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External profile for the trie:

B6,0 = 0, B6,1 = 0, B6,2 = 1, B6,3 = 1, B6,4 = 2, B6,5 = 2.

External profile for the PATRICIA trie:

B6,0 = 0, B6,1 = 0, B6,2 = 2, B6,3 = 4.



Profiles

Definition 1 (Internal/External profile). The internal, external profile at level k
of a trie on n strings, In,k, Bn,k, is the number of internal, external nodes,

respectively, at level k.

Several parameters are of interest in the analysis of algorithms which use

digital trees:

• typical depth Dn: the depth of a randomly chosen leaf. Typical search

time.

• height Hn: the maximum depth of any leaf. Worst-case search time.

• fillup level Fn: the maximum full level of the trie (i.e., all possible internal

nodes exist). Plays a role in analysis of level-compressed tries.

• Pr[Dn = k] =
E[Bn,k]

n .

• Hn = max{k|Bn,k 6= 0}.

• Fn = max{k|In,k = 2k}.

Memoryless source model: strings are i.i.d., each a sequence of i.i.d.

Bernoulli random variables with fixed bias p > 1/2.



Prior Work

Trie profiles: Park (2006), and Park, Hwang, Nicodeme, W.S., (2008).

Digital search tree profiles: Expected value fully analyzed by Drmota & W.S.

(2011). Variance for the asymmetric case analyzed by Kazemi & Vahidi-Asl

(2011).

PATRICIA and DSTs have the same range of polynomial growth, where

µn,k = Θ(
nβ(α)

√
log n

), k = α logn.

PATRICIA:

• Knuth (1968) and W.S.(1990): Depth in PATRICIA.

• Pittel & Rubin (1987 and Devroye (1992): Derivation of first two terms of

the typical height for symmetric PATRICIA trie:

Hn − log2 n
√

2 log2 n

n→∞−−−→ 1.

• Devroye (2004): showed concentration for total profile (In,k + Bn,k) under

weak probabilistic assumptions.

• Knessl & W.S. (2002): Limiting distribution of height is concentrated on a

few points (using WKB method).



Main Results

Fn ∼ 1/ log(1/q) log n

Hn ∼ 1/ log(1/p) log n

Asymptotic expansions for mean E[Bn,k] = µn,k,

and variance in the range of polynomial growth (i.e.,

k ∼ αlog n, α ∈ (1/ log(1/q), 1/ log(1/p))).

For the expected external profile,

E[Bn,k] ∼ H(ρ, logn)n−ρ+α log(p−α+q−α) ∼ H(ρ)nβ(α).

Variance:

Var[Bn,k] ∼ K(ρ, logn)n
−ρ+α log(p−α+q−α)

= Θ(E[Bn,k]).

where ρ is a saddle point, and H(ρ) and K(ρ) are

fluctuating functions.

• Central limit theorem for profile in range of polynomial growth:

E

[

exp

(

τ
Bn,k − G̃k(n)

σn,k

)]

= exp

(

τ2

2
(1 + O(V

−1/2
n,k ))

)

where µn,k ∼ G̃k(n) and Gk(z) =
∑∞

n=0 µn,k
zn

n! .



Expected Value Analysis

Approach:

• Unlike in tries and DST, path compression means no closed form solution

to the relevant recurrence equation.

• To solve for µn,k in the interesting range, need information about it in other

ranges.

Poissonization Mellin Inverse Mellin (SP) De-Poissonization

• Poissonization: Poisson splitting property makes deriving a functional

equation easy. Asymptotics of µn,k reduced to asymptotics of G̃k(z) as

z, k → ∞.

• Mellin transform: functional equation is transformed into an algebraic

equation.

• Mellin inversion: via saddle point method for asymptotically evaluating

integrals.

• De-Poissonization: justify the equivalence µn,k ∼ G̃k(n) as n → ∞.



Expected Value Derivation

Poisson functional equation: Define Gk(z) =
∑∞

n=0 µn,k
zn

n! and G̃k(z) =
e−zGk(z). Then

G̃j(z) = G̃j−1(pz) + G̃j−1(qz) + W̃j(z),

W̃j(z) = e
−pz

[G̃j − G̃j−1](qz) + e
−qz

[G̃j − G̃j−1](pz).

Trie functional equation:

T̃j(z) = T̃j−1(pz) + T̃j−1(qz).

where T̃j(z) is the Poisson transform of the profile.

DST functional equation:

∆
′
k+1(z) + ∆k+1(z) = ∆k(pz) + ∆k(qz),

where ∆k(z) is the Poisson transform of the profile in DST.



PATRICIA Solution

Mellin transform: We get an exact (implicit) formula for G∗
k(s) by unraveling

the recurrence:

G
∗
k(s) = (p

−s
+ q

−s
)G

∗
k−1(s) + W

∗
k (s) = T (s)

k
Γ(s + 1)Ak(s),

with

T (s) = p−s + q−s,

Ak(s) = 1 +
k
∑

j=1

T (s)−j
∞
∑

m=j

T (−m)(µm,j − µm,j−1)
Γ(m + s)

Γ(s + 1)Γ(m + 1)

Compare with tries: T ∗
j (s) = T (s)kT ∗

0 (s) where T ∗
0 (s) = Γ(s + 1)g(s) for

nice g(s).

Properties of Ak(s):
The function Ak(s) is entire, with zeros at −k,−k + 1, . . . ,−1 which cancel

out poles of Γ(s + 1). Also,

lim
k→∞

Ak(s) = A(s)

pointwise for all s.

The fundamental strip of G̃k(z) is ℜ(s) ∈ (−k − 1,∞).



Inverse Mellin: Saddle Point Method

By depoisonization we have G̃k(n) ∼ G̃k(z), where recall

G̃k(n) =
1

2πi

∫ c+i∞

c−i∞
Ak(s)Γ(s + 1)n

−s
(p

−s
+ q

−s
)
k
ds

=
1

2πi

∫ c+i∞

c−i∞
Ak(s)Γ(s + 1) exp(h(s)logn)ds, k = αlogn.

The saddle point equation h′(s) = 0 has a unique real root:

ρ =
−1

log r
log

(

α log q−1 − 1

1 − α log p−1

)

,
1

log q−1
< α <

1

log p−1
.

There are infinitely many saddle points ρ + itj for tj = 2πj/ log r, j ∈ Z.

nlog

ρ +
⋅

rlog
----------i

2π

ρ +

⋅
rlog

----------

i

2π

ρ –

ρ – i

i
⋅

rlog
----------

2π

2π
log
-----------

r
⋅

nlog–

2

2

1

1

j ≥

j ≤ρ – i
⋅

rlog
----------

2π j

ρ + i
⋅

rlog
----------

2π j
,

,

Some Comments:

1. ρ → ∞ as α ↓ 1/ log q−1 = α1.

2 ρ → −∞ when α ↑ 1/ log p−1.

3. In tries the saddle points coalesce with poles

of the Γ(s + 1) function at s = −2,−3, . . ..

In PATRICIA these poles are cancel out.



Limiting Distribution Proof

Poisson PGF recurrence:

Define Qk(u, z) =
∑∞

n=0 E[u
Bn,k]z

n

n! and G̃k(u, z) = e−zGk(u, z). Then

Q̃k(u, z) = Q̃k−1(u, pz) + Q̃k−1(u, qz) + e
−pz

(Q̃k − Q̃k−1)(u, qz)

+ e
−qz

(Q̃k − Q̃k−1)(u, pz).

Define l̃k(w, x) = log(Q̃k(w, x)). With u = eit/σn,k,

l̃k(u, z) = G̃k(z)
τ

σn,k

+ Ṽk(z)
τ2

σ2
n,k

+ O(σ
−1
n,k) +

τ3

σ3
n,k

R[ℓ]k(u, z).

Goal:

Show that R[ℓ]k(u, z) is negligible with respect to the other terms which are

of order O(nβ(α))), where β(α) is the polynomial order of growth of µn,k and

Vn,k.



Limiting Distribution Proof

Remainder term via Cauchy integral formula:

1

3!
R[l̃]k(u, z) = R1,k(u, z) + R2,k(u, z),

where

R1,k(u, z) =
k
∑

j=0

(k

j

) 1

2πi

∮

C

pjqk−jz + log(1 + (w − 1)pjqk−jze−pjqk−jz)

(w − 1)3(w − u)
dw

R2,k(u, z) =
k
∑

j=0

k−j
∑

m=0

(k − j

m

) 1

2πi

∮

C

h̃j(w, pmqk−j−mz)

(w − 1)3(w − u)
dw,

where

h̃j(w, x) = log

(

1 +
(Qj − Qj−1)(w, px) + (Qj − Qj−1)(w, qx)

Qj−1(w, px)Qj−1(w, qx)

)

.

Here, C is a circle centered at 1 and containing u in its interior. Both

R1,k(u, z) and R2,k(u, z) are O(nβ(α)) for |z| = n in a cone.



Limiting Distribution Proof

Bounding R1,k(u, z): Laurent expansion of the integrand gives

R1,k(u, z) ∼
k
∑

j=0

(k

j

)

(pjqk−jz)3e−3pjqk−jz.

Range: j = o(log n) or j ∼ k.

Contribute negligibly, because

(k

j

)

≤ kj/j!,
(k

j

)

≤ kk−j/(k − j)!,

and the other factors are bounded, so these terms are at most

eo(log n) = no(1).

Range j, k − j = Θ(logn).
Write each term as eg(j) using Stirling’s formula, and, taking derivatives of

g(j) to find the largest term, we find that the sum is at most Θ̃(nβ(α)).

Bounding R2,k(u, z): More difficult.

Requires precise lower and upper bounds on (Qj − Qj−1)(w, x), which rely

on knowledge of µm,j for m = Θ(j) (so to the right of the saddle point

range). See the paper.



Next Steps: Height

It is known (Pittel, Devroye) that for symmetric PATRICIA, the height Hn

behaves like:

Hn = log2 n +
√

2log2 n + O(1) whp



Next Steps: Height

It is known (Pittel, Devroye) that for symmetric PATRICIA, the height Hn

behaves like:

Hn = log2 n +
√

2log2 n + O(1) whp

Conjecture 1. For asymmetric PATRICIA we claim that (p 6= q = 1 − p)

Hn = log1/p n + logp/q logn + O(log log log) whp.

Need more precise estimates of µn,k and Vn,k to the right of the saddle point

interval.

Lower bound:

Pr[Hn < k] ≤ Pr[Bn,k = 0] ≤ Var[Bn,k]

E[Bn,k]2

Upper bound:

Pr[Hn > k] ≤
∑

j>k

E[Bn,j].



Experimental Results for the Height



New Book on Pattern Matching

Analytic 
Pattern 
Matching
From DNA to Twitter

Philippe Jacquet and 

Wojciech Szpankowski

9 780521 876087 >

ISBN 978-0-521-87608-7
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How do you distinguish a cat from a dog by their DNA? 

Did Shakespeare really write all of his plays? 

Pattern matching techniques can offer answers to these questions and to 
many others, from molecular biology, to telecommunications, to classifying 
Twitter content. 

This book for researchers and graduate students demonstrates the 
probabilistic approach to pattern matching, which predicts the performance 
of pattern matching algorithms with very high precision using analytic 
combinatorics and analytic information theory.  Part I compiles known 
results of pattern matching problems via analytic methods. Part II focuses on 
applications to various data structures on words, such as digital trees, suffix 
trees, string complexity and string-based data compression. The authors use 
results and techniques from Part I and also introduce new methodology such 
as the Mellin transform and analytic depoissonization. 

More than 100 end-of-chapter problems help the reader to make the link 
between theory and practice.

Philippe Jacquet is a research director at INRIA, a major public research 
lab in Computer Science in France. He has been a major contributor to the 
Internet OLSR protocol for mobile networks. His research interests involve 
information theory, probability theory, quantum telecommunication, 
protocol design, performance evaluation and optimization, and the analysis 
of algorithms. Since 2012 he has been with Alcatel-Lucent Bell Labs as head 
of the department of Mathematics of Dynamic Networks and Information. 
Jacquet is a member of the prestigious French Corps des Mines, known for 
excellence in French industry, with the rank of “Ingenieur General”. He is 
also a member of ACM and IEEE.

Wojciech Szpankowski is Saul Rosen Professor of Computer Science and (by 
courtesy) Electrical and Computer Engineering at Purdue University, where 
he teaches and conducts research in analysis of algorithms, information 
theory, bioinformatics, analytic combinatorics, random structures, 
and stability problems of distributed systems. In 2008 he launched the 
interdisciplinary Institute for Science of Information, and in 2010 he became 
the Director of the newly established NSF Science and Technology Center 
for Science of Information. Szpankowski is a Fellow of IEEE and an Erskine 
Fellow. He received the Humboldt Research Award in 2010.

Cover design: Andrew Ward



Book Contents

Chapter 1: Probabilistic Models

Chapter 2: Exact String Matching

Chapter 3: Constrained Exact String Matching

Chapter 4: Generalized String Matching

Chapter 5: Subsequence String Matching

Chapter 6: Algorithms and Data Structures

Chapter 7: Digital Trees

Chapter 8: Suffix Trees & Lempel-Ziv’77

Chapter 9: Lempel-Ziv’78 Compression Algorithm

Chapter 10: String Complexity
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