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Knuth’s Problem

During the 10th Seminar on Analysis of Algorithms, MSRI, Berkeley, June
2004, Knuth posed the problem of analyzing the left and the right path
length in a random binary trees.

In the standard model of binary trees generation, one selects uniformly a
tree among all binary unlabeled ordered trees built on n nodes.

Let Tn denote a set of all binary trees built on n nodes. Then

|Tn| =
“2n

n

” 1

n + 1
= Catalan number.

A binary tree is chosen with probability 1/|Tn|.



Generating Functions

Let N(p, q; n) be the number of binary trees with n nodes that have a total
right path length p and a total left path length q.

The generating function of N(p, q)

Gn(w, v) =
X

p

X
q

N(p, q; n)w
p
v

q

satisfies the recurrence

Gn+1(w, v) =
nX

i=0

w
i
v

n−i
Gi(w, v)Gn−i(w, v), n ≥ 0,

subject to the initial condition G0(w, v) = 1.

Thus the triple transform

C(w, v, z) =

∞X
n=0

Gn(w, v)z
n

=
X

n

X
p

X
q

N(p, q; n)z
n
w

p
v

q

satisfies
C(w, v, z) = 1 + zC(w, v, wz)C(w, v, vz).

This is Knuth’s functional equation.



Catalan Numbers and Path Length

1. Set w = v (and define C((w, z) := C(w, w, z)).

C(w, z) = 1 + zC2(w, zw).

This describes the total path length.

Setting w = 1 we get

C(1, z) = 1 + zC
2
(1, z)

which can be solved explicitly

C(1, z) =
`
1 −

√
1 − 4z

´
/(2z)

leading to the Catalan number Cn = [zn]C(1, z).

Solving for C(w, z), we obtain the distribution of the total path length Tn.
Louchard and Takacs prove that

Pr{Tn/
√

2n3 ≤ x} → W (x)

where W (x) is the Airy distribution function defined by its moments.



Number of Trees with a Given Path Length

2. Setting z = 1 (and keeping w = v) in the previous equation we arrive
at

C(w, 1) = 1 + C2(w, w)

which does not seem to be explicitly solvable.

Observe that C(w, 1) =
P

t wt P
n N(, t, n)

[w
t
]C(w, 1) = number of binary trees with path length=t

During ANALCO’05 C. Knessl presented our paper where we proved that

[w
t
]C(w, 1) = |Tt| =

1

(log2 t)
√

πt
2

2t
log2 t

“
1+c1 log−2/3 t+c2 log−1 t+O(log−4/3 t)

”
.

The leading term was also obtained by G. Seroussi.



Right Path Length, Area under Bernoulli Walk

3. Let us now set v = 1 in the triple transform equation. Then

C(w, 1, z) = 1 + zC(w, 1, wz)C(w, 1, z)

and Gn(w, 1) = [zn]C(w, 1, z) satisfies

Gn+1(w, 1) =
nX

i=1

wiGi(w, 1)Gn−i(w, 1).

Observe that Gn(w, 1) is the generating function of the right path length.

It was also studied by Takacs when he analyzed the area under a Bernoulli
random walk.

Finally, it appears in the Kleitman-Winston conjecture.



Path Length Difference

Let
J = p − q

where, we recall,
p - the right path length,
q - the left path length.

Let Dn be a random variable representing the path difference. Then

P−(J; n) = Prob[Dn = J] =
1

Cn

(n
2)−|J|X
i=0

N(i, i + |J|; n).

In terms of the generating function Gn(w, v), we have

P−(J; n) =
1

Cn

[w
J
]Gn

„
w,

1

w

«
.

where, we recall

Gn+1(w, v) =
nX

i=0

wivn−iGi(w, v)Gn−i(w, v).



The WKB Method

The WKB method was named after the physicists Wentzel, Kramers and
Brillouin.

It assumes that a recurrence, functional equation or differential equation
has an asymptotic solution, say G(ξ; n), in the following form

G(ξ; n) ∼ e
nφ(ξ)

»
A(ξ) +

1

n
A

(1)
(ξ) +

1

n2
A

(2)
(ξ) + · · ·

–

where φ(ξ) and A(ξ), A(1)(ξ), . . . are unknown functions.

These functions must be determined from the equation itself, often using
another tool known as the asymptotic matching principle

Here is what Fedoryuk has to say about such approximations:
. . . It is necessary first of all to guess (and no other word will do) in what
form to search for the asymptotic form. Of course, this stage – guessing the
form of the asymptotic form – is not subject to any formalization. Analogy,
experiments, numerical simulation, physical considerations, intuitions,
random guesswork; these are the arsenal of means used by any research
worker.”



Scaling for J

It turns out that the most interesting behavior of J is around O(n5/4) so we
scale

J = βn
5/4

= O(n
5/4

).

and define for fixed β

P−(J; n) ∼ n
−5/4

p−(β)

To find the probability density function p−(β) we compute the double-
sided Laplace transform

1 +
√

πH̄(b) =

Z ∞

−∞
e

βb
p−(β)dβ.

Then

p−(β) =
1

2πi

Z i∞

−i∞
e
−βb

[1 +
√

πH̄(b)]db

=
1

2π

Z ∞

−∞
e
−βix

[1 +
√

πH̄(b)]dx

=
1

π

Z ∞

0

cos(βx)S(x)dx,

where S(x) = 1 +
√

πH̄(ix).



Asymptotic Tails

We do not have an explicit formula for p−(β), but using the WKB method
we find the following asymptotics as β → ∞

p−(β) ∼
r

5

6
(5β)

1/3
c0 exp

„
−

3

4
5

1/3
β

4/3

«
[1 + O(β

−4/3
)]

with
c0 ≈ .5513288;

and
p−(0) ≈ .45727 ; p

′′
−(0) ≈ −.71462.
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Figure 1: The density p−(β) for β ∈ [0, 3].



Moments

Let H̄(b) =
P∞

m=0 b2m+2∆m and by setting

∆m =
1

Γ
`

5
2m + 2

´∆̃m

we find that ∆̃m satisfies the nonlinear recurrence

∆̃m+1 =
(5m + 6)(5m + 4)

8
∆̃m +

1

4

mX
`=0

∆̃`∆̃m−`, m ≥ 0

with ∆0 = ∆̃0 = 1
4 .

We thus observe that the even moments of the difference converge as
follows

E[D2m+2
n ]

n5(m+1)/2
→ (2m + 2)!

√
π∆m.

These results agree with Janson (2006).

Using discrete WKB method we find

∆m = C
em/2

√
m

m
−m/2

10
−m/2

»
1 −

4

15m
+ O(m

−2
)

–
, m → ∞.



Some Relationship

We now infer the behavior of H̄(b) for purely imaginary values of b. Define

H̄(ix) = −y3/2Λ(y) = −x6/5Λ(x4/5), y = x4/5

we find that Λ(y) satisfies

0 =

Z y

0

Λ(ξ)Λ(y − ξ)dξ + 2y
2
Λ(y) − 2

√
y

√
π

+
4

√
π

Z y

0

∆′(ξ)
√

y − ξ
dξ.



Painlav’e Transcendent

Let

U(φ) =

Z ∞

0

e
−yφ

Λ(y)dy

be the Laplace of Λ(y). Then we have

0 = 2U ′′(φ) + U2(φ) + 4
p

φU(φ) − φ−3/2.

Setting
U(φ) = −2

p
φ + U1(φ)

we obtain
0 = U2

1 (φ) + 2U ′′
1 (φ) − 4φ,

with
U1(φ) = 2

p
φ +

1

4
φ
−2

[1 + o(1)], for φ → ∞.

The second order nonlinear ODE as above is called the first Painlevè
transcendent. This classic problem has been studied for over 100 years,
and modern applications in nonlinear waves and random matrices have
been found in recent years.



Some Properties

It is well known that each singularity of U1(φ) is a double pole, and the
Laurent expansion near any singularity at φ = −ν has the form

U1(φ) =
−12

(φ + ν)2
+ O(1), φ → −ν.

Let us denote by ν∗ the singularity with the largest real part. Then

Λ(y) −
1

√
π

y
−3/2 ∼ −12ye

−ν∗y
, y → ∞.

This allows us to find asymptotic expression for the tail of P−(J) as
presented above.



A New Class of Distributions?

We conjecture that the distribution of Dn can be only characterized by
moments. In fact, we proved that

E[D2m+2
n ]

n5(m+1)/2
→ (2m + 2)!

√
π∆m.

where ∆m satisfy the following nonlinear recurrence

∆̃m+1 =
(5m + 6)(5m + 4)

8
∆̃m +

1

4

mX
`=0

∆̃`∆̃m−`, m ≥ 0.

There is a large class of important problems (e.g., quicksort, linear hashing,
enumeration of trees in Tt) in which limiting distribution cannot be explicitly
found, but it can be expressed in terms of moments that satisfy a nonlinear
recurrence like above.



Open Problem

Let Z be a (normalized) limiting distribution of a process for which we know
that for some am → ∞ we have

E[Zm]

am

= cm

such that in general cm satisfies

cm+1 = αm + βmcm + γm

mX
i=0

cicm−i

with some initial conditions, and given αm, βm and γm.

Similar recurrences appear in the quicksort, linear hashing, path length in
binary trees, area under Bernoulli walk, enumeration of trees with given
path length, and many others.

Can we built a theory to characterize this class of distributions ?


