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Pattern Matching

Let VW and T be (set of) strings generated over a finite alphabet A.

We call YV the pattern and T the text. The text T is of length n and is
generated by a probabilistic source.

We shall write
T =Ty...T,.
The pattern YV can be a single string

W:wl...wm, ’UJZEA

or a set of strings
W = {Wla"‘ﬂwd}
with VW, € A" being a set of strings of length m;.



Basic Parameters

Two basic questions are:

e how many times YV occurs in T,
e how long one has to wait until ¥ occurs in T'.

The following quantities are of interest:
O, (W) — the number of times W occurs in T
OW) =#{i: T, , ., =W, m<i<n}.
Wy — the first time YW occurs in T';

Wy := min{n : Tn_erl = W}.

n

Relationship:
Ww>n << O0,(W)=0.



Various Pattern Matching

(Exact) String Matching

In the exact string matching the pattern WW = w;...w,, IS a given
string (i.e., consecutive sequence of symbols).

Generalized String Matching

In the generalized pattern matching a set of patterns (rather than a
single pattern) is given, that is,

W:(W07W17°'°7Wd)7 W’LEAm’L

where VV; itself for i+ > 1 is a subset of A™: (i.e., a set of words of a given
length m;).
The set W, Is called the forbidden set.

Three cases to be considered:

Wy = ) — one isinterested in the number of patterns from YV occurring
in the text.

Wy # ) — we study the number of VW;, i > 1 pattern occurrences
under the condition that no pattern from Y, occurs in the text.

W; = 0,1 > 1, Wy # ) — restricted pattern matching.



Pattern Matching Problems

Hidden Words or Subsequence Pattern Matching

In this case we search in text for a subsequence W = w; ... w,, rather
than a string, that is, we look forindices 1 < 11 < 15 < - -+ < 4, < m sSuch
that

Ty, = wy, Ty = wa, -+, Thyy = Wi
We also say that the word VW is “hidden” in the text.

For example:

W = date
T = hidden pattern

occurs four times as a subsequence in the text as hidden pattern but not
even once as a string.

Self-Repetitive Pattern Matching
In this case the pattern YV is part of the text:
w ="T;".

We may ask when the first m symbols of the text will occur again. This is
important in Lempel-Ziv like compression algorithms and suffix trees.



Suffix Trees and Its Parameters

Figure 1: Suffix tree built from the first five suffixes Si,..

T = 1010010001 ...

1010010001 S, =0010001

S_I. =
S, = 010010001 S = 010001
S3; = 10010001
S
S S
S

S

., S5

of

Depth D, - length of the path from the root to a randomly selected

external node (suffix).
Height H,, — length of the longest path.

Path length L, — sum of all paths to nodes.



Pattern Matching vs Suffix Tree Parameters

The depth D, in a suffix tree can be defined in terms of the number of
occurrence O,, of a pattern ¥V = w as follows:

e Define D, (i), 1 < ¢ < n, to be the largest value of k < n such
that T/7"~! occurs at least twice in the text T}" of length n; that is,
O, (T > 2,

e The depth D, is equal to D, (i) when i is randomly and uniformly
selected between 1 and n.

e Thus for w € A* we have
Pr(D,(i) > k& T/ ' = w) = Pr(Op(w) > 2& T/ = w),

and .
Z Pr(O,(w) =r & T;H_k_l = w) = rPr(Oy(w) = r).

1=1



Probabilistic Sources

Throughout the talk | will assume that the text is generated by a random
source.

Memoryless Source

The text is a realization of an independently, identically distributed
seguence of random variables (i.i.d.), such that a symbol s € A occurs
with probability P(s).

Markovian Source

The text is a realization of a stationary Markov sequence of order K, that
is, probabillity of the next symbol occurrence depends on K previous
symbols.



Exact Pattern Matching

Here is an incomplete list of results on string pattern matching (given a
pattern YV find statistics of its occurrences):

o Feller (1968),
e Guibas and Odlyzko (1978, 1981),

e Prum, Rodolphe, and Turckheim (1995) — Markovian model, limiting
distribution.

e Regnier & W.S. (1997,1998) — exact and approximate occurrences
(memoryless and Markov models).

e P Nicodéme, Salvy, & P Flajolet (1999) - regular expressions.
e E. Bender and F Kochman (1993) — general pattern matching.



Languages and Generating Functions

A language L is a collection of words satisfying some properties.

For any language £ we define its generating function L(z) as

L(z) = Z P(u)z|u|

uel

where P(w) is the stationary probability « occurrence, |u| is the length of
w.

For Markov sources we define VV-conditional generating function:

Ly (z) = Z Pulu_pm =wi - -u_1 = wm)ZIU|
uel

where wu_; stands for a symbol preceding the first character of u at
distance .



Autocorrelation Set and Polynomial

Given a pattern VW, we define the autocorrelation set S as:

S = { m E__ ' m } E_ ' m
— \Wgyq + Wy = Wy 15y Wy = Wy 4

m

and YWV is the set of positions k satisfying w’f = W, _jy1-

S

Wy Wk Wm-ktk1 W

The generating function of S is denoted as S(z) and we call it the
autocorrelation polynomial.

S(z) = Z P(wZil)zm_k.

keww

Its VW-conditional generating function is denoted Sy (z). For example,
for a Markov model we have

Swiz) = Yy Pwpwi)z""".
kewwy



Example

Example:
Let W = bab over alphabet A = {a, b}.
WW = {1,3} and S = {e,ab},
where ¢ is the empty word, since

b a b
b a b

For the unbiased memoryless source

2
S(z) =14 P(ab)z> =1 + ZZ'

For the Markovian model of order one

Spap(z) = 1 + P(a,b\b)z2 =1+ pbapabzz.



Language 7,

We are interested in the following language:
7, —set of words that contains exactly » > 1 occurrences of VV,

and its generating functions

O.(z) = > Pr{O,(W)=r}", r>1,
O(z,u) = ZTr(z)ur — Z Z Pr{O,(W) = r}z"u"

for |z| < 1and |u| < 1.



More Languages

() Let 7 be a language of words containing at least one occurrence of
W.

(i) We define R as the set of words containing only one occurrence of WV,
located at the right end. For example, for VYW = aba

ccaba € R.

(i) We also define U/ as
U={u: W-ueT}
thatis, aword u € U if VV - u has exactly one occurrence of VV at the
left end of VWV - w,
cba €U, ba ¢ U.

(iv) Let M be the language:
M={u: W -u € Ty and W occurs at the right of W - u },

that is, M is a language such that WM has exactly two occurrences
of VW at the left and right end of a word from M.

ba € M.



Basic Lemma

Lemma 1. The language T satisfies the fundamental equation:
T=R-M"-U.

Notably, the language 7, can be represented for any »r > 1 as follows:
T, =R -M"".U,

and
To - W=R-S .
Here, by definition M° := {e} and M* := | J2 , M".

T, —l o S —]
R M M M U

Example: Let WW = T AT'. The following string belongs 7s:

U
—
CCTAT AT GATAT GGA.



More Results

Theorem 1. (i) The languages M, U and R satisfy:

J M

E>1
U-A = M+U-—{e},
W-M = A-R-—(R-W),

A" W+ S — {e},

where A* is the set of all words, + and — are disjoint union and subtraction
of languages.

(i) The generating functions associated with languages M,U and R
satisfy for memoryless sources

1 2™
M) Sw(z) + P(W)—l —
Un(z) = S
R(z) = PW)z" - Uw(z)

(Extension to Markov sources possible; cf. Regnier & WS.)



Main Results: Exact

Theorem 2. The generating functions T,.(z) and T'(z, u) are

O.(z) = R(z)My, (2)Un(z), r>1
O(z,u) = R(z)l—uM(z)UW(z)
where
z—1
M) = T4 50m
1

R(z) = sz(W)D;(Z)

with

Dw(z) = (1 — 2)Sw(z) + 2" P(W).



Main Results: Asymptotics

Theorem 3. (i) Moments. The expectation satisfies, forn > m:
E[O,(W)] = PW)(n —m + 1),

while the variance is
Var[O,,(W)] = nc1 + ca.
with
cgc = PW)2S(1)—1—-2m—-1)P(W),
coc = PW)(m—-1)(3m—-1)P(W)
— (m—=1)(25(1) = 1) — 25'(1)).



Distributions

(i) Case r = O(1). Let pyy be the smallest root of

Dw(z) = (1 — 2)Sw(z) + z"P(W) = 0.

Then
r+1 . n .
Pr{O,(W) =7} ~ > (=1)aq, (j " 1)05\5"“)
j=1
where

PP (W) (pw — 1)

r+1
(D (pw))
and the remaining coefficients can be easily computed, too.

Ar41 —



Central Limit and Large Deviations

(i) CLT: Caser = EO,, + z+/VarO,, forx = O(1). Then:
Pr{OW) =1} = ———e3 (140 (=)
R A N =y vn))

(iv) Large Deviations: Caser = (1 + §)EO,,. Leta = (1 + 6)P (W) with
0 # 0. For complex t, define p(t) to be the root of

1 —e' Mpy(e”) =0,
while w, and o, are defined as
—p'(wa) = a
—p'(wa) = o,
Then

6—(n—m—|—1)[(a)—i—5a

ar/2m(n —m + 1)

Pr{O,(W) ~ (14+0)EO,} =

where I (a) = aw, + p(w,) and é, is a constant.



Analysis of a Random Suffix Tree

Recall that:

e Forany i < n D,(i) is the largest k such that T/"*~! occurs at least
twice in the text 17",

e Typical depth D, is defined as
1 n
Pr(D, =¢) = — Pr(D, (i) = ¢
"(Dn =) = 23 Pr(Da(i) = 0

forany 1 < 7/ < n.

e Forw € A" let O, (w) be, as before, the number of times w occurs in
the text T7".

e The following is true
Pr(D,(i) > k & T/ = w) = Pr(On(w) > 2 & T/ = w),

and ;
Z Pr(O,(w) =r & Tf_k_l = w) = rPr(O,(w) = r).

1=1



Basic Relationship Between D,, and O,,

Recalling that O, (v) = E[u9"(“)], we have

PrD. 2 k) = =3O PHDL0) 2 K

1 < -
= > =D Pr(Dn(i) 2 k& T = w)
n

weAk " i=1
1
= — rPr(O,(w) = r)
- 3 (Pr(w) - 20,.,0)
we Ak "
_ ! d On (w)
we Ak

where O;, ,(0) denotes the derivative of O, (u) atu = 0



Generating Function of D,,

From previous slide we conclude that the probability generating function

Dy(u) = E[u”"] =Y Pr(D, = k)u"

becomes
(1—

u

u
LS o),
weA*
and the bivariate generating function

D(z,u) = Z nD,(u)z"

D, (u) = %

1 —u wl O
D(z,u) = - Z u |£Ow(2,0)
weA*

where O, (z,u) = > > Pr(O,(w) = r)z"u".



Pattern Matching and Suffix Tree

In Theorem 1 of pattern matching we derived

_Pr(w)  w Su(2)
Ou (2, u) = D2(z) 1—uMy,(z) Dy(z)’
where
z—1
My(z) =1 = Dy (2)
Dy(z) = (1—2)Su(z)+ 2z"Pr(w)

and S, (z) is the autocorrelation polynomial for w.

Lemma 2. The bivariate generating function for D.,, is

1 — Pr(w)

D(z,u) =

weA*

“ zu)v
U Z (zu) ((1 — 2)Sw(2) + zI¥IPr(w))?2

for|u| < 1 and |z| < 1, where S,,(z) is the autocorrelation polynomial for

w.



Main Result on Suffix Tree

Define h to be the entropy and hy = Z,};l Di log2 Di-

Theorem 4. (i) For a biased memoryless source (i.e., p; # p; forsome i # j)
andanye > 0

1 h
ED, = - logn + % -+ h—; + Pi(logn) + O(n™ "),
ha — h*
Var(D,) = QT logn 4+ O(1)
where Pi(-) is a periodic function with small amplitude when the tuple

(logp1, - - -,
log pv ), Is collinear with a rational tuple (i.e., log p;/log p1 = r/s for some

integers r and s) and converges to zero otherwise.
Furthermore, (D, — E[D,])/Var(D,,) is asymptotically normal with mean
zero and variance one thatis, for fixed x € R

lim Pr{D, < E[D,] + :c\/Var(Dn)} = \/% /x e 2t
T J —00

n—oo

and for all integer m

D, — E[D,]1™ 0 when m is odd
lim E [ JVarD. ] =\ eas Wwhenmiseven.
n 2/ (3!



(ii) For the unbiased source (i.e., p, = --- = py = 1/V), hy = h? the
expected value E| D, | is given above, and for any e > 0

2
Var(D,,) =

+ L 4 Pylogn) + O(n™)
6log’ vV | 12 | VBT "

where P>(logn) is a periodic function with small amplitude The limiting
distribution of D,, does not exist, but one finds

lim sup | Pr(D, < z) —exp(—nV ") |=0

n—oo T

for any fixed real x.



Sketch of Proof

1. Consider a trie built from n independently generated texts.
Let fo be the typical depth in such a trie. Since

Pr(D, (i) < k)= » _ Pr(w)(l— Pr(w))" "
we Ak

we obtain the following formulas for the probability generating function
T
D'(u) = E[u”"] and the bivariate generating function D(z, u)

Dg(u) _ 1 ; U Z ulwlpr(w)(l — Pr(w))n_la
weA*
§  1-w ol zPr(w)
P = T 2 T ey

forall |lu| < 1and |z| < 1.



Result on Tries

2. This is known (for independent tries).
Lemma 3 (P. Jacquet, M. Regnier, W.S.). There exists e > 0 such that
D, (u) = (1 = w)n""(T(k(u)) + P(log n,u))) + O(n%),

where 1" is the Euler gamma function

V
DIrECES
1=1

and P(logn, u) is periodic function with small amplitude when the vector
(log p1, ..., logpy) is collinear with a rational tuple, and converges to zero
when n — oo otherwise.

This lemma implies

e—tcl logn/~/co lognDZZ (et/\/C2 logn) N 6t2/2

where ¢; = 1/h and ¢, = (hy — h*)/h°.

That is,
DI — ¢ilogn

n

— N(0,1).
Var|c; log n]



Our Goal is ...

Our goal now is to prove that D, (u) and D! (u) are
asymptotically close as n — oc.

3. We accomplish this by proving that for some € > 0 and all |u| < g for
B >1
D, (u) = Du(u) = (1 = u)O(n™),
that is,
Pr(D, < k) —Pr(D' < k)| =0(Mn"°87").
for all positive integer k.



Autocorrelation Polynomial

4. For almost all words w the autocorrelation polynomial

Suw(z) ~ 1.

Lemma 4. There existd < 1,60 > 0 and p > 1 such that pé < 1 and

ST 1Su(p) — 1] < (p8)"0]Pr(w) > 1 — 65",

we Ak

Based on the following observation: in order for w € A to have the same
prefix of length £ — 7 (for some 2) as the suffix of length £ — ¢, that is,

k—i _  k
wy = We_;11

pattern w must have a periodic structure, that is, for some v € A" we

have
k _
w]_ p— @L . u o o o @'U/

l

where u < 1.



Analytic Continuation

5. The bivariate generating function D(z,u) can be analytically
continued to a larger disk.

Lemma 5. The generating function D(z,u) can be analytically continued
forall |u| <~ and |z| < 1 where § < 1.

We prove this lemma by showing

A-w) _H(n-!
WPEW e ¢ (1——5|u|>

foro < land|z| <1



Finishing Up ...

6. Define "
Qu(u) = 77— (Du(w) = Dy (w)) .
and
Q(z,u) = in@n(u)z" =7 Q_L - (D(z,u) — DT(z,u)) :

That is,

|w]

_ |wl < <
@z u) = zw:u Pr(w) <Dw(z)2 a (1 —2z+ Pr(w)z)2> '

Lemma6. Foralll < 8 < § !, there exists e > 0 such that

Qn(u) = (1 —uw)O(n7)

uniformly for |u| < .



