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Tries, PATRICIA Tries, Profiles

External profile for the trie:
Beo=0,Bs1 =0,Bs2=1,B¢3=1,Bg4 = 2, Bg5s = 2.
External profile for the PATRICIA trie:

Bgo = 0,Bg1 =0,Bs2 =2, Bgz = 4.



Profiles

Definition 1 (Internal/External profile). The infernal, external profile at level k
of a trie on n strings, I,, 1, By k. IS the number of internal, external nodes,
respectively, af level k.

Several parameters are of interest in the analysis of algorithms which use
digital trees:

e fypical depth D,,: the depth of a randomly chosen leaf. Typical search
fime.

e height H,: the maximum depth of any leaf. Worst-case search time.

o fillup level F,,: the maximum full level of the trie (i.e., all possible internal
nodes exist). Plays a role in analysis of level-compressed tries.

e Pr[D, = k] = E[BS’]C].
e H, = max{k|B,r # 0}.
o F, = max{k|I,, = 2"}.

Memoryless source model: strings are i.i.d., each a sequence of i.i.d.
Bernoulli random variables with fixed bias p > 1/2.



Prior Work

Trie profiles: Park (2006), and Park, Hwang, Nicodeme, W.S., (2008).

Digital search tree profiles: Expected value fully analyzed by Drmota & W.S,
(2011). Variance for the asymmetric case analyzed by Kazemi & Vahidi-Asl
(2011).

PATRICIA and DSTs have the same range of polynomial growth, where

1 B(@)

Viogn

L = O( ), k= alogn.

PATRICIA:

e Knuth (1968) and W.S.(1990): Depth in PATRICIA.

e Piftel & Rubin (1987 and Devroye (1992): Derivation of first two terms of
the typical height for symmmetric PATRICIA trie:
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e Devroye (2004): showed concentration for fotal profile (I, + By k) Uunder
wedak probabilistic assumptions.

e Knessl & W.S. (2002): Limiting distribution of height is concentrated on a
few points (using WKB method).
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Main Results

Asymptotic expansions for mean E[B,, 1| = k.
and variance in the range of polynomial growth (i.e.,

k ~ alogn,a € (1/log(1/q),1/log(1/p))).

For the expected external profile,
Hp ~ 1/log(1/p)logn

1 —p+alo o - o
N E[B,.] ~ H(p,logn)n *T*5® 40 H(p)n).

- Variance:
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e

Var[B, 4] ~ K(p,logn)n ?Tels "+ — o(E[B, 4]).

where p is a saddle point, and H(p) and K (p) are
fluctuating functions.

e Central limit theorem for profile in range of polynomial growth:

exp <7‘Bn’k; C,jk(n)>] = exp <%(1 + O(Vn,,iﬂ)))

where p, ; ~ Gir(n) and Gi(z) = 30 T

z
n=0 'u‘nakml
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Expected Value Analysis

Approach:

e Unlike in tries and DST, path compression means no closed form solution
to the relevant recurrence equation.

e o solve for u,  iNn the interesting range, need informatfion about it in other
ranges.

Poissonization — Mellin —| Inverse Mellin (SP) —| De-Poissonization

e Poissonization; Poisson splifting property makes deriving a fugc’rionol
equation easy. Asymptotics of u, ; reduced to asymptofics of Gi(z) as
z, k — oo,

e Mellin fransform: functional equation is fransformed into an algebraic
equation.

e Mellin inversion: via saddle point method for asymptotically evaluating
integrals.

e De-Poissonizafion: justify the equivalence i, , ~ ék(n) as n — oo.



Expected Value Derivation

Poisson functional equation: Define Gi(z) = fo:o ,un,ki—? and ék(z) —
e “Gr(z). Then

Gj(2) = Gj_1(pz) + Gj-1(qz) + W;(2),

Wi(z) = e 7[G; — Gj—1](qz) + e “*[G; — Gj-1](p2).

Trie functional equation:
Ti(z) = Ti-1(pz) + Tj-1(q2).
where T;(z) is the Poisson transform of the profile.
DST functional equation:
Api1(2) + Apga(2) = Ag(pz) + Ar(gz),

where Ay (z) is the Poisson transform of the profile in DST.



PATRICIA Solution

Mellin tfransform: We get an exact (implicit) formula for G7 (s) by unraveling
the recurrence:

Gi(s) = (p "+ q °)G 1-1(s) + Wi (s) = T(s)"T'(s + 1) As(s),
with
T(s)=p " +4q°,

'(m + s)
I'(s+1)I'(m + 1)

k 0
Ap(s) =1+ Z T(s)™’ Z T(—m)(fm,j — Hm,j—1)

Compare with fries: T;*(s) = T(s)*T(s) where T (s) = I'(s + 1)g(s) for
nice g(s).

Properties of A (s):
The function Ax(s) is entire, with zeros at —k, —k + 1, ..., —1 which cancel
ouf poles of I'(s + 1). Also,

kll_)Iilo Ar(s) = A(s)

pointwise for all s.

The fundamental strip of Gi(z) is R(s) € (—k — 1, o).



Inverse Mellin: Saddle Point Method

By depoisonization we have G.(n) ~ Gi(z). where recall

=~ 1 cHieo —S, —s —s
Gi(n) = —— [ AET(s+1n " "(p " +4q ) ds
1 c+100
= — Ar(s)I'(s + 1) exp(h(s)logn)ds, k = alogn.

271 c—100

The saddle point equation h'(s) = 0 has a unique real rooft:

—1 alogg™t —1 1 1
log< 84 >, <a<

B log r 1 — alogp—l log g—1 log p— 1

There are infinitely many saddle points p + it; fort; = 2nwj/logr. j € Z.

. 2ng
R T

iz Jogn  Some Comments:
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mE logr l.p s ocasall/logqg ™t = a.
A— p+i I—ZEDL
ogr
f— 2p— —cowhena 1 1/logp .
0 2%5%
R 2(;_5 3. In fries the saddle points coalesce with poles
L1 e g of the I'(s + 1) functfionat s = —2, —3, .. ..

logr In PATRICIA these poles are cancel out.




Limiting Distribution Proof

Poisson PGF recurrence: )
Define Qx(u, z) = 300, E[u”F]2L and Gy (u, z) = e *Gy(u, z). Then

n=0

Qr(u, 2) = Qr-1(u, pz) + Qr-1(u, qz) + e *(Qr — Qr-1)(u, g2)
+ e *(Qr — Qr_1)(u, pz).

Define I, (w, z) = log(Qr(w, x)). With u = e'/on.k,

) -2 B -3
+ Vi(2)—=— + O(o,, ;) + 5 Rl{]k(u, 2).
k O-n,k O-n,k:

T

ik(u, z) = ék(z)

On,

Goal:

Show that R[4].(u, z) is negligible with respect to the other terms which are
of order O(n”™)), where () is the polynomial order of growth of ., ;, and
Vi



Limiting Distribution Proof

Remainder term via Cauchy integral formula:

1 ~
gR[l]k(u, z) = Rl,k(u, Z) + R2,k(u7 2)7

where
FLoky 1 P’ q" 7z +log(1 + (w — l)quk_jze_quk_jz)
Ry k(u, z) = E ( ) % 3 dw
o N/ 2mi Je (w—1)3(w — u)
kE k—j . T m_k—j7j—m
k—g\ 1 [ hj(w,p™qg 7 "z)
Rok(u, z) = }I{ dw,
jZOmO ( m )27m c (w—1)3w —u)
where

P w2 — 1o (Qj — Qj—1)(w, px) + (Q; — Qj—1)(w, qx)
hj(w, z) = log (1 + 0 (0 p2) 01 (0 q2) ) .

Here, C is a circle cenfered at 1 and containing « in its interior. Both
Ri(u, z) and Ry (u, z) are O(n?) for |z| = nin a cone.



Limiting Distribution Proof

Bounding R, ;(u, z): Laurent expansion of the integrand gives

k
k SR _3pd gk,
Rl,k(u, z) ~ Z (J) (quk JZ)36 3p’q .

7=0

Range: j = o(logn) orj ~ k.
Contribute negligibly, because

(’;) <K/, (’;) AR

and the other factors are bounded, so these terms are at most
o(logm) __ . o(1)
(A =N .

Range j, k — j = ©(log n).
Write each term as V) using Stirling’s formula, and, faking derivatives of
g(j) to find the largest term, we find that the sum is at most © (n”(),

Bounding Rs i (u, z): More difficult.

Requires precise lower and upper bounds on (Q; — Q,-1)(w, ), which rely
on knowledge of u,, ; for m = ©(j) (so to the right of the saddle point
range). See the paper.



Next Steps: Height

It is known (Pittel, Devroye) that for symmetric PATRICIA, the height H,
behaves like:

H, = log,n 4+ v/2log, n 4+ O(1) whp



Next Steps: Height

It is known (Pittel, Devroye) that for symmetric PATRICIA, the height H,
behaves like:

H, =logy,n + y/2log,n + O(1) whp
Conjecture 1. For asymmetric PATRICIA we claim that (p 4 q =1 — p)

H,, = log;,,n + log,,, logn + O(logloglog) whp.

Need more precise estimates of u,, , and V;, ;. To the right of the saddle point
interval.

Lower bound:

Var[Bn,k]

PrlH, < k]| < Pr|B,,=0] <
x[Ho < K] < PriBue = 0] < Lo

Upper bound:
Pr[H, > k] <Y E[By,,;].
j>k
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New Book on Pattern Matching

How do you distinguish a cat from a dog by their DNA
Did Shakespeare really write all of his plays?

Philippe Jacquet and
Wojciech Szpankowski

Pattern matching techniques can offer answers to these questions and to
many others, from molecular biology, to telecommunications, to classifyi
Twitter content.

(]
This book for researchers and graduate students demonstrates the
probabilistic approach to pattern matching, which predicts the performance #&
of pattern matching algorithms with very high precision using analytic 7’
combinatorics and analytic information theory. Part I compiles known P QI
M t I I .

results of pattern matching problems via analytic methods. Part II focuses on
.
From DNA to Twitter

smoyuedzs
pue jonboe(

applications to various data structures on words, such as digital trees, suffix
trees, string complexity and string-based data compression. The authors use
results and techniques from Part I and also introduce new methodology such
as the Mellin transform and analytic depoissonization.

More than 100 end-of-chapter problems help the reader to make the link
between theory and practice.

Philippe Jacquet i ch director at INRIA, a major publi
lab in Computer Science in Franc
Internet OLSR p ol for mobile net:

member of ACM and IEEE.

of algorithr
, random structures,
In 2008 he launched the
tion, and in 2010 |
nd Technol
of IEEE and an E
in 2010.
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Book Contents

Chapter 1: Probabilistic Models

Chapter 2: Exact String Matching

Chapter 3: Constrained Exact String Matching
Chapter 4: Generalized String Matching

Chapter §: Subsequence String Matching
Chapter 6. Algorithms and Data Structures
Chapter 7 Digital Trees

Chapter 8: Suffix Trees & Lempel-Ziv’'77

Chapter 9: Lempel-Ziv’'78 Compression Algorithm

Chapter 10: String Complexity
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