From Pattern Matching to Suffix Trees*

W. Szpankowski

Department of Computer Science Purdue University W. Lafayette, IN 47907 U.S.A.

May 26, 2004

^{*}Joint Work with P. Jacquet and M. Regnier

Outline of the Talk

- 1. Pattern Matching Problems
 - String Matching
 - Subsequence Matching
 - Self-Repetitive Pattern Matching
- 2. Suffix Trees and Its Parameters
- 3. Applications
- 4. Analysis of the Exact Pattern Matching
 - Languages and Generating Functions
 - Asymptotic Analysis
- 5. Analysis of Suffix Trees
 - Relation to the Exact Pattern Matching
 - Generating Function for the Depth
 - Analysis of Tries
 - Comparison of Tries and Suffix Trees

Pattern Matching

Let \mathcal{W} and T be (set of) strings generated over a finite alphabet \mathcal{A} .

We call \mathcal{W} the pattern and T the text. The text T is of length n and is generated by a probabilistic source.

We shall write

$$T_m^n = T_m \dots T_n.$$

The pattern \mathcal{W} can be a single string

$$\mathcal{W} = w_1 \dots w_m, \ \ w_i \in \mathcal{A}$$

or a set of strings

$$\mathcal{W} = \{\mathcal{W}_1, \ldots, \mathcal{W}_d\}$$

with $\mathcal{W}_i \in \mathcal{A}^{m_i}$ being a set of strings of length m_i .

Basic Parameters

Two basic questions are:

- how many times \mathcal{W} occurs in $T_{,}$
- how long one has to wait until \mathcal{W} occurs in T.

The following quantities are of interest:

 $O_n(\mathcal{W})$ — the number of times \mathcal{W} occurs in T:

$$O_n(\mathcal{W}) = \#\{i: T_{i-m+1}^i = \mathcal{W}, m \le i \le n\}.$$

 $W_{\mathcal{W}}$ — the first time \mathcal{W} occurs in T:

$$W_{\mathcal{W}} := \min\{n : T_{n-m+1}^n = \mathcal{W}\}.$$

Relationship:

 $W_{\mathcal{W}} > n \quad \Leftrightarrow \quad O_n(\mathcal{W}) = 0.$

Various Pattern Matching

(Exact) String Matching

In the exact string matching the pattern $\mathcal{W} = w_1 \dots w_m$ is a given string (i.e., consecutive sequence of symbols).

Generalized String Matching

In the generalized pattern matching a set of patterns (rather than a single pattern) is given, that is,

 $\mathcal{W} = (\mathcal{W}_0, \mathcal{W}_1, \dots, \mathcal{W}_d), \quad \mathcal{W}_i \in \mathcal{A}^{m_i}$

where W_i itself for $i \ge 1$ is a subset of \mathcal{A}^{m_i} (i.e., a set of words of a given length m_i).

The set \mathcal{W}_0 is called the forbidden set.

Three cases to be considered:

 $\mathcal{W}_0 = \emptyset$ — one is interested in the number of patterns from \mathcal{W} occurring in the text.

 $\mathcal{W}_0 \neq \emptyset$ — we study the number of \mathcal{W}_i , $i \geq 1$ pattern occurrences under the condition that no pattern from \mathcal{W}_0 occurs in the text.

 $\mathcal{W}_i = \emptyset$, $i \ge 1$, $\mathcal{W}_0 \neq \emptyset$ — restricted pattern matching.

Pattern Matching Problems

Hidden Words or Subsequence Pattern Matching

In this case we search in text for a subsequence $\mathcal{W} = w_1 \dots w_m$ rather than a string, that is, we look for indices $1 \leq i_1 < i_2 < \dots < i_m \leq n$ such that

 $T_{i_1} = w_1, \ T_{i_2} = w_2, \cdots, \ T_{i_m} = w_m.$

We also say that the word \mathcal{W} is "hidden" in the text.

For example:

 $\mathcal{W} = date$ T = hidden pattern

occurs four times as a subsequence in the text as hidden pattern but not even once as a string.

Self-Repetitive Pattern Matching

In this case the pattern \mathcal{W} is part of the text:

$$\mathcal{W} = T_1^m$$

We may ask when the first m symbols of the text will occur again. This is important in Lempel-Ziv like compression algorithms and suffix trees.

Suffix Trees and Its Parameters

Figure 1: Suffix tree built from the first five suffixes S_1, \ldots, S_5 of $T = 1010010001 \ldots$

Depth D_n – length of the path from the root to a randomly selected external node (suffix).

Height H_n – length of the longest path.

Path length L_n – sum of all paths to nodes.

Pattern Matching vs Suffix Tree Parameters

The depth D_n in a suffix tree can be defined in terms of the number of occurrence O_n of a pattern $\mathcal{W} = w$ as follows:

- Define $D_n(i)$, $1 \le i \le n$, to be the largest value of $k \le n$ such that T_i^{i+k-1} occurs at least twice in the text T_1^n of length n; that is, $O_n(T_i^{i+k-1}) \ge 2$.
- The depth D_n is equal to $D_n(i)$ when *i* is randomly and uniformly selected between 1 and *n*.
- Thus for $w \in \mathcal{A}^k$ we have

n

$$\Pr(D_n(i) \ge k \& T_i^{i+k-1} = w) = \Pr(O_n(w) \ge 2 \& T_i^{i+k-1} = w),$$

and

$$\sum_{i=1} \Pr(O_n(w) = r \& T_i^{i+k-1} = w) = r \Pr(O_n(w) = r).$$

Probabilistic Sources

Throughout the talk I will assume that the text is generated by a random source.

Memoryless Source

The text is a realization of an independently, identically distributed sequence of random variables (i.i.d.), such that a symbol $s \in A$ occurs with probability P(s).

Markovian Source

The text is a realization of a stationary Markov sequence of order K, that is, probability of the next symbol occurrence depends on K previous symbols.

Exact Pattern Matching

Here is an incomplete list of results on string pattern matching (given a pattern \mathcal{W} find statistics of its occurrences):

- Feller (1968),
- Guibas and Odlyzko (1978, 1981),
- Prum, Rodolphe, and Turckheim (1995) Markovian model, limiting distribution.
- Regnier & W.S. (1997,1998) exact and approximate occurrences (memoryless and Markov models).
- P. Nicodéme, Salvy, & P. Flajolet (1999) regular expressions.
- E. Bender and F. Kochman (1993) general pattern matching.

Languages and Generating Functions

A language \mathcal{L} is a collection of words satisfying some properties.

For any language \mathcal{L} we define its generating function L(z) as

$$L(z) = \sum_{u \in \mathcal{L}} P(u) z^{|u|}$$

where P(w) is the stationary probability u occurrence, |u| is the length of w.

For Markov sources we define \mathcal{W} -conditional generating function:

$$L_{\mathcal{W}}(z) = \sum_{u \in \mathcal{L}} P(u|u_{-m} = w_1 \cdots u_{-1} = w_m) z^{|u|}$$

where u_{-i} stands for a symbol preceding the first character of u at distance i.

Autocorrelation Set and Polynomial

Given a pattern \mathcal{W} , we define the autocorrelation set \mathcal{S} as:

$$S = \{w_{k+1}^m : w_1^k = w_{m-k+1}^m\}, \quad w_1^k = w_{m-k+1}^m\}$$

and $\mathcal{W}\mathcal{W}$ is the set of positions k satisfying $w_1^k = w_{m-k+1}^m$.

The generating function of S is denoted as S(z) and we call it the autocorrelation polynomial.

$$S(z) = \sum_{k \in \mathcal{WW}} P(w_{k+1}^m) z^{m-k}.$$

Its W-conditional generating function is denoted $S_W(z)$. For example, for a Markov model we have

$$S_{\mathcal{W}}(z) = \sum_{k \in \mathcal{WW}} P(w_{k+1}^m | w_k^k) z^{m-k}$$
 .

Example

Example:

Let $\mathcal{W} = bab$ over alphabet $\mathcal{A} = \{a, b\}$.

$$\mathcal{W}\mathcal{W} = \{1, 3\} \text{ and } \mathcal{S} = \{\epsilon, ab\},\$$

where ϵ is the empty word, since

bab bab

For the unbiased memoryless source

$$S(z) = 1 + P(ab)z^{2} = 1 + \frac{z^{2}}{4}.$$

For the Markovian model of order one

$$S_{bab}(z) = 1 + P(ab|b)z^2 = 1 + p_{ba}p_{ab}z^2.$$

Language T_r

We are interested in the following language:

 \mathcal{T}_r – set of words that contains exactly $r \geq 1$ occurrences of \mathcal{W} ,

and its generating functions

$$egin{array}{rll} O_r(z)&=&\sum_{n\geq 0}\Pr\{O_n(\mathcal{W})=r\}z^n,\quad r\geq 1,\ O(z,u)&=&\sum_{r=1}^\infty T_r(z)u^r=\sum_{r=1}^\infty\sum_{n=0}^\infty\Pr\{O_n(\mathcal{W})=r\}z^nu^r \end{array}$$

for $|z| \leq 1$ and $|u| \leq 1$.

More Languages

- (i) Let \mathcal{T} be a language of words containing at least one occurrence of \mathcal{W} .
- (ii) We define \mathcal{R} as the set of words containing only one occurrence of \mathcal{W} , located at the right end. For example, for $\mathcal{W} = aba$

$$ccaba \in \mathcal{R}.$$

(iii) We also define \mathcal{U} as

$$\mathcal{U} = \{ u : \mathcal{W} \cdot u \in \mathcal{T}_1 \}$$

that is, a word $u \in \mathcal{U}$ if $\mathcal{W} \cdot u$ has exactly one occurrence of \mathcal{W} at the left end of $\mathcal{W} \cdot u$,

 $c\mathbf{ba} \in \mathcal{U}, \quad ba \notin \mathcal{U}.$

(iv) Let \mathcal{M} be the language:

 $\mathcal{M} = \{ u : \mathcal{W} \cdot u \in \mathcal{T}_2 \text{ and } \mathcal{W} \text{ occurs at the right of } \mathcal{W} \cdot u \},\$

that is, \mathcal{M} is a language such that \mathcal{WM} has exactly two occurrences of \mathcal{W} at the left and right end of a word from \mathcal{M} .

$$ba \in \mathcal{M}.$$

Basic Lemma

Lemma 1. The language T satisfies the fundamental equation:

 $\mathcal{T} = \mathcal{R} \cdot \mathcal{M}^* \cdot \mathcal{U}$.

Notably, the language T_r can be represented for any $r \ge 1$ as follows:

$$\mathcal{T}_r = \mathcal{R} \cdot \mathcal{M}^{r-1} \cdot \mathcal{U},$$

and

 $\mathcal{T}_0 \cdot \mathcal{W} = \mathcal{R} \cdot \mathcal{S}$. Here, by definition $\mathcal{M}^0 := \{\epsilon\}$ and $\mathcal{M}^* := \bigcup_{r=0}^{\infty} M^r$.

Example: Let $\mathcal{W} = TAT$. The following string belongs \mathcal{T}_3 :

$$\overbrace{CCTAT}^{\mathcal{R}} \underbrace{AT}_{\mathcal{M}} \underbrace{GATAT}_{\mathcal{M}} \overbrace{\mathcal{M}}^{\mathcal{U}} \overrightarrow{GGA}.$$

More Results

Theorem 1. (i) The languages \mathcal{M} , \mathcal{U} and \mathcal{R} satisfy:

$$\begin{split} &\bigcup_{k\geq 1} \mathcal{M}^k &= \mathcal{A}^* \cdot \mathcal{W} + \mathcal{S} - \{\epsilon\} \;, \\ &\mathcal{U} \cdot \mathcal{A} &= \mathcal{M} + \mathcal{U} - \{\epsilon\}, \\ &\mathcal{W} \cdot \mathcal{M} &= \mathcal{A} \cdot \mathcal{R} - (\mathcal{R} - \mathcal{W}) \;, \end{split}$$

where A^* is the set of all words, + and - are disjoint union and subtraction of languages.

(ii) The generating functions associated with languages \mathcal{M}, \mathcal{U} and \mathcal{R} satisfy for memoryless sources

$$\begin{aligned} \frac{1}{1-M(z)} &= S_{\mathcal{W}}(z) + P(\mathcal{W}) \frac{z^m}{1-z}, \\ U_{\mathcal{W}}(z) &= \frac{M(z)-1}{z-1}, \\ R(z) &= P(\mathcal{W}) z^m \cdot U_{\mathcal{W}}(z) \end{aligned}$$

(Extension to Markov sources possible; cf. Regnier & WS.)

Main Results: Exact

Theorem 2. The generating functions $T_r(z)$ and T(z, u) are

$$egin{aligned} O_r(z) &= & R(z)M_{\mathcal{W}}^{r-1}(z)U_{\mathcal{W}}(z) \ , \quad r \geq 1 \ O(z,u) &= & R(z)rac{u}{1-uM(z)}U_{\mathcal{W}}(z) \ O_0(z)P(\mathcal{W}) &= & R(z)S_{\mathcal{W}}(z) \end{aligned}$$

where

$$\begin{split} M(z) &= 1 + \frac{z - 1}{D_{\mathcal{W}}(z)} , \\ U_{\mathcal{W}}(z) &= \frac{1}{D_{\mathcal{W}}(z)} , \\ R(z) &= z^m P(\mathcal{W}) \frac{1}{D_{\mathcal{W}}(z)} . \end{split}$$

with

$$D_{\mathcal{W}}(z) = (1-z)S_{\mathcal{W}}(z) + z^m P(\mathcal{W}).$$

Main Results: Asymptotics

Theorem 3. (i) Moments. The expectation satisfies, for $n \ge m$:

 $\mathbf{E}[O_n(\mathcal{W})] = P(\mathcal{W})(n-m+1) ,$

while the variance is

$$\operatorname{Var}[O_n(\mathcal{W})] = nc_1 + c_2.$$

with

$$c_1 = P(\mathcal{W})(2S(1) - 1 - (2m - 1)P(\mathcal{W})),$$

$$c_2 = P(\mathcal{W})((m - 1)(3m - 1)P(\mathcal{W}))$$

$$- (m - 1)(2S(1) - 1) - 2S'(1)).$$

Distributions

(ii) Case r = O(1). Let $\rho_{\mathcal{W}}$ be the smallest root of

$$D_{\mathcal{W}}(z) = (1-z)S_{\mathcal{W}}(z) + z^m P(\mathcal{W}) = 0.$$

Then

$$\Pr\{O_n(\mathcal{W}) = r\} \sim \sum_{j=1}^{r+1} (-1)^j a_j \binom{n}{j-1} \rho_{\mathcal{W}}^{-(n+j)}$$

where

$$a_{r+1} = \frac{\rho_{\mathcal{W}}^m P(\mathcal{W}) \left(\rho_{\mathcal{W}} - 1\right)^{r-1}}{\left(D_{\mathcal{W}}'(\rho_{\mathcal{W}})\right)^{r+1}},$$

and the remaining coefficients can be easily computed, too.

Central Limit and Large Deviations

(iii) CLT: Case $r = EO_n + x\sqrt{\operatorname{Var}O_n}$ for x = O(1). Then:

$$\Pr\{O_n(\mathcal{W}) = r\} = \frac{1}{\sqrt{2\pi c_1 n}} e^{-\frac{1}{2}x^2} \left(1 + O\left(\frac{1}{\sqrt{n}}\right)\right) .$$

(iv) Large Deviations: Case $r = (1 + \delta)EO_n$. Let $a = (1 + \delta)P(W)$ with $\delta \neq 0$. For complex t, define $\rho(t)$ to be the root of

$$1 - e^t M_{\mathcal{W}}(e^{\rho}) = 0 ,$$

while ω_a and σ_a are defined as

$$egin{array}{rcl} -
ho'(\omega_a) &=& a \ -
ho''(\omega_a) &=& \sigma_a^2 \end{array}$$

Then

$$\Pr\{O_n(\mathcal{W}) \sim (1+\delta)EO_n\} = \frac{e^{-(n-m+1)I(a)+\delta_a}}{\sigma_a\sqrt{2\pi(n-m+1)}}$$

where $I(a) = a\omega_a + \rho(\omega_a)$ and δ_a is a constant.

Analysis of a Random Suffix Tree

Recall that:

- For any $i \leq n D_n(i)$ is the largest k such that T_i^{i+k-1} occurs at least twice in the text T_1^n .
- Typical depth D_n is defined as

$$\Pr(D_n = \ell) = \frac{1}{n} \sum_{i=1}^n \Pr(D_n(i) = \ell)$$

for any $1 \leq \ell \leq n$.

- For $w \in \mathcal{A}^k$ let $O_n(w)$ be, as before, the number of times w occurs in the text T_1^n .
- The following is true

$$\Pr(D_n(i) \ge k \& T_i^{i+k-1} = w) = \Pr(O_n(w) \ge 2 \& T_i^{i+k-1} = w),$$

and

$$\sum_{i=1}^{n} \Pr(O_n(w) = r \& T_i^{i+k-1} = w) = r \Pr(O_n(w) = r).$$

Basic Relationship Between D_n and O_n

Recalling that $O_n(u) = \mathbf{E}[u^{O_n(w)}]$, we have

$$\begin{aligned} \Pr(D_n \ge k) &= \frac{1}{n} \sum_{i=1}^n \Pr(D_n(i) \ge k) \\ &= \sum_{w \in \mathcal{A}^k} \frac{1}{n} \sum_{i=1}^n \Pr(D_n(i) \ge k \& T_i^{i+k-1} = w) \\ &= \frac{1}{n} \sum_{w \in \mathcal{A}^k} \sum_{r \ge 2} r \Pr(O_n(w) = r) \\ &= \sum_{w \in \mathcal{A}^k} \left(\Pr(w) - \frac{1}{n} O'_{n,w}(0) \right) \\ &= 1 - \frac{1}{n} \sum_{w \in \mathcal{A}^k} \frac{d}{du} \left(\mathbb{E}[u^{O_n(w)}] \right) |_{u=0} \end{aligned}$$

where $O'_{n,w}(0)$ denotes the derivative of $O_n(u)$ at u = 0

Generating Function of D_n

From previous slide we conclude that the probability generating function

$$D_n(u) = \mathbf{E}[u^{D_n}] = \sum_k \Pr(D_n = k)u^k$$

becomes

$$D_n(u) = \frac{1}{n} \frac{(1-u)}{u} \sum_{w \in \mathcal{A}^*} u^{|w|} O'_{n,w}(0),$$

and the bivariate generating function

$$D(z,u) = \sum_{n} n D_n(u) z^n$$

- 1	C
	`
	J.

$$D(z, u) = \frac{1 - u}{u} \sum_{w \in \mathcal{A}^*} u^{|w|} \frac{\partial}{\partial u} O_w(z, 0)$$

where $O_w(z, u) = \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \Pr(O_n(w) = r) z^n u^r$.

Pattern Matching and Suffix Tree

In Theorem 1 of pattern matching we derived

$$O_w(z, u) = \frac{z^{|w|} \Pr(w)}{D_w^2(z)} \frac{u}{1 - uM_w(z)} + \frac{S_w(z)}{D_w(z)},$$

where

$$egin{array}{rcl} M_w(z) - 1 &=& rac{z-1}{D_w(z)} \ && \ D_w(z) &=& (1-z)S_w(z) + z^{|w|} \mathrm{Pr}(w) \end{array}$$

and $S_w(z)$ is the autocorrelation polynomial for w.

Lemma 2. The bivariate generating function for D_n is

$$D(z,u) = \frac{1-u}{u} \sum_{w \in \mathcal{A}^*} (zu)^{|w|} \frac{\Pr(w)}{((1-z)S_w(z) + z^{|w|}\Pr(w))^2}$$

for |u| < 1 and |z| < 1, where $S_w(z)$ is the autocorrelation polynomial for w.

Main Result on Suffix Tree

Define h to be the entropy and $h_2 = \sum_{i=1}^{V} p_i \log^2 p_i$.

Theorem 4. (i) For a biased memoryless source (i.e., $p_i \neq p_j$ for some $i \neq j$) and any $\varepsilon > 0$

$$\mathbf{E}D_{n} = \frac{1}{h}\log n + \frac{\gamma}{h} + \frac{h_{2}}{h^{2}} + P_{1}(\log n) + O(n^{-\varepsilon}),$$
$$\mathbf{Var}(D_{n}) = \frac{h_{2} - h^{2}}{h^{3}}\log n + O(1)$$

where $P_1(\cdot)$ is a periodic function with small amplitude when the tuple $(\log p_1, \ldots,$

 $\log p_V$), is collinear with a rational tuple (i.e., $\log p_j / \log p_1 = r/s$ for some integers r and s) and converges to zero otherwise.

Furthermore, $(D_n - \mathbf{E}[D_n])/\mathbf{Var}(D_n)$ is asymptotically normal with mean zero and variance one that is, for fixed $x \in R$

$$\lim_{n \to \infty} \Pr\{D_n \le \mathbf{E}[D_n] + x \sqrt{\operatorname{Var}(D_n)}\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2} dt ,$$

and for all integer m

$$\lim_{n \to \infty} \mathbf{E} \left[\frac{D_n - \mathbf{E}[D_n]}{\sqrt{\operatorname{Var} D_n}} \right]^m = \begin{cases} 0 & \text{when } m \text{ is odd} \\ \frac{m!}{2^{m/2}(\frac{m}{2})!} & \text{when } m \text{ is even.} \end{cases}$$

(ii) For the unbiased source (i.e., $p_1 = \cdots = p_V = 1/V$), $h_2 = h^2$, the expected value $\mathbf{E}[D_n]$ is given above, and for any $\varepsilon > 0$

$$\operatorname{Var}(D_n) = \frac{\pi^2}{6\log^2 V} + \frac{1}{12} + P_2(\log n) + O(n^{-\varepsilon})$$

where $P_2(\log n)$ is a periodic function with small amplitude The limiting distribution of D_n does not exist, but one finds

$$\lim_{n \to \infty} \sup_{x} |\Pr(D_n \le x) - \exp(-nV^{-x})| = 0$$

for any fixed real x.

Sketch of Proof

1. Consider a trie built from n independently generated texts. Let D_n^T be the typical depth in such a trie. Since

$$\Pr(D_n^T(i) < k) = \sum_{w \in \mathcal{A}^k} \Pr(w) (1 - \Pr(w))^{n-1}$$

we obtain the following formulas for the probability generating function $D_n^T(u) = \mathbf{E}[u^{D_n^T}]$ and the bivariate generating function D(z, u)

$$D_n^T(u) = \frac{1-u}{u} \sum_{w \in \mathcal{A}^*} u^{|w|} \Pr(w) (1 - \Pr(w))^{n-1}$$
$$D^T(z, u) = \frac{1-u}{u} \sum_{w \in \mathcal{A}^*} u^{|w|} \frac{z \Pr(w)}{(1 - z + \Pr(w)z)^2}$$

,

for all $|u| \leq 1$ and |z| < 1.

Result on Tries

2. This is known (for independent tries).

Lemma 3 (P. Jacquet, M. Regnier, W.S.). There exists $\varepsilon > 0$ such that

$$D_n^T(u) = (1-u)n^{\kappa(u)}(\Gamma(\kappa(u)) + P(\log n, u))) + O(n^{\varepsilon}),$$

where Γ is the Euler gamma function

$$u\sum_{i=1}^{V} p_i^{1-\kappa(u)} = 1$$

and $P(\log n, u)$ is periodic function with small amplitude when the vector $(\log p_1, \ldots, \log p_V)$ is collinear with a rational tuple, and converges to zero when $n \to \infty$ otherwise.

This lemma implies

$$e^{-tc_1 \log n/\sqrt{c_2 \log n}} D_n^T \left(e^{t/\sqrt{c_2 \log n}} \right) \to e^{t^2/2}$$

where $c_1 = 1/h$ and $c_2 = (h_2 - h^2)/h^3$.

That is,

$$\frac{D_n^T - c_1 \log n}{\operatorname{Var}[c_2 \log n]} \to N(0, 1).$$

Our Goal is ...

Our goal now is to prove that $D_n(u)$ and $D_n^T(u)$ are asymptotically close as $n \to \infty$.

3. We accomplish this by proving that for some $\varepsilon > 0$ and all $|u| < \beta$ for $\beta > 1$

$$D_n^T(u) - D_n(u) = (1 - u)O(n^{-\varepsilon}),$$

that is,

$$|\Pr(D_n \leq k) - \Pr(D_n^T \leq k)| = O(n^{-\varepsilon}\beta^{-k}).$$

for all positive integer k.

Autocorrelation Polynomial

4. For almost all words w the autocorrelation polynomial

 $S_w(z) \approx 1.$

Lemma 4. There exist $\delta < 1$, $\theta > 0$ and $\rho > 1$ such that $\rho \delta < 1$ and

$$\sum_{w \in \mathcal{A}^k} \llbracket |S_w(\rho) - 1| \le (\rho\delta)^k \theta \rrbracket \Pr(w) \ge 1 - \theta\delta^k.$$

Based on the following observation: in order for $w \in A$ to have the same prefix of length k - i (for some *i*) as the suffix of length k - i, that is,

$$w_1^{k-i} = w_{k-i+1}^k$$

pattern w must have a periodic structure, that is, for some $u \in \mathcal{A}^i$ we have

$$w_1^k = \underbrace{u \cdot u \cdots u}_l \bar{u}$$

where $\bar{u} \leq i$.

Analytic Continuation

5. The bivariate generating function D(z, u) can be analytically continued to a larger disk.

Lemma 5. The generating function D(z, u) can be analytically continued for all $|u| < \delta^{-1}$ and |z| < 1 where $\delta < 1$.

We prove this lemma by showing

$$uD(z,u) - \frac{(1-u)}{(1-uz)(1-z)^2} = O\left(\frac{u-1}{1-\delta|u|}\right)$$

for $\delta < 1$ and |z| < 1

Finishing Up ...

6. Define
$$Q_n(u) = \frac{u}{1-u} \left(D_n(u) - D_n^T(u) \right),$$
 and

$$Q(z, u) = \sum_{n=0}^{\infty} n Q_n(u) z^n = \frac{u}{1-u} \left(D(z, u) - D^T(z, u) \right).$$

That is,

$$Q(z, u) = \sum_{w} u^{|w|} \Pr(w) \left(\frac{z^{|w|}}{D_w(z)^2} - \frac{z}{(1 - z + \Pr(w)z)^2} \right)$$

•

Lemma 6. For all $1 < \beta < \delta^{-1}$, there exists $\varepsilon > 0$ such that

 $Q_n(u) = (1-u)O(n^{-\varepsilon})$

uniformly for $|u| \leq \beta$.