
A Universal Online Caching Algorithm Based on
Pattern Matching∗

G. Pandurangan and W. Szpankowski
Department of Computer Science,

Purdue University

August 2, 2005

∗This research is supported by NSF, NSA and NIH.

Outline of the Talk

1. Prediction, Prefetching, and Caching

2. Online Decision Problems

3. Previous Results
• Memoryless Source
• Markov Sources

4. Our Algorithm Based on Pattern Matching (SPMC)

5. Sketch of Proof

Prefetching, Prediction, and Caching

c1 c2 ck-1 ck. . .

replacement
strategy

request sequence:x1 x2

C = { c1 , c2 ,..., ck}

Prefetching/Caching

xn-1 | xn

∈

∉

cost = 0

cost = 1

C

C

Prefetching (Prediction with k = 1):
at t = n− action

bn : (c1, . . . , ck) ↔ (y1, . . . , yk) ∈ Ak.

Caching:
at t = n+ action

bn : if xn /∈ Cn, then ci ↔ yi ∈ A, 1 ≤ i ≤ k.

Online Decision Problems

In general, we are given:

sequence of requests: xn
1 = x1, . . . xn∈ An:

actions: bn
1 = b1, . . . , bn

loss function: l(bt, xt).

Objective: Find an online algorithm (set of actions) that minimizes the total
average cost

minbn1
L =

1

n

nX
t=1

l(bt, xt).

Prefetching and prediction:
a sequential decision problem with memoryless loss function.

Caching:
a sequential decision problem with memory loss function (cf. Merhav,
Ordenlich, Seroussi and Weinberger, IT, 2002).

Prefetching/Prediction Based on LZ

Vitter & Krishnan (1996) proposed a prefetching algorithm based on LZ’78
scheme.

Jacquet, W.S., & Apostol (2002) proposed a prediction scheme based on
(pattern matching) LZ’78 called the
Sampled Pattern Matching (SPM) predictor.

x1 xn-1

?a ab

For example, consider

SLJZGGDL YGSJSLJZ KGSSLJZIDSLJZJGZ YGSJSLJZ ,

SLJZ GGDLYGSJ SLJZ KGS SLJZ KLJZJGZYGSJ SLJZ

hence the sampled sequence is GKK and the SPM predicts K.

Jacquet, S. Apostol proved that SPM asymptotically predicts as well as the
optimal predictor that knows the underlying distribution.

Previous Results: Memoryless Source

Assume Xn
1 is generated by a memoryless source over alphabet A =

{a1, . . . , aM}, M := |A| � k, with pi = P (ai).
Without loss of generality we assume

p1 ≥ p2 ≥ · · · pM.

We assume that probabilities pi are known.

Optimal Policy (cf. Aho, Denning& Ullman, 1971):

Keep in the cache the first k− 1 items with the highest
probability, that is, items {1, . . . , k − 1}.

Optimal Loss:

Lmin = B − 1

B

MX
i=k

p2
i

where B =
PM

i=k pi.

Previous Results: Markov Source

The request sequence X is generated by a Markov Source with known
transition probabilities.

What is the optimal on-line policy?

Let:
Ct – be the content of the cache at time t,
Xt – be the t-th request,
At – be the set of actions (“evict page i”, 1 ≤ i ≤ k).

The process Yt = (Xt, Ct; At) is a Markov Decision Process with the cost
(weight) function

w(x,C)(a) =

1 if x /∈ C

0 otherwise
where a ∈ At.
Theorem 1. There is an on-line optimal replacement policy that is a solution
of a (Markov Decision Process) linear programming problem of M

`M
k

´
variables.

Worst-Case Complexity: may be exponential in k.

Goal: Find a near-optimal policy that runs in polynomial time in k.

Negative Results

Consider the following “natural” on-line strategies:

LAST – on a fault, evict the page that has the highest probability of being
the last of the k pages in the cache to be requested;

MAX-REACH-TIME – on a fault for a page, evict that page whose expected
time to be reached from xn is maximum.

These policies, and many others, perform poorly on Markov chains (cf.
Karlin, Phillips, & Raghavan, 2000).

. . .

Figure 1: Example of a Markov-transition graph for which LAST and
MAX-REACH perform poorly.

Lund et al. DOM Algorithm

We describe now Lund, Phillips & Reingold (1999) DOM algorithm:

1. We assume that one can precompute efficiently the probability:
p(a, b): b be requested before a.

2. By solving the following Linear Programming (LP) problem:

min z

subject to :
X
b∈C

p(a, b)p(b) ≤ z (∀a ∈ C),

X
b∈C

p(b) = 1, p(b) ≥ 0, (∀b ∈ C)

we find the so called dominating probability p(a) satisfying the following
property:
for every a if b is selected with probability p(b), then

E[p(a, b)] ≤ 1

2
.

DOM Algorithm

3. DOM: Evict b with probability p(b).
In other words, for every a in the cache, if b in the cache is chosen with
probability p(b), then with probability ≥ 1/2 a’s next request will occur no
later than b’s next request.

4. Lund, Philipps and Reingold proved the following result.

Theorem 2 (Lund et al.). For all request sequences x, the following holds

E[DOM(x)] ≤ 4 · ON(x),

where ON(x) is the cost of the optimal online algorithm that has the full
knowledge of the underlying distributions.
The complexity per page fault is bounded by a polynomial in k.

Our Universal Caching Algorithm

Universal Caching Algorithm:
Let x1, x2 . . . be the request sequence. Let 1/2 < α < 1 be a fixed
constant.
If xn is not in the cache C and C is full do:

1. Find the largest suffix of xn
1 whose copy appears somewhere in the string

xn
1 . Call this the maximal suffix and let its length be Dn.

2. Take an α fraction of the maximal suffix of length kn = dαDne, i.e., the
suffix xn−kn+1 . . . xn. Each occurrence of this suffix in the string xn

1 is called
a marker. Let Kn ≥ 2 be the number of occurrences of the marker in xn

1 .

Our SPMC Algorithm

3. For every pair of elements a, b in C, estimate the probability P (a, b) that
b will occur before a after the marker position as follows:

Let Yj(a, b) be the indicator r.v. for the event that b occurs before a in the
substring that starts after the jth marker, 1 ≤ j ≤ Kn. Then the estimator is

P̃ (a, b) =

PKn
j=1 Yj(a, b)

Kn

.

x1 xn-1

?a ab

Finishing ...

4. Compute a distribution p by solving the following Linear Program (LP) in
which we:
minimize z

subject to:
X
b∈C

P̃ (a, b)p(b) ≤ z (∀a ∈ C),

X
b∈C

p(b) = 1, p(b) ≥ 0, (∀b ∈ C)

It is shown that the above LP has a feasible solution for z ∈ [0, 1] such that

z ≤ 1/2 + 1/n
θ

for some θ > 0.
Thus, for each page a in C, if b is chosen according to p, then

E[P̃ (a, b)] ≤ z.

5. SPM Caching Policy: Choose a page to evict from C according to the
distribution p.

Main Results

Assume the source is strongly mixing, that is,

Definition 1 (MX - (Strongly) φ-Mixing Source). Let Fn
m be a σ-field

generated by Xn
m = XmXm+1 . . . Xn for m ≤ n. The source is called

mixing, if there exists a bounded function φ(g) such that for all m, g ≥ 1
and any two events A ∈ Fm

1 and B ∈ F∞
m+g the following holds:

(1 − φ(g)) Pr(A) Pr(B) ≤ Pr(AB) ≤ (1 + φ(g)) Pr(A) Pr(B).

If, in addition, limg→∞ φ(g) = 0, then the source is called strongly mixing.

Our main result is as follows.

Theorem 3. Let An and ONn denote the number of page faults incurred
by our SPM Caching algorithm and the optimal online algorithm (ON),
respectively after n requests from a strongly mixing source. Then

E[An] ≤ (4 + o(1))E[ONn]

as n → ∞.

Sketch of Proof

1. Let L denote the maximum delay before we see all symbols in the
(current) cache C after any marker, i.e.,

L = max
1≤j≤Kn

Lj

where Ljthe delay before we see all symbols after the jth marker.

Lemma 1. The following holds: L = O(log2 n) whp.

2. The next lemma guarantees that the estimator is consistent with “good”
rate of convergence.

Lemma 2. Let θ ∈ (0, 1) be a suitably small positive constant. The
estimators P̃ (a, b) for every pair of symbols a and b in cache are within
1/nθ of the true estimates whp for sufficiently large n, that is,

|P̃ (a, b) − P (a, b)| ≤ 1

nθ
, whp.

Sketch of Proof

3. Consider the following LP:
minimize z

subject to :
X
b∈C

P̃ (a, b)p(b) ≤ z (∀a ∈ C),

X
b∈C

p(b) = 1, p(b) ≥ 0, (∀b ∈ C)

By Lemma 2 we can rewrite the first constraint (whp) as:
X
b∈C

P (a, b)p(b) ≤ z − O(1/nθ) (∀a ∈ C)

where P (a, b) is the true estimate of the probability that b will be requested
before a and θ is a suitably small positive constant.

4. By considering the dual LP, we can show that the solution of the above
LP is at most

z ≤ 1/2 + O(1/n
θ
).

By Lemma 2, this holds with probability at least

1 − 1/nν

for some ν > 0.

Sketch of Proof

5. When our SPMC algorithm has a page fault and must evict a page,
let a be a random variable denoting the page that is evicted. The
following property holds: for every page b in C, the probability that b is
next requested no later than a is at least

1/2 − O(1/nθ) − O(1/nν).

By Lemma 2.5 in Lund et al., we conclude that the expected number of
page faults is at most 4+o(1) times the optimal online algorithm as n → ∞.

