
From Pattern Matching to Suffix Trees∗

W. Szpankowski
Department of Computer Science

Purdue University
W. Lafayette, IN 47907

U.S.A.

May 26, 2004

∗Joint Work with P. Jacquet and M. Regnier

Outline of the Talk

1. Pattern Matching Problems

• String Matching
• Subsequence Matching
• Self-Repetitive Pattern Matching

2. Suffix Trees and Its Parameters

3. Applications

4. Analysis of the Exact Pattern Matching

• Languages and Generating Functions
• Asymptotic Analysis

5. Analysis of Suffix Trees

• Relation to the Exact Pattern Matching
• Generating Function for the Depth
• Analysis of Tries
• Comparison of Tries and Suffix Trees

Pattern Matching

Let W and T be (set of) strings generated over a finite alphabet A.

We call W the pattern and T the text. The text T is of length n and is
generated by a probabilistic source.

We shall write
T n

m = Tm . . . Tn.

The pattern W can be a single string

W = w1 . . . wm, wi ∈ A

or a set of strings
W = {W1, . . . ,Wd}

with Wi ∈ Ami being a set of strings of length mi.

Basic Parameters

Two basic questions are:

• how many times W occurs in T ,

• how long one has to wait until W occurs in T .

The following quantities are of interest:

On(W) — the number of times W occurs in T :

On(W) = #{i : T i
i−m+1 = W, m ≤ i ≤ n}.

WW — the first time W occurs in T :

WW := min{n : T n
n−m+1 = W}.

Relationship:
WW > n ⇔ On(W) = 0.

Various Pattern Matching

(Exact) String Matching

In the exact string matching the pattern W = w1 . . . wm is a given
string (i.e., consecutive sequence of symbols).

Generalized String Matching

In the generalized pattern matching a set of patterns (rather than a
single pattern) is given, that is,

W = (W0,W1, . . . ,Wd), Wi ∈ Ami

where Wi itself for i ≥ 1 is a subset of Ami (i.e., a set of words of a given
length mi).
The set W0 is called the forbidden set.

Three cases to be considered:

W0 = ∅ — one is interested in the number of patterns from W occurring
in the text.

W0 6= ∅ — we study the number of Wi, i ≥ 1 pattern occurrences
under the condition that no pattern from W0 occurs in the text.

Wi = ∅, i ≥ 1, W0 6= ∅ — restricted pattern matching.

Pattern Matching Problems

Hidden Words or Subsequence Pattern Matching

In this case we search in text for a subsequence W = w1 . . . wm rather
than a string, that is, we look for indices 1 ≤ i1 < i2 < · · · < im ≤ n such
that

Ti1
= w1, Ti2

= w2, · · · , Tim = wm.

We also say that the word W is “hidden” in the text.

For example:

W = date

T = hidden pattern

occurs four times as a subsequence in the text as hidden pattern but not
even once as a string.

Self-Repetitive Pattern Matching

In this case the pattern W is part of the text:

W = T
m
1 .

We may ask when the first m symbols of the text will occur again. This is
important in Lempel-Ziv like compression algorithms and suffix trees.

Suffix Trees and Its Parameters

S1 = 1010010001 S4 = 0010001
S2 = 010010001 S5 = 010001
S3 = 10010001

S4

S1 S3

S2 S5

Figure 1: Suffix tree built from the first five suffixes S1, . . . , S5 of
T = 1010010001 . . .

Depth Dn – length of the path from the root to a randomly selected
external node (suffix).

Height Hn – length of the longest path.

Path length Ln – sum of all paths to nodes.

Pattern Matching vs Suffix Tree Parameters

The depth Dn in a suffix tree can be defined in terms of the number of
occurrence On of a pattern W = w as follows:

• Define Dn(i), 1 ≤ i ≤ n, to be the largest value of k ≤ n such
that T i+k−1

i occurs at least twice in the text T n
1 of length n; that is,

On(T
i+k−1
i) ≥ 2.

• The depth Dn is equal to Dn(i) when i is randomly and uniformly
selected between 1 and n.

• Thus for w ∈ Ak we have

Pr(Dn(i) ≥ k & T i+k−1
i = w) = Pr(On(w) ≥ 2 & T i+k−1

i = w),

and
nX

i=1

Pr(On(w) = r & T
i+k−1
i = w) = rPr(On(w) = r).

Probabilistic Sources

Throughout the talk I will assume that the text is generated by a random
source.

Memoryless Source
The text is a realization of an independently, identically distributed
sequence of random variables (i.i.d.), such that a symbol s ∈ A occurs
with probability P (s).

Markovian Source
The text is a realization of a stationary Markov sequence of order K, that
is, probability of the next symbol occurrence depends on K previous
symbols.

Exact Pattern Matching

Here is an incomplete list of results on string pattern matching (given a
pattern W find statistics of its occurrences):

• Feller (1968),

• Guibas and Odlyzko (1978, 1981),

• Prum, Rodolphe, and Turckheim (1995) – Markovian model, limiting
distribution.

• Regnier & W.S. (1997,1998) – exact and approximate occurrences
(memoryless and Markov models).

• P. Nicodéme, Salvy, & P. Flajolet (1999) – regular expressions.

• E. Bender and F. Kochman (1993) – general pattern matching.

Languages and Generating Functions

A language L is a collection of words satisfying some properties.

For any language L we define its generating function L(z) as

L(z) =
X
u∈L

P (u)z
|u|

where P (w) is the stationary probability u occurrence, |u| is the length of
w.

For Markov sources we define W-conditional generating function:

LW(z) =
X
u∈L

P (u|u−m = w1 · · ·u−1 = wm)z|u|

where u−i stands for a symbol preceding the first character of u at
distance i.

Autocorrelation Set and Polynomial

Given a pattern W , we define the autocorrelation set S as:

S = {wm
k+1 : wk

1 = wm
m−k+1}, wk

1 = wm
m−k+1

and WW is the set of positions k satisfying wk
1 = wm

m−k+1.

w1 wk wm-k+1 wm

S

The generating function of S is denoted as S(z) and we call it the
autocorrelation polynomial.

S(z) =
X

k∈WW
P (wm

k+1)z
m−k.

Its W-conditional generating function is denoted SW(z). For example,
for a Markov model we have

SW(z) =
X

k∈WW
P (wm

k+1|w
k
k)z

m−k .

Example

Example:

Let W = bab over alphabet A = {a, b}.

WW = {1, 3} and S = {ε, ab},

where ε is the empty word, since

b a b
b a b

For the unbiased memoryless source

S(z) = 1 + P (ab)z
2
= 1 +

z2

4
.

For the Markovian model of order one

Sbab(z) = 1 + P (ab|b)z2
= 1 + pbapabz

2
.

Language Tr

We are interested in the following language:

Tr – set of words that contains exactly r ≥ 1 occurrences of W ,

and its generating functions

Or(z) =
X
n≥0

Pr{On(W) = r}zn, r ≥ 1,

O(z, u) =
∞X

r=1

Tr(z)ur =
∞X

r=1

∞X
n=0

Pr{On(W) = r}znur

for |z| ≤ 1 and |u| ≤ 1.

More Languages

(i) Let T be a language of words containing at least one occurrence of
W .

(ii) We define R as the set of words containing only one occurrence of W ,
located at the right end. For example, for W = aba

ccaba ∈ R.

(iii) We also define U as
U = {u : W · u ∈ T1}

that is, a word u ∈ U if W · u has exactly one occurrence of W at the
left end of W · u,

cba ∈ U , ba /∈ U .

(iv) Let M be the language:

M = {u : W · u ∈ T2 and W occurs at the right of W · u},

that is, M is a language such that WM has exactly two occurrences
of W at the left and right end of a word from M.

ba ∈ M.

Basic Lemma

Lemma 1. The language T satisfies the fundamental equation:

T = R · M∗ · U .

Notably, the language Tr can be represented for any r ≥ 1 as follows:

Tr = R · Mr−1 · U ,

and
T0 · W = R · S .

Here, by definition M0 := {ε} and M∗ :=
S∞

r=0 Mr.

R M M M U
T4

Example: Let W = TAT . The following string belongs T3:

Rz }| {
CCTAT AT|{z}

M
GATAT| {z }

M

Uz }| {
GGA .

More Results

Theorem 1. (i) The languages M, U and R satisfy:[
k≥1

Mk
= A∗ · W + S − {ε} ,

U · A = M + U − {ε},

W · M = A · R − (R − W) ,

where A∗ is the set of all words, + and − are disjoint union and subtraction
of languages.

(ii) The generating functions associated with languages M,U and R
satisfy for memoryless sources

1

1 − M(z)
= SW(z) + P (W)

zm

1 − z
,

UW(z) =
M(z) − 1

z − 1
,

R(z) = P (W)z
m · UW(z)

(Extension to Markov sources possible; cf. Regnier & WS.)

Main Results: Exact

Theorem 2. The generating functions Tr(z) and T (z, u) are

Or(z) = R(z)M
r−1
W (z)UW(z) , r ≥ 1

O(z, u) = R(z)
u

1 − uM(z)
UW(z)

O0(z)P (W) = R(z)SW(z)

where

M(z) = 1 +
z − 1

DW(z)
,

UW(z) =
1

DW(z)
,

R(z) = zmP (W)
1

DW(z)
.

with
DW(z) = (1 − z)SW(z) + z

m
P (W).

Main Results: Asymptotics

Theorem 3. (i) Moments. The expectation satisfies, for n ≥ m:

E[On(W)] = P (W)(n − m + 1) ,

while the variance is
Var[On(W)] = nc1 + c2.

with

c1 = P (W)(2S(1) − 1 − (2m − 1)P (W) ,

c2 = P (W)((m − 1)(3m − 1)P (W)

− (m − 1)(2S(1) − 1) − 2S
′
(1)).

Distributions

(ii) Case r = O(1). Let ρW be the smallest root of

DW(z) = (1 − z)SW(z) + z
m

P (W) = 0.

Then

Pr{On(W) = r} ∼
r+1X
j=1

(−1)jaj

“ n

j − 1

”
ρ
−(n+j)
W

where

ar+1 =
ρm
WP (W) (ρW − 1)r−1`

D′
W(ρW)

´r+1
,

and the remaining coefficients can be easily computed, too.

Central Limit and Large Deviations

(iii) CLT: Case r = EOn + x
√

VarOn for x = O(1). Then:

Pr{On(W) = r} =
1

√
2πc1n

e
−1

2x2
„

1 + O

„
1

√
n

««
.

(iv) Large Deviations: Case r = (1 + δ)EOn. Let a = (1 + δ)P (W) with
δ 6= 0. For complex t, define ρ(t) to be the root of

1 − etMW(eρ) = 0 ,

while ωa and σa are defined as

−ρ′(ωa) = a

−ρ′′(ωa) = σ2
a

Then

Pr{On(W) ∼ (1 + δ)EOn} =
e−(n−m+1)I(a)+δa

σa

p
2π(n − m + 1)

where I(a) = aωa + ρ(ωa) and δa is a constant.

Analysis of a Random Suffix Tree

Recall that:

• For any i ≤ n Dn(i) is the largest k such that T i+k−1
i occurs at least

twice in the text T n
1 .

• Typical depth Dn is defined as

Pr(Dn = `) =
1

n

nX
i=1

Pr(Dn(i) = `)

for any 1 ≤ ` ≤ n.

• For w ∈ Ak let On(w) be, as before, the number of times w occurs in
the text T n

1 .

• The following is true

Pr(Dn(i) ≥ k & T
i+k−1
i = w) = Pr(On(w) ≥ 2 & T

i+k−1
i = w),

and
nX

i=1

Pr(On(w) = r & T
i+k−1
i = w) = rPr(On(w) = r).

Basic Relationship Between Dn and On

Recalling that On(u) = E[uOn(w)], we have

Pr(Dn ≥ k) =
1

n

nX
i=1

Pr(Dn(i) ≥ k)

=
X

w∈Ak

1

n

nX
i=1

Pr(Dn(i) ≥ k & T i+k−1
i = w)

=
1

n

X
w∈Ak

X
r≥2

rPr(On(w) = r)

=
X

w∈Ak

„
Pr(w) −

1

n
O

′
n,w(0)

«

= 1 −
1

n

X
w∈Ak

d

du

“
E[uOn(w)]

”
|u=0

where O′
n,w(0) denotes the derivative of On(u) at u = 0

Generating Function of Dn

From previous slide we conclude that the probability generating function

Dn(u) = E[u
Dn] =

X
k

Pr(Dn = k)u
k

becomes

Dn(u) =
1

n

(1 − u)

u

X
w∈A∗

u
|w|

O
′
n,w(0),

and the bivariate generating function

D(z, u) =
X

n

nDn(u)zn

is

D(z, u) =
1 − u

u

X
w∈A∗

u|w| ∂

∂u
Ow(z, 0)

where Ow(z, u) =
P∞

n=0

P∞
r=0 Pr(On(w) = r)znur.

Pattern Matching and Suffix Tree

In Theorem 1 of pattern matching we derived

Ow(z, u) =
z|w|Pr(w)

D2
w(z)

u

1 − uMw(z)
+

Sw(z)

Dw(z)
,

where

Mw(z) − 1 =
z − 1

Dw(z)

Dw(z) = (1 − z)Sw(z) + z|w|Pr(w)

and Sw(z) is the autocorrelation polynomial for w.

Lemma 2. The bivariate generating function for Dn is

D(z, u) =
1 − u

u

X
w∈A∗

(zu)
|w| Pr(w)

((1 − z)Sw(z) + z|w|Pr(w))2

for |u| < 1 and |z| < 1, where Sw(z) is the autocorrelation polynomial for
w.

Main Result on Suffix Tree

Define h to be the entropy and h2 =
PV

i=1 pi log
2 pi.

Theorem 4. (i) For a biased memoryless source (i.e., pi 6= pj for some i 6= j)
and any ε > 0

EDn =
1

h
log n +

γ

h
+

h2

h2
+ P1(log n) + O(n−ε),

Var(Dn) =
h2 − h2

h3
log n + O(1)

where P1(·) is a periodic function with small amplitude when the tuple
(log p1, . . . ,
log pV), is collinear with a rational tuple (i.e., log pj/ log p1 = r/s for some
integers r and s) and converges to zero otherwise.
Furthermore, (Dn − E[Dn])/Var(Dn) is asymptotically normal with mean
zero and variance one that is, for fixed x ∈ R

lim
n→∞

Pr{Dn ≤ E[Dn] + x
q

Var(Dn)} =
1

√
2π

Z x

−∞
e−t2/2dt ,

and for all integer m

lim
n→∞

E
»

Dn − E[Dn]√
VarDn

–m

=

(
0 when m is odd

m!

2m/2(m
2)!

when m is even.

(ii) For the unbiased source (i.e., p1 = · · · = pV = 1/V), h2 = h2, the
expected value E[Dn] is given above, and for any ε > 0

Var(Dn) =
π2

6 log2 V
+

1

12
+ P2(log n) + O(n

−ε
)

where P2(log n) is a periodic function with small amplitude The limiting
distribution of Dn does not exist, but one finds

lim
n→∞

sup
x

| Pr(Dn ≤ x) − exp(−nV −x) |= 0

for any fixed real x.

Sketch of Proof

1. Consider a trie built from n independently generated texts.
Let DT

n be the typical depth in such a trie. Since

Pr(DT
n (i) < k) =

X
w∈Ak

Pr(w)(1 − Pr(w))n−1.

we obtain the following formulas for the probability generating function

DT
n (u) = E[uDT

n] and the bivariate generating function D(z, u)

DT
n (u) =

1 − u

u

X
w∈A∗

u|w|Pr(w)(1 − Pr(w))n−1,

DT (z, u) =
1 − u

u

X
w∈A∗

u|w| zPr(w)

(1 − z + Pr(w)z)2

for all |u| ≤ 1 and |z| < 1.

Result on Tries

2. This is known (for independent tries).

Lemma 3 (P. Jacquet, M. Regnier, W.S.). There exists ε > 0 such that

DT
n (u) = (1 − u)nκ(u)(Γ(κ(u)) + P (log n, u))) + O(nε),

where Γ is the Euler gamma function

u
VX

i=1

p
1−κ(u)
i = 1

and P (log n, u) is periodic function with small amplitude when the vector
(log p1, . . . , log pV) is collinear with a rational tuple, and converges to zero
when n → ∞ otherwise.

This lemma implies

e−tc1 log n/
√

c2 log nDT
n

“
et/

√
c2 log n

”
→ et2/2

where c1 = 1/h and c2 = (h2 − h2)/h3.

That is,
DT

n − c1 log n

Var[c2 log n]
→ N(0, 1).

Our Goal is ...

Our goal now is to prove that Dn(u) and DT
n (u) are

asymptotically close as n → ∞.

3. We accomplish this by proving that for some ε > 0 and all |u| < β for
β > 1

D
T
n (u) − Dn(u) = (1 − u)O(n

−ε
),

that is,
|Pr(Dn ≤ k) − Pr(DT

n ≤ k)| = O(n−εβ−k).

for all positive integer k.

Autocorrelation Polynomial

4. For almost all words w the autocorrelation polynomial

Sw(z) ≈ 1.

Lemma 4. There exist δ < 1, θ > 0 and ρ > 1 such that ρδ < 1 andX
w∈Ak

[[|Sw(ρ) − 1| ≤ (ρδ)
k
θ]]Pr(w) ≥ 1 − θδ

k
.

Based on the following observation: in order for w ∈ A to have the same
prefix of length k − i (for some i) as the suffix of length k − i, that is,

w
k−i
1 = w

k
k−i+1

pattern w must have a periodic structure, that is, for some u ∈ Ai we
have

w
k
1 = u · u · · ·u| {z }

l

ū

where ū ≤ i.

Analytic Continuation

5. The bivariate generating function D(z, u) can be analytically
continued to a larger disk.

Lemma 5. The generating function D(z, u) can be analytically continued
for all |u| < δ−1 and |z| < 1 where δ < 1.

We prove this lemma by showing

uD(z, u) −
(1 − u)

(1 − uz)(1 − z)2
= O

„
u − 1

1 − δ|u|

«

for δ < 1 and |z| < 1

Finishing Up ...

6. Define
Qn(u) =

u

1 − u

“
Dn(u) − D

T
n (u)

”
,

and

Q(z, u) =
∞X

n=0

n Qn(u)z
n

=
u

1 − u

“
D(z, u) − D

T
(z, u)

”
.

That is,

Q(z, u) =
X

w

u|w|Pr(w)

z|w|

Dw(z)2
−

z

(1 − z + Pr(w)z)2

!
.

Lemma 6. For all 1 < β < δ−1, there exists ε > 0 such that

Qn(u) = (1 − u)O(n−ε)

uniformly for |u| ≤ β.

