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Goals of Source Coding

The basic problem of source coding (i.e., data compression) is to
find codes with shortest descriptions (lengths) either on average or for
individual sequences when the source (i.e., statistics of the underlying
probability distribution) is unknown (the so called universal source coding.

Goals:

• Find universal lower bound on compression ratio (bit rate).

• Construct universal source codes that achieve this lower bound up
to the second order asymptotics (i.e., match redundancy which is
basically a measure of the second term asymptotics).

• As pointed by Rissanen, universal coding evolved into universal
modeling where the purpose is no longer restricted to just coding but
rather to finding optimal models for data.



Some Definitions

Definition: A block-to-variable (BV) length code

Cn : An → {0, 1}∗

is a bijective mapping from all sequences of length n over the alphabet
A to the set {0, 1}∗ of binary sequences.

For a probabilistic source model S and a code Cn we let:

• P (xn
1 ) be the probability of xn

1 = x1 . . . xn;

• L(Cn, xn
1 ) be the code length for xn

1 ;

• Entropy Hn(P ) = −
P

xn
1

P (xn
1 ) lg P (xn

1 ).

Information-theoretic quantities are expressed in binary logarithms written
lg := log2.



Two Facts

Prefix code is such that no codeword is a prefix of another codeword.

Kraft’s Inequality
A code is a prefix code iff `1, `2, . . . , `m satisfy the inequality

mX
i=1

2
−`i ≤ 1.

whee `1, `2, . . . , `m are codeword length.

Proof. An easy exercise on trees.

Shannon First Theorem
For any prefix code the average code length E[L(Cn, Xn

1 )] cannot be
smaller than the entropy of the source Hn(P ), that is,

E[L(Cn, X
n
1 )] ≥ Hn(P ).

Proof: Use log x ≤ x − 1 for 0 < x ≤ 1 and Kraft’s inequality.

By Kraft’s inequality there exists at least one source sequence x̃n
1 such that

L(x̃
n
1 ) ≥ − log2 P (x̃

n
1 ).



Proof of Shannon Lower Bound

Let K =
P

xn
1
2−L(xn

1 ) ≤ 1, and L(Cn, xn
1 ) := L(Cn). Then

E[L(Cn, Xn
1 )] − Hn(P ) =

=
X

xn
1∈An

P (xn
1 )L(xn

1 ) +
X

xn
1∈An

P (xn
1 ) log P (xn

1 )

=
X

xn
1∈An

P (x
n
1 ) log

P (xn
1 )

2−L(xn
1 )/K

− log K

≥ 0

since log x ≤ x − 1 for 0 < x ≤ 1 or the divergence is nonnegative, while
K ≤ 1 by Kraft’s inequality.
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Redundancy

Known Source P

The pointwise redundancy Rn(Cn, P ; xn
1) and the average redundancy

R̄n(Cn, P ) are defined as

Rn(Cn, P ; xn
1 ) = L(Cn, xn

1) + lg P (xn
1 )

R̄n(Cn) = E[L(Cn, Xn
1 )] − Hn(P ) ≥ 0

The maximal or worst case redundancy is

R∗(Cn, P ) = max
xn
1

{Rn(Cn, P ; xn
1 )}(≥ 0).

The pointwise redundancy can be negative, maximal and average
redundancy cannot.

The smaller the redundancy is, the better (closer to the
optimal) the code is.



Redundancy for Known Sources

Huffman Code

The following optimization problem

R̄n(P ) = min
Cn∈C

Exn
1
[L(Cn, x

n
1) + log2 P (x

n
1 )].

is solved by Huffman’s code

Generalized Shannon Code

Drmota and W.S. (2001) proved that

R
∗
n(P ) = min

Cn
max

xn
1

[L(Cn, x
n
1) + lg P (x

n
1 )].

is solved by the generalized Shannon code CGS
n which is defined as

L(CGS
n , xn

1 ) =


blg 1/P (xn

1 )c if 〈P (xn
1 )〉 ≤ s0

dlg 1/P (xn
1 )e if 〈P (xn

1 )〉 > s0

where s0 is a constant, and 〈x〉 = x − bxc is the fractional part of x;



Two Modes of R̄H
n (P ) Behavior
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Figure 1: The average redundancy of Huffman codes versus block size
n for: (a) irrational α = log2(1 − p)/p with p = 1/π; (b) rational
α = log2(1 − p)/p with p = 1/9.

WHY?



Why Two Modes: Shannon Code

Consider the Shannon code that assigns the length

L(CS
n , xn

1) = d− lg P (xn
1 )e

to the source sequence xn
1 . Observe that

P (xn
1 ) = pk(1 − p)n−k

where p is known probability of generating 0 and k is the number of 0s.

The Shannon code redundancy is

R̄
S
n =

nX
k=0

“n

k

”
p

k
(1 − p)

n−k
“
d− log2(p

k
(1 − p)

n−k
)e

+ log2(p
k
(1 − p)

n−k
)
”

= 1 −
nX

k=0

“n

k

”
p

k
(1 − p)

n−k〈αk + βn〉

where 〈x〉 = x − bxc is the fractional part of x, and

α = log2

„
1 − p

p

«
, β = log2

„
1

1 − p

«
.



Two Recent Results

To analyze redundancy for known sources one needs to understand
asymptotic behavior of the following sum

nX
k=0

“n

k

”
p

k
(1 − p)

n−k
f(〈xk + y〉)

for fixed p and some Riemann integrable function f : [0, 1] → R.

For the Huffman code the following is known [W.S. (2000)]

R̄
H
n =

8><
>:

3
2 − 1

ln 2 + o(1) ≈ 0.057304 α irrational

3
2 − 1

M

`
〈βMn〉 − 1

2

´
− 1

M(1−2−1/M )
2−〈nβM〉/M + O(ρn) α = N

M

N, M are such integers that gcd(N, M) = 1 and ρ < 1.

For the generalized Shannon code Drmota and W.S. (2004) proved

R∗
n(Pp) = −

log log 2

log 2
+ o(1) = 0.5287 . . . + o(1).

when α is irrational.
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Minimax Redundancy

Unknown Source P

In practice, one can only hope to have some knowledge about a family
of sources S that generates real data.

Following Davisson we define the average minimax redundancy R̄n(S)
and the worst case (maximal) minimax redundancy R∗

n(S) for a family of
sources S as

R̄n(S) = min
Cn

sup
P∈S

E[L(Cn, xn
1 ) + lg P (xn

1 )]

R
∗
n(S) = min

Cn
sup
P∈S

max
xn
1

[L(Cn, x
n
1 ) + lg P (x

n
1 )].

In the minimax scenario we look for the best code for the the worst source.

Source Coding Goal:
Find data compression algorithms that match optimal
redundancy rates either on average or for individual
sequences.



Maximal Minimax Redundancy

We consider the following classes of sources S:

• Memoryless sources M0 over an m-ary (finite) alphabet, that is,

P (xn
1 ) = p

k1
1 · · · pkm

m

with k1 + · · · + km = n, where pi are unknown!

• Markov sources Mr over a binary alphabet of order r. Observe that
for r = 1

P (x
n
1 ) = px1 p

k00
00 p

k01
01 p

k10
10 p

k11
11 ,

where kij is such that (xk, xk+1) = (i, j) ∈ {0, 1}2 and

k00 + k01 + k10 + k11 = n − 1,

and that k01 = k10 if x1 = xn and k01 = k10 ± 1 if x1 6= xn.

• Renewal Sources R0 where an 1 is introduced after a run of 0s
distributed according to some distribution.



Improved Shtarkov Bounds

For the maximal minimax redundancy define

Q
∗
(x

n
1 ) :=

supP∈SP (xn
1 )P

yn
1∈An supP∈SP (yn

1 )
.

the maximum likelihood distribution. Observe that

R∗
n(S) = min

Cn∈C
sup
P∈S

max
xn
1

(L(Cn, xn
1) + lg P (xn

1 ))

= min
Cn∈C

max
xn
1

„
L(Cn, x

n
1 ) + sup

P∈S
lg P (x

n
1 )

«

= min
Cn∈C

max
xn
1

[L(Cn, x
n
1) + lg Q

∗
(x

n
1 ) + lg

X
yn
1∈An

sup
P∈S

P (y
n
1 )]

= RGS
n (Q∗) + lg

X
yn
1∈An

sup
P∈S

P (yn
1 )

where RGS
n (Q∗) is the maximal redundancy of a generalized Shannon

code built for the (known) distribution Q∗. We also write

Dn(S) = lg

0
B@ X

xn
1∈An

sup
P∈S

P (xn
1 )

1
CA := lg dn(S).
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Maximal Minimax for Memoryless Sources

We first consider the maximal minimax redundancy R∗
n(M0) for a class of

memoryless sources over a finite m-ary alphabet. Observe that

dn(M0) =
X
xn
1

sup
p1,...,pm

p
k1
1 · · · pkm

m

=
X

k1+···+km=n

“ n

k1, . . . , km

”
sup

p1,...,pm

p
k1
1 · · · pkm

m

=
X

k1+···+km=n

“ n

k1, . . . , km

”„k1

n

«k1

· · ·
„

km

n

«km

.

The summation set is

I(k1, . . . , km) = {(k1, . . . , km) : k1 + · · · + km = n}.

The number Nk of types k = (k1, . . . , km) is

Nk =
“ n

k1, . . . , km

”
The (unnormalized) likelihood distribution is

sup
p1,...,pm

p
k1
1 · · · pkm

m =

„
k1

n

«k1

· · ·
„

km

n

«km



Generating Function for dn(M0)

We write

dn(M0) =
n!

nn

X
k1+···+km=n

k
k1
1

k1!
· · ·

kkm
m

km!

Let us introduce a tree-generating function

B(z) =
∞X

k=0

kk

k!
zk =

1

1 − T (z)
,

where T (z) satisfies T (z) = zeT (z) (= −W (−z), Lambert’s W -function)
and also

T (z) =
∞X

k=1

kk−1

k!
zk

enumerates all rooted labeled trees. Let now

Dm(z) =
∞X

n=0

nn

n!
dn(M0).

Then by the convolution formula

Dm(z) = [B(z)]
m

.



Asymptotics

The function B(z) has an algebraic singularity at z = e−1 (it becomes a
multi-valued function) and one finds

B(z) =
1p

2(1 − ez)
+

1

3
+ O(

q
(1 − ez).

The singularity analysis yields (cf. Clarke & Barron, 1990, W.S., 1998)

dn(M0) =
m − 1

2
log

„
n

2

«
+ log

 √
π

Γ(m
2 )

!
+

Γ(m
2 )m

3Γ(m
2 − 1

2)
·
√

2
√

n

+

 
3 + m(m − 2)(2m + 1)

36
−

Γ2(m
2 )m2

9Γ2(m
2 − 1

2)

!
·
1

n
+ · · ·

To complete the analysis, we need R̄GS
n (Q∗). Drmota & W.S., 2001 proved

RGS
n (Q∗) = −

ln 1
m−1 ln m

ln m
+ o(1),

In general, the term o(1) can not be improved. Thus

R∗
n(M0) =

m − 1

2
log

„
n

2

«
−

ln 1
m−1 ln m

ln m
+ log

 √
π

Γ(m
2 )

!
+ o(1).
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Maximal Minimax for Markov Sources

(i) M1 is a Markov source of order r = 1,
(ii) the transition matrix P = {pij}m

i,j=1

(iii)circular sequences (the first symbols follows the last).

dn(M1) =
X
xn
1

sup
P

p
k11
11 · · · pkmm

mm

=
X
k∈Fn

Mk

„
k11

k1

«k11

. . .

„
kmm

km

«kmm

,

kij is the number of pairs ij ∈ A2 in xn
1 , ki =

Pm
j=1 kij,

k = {kij}m
i,j=1 is an integer matrix such that

Fn :

mX
i,j=1

kij = n, and

mX
j=1

kij =

m−1X
j=0

kji,

Matrix k satisfying the above conditions is called the frequency matrix or
Markov type.

Mk represents the numbers of strings xn
1 of type k.

We come back to Markov types soon.



Main Technical Tool

Let gk be a sequence of scalars indexed by matrices k and

g(z) =
X

k

gkz
k

be its regular generating function, and

Fg(z) =
X
k∈F

gkz
k
=
X
n≥0

X
k∈Fn

gkz
k

the F -generating function of gk for which k ∈ F .
Lemma 1. Let g(z) =

P
k gkzk. Then

Fg(z) :=
X
n≥0

X
k∈Fn

gkz
k

=

„
1

2π

«m I dx1

x1

· · ·
I

dxm

xm

g([zij

xj

xi

])

with the ij-th coefficient of [zij
xj
xi

] is zij
xj
xi

.

Proof. It suffices to observe

g([zij

xj

xi

]) =
X

k

gkz
k

mY
i=1

x
P

i kij−
P

j kij
i

Thus Fg(z) is the coefficient of g([zij
xj
xi

]) at x0
1x

0
2 · · · x0

m.



Main Results

Theorem 1. Let M1 be a Markov source over an m-ry alphabet. Then

dn(M1) =

„
n

2π

«m(m−1)/2

Am ×
„

1 + O

„
1

n

««

with

Am =

Z
K(1)

mFm(yij)
Y

i

qP
j yijQ

j

√
yij

d[yij]

where K(1) = {yij :
P

ij yij = 1} and Fm(·) is a polynomial expression
of degree m − 1.

In particular, for m = 2 A2 = 16 × Catalan where Catalan is Catalan’s

constant
P

i
(−1)i

(2i+1)2
≈ 0.915965594.

Theorem 2. Let Mr be a Markov source of order r. Then

dn(Mr) =

„
n

2π

«mr(m−1)/2

Ar
m ×

„
1 + O

„
1

n

««

where Ar
m is a constant defined in a similar fashion as Am above.
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Renewal Sources

The renewal process defined as follows:

• Let T1, T2 . . . be a sequence of i.i.d. positive-valued random variables
with distribution Q(j) = Pr{Ti = j}.

• The process T0, T0 + T1, T0 + T1 + T2, . . . is called the renewal process.

• With a renewal process we associate a binary renewal sequence in
which the positions of the 1’s are at the renewal epochs (runs of zeros)
T0, T0 + T1, . . ..

• We start with x0 = 1.

Csiszár and Shields (1996) proved that Rn(R0) = Θ(
√

n).



Maximal Minimax Redundancy

For a sequence
xn

0 = 10α110α21 · · · 10αn1 0 · · · 0| {z }
k∗

km is the number of i such that αi = m. Then

P (xn
1 ) = Qk0(0)Qk1(1) · · ·Qkn−1(n − 1)Pr{T1 > k∗}.

It can be proved that

rn+1 − 1 ≤ dn(R0) ≤
nX

m=0

rm

where

rn =
nX

k=0

rn,k

rn,k =
X

P(n,k)

“ k

k0 · · · kn−1

”„k0

k

«k0
„

k1

k

«k1

· · ·
„

kn−1

k

«kn−1

where P(n, k) is the summation set which happens to be the partition of
n into k terms, i.e.,

n = k0 + 2k1 + · · · + nkn−1,

k = k0 + · · · + kn−1.



Main Results

Theorem 3 (Flajolet and WS, 1998). Consider the class of renewal processes
as defined above. The quantity rn attains the following asymptotics

rn =
2

log 2

√
cn −

5

8
lg n +

1

2
lg log n + O(1)

where c = π2

6 − 1 ≈ 0.645. Moreover,

R
∗
n(R0) =

2

log 2

√
cn + O(log n).



Asymptotics: Overview

Asymptotic analysis is sophisticated and follows these steps:

• first, we transform rn into another quantity sn that we know how to
handle and (using a probabilistic technique) we know how to read
back results for rn from sn;

• use combinatorial calculus to find the generating function of sn, which
turns out to be an infinite product of tree-functions B(z) defined above;

• transform this product into a harmonic sum that can be analyzed
asymptotically by the Mellin transform;

• obtain an asymptotic expansion of the generating function around
z = 1 which is the starting point for extracting the asymptotics of the
coefficients;

• finally, estimate R∗
n(R0) by the saddle point method.



Asymptotics: The Main Idea

The quantity rn is to hard to analyze due to the factor k!/kk, hence we
define a new quantity sn defined as(

sn =
Pn

k=0 sn,k

sn,k = e−kP
P(n,k)

kk0
k0! · · ·

k
kn−1

kn−1! .

To analyze it, we introduce the random variable Kn as follows

Pr{Kn = k} =
sn,k

sn

.

Stirling’s formula yields

rn

sn

=

nX
k=0

rn,k

sn,k

sn,k

sn

= E[(Kn)!K
−Kn
n e

−Kn]

= E[
p

2πKn] + O(E[Kn
−1

2]).



Fundamental Lemmas

Lemma 2. Let µn = E[Kn] and σ2
n = Var(Kn).

sn ∼ exp

„
2
√

cn −
7

8
log n + d + o(1)

«

µn =
1

4

r
n

c
log

n

c
+ o(

√
n)

σ2
n = O(n log n) = o(µ2

n),

where c = π2/6 − 1, d = − log 2 − 3
8 log c − 3

4 log π.
Lemma 3. For large n

E[
p

Kn] = µ1/2
n (1 + o(1))

E[Kn
−1

2] = o(1).

where µn = E[Kn].

Thus

rn = snE[
p

2πKn](1 + o(1))

= sn

p
2πµn(1 + o(1)).
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Method of Types

The method of types is a powerful technique in information theory, large
deviations, and analysis of algorithms. It reduces calculations of the
probability of rare events to a combinatorial analysis.

Two sequences are of the same type if they have the
same empirical distribution.

For memoryless sources the type is measured by the relative frequency of
symbol occurrences.

For example, for a binary sequences of length n there are“n

k

”
sequences of type k (i.e., with k ones).



Markov Types

For (a binary) Markov sources

P (x
n
1 ) = p

k00
00 p

k01
01 p

k10
10 p

k11
11 ,

thus all strings xn
1 with the same matrix k = {kij}i,j∈A have the same

empirical distribution.
These sequences belong to the same type k.

Consider only cyclic strings in which the last symbol is followed by the first
one. The frequency matrix k satisfies

Fn :

mX
i,j=1

kij = n, and

mX
j=1

kij =

m−1X
j=0

kji,

We are interested in:

Nk – number of (cyclic) strings xn
1 belonging to the same type k.

Na
k – number of (cyclic) strings xn

1 belonging to the same type k and
starting with a symbol a.
Nab

k – number of (cyclic) strings xn
1 belonging to the same type k, starting

with a symbol a and ending with b.



Eulerian Cycles

Define a directed multigraph Gm over m = |A| vertices:
– labeled by symbols from the alphabet A;
– edge multiplicity between ith and jth vertices is kij.

The number of Eulerian paths starting from vertex a ∈ A in a such
multigraph is equal to Na

k .

Example: Let A = {0, 1} and

k =

»
1 2

2 2

–

Figure 2: The directed multigraph for a binary alphabet A = {0, 1} with
the matrix k as above.



Enumeration of Eulerian Paths

The enumeration of Eulerian paths in a graph is a classical problem and
can be computed through the so called Matrix-Tree Theorem.

We propose a novel approach through multidimensional generating
functions.

1. One may try to guess that Na
k is equal to

Bk =
“ k1

k11 · · · k1m

”
· · ·
“ km

km1 · · · kmm

”
with the i factor representing the number of ways departing from vertex i.
But this is not true since when tracing the graph Gm we may get stuck at a
node not visiting all edges.

2. Let Na
k,k′ be the number of ways matrix k is transformed into another

matrix k′ when the Eulerian path starts with symbol a.

Na
k,k′ = Na

k−k′ × Bk′, k′
a = 0.

Since
P

k′ N
a
k,k′ = Bk,

Bk =
X

k′∈F,k′a=0

Na
k−k′ × Bk′.



Generating Functions over Matrices

3. Multiplying by zk and summing now over all zk such that ka 6= 0 it yields

X
k∈F,ka 6=0

Bkz
k =

 X
k∈F

Na
k zk

!
. ×

0
@ X

k∈F,ka=0

Bkz
k

1
A .

4. Let now BA(z) =
P

k∈F Bkzk. It is easy to see that

B(z) =
X

k

Bkz
k =

Y
a∈A

(1 −
X
b∈A

za,b)
−1,

but, one must use our Lemma about Fg(z) to find out that

BA(z) := FB(z) = (det(I − z))−1

where I is the identity m × m matrix.
Above we use the following short-hand notation

BA(z) := FB(z)

to denote the generating function of Bk over k ∈ F .



Finishing Up ...

5. We find
BA(z) − BA−{a}(z) = N

a
(z)BA−{a}(z).

from which we finally conclude that

N
a
k = [zk

]
B(z)

BA−{a}(z)
= [zk

]B(z) · det
aa

(I − z).

6. Using Cauchy’s formula we can prove that

N
b,a
k =

kba

kb

Bk · det
bb

(I − k∗
)

„
1 + O

„
1

n

««
,

where k∗ is the matrix whose ij-th element is kij/ki, that is, k∗ = [kij/ki].

7. For example for a binary Markov we have

N0,0
k ∼

k10

k10 + k11

“k00 + k01

k00

”“k10 + k11

k10

”
.
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Universal Types

Seroussi introduced in 2003 universal types for stationary ergodic sources:

Two sequences of the same length p are said to be of the same universal
type if they generate the same set of phrases in the Lempel-Ziv’78 scheme.

Figure 3: Two universal types and the corresponding binary trees
.



Number of Types and Binary Trees

Lempel-Ziv’78 parsing scheme of a sequence of length p can be
represented by a binary tree of path length p.

Let

– Tn be the set of binary trees built on n nodes.

– Tp be the set of binary trees with path length equal to p.

# universal types over Ap ≡ |Tp|.

How to enumerate binary trees of a given path length p?



Enumeration of Binary Trees

b(n, p) – denote the number of binary trees with n nodes and path length
p.

b(n, p) =
X

k+`=n−1

X
r+s+n−1=p

b(k, r)b(`, s), n ≥ 1

Define

Bn(w) =
∞X

p=0

b(n, p)wp

B(z, w) =
∞X

n=0

∞X
p=0

b(n, p)wpzn =
∞X

n=0

znBn(w)

Then

Bn+1(w) = wn
nX

`=0

B`(w)Bn−`(w)

B(z, w) = 1 + zB2(zw, w)



Enumeration Tn vs Tp

The functional equation is asymmetric with respect to z and w.

Set w = 1, then B(z, 1) = 1 + zB2(z, 1), and we find

B(z, 1) ≡ a(z) =
1

2z

ˆ
1 −

√
1 − 4z

˜
.

with – an = Bn(1) =
P

p≥0 b(n, p) being the Catalan Number.

We want to study the number of trees in Tp. We set z = 1 in the functional
equation leading to

B(1, w) = 1 + B
2
(w, w)

which is not algebraically solvable. Observe that

|Tp| =
X
n≥0

b(n, p) = [wp]B(1, w).

Seroussi (2004) and Knessl & W.S (2004) prove that

|Tp| =
1

(log2 p)
√

πp
2

2p
log2 p

“
1+c1 log−2/3 p+c2 log−1 p+O(log−4/3 p)

”

where c1 and c2 are constants.



Information-Theoretic Upper Bound

Seroussi’s proof is combinatorial. His upper bound uses information-
theoretic approach:

Seroussi’s Upper Bound:
How many bits are needed to specify a tree with path length p?:
– you must specify p;
– you must tell which one out of an = 1

n+1

`2n
n

´
trees of path length p you

select.

Thus, the maximum number of bits Bmax necessary to describe such a
tree is

Bmax = log2 p + log2

1

n + 1

“2n

n

”
∼

2p

log2 p

and clearly
|Tp| ≤ 2Bmax ∼ 22p/ log2 p.



Analytic Approach – WKB Method

Knessl and W.S. use methods of applied probability called the WKB
method.

The WKB method assumes that the solution, B(ξ; n), to a functional
equation has the following asymptotic form

B(ξ; n) ∼ enϕ(ξ)

»
A(ξ) +

1

n
A(1)(ξ) +

1

n2
A(2)(ξ) + · · ·

–
,

where ϕ(ξ) and A(ξ), A(1)(ξ), . . . are unknown functions.
These functions must be determined from the equation itself, often
in conjunction with another tool known as the asymptotic matching
principle.

For example, for w = 1 + a/n3/2 with a = −Y 3/2 we found that

Bn(w) ∼
4n+1

n3/2
(−a)

∞X
j=0

exp(−|rj|41/3Y )

where 0 > r0 > r1 > r2 > . . . and rj are the roots of the Airy’s function
Ai(z) = 0.



Distribution of Number of Nodes

When selecting randomly a tree from Tp we may define
– Np number of nodes.

Surprisingly, we can prove that Np is asymptotically normal, that is,

Pr{Np = n} =
b(n, p)

∞X
n=0

b(n, p)

∼
1p

2πV(p)
exp

"
−

(n − N (p))2

2V(p)

#

where

N (p) ∼
p

log2 p
, V(p) ∼

p

log2 p5/3

(log 2)A0

6(21/3

where A0 is a constant.



Outline Update

1. Some Definitions

2. Two Basic Facts of Source Coding

3. The Redundancy Rate Problem

4. Method of Types

(a) Markov Types
(b) Universal Type

5. Conclusions



Conclusions

• In the 1997 Shannon Lecture Jacob Ziv presented compelling
arguments for “backing off” from first-order asymptotics in order to
predict the behavior of real systems with finite lengths description.

• To overcome these difficulties we propose to replace first-order analyses
by full asymptotic expansions and more accurate analyses (e.g., large
deviations, central limit laws).

• Following Knuth and Hadamard’s precept1, we study information theory
problems using techniques of complex analysis such as generating
functions, combinatorial calculus, Rice’s formula, Mellin transform,
Fourier series, sequences distributed modulo 1, saddle point methods,
analytic poissonization and depoissonization, and singularity analysis.

• This program, which applies complex-analytic tools to information
theory, constitutes analytic information theory.

1 The shortest paths between two truths on the real line passes through the complex plane.


