{1}{\sqrt{n}} \right).$$
1. Source Coding: The Redundancy Rate Problem
2. Universal Memoryless Sources
3. Universal Renewal Sources
The **renewal process** \mathcal{R}_0 (introduced in 1996 by Csiszár and Shields) defined as follows:

- Let T_1, T_2, \ldots be a sequence of i.i.d. positive-valued random variables with distribution $Q(j) = \Pr\{T_i = j\}$.
- In a **binary renewal sequence** the positions of the 1’s are at the renewal epochs $T_0, T_0 + T_1, \ldots$ with runs of zeros of lengths $T_1 - 1, T_2 - 1, \ldots$.

The renewal process \mathcal{R}_0 (introduced in 1996 by Csiszár and Shields) defined as follows:

- Let T_1, T_2, \ldots be a sequence of i.i.d. positive-valued random variables with distribution $Q(j) = \Pr\{T_i = j\}$.
- In a binary renewal sequence the positions of the 1's are at the renewal epochs $T_0, T_0 + T_1, \ldots$ with runs of zeros of lengths $T_1 - 1, T_2 - 1, \ldots$.

For a sequence

$$x_0^n = 10^{\alpha_1}10^{\alpha_2}1\cdots10^{\alpha_n}10\cdots0$$

define k_m as the number of i such that $\alpha_i = m$. Then

$$P(x_1^n) = [Q(0)]^{k_0}[Q(1)]^{k_1}\cdots[Q(n-1)]^{k_{n-1}}\Pr\{T_1 > k^*\}.$$
Renewal Sources (Virtual Large Alphabet)

The renewal process \mathcal{R}_0 (introduced in 1996 by Csiszár and Shields) defined as follows:

- Let T_1, T_2, \ldots be a sequence of i.i.d. positive-valued random variables with distribution $Q(j) = \Pr\{T_i = j\}$.
- In a binary renewal sequence the positions of the 1’s are at the renewal epochs $T_0, T_0 + T_1, \ldots$ with runs of zeros of lengths $T_1 - 1, T_2 - 1, \ldots$.

For a sequence

$$x_n^0 = 10^{\alpha_1}10^{\alpha_2}1 \cdots 10^{\alpha_n}10^{k^*}$$

define k_m as the number of i such that $\alpha_i = m$. Then

$$P(x_n^0) = [Q(0)]^{k_0}[Q(1)]^{k_1} \cdots [Q(n - 1)]^{k_{n-1}}\Pr\{T_1 > k^*\}.$$

Theorem 3 (Flajolet and W.S., 1998). Consider the class of renewal processes. Then

$$R_n^*(\mathcal{R}_0) = \frac{2}{\log 2}\sqrt{cn} + O(\log n).$$

where $c = \frac{\pi^2}{6} - 1 \approx 0.645$.
Maximal Minimax Redundancy

It can be proved that \(r_{n+1} - 1 \leq D_n(\mathcal{R}_0) \leq \sum_{m=0}^{n} r_m \)

\[
r_n = \sum_{k=0}^{n} r_{n,k}, \quad r_{n,k} = \sum_{\mathcal{I}(n,k)} \binom{k}{k_0 \cdots k_{n-1}} \left(\frac{k_0}{k} \right)^{k_0} \left(\frac{k_1}{k} \right)^{k_1} \cdots \left(\frac{k_{n-1}}{k} \right)^{k_{n-1}}
\]

where \(\mathcal{I}(n, k) \) is the integer partition of \(n \) into \(k \) terms, i.e.,

\[
n = k_0 + 2k_1 + \cdots + nk_{n-1}, \quad k = k_0 + \cdots + k_{n-1}.
\]

But we shall study \(s_n = \sum_{k=0}^{n} s_{n,k} \) where

\[
s_{n,k} = e^{-k} \sum_{\mathcal{I}(n,k)} \frac{k^{k_0}}{k_0!} \cdots \frac{k^{k_{n-1}}}{k_{n-1}!}
\]

since \(S(z, u) = \sum_{k,n} s_{n,k} u^k z^n = \prod_{i=1}^{\infty} \beta(z^i u) \).
Maximal Minimax Redundancy

It can be proved that \(r_{n+1} - 1 \leq D_n(\mathcal{R}_0) \leq \sum_{m=0}^{n} r_m \)

\[
 r_n = \sum_{k=0}^{n} r_{n,k}, \quad r_{n,k} = \sum_{\mathcal{I}(n,k)} \binom{k}{k_0 \cdots k_{n-1}} \left(\frac{k_0}{k} \right)^{k_0} \left(\frac{k_1}{k} \right)^{k_1} \cdots \left(\frac{k_{n-1}}{k} \right)^{k_{n-1}}
\]

where \(\mathcal{I}(n,k) \) is the integer partition of \(n \) into \(k \) terms, i.e.,

\[
 n = k_0 + 2k_1 + \cdots + nk_{n-1}, \quad k = k_0 + \cdots + k_{n-1}.
\]

But we shall study \(s_n = \sum_{k=0}^{n} s_{n,k} \) where

\[
 s_{n,k} = e^{-k} \sum_{\mathcal{I}(n,k)} \frac{k_0^{k_0}}{k_0 !} \cdots \frac{k_{n-1}^{k_{n-1}}}{k_{n-1} !}
\]

since \(S(z,u) = \sum_{k,n} s_{n,k} u^k z^n = \prod_{i=1}^{\infty} \beta(z^i u) \).

\[
 s_n = [z^n] S(z, 1) = [z^n] \exp \left(\frac{c}{1-z} + a \log \frac{1}{1-z} \right)
\]

Theorem 4 (Flajolet and W.S., 1998). We have the following asymptotics

\[
 s_n \sim \exp \left(2\sqrt{cn} - \frac{7}{8} \log n + O(1) \right), \quad \log r_n = \frac{2}{\log 2} \sqrt{cn} - \frac{5}{8} \log n + \frac{1}{2} \log \log n + O(1).
\]
That’s IT