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Abstract. We present a rigorous and precise analysis of the degree dis-
tribution in a dynamic graph model introduced by Solé et al. in which
nodes are added according to a duplication-divergence mechanism, i.e.
by iteratively copying a node and then randomly inserting and deleting
some edges for a copied node. This graph model finds many applications
since it well captures the growth of some real-world processes e.g. bio-
logical or social networks. However, there are only a handful of rigorous
results concerning this model. In this paper we present rigorous results
concerning the degree distribution.
We focus on two related problems: the expected value and large deviation
for the degree of a fixed node through the evolution of the graph and the
expected value and large deviation of the average degree in the graph. We
present exact and asymptotic results showing that both quantities may
decrease or increase over time depending on the model parameters. Our
findings are a step towards a better understanding of the overall graph
behaviors, especially, degree distribution, symmetry, and compression,
important open problems in this area.

Keywords: Dynamic graphs · Duplication-divergence graphs · Degree
distribution · Large deviation.

1 Introduction

It is widely accepted that we live in the age of data deluge. On a daily basis we
observe the increasing availability of data collected and stored in various forms,
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Center, Poland, Grant 2018/31/B/ST6/01294. This work was also supported by NSF
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as sequences, expressions, interactions or structures. A large part of this data is
given in a complex form which also conveys a “shape” of the structure, such as
network data. As examples we have various biological networks, social networks,
and Web graphs.

Given a representation of these networks as graphs, there arises a natural
question: what are the rules governing the growth and evolution of such net-
works? In fact, finding such rules should enable us to model real networks aris-
ing in many diverse applications. For example, there is experimental evidence
[17] that the evolution of some biological networks is driven by the duplication
mechanism, in which new nodes appear as copies of some already existing ones
in the network. This is supplemented by a certain amount of divergence due to
random mutations that leads to some differences between patterns of interaction
for the source and the duplicate elements.

Fundamental questions arise about the structural properties of these net-
works. For example, Faloutsos, Faloutsos and Faloutsos [5] brought to the front
the issue of “scale-free” power law behavior. First, there is the question as to
whether or not the degree distributions of the real-world networks do indeed
have a tail close to a power law. Second and most importantl, one needs to ver-
ify whether the underlying random graph models may indeed generate graphs
that exhibit the desired behavior e.g. in expectation. This is directly related to
the broader question of the degree distributions in graphs that may be generated
from these random models. We would expect that a good model for real-world
networks generates graphs that typically are not much different in terms of the
number of vertices with given degrees to what is seen in practice. However, to
answer this question we first need a good theoretical understanding of the degree
distribution of our models and this is the subject of this paper.

Another important problem in this area is the question of symmetry. It may
be formulated as follows: given a probability distribution over graphs of size n,
what is the distribution of log |Aut(G)|, where G is a random graph drawn from
this distribution and Aut(G) is its automorphism group (i.e., permutation pre-
serving adjacency). Clearly, it is related to the degree distribution problem since
for example the number of small symmetrical structures like cherries and dia-
monds (vertices of degree 1 and 2, respectively, having the same neighborhood)
is a lower bound on the number of automorphisms for any graph. Interestingly
enough, many real-world networks such as protein-protein and social networks,
exhibit a lot of symmetry as shown in Table 1.

It turns out that the most popular random graph models do not exhibit much
symmetry. For example, it was proved in [2] that the Erdős-Renyi random graph
model generates asymmetric graphs (for not too small and too large edge prob-
ability), that is, log |Aut(G)| = 0, with high probability. In a similar vein, it was
proved for the preferential attachment model, also known as the Barabási-Albert
model, that for m ≥ 3 (which is necessary if we want to obtain sufficiently dense
graphs that resemble real-world networks) is asymmetric with high probability
[9].
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Network Nodes Edges log |Aut(G)|

Baker’s yeast protein-protein interactions 6,152 531,400 546
Fission yeast protein-protein interactions 4,177 58,084 675
Mouse protein-protein interactions 6,849 18,380 305
Human protein-protein interactions 17,295 296,637 3026
ArXiv high energy physics citations 7,464 116,268 13
Simple English Wikipedia hyperlinks 10,000 169,894 1019
CollegeMsg online messages 1,899 59,835 232

Table 1: Symmetries of the real-world networks [13, 16].

Therefore, in order to study and understand the behavior of real-world net-
works we need to look at dynamic graph models that naturally generate internal
graph symmetries. As was mentioned before, one promising route is to investi-
gate models that evolve according to the duplication and mutation rules. So let
us consider the most popular duplication-divergence model introduced by Solé
et al. [12], referred to below as DD(t, p, r). It is defined as follows: starting from
a given graph on t0 vertices (labeled from 1 to t0) we add subsequent vertices
labeled t0 + 1, t0 + 2, . . . , t as copies of some existing vertices in the graph and
then we introduce divergence by adding and removing some edges connected
to the new vertex independently at random. Finally, we remove the labels and
return the structure, i.e. the unlabeled graph.

It has been shown that for a certain set of parameters, graphs generated ac-
cording to the duplication-divergence mechanism fit very well empirically with
the structure of some real-world networks (e.g., protein-protein and citation
networks) in terms of the degree distribution [3] and small subgraph (graphlets)
counts [11]. However, at the moment there do not exist any rigorous general
results regarding symmetries and hence degree distribution for such graphs. Ex-
perimentally, when generating multiple graphs according to this model with dif-
ferent parameters, we observe the pattern presented in Figure 1: There is a set of
parameters (i.e., p and r) for which the generated graphs are highly symmetric
with a large automorphisms group. It was shown by Sreedharan et al. [13] that
possible values of the parameters for real-world networks lie in the blue-violet
area, indicating a lot of symmetry. All these remarks suggest that there is a
certain merit to study a possible link between the duplication-divergence model
and certain types of real-world networks. To accomplish this we need to study
the average and large deviation of their degree sequence, which is the main topic
of this conference paper.

There exist only a handful previous rigorous results on the DD(t, p, r) model.
In view of these, it is imperative that we understand the degree distribution
for the duplication-divergence networks. Turowski et al. showed in [15] that
for the special case of p = 1, r = 0 the expected logarithm of the number
of automorphisms for graphs on t vertices is asymptotically Θ(t log t), which
indicates a lot of symmetry. This allows to construct asymptotically optimal
compression algorithms for such graphs. However, the proposed approach used
certain properties for this particular set of parameters that does not generalize
to other sest of parametesr.
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Fig. 1: Symmetry of graphs (log |Aut(G)|) generated by the DD(t, p, r) model.

For r = 0 and p < 1, it was recently proved by Hermann and Pfaffelhuber
in [6] that depending on the value of p either there exists a limiting distribution
of degree frequencies with almost all vertices isolated or there is no limiting
distribution as t → ∞. Moreover, it is shown in [8] that the number of vertices
of degree one is Ω(log t) but again the precise rate of growth of the number
of vertices with any fixed degree k > 0 is currently unknown. Recently, also
for r = 0, Jordan [7] showed that the non-trivial connected component has a
degree distribution which conforms to a power-law behavior in size, but only
for p < e−1. In this case the exponent is equal to γ which is the solution of
3 = γ + pγ−2.

In this paper we study the degree distribution from a different perspective.
In particular, we present results concerning the degree of a given vertex s at time
t (denoted by degt(s)) and the average degree in the graph (denoted by D(Gt)).
We show that the asymptotic values of the means E[degt(s)] and E[D(Gt)] as
t→∞ exhibit phase transitions over the parameter space as a function of p and
r. We then present some results for the tails of the degree distribution for D(Gt)
and degt(s) for s = O(1). It turns out that the deviation by a polylogarithmic
factor under or over the respective means is sufficient to obtain a polynomial
tail, that is to find an O(t−A) tail probability. In this way we have proved that
the distribution of D(Gt) and degt(s) are in some sense concentrated around
their means.

2 Main results

In this section we first define formally the DD(t, p, r) model. Then, we present
our main results, first concerning the expected values of the degree distribution,
and then large deviations of their distributions. Here we provide only the main
lines of reasoning, with the full proofs moved to the respective appendices.
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We use standard graph notation, e.g. from [4]: V (G) denotes the set of vertices
of graph G, NG(u) – the set of neighbors of vertex u in G, degG(u) = |NG(u)|
– the degree of u in G. For brevity we use the abbreviations for Gt, e.g. degt(u)
instead of degGt

(u). All graphs are simple. Let us also introduce the average
degree D(Gt) of G as

D(G) =
1

|V (G)|
∑

u∈V (G)

degG(u).

It is worth noting that it is also known in the literature as the first moment of
the degree distribution.

We formally define the model DD(t, p, r) as follows: let 0 ≤ p ≤ 1 and 0 ≤ r ≤
t0 be the parameters of the model. Let also Gt0 be a graph on t0 vertices, with
V (Gt0) = {1, . . . , t0}. Now, for every t = t0, t0 + 1, . . . we create Gt+1 from Gt
according to the following rules:

1. add a new vertex t+ 1 to the graph,
2. pick vertex u from V (Gt) = {1, . . . , t} uniformly at random – and denote u

as parent(t+ 1),
3. for every vertex i ∈ V (Gt):

(a) if i ∈ Nt(parent(t+ 1)), then add an edge between i and t + 1 with
probability p,

(b) if i /∈ Nt(parent(t+ 1)), then add an edge between i and t + 1 with
probability r

t .

2.1 Average degree in the graph

We start with the average degree in the graph D(Gt). First, we find the following
recurrence for the average degree of Gt+1:

E[D(Gt+1)
∣∣ Gt] = 1

t+ 1
E

[
t+1∑
i=1

degt+1(i)
∣∣ Gt]

=
1

t+ 1
E

[
t∑
i=1

degt(i) + 2 degt+1(t+ 1)
∣∣ Gt]

=
1

t+ 1

(
t∑
i=1

degt(i) + 2E
[
degt+1(t+ 1)

∣∣ Gt])

=
1

t+ 1

(
tD(Gt) + 2E[degt+1(t+ 1)

∣∣ Gt]) .
Next, we find the following relationship between the expected average degree

E[D(Gt)] and the expected degree of the new vertex E[degt+1(t+ 1)] (see proof
in Appendix A):

Lemma 1. For any t ≥ t0 it holds that

E[degt+1(t+ 1)] =
(
p− r

t

)
E[D(Gt)] + r.
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It is quite intuitive that the expected degree of a new vertex behaves as if we
would choose a vertex with the average degree E[D(Gt)] as its parent, and then
copy a p fraction of its edges, also adding r more edges (in expectation) to the
other vertices in the graph.

From this lemma we find

E[D(Gt+1)
∣∣ Gt] = D(Gt)

(
1 +

2p− 1

t+ 1
− 2r

t(t+ 1)

)
+

2r

t+ 1
. (1)

This recurrence falls under a general recurrence of the form

E[f(Gt+1)
∣∣ Gt] = f(Gt)g1(t) + g2(t) (2)

where g1 and g2 are given functions, dependent on p and r. We will solve it
exactly and asymptotically in the sequel. This allows us to find an asymptotic
expression for the average degree.

In the sequel we present a series of lemmas that will be used to obtain the
asymptotics of E[f(Gt)]. These lemmas are based on martingale theory and they
use various asymptotic properties of Euler gamma function. For space reasons,
proofs of Lemmas 2 and 5 are moved to Appendices B and C.

Lemma 2. Let (Gn)∞n=n0
be a Markov process for which Ef(Gn0) > 0 and Equa-

tion (2) holds with g1(n) > 0, g2(n) ≥ 0 for all n = n0, n0 + 1, . . .. Then for all
n ≥ n0

Ef(Gn) = f(Gn0
)

n−1∏
k=n0

g1(k) +

n−1∑
j=n0

g2(j)

n−1∏
k=j+1

g1(k).

The above lemma shows that the solutions of recurrences of type Equation (2)
contain products and sum of products of g1 and g2. The next lemmas show how
to handle such products. First, since in our case g1(n) and g2(n) are of form

W1(n)
W2(n)

for certain polynomials W1(n), W2(n), we turn the products of polynomials into
the products of Euler gamma functions.

Lemma 3. Let W1(k), W2(k) be polynomials of degree d with respective (not
necessarily distinct) roots ai, bi (i = 1, . . . , d), that is, W1(k) =

∏d
i=1(k − ai)

and W2(k) =
∏d
j=1(k − bj). Then

n−1∏
k=n0

W1(k)

W2(k)
=

d∏
i=1

Γ (n− ai)
Γ (n− bi)

Γ (n0 − bi)
Γ (n0 − ai)

.

Proof. We have

n−1∏
k=n0

W1(k)

W2(k)
=

n−1∏
k=n0

d∏
i=1

k − ai
k − bi

=

d∏
i=1

n−1∏
k=n0

k − ai
k − bi

=

d∏
i=1

Γ (n− ai)
Γ (n− bi)

Γ (n0 − bi)
Γ (n0 − ai)

which completes the proof.
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Next, for the sake of completeness we present a well-known asymptotic for-
mula for the Euler gamma function, which help us to deal with

∏n−1
k=n0

g1(k):

Lemma 4 (Abramowitz, Stegun [1]). For any a, b ∈ R if n → ∞, then
Γ (n+a)
Γ (n+b) = Θ(na−b).

Finally, we deal with sum of products
∑n−1
j=n0

g2(j)
∏n−1
k=j+1 g1(k). In terms of

Euler gamma functions, via Lemma 3, we are interested in the asymptotics of
the following formulas

n∑
j=n0

∏k
i=1 Γ (j + ai)∏k
i=1 Γ (j + bi)

with a =
∑k
i=1 ai, b =

∑k
i=1 bi.

Lemma 5. Let ai, bi ∈ R (k ∈ N) with a =
∑k
i=1 ai, b =

∑k
i=1 bi. Then it holds

asymptotically for n→∞ that

n∑
j=n0

∏k
i=1 Γ (j + ai)∏k
i=1 Γ (j + bi)

=


Θ
(
na−b+1

)
if a+ 1 > b,

Θ (log n) if a+ 1 = b,
Θ (1) if a+ 1 < b.

With this background information, we are now in the position to solve recur-
rence (1) and present exact and asymptotic results for the average degree. From
Lemma 2 with g1(t) = 1 + p

t −
r
t2 and g2(t) = r

t we get that

E[D(Gt)] = D(Gt0)

t−1∏
k=t0

(
1 +

2p− 1

k + 1
− 2r

k(k + 1)

)

+

t−1∑
j=t0

2r

j + 1

t−1∏
k=j+1

(
1 +

2p− 1

k + 1
− 2r

k(k + 1)

)
.

By applying Lemma 3 we replace the products above by the products of
Euler gamma functions and obtain

E[D(Gt)] = D(Gt0)
Γ (t0)Γ (t0 + 1)

Γ (t)Γ (t+ 1)

Γ (t+ c3)Γ (t+ c4)

Γ (t0 + c3)Γ (t0 + c4)

+

t−1∑
j=t0

2rΓ (j + 1)

Γ (j + 2)

Γ (j + c3)Γ (j + c4)

Γ (t0 + c3)Γ (t0 + c4)

Γ (t0)Γ (t0 + 1)

Γ (j)Γ (j + 1)

for c3, c4 – the (possibly complex) solutions of the equation k2 + 2pk − 2r = 0.
Next, we may use Lemmas 4 and 5 respectively for the first and second part

of the equation above. Note that when r = 0, the second part vanishes. Using
previous lemmas we can derive asymptotics for the average degree which we
present next.
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Theorem 1. For Gt ∼ DD(t, p, r) asymptotically as t→∞ we have

E[D(Gt)] =


Θ(1) if p < 1

2 and r > 0,
Θ(log t) if p = 1

2 and r > 0,
Θ(t2p−1) if p > 1

2 or r = 0.

The asymptotic behavior of E[D(Gt)] has a threefold characteristic: when
p < 1

2 and r > 0, the majority of the edges are not created by copying them
from parents, but actually by attaching them according to the value of r. For
p = 1

2 and r > 0 we note the curious situation of a phase transition (still with
non-copied edges dominating), and only if p > 1

2 or r = 0 do the edges copied
from the parents asymptotically contribute the major share of the edges.

The next question regarding the average degreeD(Gt) is how much it deviates
from the expected value E[D(Gt)], in probability. It turns out that D(Gt) is
concentrated around E[D(Gt)] in such a way that with probability 1 − O(t−A)
it falls within a polylogarithmic ratio from the mean. We observe that unlike
the large deviations for say preferential attachment graphs, in the duplication-
divergence model we need to consider three cases reflecting the different behavior
of E[D(Gt)] for p < 1/2, p = 1/2 and p > 1/2.

Theorem 2. Asymptotically for Gt ∼ DD(t, p, r) it holds that

Pr[D(Gt) ≥ AC log2(t)] = O(t−A) for p <
1

2
,

Pr[D(Gt) ≥ AC log3(t)] = O(t−A) for p =
1

2
,

Pr[D(Gt) ≥ AC t2p−1 log2(t)] = O(t−A) for p >
1

2
.

for some fixed constant C > 0 and any A > 0.

The complete proof of this theorem is presented in Appendix D. Here we
outline the main steps. We begin by carefully bounding from above the moment
generating function E[exp (λtD(Gt)) |Gt]. This way, we are able to show

E
[
exp (λt+1D(Gt+1))

∣∣ Gt] ≤ exp

(
λt+1D(Gt)h1(t) +

λt+1

t+ 1
h2(t)

)
for certain explicit functions h1 and h2. By defining λt = λt+1h1(t) we finally
arrive at

E[exp (λtD(Gt))] ≤ exp (λt0D(Gt0))

(
t

t0

)2rεt+1+C1

for some εt = 1/ ln(t/t0) and constant C1 (see (4) in Appendix D). After choosing
a suitable sequence sequence4 (λi)

t
i=t0

and applying Chernoff’s inequality we find

4 In Appendix D we choose λt = εt
(

t
t0

)−(2p−1)(1+O(εt)))

so that λt0 ≤ εt.
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the large deviation bound. In all three cases we need an extra log2(t) factor over
the mean, one logarithm coming from the choice of εt (which decays like 1

ln t ),
and one from our requirement to get O(t−A) = O (exp(−A ln(t))) tail.

The left tail behavior is similar, however the proof presented in Appendix E
is slightly more complicated, as discussed briefly below.

Theorem 3. For Gt ∼ DD(t, p, r) with p > 1
2 asymptotically it holds that

Pr

[
D(Gt) ≤

C

A
t2p−1 log−3−ε(t)

]
= O(t−A).

for some fixed constant C > 0 and any ε,A > 0.

Note that since E[D(Gt)] = O(log t) for p ≤ 1
2 , bounds of the above form are

trivial in this range of p and therefore not interesting, since all smaller values
are in polylogarithmic distance to the mean.

The whole proof, as presented in Appendix E, may be sketched as following:
first, we find a bound

E[exp (λ(D(Gt+1)−D(Gt))) |Gt,¬Bt]

for a certain event Bt that allows us to bound the right tail for the variable
D(Gt+1)−D(Gt). Then, we use an auxiliary variable Yk = D(G(k+1)t)−D(Gkt)
for which we know both the value of E[Yk] and that the right tail of Yk is small
– in particular, it is O(t−A) when we are only log2(t) times over the mean.
Therefore it may be shown that also the left tail of Yk cannot be large. Finally,
we use the result for Yk to obtain a bound for D(Gt).

2.2 Degree of a given vertex s

We focus now on the expected value of degt(s), that is, the degree of vertex s
at time t. We start with a recurrence relation for E[degt(s)]. Observe that for
any t ≥ s we know that vertex s may be connected to vertex t+ 1 in one of the
following two cases:

– either s ∈ Nt(parent(t+ 1)) (which holds with probability degt(s)
t ) and we

add an edge between s and t+ 1 (with probability p),
– or s /∈ Nt(parent(t+ 1)) (with probability t−degt(s)

t ) and we an add edge
between s and t+ 1 (with probability r

t ).

From the model description we directly obtain the following recurrence for
E[degt(s)]:

E[degt+1(s)
∣∣ Gt] = (degt(s)

t
p+

t− degt(s)

t

r

t

)
(degt(s) + 1)

+

(
degt(s)

t
(1− p) + t− degt(s)

t

(
1− r

t

))
degt(s)
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= degt(s)
(
1 +

p

t
− r

t2

)
+
r

t
.

Again this recurrence falls under Equation (2), so we may proceed in the
same fashion as with E[D(Gt)]. First, we apply Lemma 2 with g1(t) = 1+ p

t −
r
t2

and g2(t) = r
t to obtain the equation for the exact behavior of the degree of a

given node s at time t:

E[degt(s)] = E[degs(s)]
t−1∏
k=s

(
1 +

p

k
− r

k2

)
+

t−1∑
j=s

r

j

t−1∏
k=j+1

(
1 +

p

k
− r

k2

)
.

Again we substitute the simple products by the products of Euler gamma
functions using Lemma 3

E[degt(s)] = E[degs(s)]
Γ (s)2

Γ (t)2
Γ (t+ c1)Γ (t+ c2)

Γ (s+ c1)Γ (s+ c2)

+

t−1∑
j=s

rΓ (j)

Γ (j + 1)

Γ (j + c1)Γ (j + c2)

Γ (s+ c1)Γ (s+ c2)

Γ (s)2

Γ (j)2

for c1, c2 – the (possibly complex) solutions of the equation k2 + pk − r = 0.
We are finally in a position to state the asymptotic expressions for E[degt(s)],

using Lemmas 4 and 5.

Theorem 4. For s = O(1) it holds asymptotically as t→∞ that

E[degt(s)] =

{
Θ(log t) if p = 0 and r > 0

Θ(tp) otherwise.

Here we observe only two regimes. In the first, for the case when p = 0, when
edges are added only due to the parameter r, we have logarithmic growth of
E[degt(s)]. In the second one, edges attached to s accumulate mostly by choosing
vertices adjacent to s as parents of the new vertices, and therefore the expected
degree of s grows proportional to tp.

If we assume that s → ∞, that is, we consider asymptotics with respect to
both s and t, we may combine Lemma 1 with Theorem 1 to obtain

Theorem 5. For Gt ∼ DD(t, p, r) asymptotically as s, t→∞ we have

E[degt(s)] =


Θ(log t

s ) if p = 0 and r > 0

Θ
(
tp

sp

)
if 0 < p < 1

2 and r > 0,
Θ
(
tp

sp log s
)

if p = 1
2 and r > 0,

Θ
(
tp

sp s
2p−1) if p > 1

2 or r = 0.

Let us note that when s = Θ(t), the asymptotics of E[degt(s)] are exactly like
those for E[degt(t)] and E[D(Gt)], only the leading coefficients are different for
each case. For different ranges of p and r, we have rates of growth equal to Θ(1),
Θ(log t) or Θ(t2p−1), respectively.

Finally, we present bounds for the deviation of degt(s) from its mean when
s = O(1).
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Theorem 6. Asymptotically for Gt ∼ DD(t, p, r) and s = O(1) it holds that

Pr[degt(s) ≥ AC tp log
2(t)] = O(t−A)

for some fixed constant C > 0 and any A > 0.

Theorem 7. For Gt ∼ DD(t, p, r) with p > 0 and s = O(1) it holds that

Pr

[
degt(s) ≤

C

A
tp log−3−ε(t)

]
= O(t−A)

for some fixed constant C > 0 and any A > 0.

The proofs are analogous to those for the tails of the distribution of D(Gt),
so we omit sketches and refer the reader directly to Appendices F and G.

3 Discussion

In this paper we have focused on rigorous and precise analyses of the average
degree D(Gt) and and a fixed given node degree degt(s) in the divergence-
duplication graph. We have derived asymptotic expressions for the expected
values of these quantities and have also shown that with high probability they
are only polylogarithmic factors away from the means of their expected values.

It is worth pointing that it is the parameter p that drives the rate of growth
of the expected value for these parameters. We note that exact analysis reveals
the fact that the value of parameter r and the structure of the starting graph
Gt0 impact only the leading constants and lower order terms.

We observe that there are several phase transitions of these quantities as
a function of p and r. This distinguishes it from the preferential graph model
[9]. However, as demonstrated in [13], it seems that all real-world networks fall
within a range 1

2 < p < 1, r > 0 – and this case should probably be the main
topic of further investigation.

Future work may go along the lines of investigating further properties of
the degree distribution as a function of both degree and time t. For example
we might investigate the number of nodes of (given) degree k or the maximum
degree in the graph. The latter is clearly bounded from below by degt(1), so
from Theorem 7 one concludes that it is a polylogarithmic factor below tp – but
the upper bound still remains an open question since it requires bounds on the
right tail of degt(t). The problem is that degt(t) is depends on the whole degree
distribution in Gt−1, and therefore it is very unlikely that for s closer to t we
have similar tail bounds as for degt(s) when s = O(1).

In order to study graph symmetry we need more information about the de-
gree distribution. This will allow us to find the ranges of parameters (p, r) for
which we obtain an asymmetric graph with high probability or the ranges where
non-negligible symmetries occur. In other words, we could explain theoretically
Figure 1. This in turn will lead to finding efficient algorithms for graph compres-
sion extending [2, 9] to the duplication-divergence model. Moreover, the degree
distribution may be useful in the problem of inferring node arrival order in net-
works [10].
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Appendix

A Proof of Lemma 1

We first observe that it follows from the definition of the model that the degree
of the new vertex t+1 is the total number of edges from t+1 to Nt(parent(t+ 1))
(chosen independently with probability p) and to all other vertices (chosen in-
dependently with probability r

t ). Note that it can be expressed as a sum of two
independent binomial variables

degt+1(t+ 1) ∼ Bin (degt(parent(t+ 1)), p) + Bin
(
t− degt(parent(t+ 1)),

r

t

)
.

Hence

E[degt+1(t+ 1)
∣∣ Gt] = t∑

k=0

Pr(degt(parent(t+ 1)) = k)

k∑
a=0

(
k

a

)
pa(1− p)k−a

t−k∑
b=0

(
t− k
b

)(r
t

)b (
1− r

t

)t−k−b
(a+ b)

=

t∑
k=0

Pr(degt(parent(t+ 1)) = k)
(
pk +

r

t
(t− k)

)
=
(
p− r

t

) t∑
k=0

kPr(degt(parent(t+ 1)) = k) + r.

Since parent sampling is uniform, we know that Pr(parent(t+ 1) = i) = 1
t

and therefore

D(Gt) =

t∑
i=1

Pr(parent(t+ 1) = i) degt(i) =

t∑
k=0

kPr(degt(parent(t+ 1)) = k).

Combining the last two equations above with the law of total expectation we
finally establish Lemma 1.

B Proof of Lemma 2

Let the process (Mn)
∞
n=n0

be defined as Mn0
= f(Gn0

) and

Mn = f(Gn)

n−1∏
k=n0

1

g1(k)
−

n−1∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)

Observe that

E[Mn+1

∣∣ Gn] = E[f(Gn+1)
∣∣ Gn] n∏

k=n0

1

g1(k)
−

n∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)
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= f(Gn)

n−1∏
k=n0

1

g1(k)
−

n−1∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)
=Mn

which proves that (Mn)
∞
n=n0

is a martingale.
Furthermore, after some algebra and taking expectation with respect to Gn

we arrive at

Ef(Gn) = E[Mn]

n−1∏
k=n0

g1(k) +

n−1∑
j=n0

g2(j)

j∏
k=n0

1

g1(k)

n−1∏
k=n0

g1(k)

= f(Gn0)

n−1∏
k=n0

g1(k) +

n−1∑
j=n0

g2(j)

n−1∏
k=j+1

g1(k)

which completes the proof.

C Proof of Lemma 5

We estimate the sum using Lemma 4 and the Euler-Maclaurin formula [14,
p. 294]. For the first case we have

n∑
j=n0

∏k
i=1 Γ (j + ai)∏k
i=1 Γ (j + bi)

=

n∑
j=n0

ja−b
(
1 +O

(
1

j

))
=

∫ n

n0

ja−b
(
1 +O

(
1

j

))
dj

=

[
ja−b+1

(
1

a− b+ 1
+O

(
1

j

))]n
n0

= na−b+1

(
1

a− b+ 1
+O

(
1

n

))
+O(1).

The second case is similar
n∑

j=n0

∏k
i=1 Γ (j + ai)∏k
i=1 Γ (j + bi)

=

∫ n

n0

1

j

(
1 +O

(
1

j

))
dj = lnn+O(1).

For the third case we first find that
∞∑
j=n

∏k
i=1 Γ (j + ai)∏k
i=1 Γ (j + bi)

=

∞∑
j=n

ja−b
(
1 +O

(
1

j

))
=

∫ ∞
n

ja−b
(
1 +O

(
1

j

))
dj

=

[
ja−b+1

(
1

a− b+ 1
+O

(
1

j

))]∞
n

= na−b+1

(
1

b− a− 1
+O

(
1

n

))
.

Finally, by the identical reasoning it is true that

∞∑
j=n

∏k
i=1 Γ (j + ai)∏k
i=1 Γ (j + bi)

= O(1),

and subtracting one from another completes the proof.
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D Proof of Theorem 2

In order to prove the theorem we proceed as following: first we provide an asymp-
totic bound on E

[
exp(λdegt+1(t+ 1))|Gt

]
, then we apply it for a suitable choices

of λ, which allow us to use Chernoff bound.

Lemma 6. For any λ = O( 1t ) it holds that

E
[
exp(λ degt+1(t+ 1))|Gt

]
≤ exp (λpD(Gt)(1 +O(λt)) + λr(1 +O(λ))) .

Proof.

E
[
exp(λ degt+1(t+ 1))|Gt

]
=

1

t

t∑
i=1

E
[
exp

(
λBin(degt (i), p) + λBin

(
t− degt (i),

r

t

))
|Gt
]

≤ 1

t

t∑
i=1

(
1− p+ peλ

)degt(i)
(
1− r

t
+
r

t
eλ
)t−degt(i)

.

Since ex ≤ 1+x+x2 for all x ∈ [0, 1], (1+x)y ≤ 1+xy+(xy)2 for 0 ≤ xy ≤ 1
and 1 + x ≤ ex for any x:

E
[
exp(λ degt+1(t+ 1))|Gt

]
≤ 1

t

t∑
i=1

(1 + pλ(1 +O(λ))
degt(i)

(
1 +

rλ

t
(1 +O(λ))

)t−degt(i)

≤ 1

t

t∑
i=1

(1 + pλ degt(i)(1 +O(λt)) (1 + rλ(1 +O(λ)))

≤ 1

t

t∑
i=1

(1 + pλ degt (i)(1 +O(λt))) exp (rλ(1 +O(λ)))

= (1 + pλD(Gt)(1 +O(λt))) exp (rλ(1 +O(λ)))

≤ exp (λpD(Gt)(1 +O(λt)) + λr(1 +O(λ))) .

Now we are ready to finally prove the theorem.

E
[
exp (λt+1D(Gt+1))

∣∣ Gt]
= E

[
exp

(
λt+1

(
t

t+ 1
D(Gt) +

2

t+ 1
degt+1(t+ 1)

)) ∣∣ Gt]
= exp

(
λt+1t

t+ 1
D(Gt)

)
E
[
exp

(
2λt+1

t+ 1
degt+1(t+ 1)

) ∣∣ Gt]
Now we may use Lemma 7 with λ = 2λt+1

t+1 to get

E
[
exp (λt+1D(Gt+1))

∣∣ Gt] =
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≤ exp

(
λt+1D(Gt)

(
1− 2p− 1

t+ 1

)
(1 +O(λt+1)) +

2rλt+1

t+ 1
(1 + o(t−1))

)
.

Let us define for k = t0, . . . , t− 1

λk = λk+1

(
1 +

(
2p− 1

t+ 1

)
(1 +O(λk+1))

)
and let εt ≥ λk for all k.

Then clearly

λt0 ∈

[
λt

t−1∏
k=t0

(
1 +

2p− 1

k + 1

)
, λt

t−1∏
k=t0

(
1 +

(
2p− 1

k + 1

)
(1 +O(εt))

)]

⊆

[
λt

(
t

t0

)2p−1

(1 + o(1)), λt

(
t

t0

)(2p−1)(1+O(εt))

(1 + o(1))

]

It follows that

E [exp (λtD(Gt))] ≤ exp (λt0D(Gt0))

t−1∏
k=t0

exp

(
2rλk+1

k + 1

(
1 + o(k−1)

))
(3)

≤ exp (λt0D(Gt0)) exp

(
2rεt+1 ln

t

t0
+ C1

)
= exp (λt0D(Gt0))

(
t

t0

)2rεt+1+C1

(4)

for a certain constant C1.

Finally, let λt = εt

(
t
t0

)−(2p−1)(1+O(εt)))

so that λt0 ≤ εt. Then from Chernoff
bound it follows that

Pr[D(Gt) ≥ αED(Gt)] = Pr[exp(D(Gt)− αED(Gt)) ≥ 1]

≤ exp (−αλtED(Gt))E[exp (λtD(Gt))]

≤ exp (−αλtED(Gt)) exp (λt0D(Gt0))

(
t

t0

)2rεt+1+C1

Assume εt = 1
ln (t/t0)

. For p > 1
2 we have ED(Gt) = C2

(
t
t0

)2p−1
(1 + o(1)),

and therefore

Pr

[
D(Gt) ≥ αC2

(
t

t0

)2p−1

(1 + o(1))

]

≤ exp

(
−αC2εt

(
t

t0

)−(2p−1)εt)
exp (εt(t0 − 1)))

(
t

t0

)2rεt+1+C1

≤ exp

(
−αC2

exp (−2p+ 1)

ln (t/t0)

)
exp

(
t0 − 1

ln (t/t0)

)
exp (2r + C1)
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The last two elements are bounded by a constant, so it is sufficient to pick
α = A

C2
exp(2p− 1) ln2(t) to complete the proof for the case p > 1

2 .
Now, for p < 1

2 and p = 1
2 it is sufficient to use ED(Gt) = C2(1 + o(1)) and

ED(Gt) = C2 ln t(1 + o(1)), respectively.

E Proof of Theorem 3

We start the proof by obtaining a simple lemma, analogous to Lemma 6:

Lemma 7. For any λ = O( 1t ) it holds that

E
[
exp(λ degt+1(t+ 1))|Gt

]
≤ exp (2λpD(Gt)(1 +O(λ)) + 2λr(1 +O(λ))) .

Proof.

E
[
exp(λ degt+1(t+ 1))|Gt

]
=

1

t

t∑
i=1

E
[
exp

(
λBin(degt (i), p) + λBin

(
t− degt (i),

r

t

))
|Gt
]

≤ 1

t

t∑
i=1

(
1− p+ peλ

)degt(i)
(
1− r

t
+
r

t
eλ
)t−degt(i)

.

Since ex ≤ 1 + x + x2 for all x ∈ [0, 1], (1 + x)y ≤ 1 + 2xy for 0 ≤ xy ≤ 1,
and 1 + x ≤ ex for all x

E
[
exp(λ degt+1(t+ 1))|Gt

]
≤ 1

t

t∑
i=1

(1 + pλ(1 +O(λ))
degt(i)

(
1 +

rλ

t
(1 +O(λ))

)t−degt(i)

≤ 1

t

t∑
i=1

(1 + 2pλ degt(i)(1 +O(λ))) (1 + 2rλ(1 +O(λ))))

≤ 1

t

t∑
i=1

(1 + 2pλ degt (i)(1 +O(λ))) exp (2r(1 +O(λ)))

= (1 + 2pλD(Gt)(1 +O(λ))) exp (2r(1 +O(λ))))

≤ exp (2λpD(Gt)(1 +O(λ)) + 2λr(1 +O(λ))) .

Next, using the lemma above and Theorem 2 we limit the growth of D(Gt)
over certain intervals:

Lemma 8. Let p > 1
2 . For sufficiently large t and all k < t it is true that

Pr[D(G(k+1)t)−D(Gkt) ≥ AC((k + 1)2p−1 − k2p−1)t2p−1 log2(t)] = O(t−A)

for some fixed constant C > 0 and any A > 1.
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Proof. First, let us define events Bi = [D(Gi+1) ≥ (A+ 1)C1 i
2p−1 log2(i)] with

a constant C1 such that by Theorem 2 it is true that Pr[Bi] = O(i−A−1). Let us
also denote Ak =

⋃(k+1)t−1
i=kt Bi and observe that Pr [Ak] = O(t−A).

Now, we note that from Lemma 6 for any λ = o(1)

E
[
exp (λ(D(Gt+1)−D(Gt)))

∣∣∣∣Gt,¬Bt]
≤ E

[
exp

(
2λ

t+ 1
degt+1(t+ 1)

) ∣∣∣∣Gt,¬Bt]
≤
[
exp

(
2λp

t+ 1
D(Gt)(1 +O(λ)) +

2λr

t+ 1
(1 +O(λ))

) ∣∣∣∣¬Bt]
≤ exp

(
λ (A+ 1)C2 t

2p−2 log2(t)(1 + o(1))
)

for a certain constant C2.
Now we proceed as following:

Pr[D(G(k+1)t)−D(Gkt) ≥ d|Gkt]
≤ Pr[D(G(k+1)t)−D(Gkt) ≥ d|Gkt,¬Ak] Pr[¬A] + Pr[Ak]
≤ exp(−λd)E

[
exp

(
λ(D(G(k+1)t)−D(Gkt))

)
|Gkt,¬Ak

]
+O(t−A)

≤ exp(−λd)
(k+1)t−1∏
i=kt

E
[
exp (λ(D(Gi+1)−D(Gi)))

∣∣∣∣Gi,¬Bi]+O(t−A)

≤ exp(−λd)
(k+1)t−1∏
i=kt

exp
(
λ (A+ 1)C2 i

2p−2 log2(i)(1 + o(1))
)
+O(t−A)

≤ exp(−λd) exp

(k+1)t−1∑
i=kt

λ (A+ 1)C3 i
2p−2 log2(t)(1 + o(1))

+O(t−A)

≤ exp(−λd) exp
(
λ (A+ 1)C3((k + 1)2p−1 − k2p−1)t2p−1 log2(t)

)
+O(t−A)

for a certain constant C3.
Finally, it is sufficient to take λ =

(
((k + 1)2p−1 − k2p−1) log2(t)

)−1
and d =

AC4((k+1)2p−1−k2p−1)t2p−1 log2(t) for sufficiently large C4 to obtain the final
result.

Now we may return to the main theorem. Let Yk = D(G(k+1)t) − D(Gkt).
We know that for p > 1

2

EYk = ED(G(k+1)t)− ED(Gkt) = C1

(
(k + 1)2p−1 − k2p−1

)
t2p−1(1 + o(1))

for some constant C1.
Let now define the following events:

A1 =

[
Yk ≤

t2p−1

f(t)

]
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A2 =

[
t2p−1

f(t)
< Yk ≤ C2((k + 1)2p−1 − k2p−1)t2p−1 log2(t)

]
A3 =

[
Yk > C2((k + 1)2p−1 − k2p−1)t2p−1 log2(t)

]
for a constant C2 such that (from the lemma above) Pr[A3] = O(t−2). Here f(t)
is any (monotonic) function such that f(t)→∞ as t→∞.

We know that

EYk = E [Yk|A1] Pr [A1] + E [Yk|A2] Pr [A2] + E [Yk|A3] Pr [A3]

EYk ≥ C1

(
(k + 1)2p−1 − k2p−1

)
t2p−1

E [Yk|A1] ≤
t2p−1

f(t)

E [Yk|A2] ≤ C2((k + 1)2p−1 − k2p−1)t2p−1 log2(t)
E [Yk|A3] ≤ (k + 1)t

and therefore for sufficiently large t it holds that

Pr[A1] ≤
C2

(
(k + 1)2p−1 − k2p−1

)
log2(t)− C1

(
(k + 1)2p−1 − k2p−1

)
C2 ((k + 1)2p−1 − k2p−1) log2(t)− 1

f(t)

≤ 1− C1

2C2 log
2(t)

.

Let now τ = kt.

Pr
[
D(Gτ ) ≤ t2p−1f−1(t)

]
= Pr

[
k⋂
i=1

Yi ≤
t2p−1

f(t)

]

≤
k∏
i=1

Pr

[
Yi ≤

t2p−1

f(t)

]
≤

k∏
i=1

(
1− C1

2C2 log
2(t)

)
Therefore, if we assume k = 2AC2

C1
log3(t), we get

Pr

[
D(Gτ ) ≤

t2p−1

f(t)

]
= exp (−A log(t)) = O(t−A)

and finally

Pr

[
D(Gt) ≤

C3

A2p−1 t
2p−1 log−3(2p−1)−ε(t)

]
= O(t−A).

for some constant C3 and any ε > 0.

F Proof of Theorem 6

E
[
exp

(
λt+1 degt+1(s)

) ∣∣ Gt] =
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=

(
degt(s)

t
p+

t− degt(s)

t

r

t

)
exp (λt+1 (degt(s) + 1))

+

(
degt(s)

t
(1− p) + t− degt(s)

t

(
1− r

t

))
exp (λt+1 degt(s))

= exp (λt+1 degt(s))(
degt(s)

t
(1− p+ p exp (λt+1)) +

t− degt(s)

t

(
1− r

t
+
r

t
exp (λt+1)

))
≤ exp (λt+1 degt(s))

(
1 +

(
p degt(s)

t
+
r (t− degt(s))

t2

)(
λt+1 + λ2t+1

))
≤ exp

(
λt+1 degt(s) +

(
p degt(s)

t
+
r (t− degt(s))

t2

)(
λt+1 + λ2t+1

))
= exp

(
λt+1 degt(s)

(
1 +

(p
t
− r

t2

)
(1 + λt+1)

))
exp

(
λt+1 (1 + λt+1)

r

t

)
.

Let us assume that λk ≤ εt = o(1) for all s ≤ k ≤ t. Then for all k =
s, s+ 1, . . . , t we have

λk = λk+1

(
1 +

(p
k
− r

k2

)
(1 + λk+1)

)
≤ λk+1

(
1 +

(p
k
− r

k2

)
(1 + εt)

)
which lead us to

λs ≤ λt
t−1∏
k=s

(
1 +

(p
k
− r

k2

)
(1 + εt)

)
≤ λt exp

(
(1 + εt)

t−1∑
k=s

(p
k
− r

k2

))

≤ λt exp
(
(1 + εt)

∫ t

s

(p
k
− r

k2
dk
))
≤ λt

(
t

s

)p(1+εt)
exp

(r
t
(1 + εt)

)
.

It follows that

E [exp (λt degt(s)) |Gs] ≤ exp (λs degs(s)))

t−1∏
k=s

exp
(
λk+1 (1 + λk+1)

r

k

)
≤ exp (λs degs(s))) exp

(
εt (1 + εt) r ln

t

s

)
≤ exp (λs degs(s)))

(
t

s

)rεt(1+εt)
Now, let λt = εt

(
t
s

)−p(1+εt)
exp

(
− rt (1 + εt)

)
so that λs ≤ εt. Then, from

Chernoff bound it follows that

Pr[degt(s) ≥ αEdegt(s)|Gs] = Pr[exp(degt(s)− αEdegt(s)) ≥ 1|Gs]
≤ exp (−αλtE[degt(s)|Gs])E[exp (λt degt(s)) |Gs]

≤ exp (−αλtE[degt(s)|Gs]) exp (λs degs(s))
(
t

s

)rεt(1+εt)
.

Let’s assume εt = 1
ln t . From Theorem 4 we know that if s = O(1), then it

holds that E[degt(s)|Gs] = C1t
p and therefore

Pr[degt(s) ≥ αC1t
p|Gs] ≤ exp

(
−αC2εtt

−pεt
)
exp (εt degs(s)))

(
t

s

)rεt(1+εt)
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≤ exp

(
−αC3

ln t

)
exp

(
degs(s)

ln t

)
exp (2r)

for certain constants C2, C3.
Therefore, it is sufficient to set α = A

C3
ln2 t to get the final result.

G Proof of Theorem 7

We proceed similarly as in the proof of Theorem 3:

Lemma 9. Let p > 0 and s = O(1). For sufficiently large t and all k < t it is
true that

Pr[deg(k+1)t(s)− degkt(s) ≥ AC((k + 1)p − kp)tp log2(t)] = O(t−A)

for some fixed constant C > 0 and any A > 1.

Proof. Let us define events Bi = [degi+1(s) ≥ (A + 1)C1 i
p log2(i)] with a con-

stant C1 such that by Theorem 6 it is true that Pr[Bi] = O(i−A−1).
Now, for any λ = o(1) it holds that

E
[
exp

(
λ(degt+1(s)− degt(s))

) ∣∣∣∣Gt,¬Bt]
=

[
degt(s)

t
(1− p+ p exp(λ)) +

t− degt(s)

t

(
1− r

t
+
r

t
exp(λ)

) ∣∣∣∣¬Bt]
≤ exp

((
p degt(s)

t
+
r(t− degt(s))

t2

)(
λ+ λ2

))
≤ exp

(
λ(A+ 1)C1 pt

p−1 log2(t) (1 + o(1))
)
.

Let us now denote Ak =
⋃(k+1)t−1
i=kt Bi and observe that Pr [Ak] = O(t−A).

We proceed similarly to the proof of Theorem 3:

Pr[deg(k+1)t(s)− degkt(s) ≥ d|Gkt]
≤ Pr[deg(k+1)t(s)− degkt(s) ≥ d|Gkt,¬Ak] Pr[¬A] + Pr[Ak]

≤ exp(−λd)E
[
exp

(
λ(deg(k+1)t(s)− degkt(s))

)
|Gkt,¬Ak

]
+O(t−A)

≤ exp(−λd)
(k+1)t−1∏
i=kt

E
[
exp

(
λ(degi+1(s)− degi(s))

) ∣∣∣∣Gi,¬Bi]+O(t−A)

≤ exp(−λd)
(k+1)t−1∏
i=kt

exp
(
λ (A+ 1)C1 i

p−1 log2(i)(1 + o(1))
)
+O(t−A)

≤ exp(−λd) exp

(k+1)t−1∑
i=kt

λ (A+ 1)C1 i
p−1 log2(t)(1 + o(1))

+O(t−A)
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≤ exp(−λd) exp
(
λ (A+ 1)C2((k + 1)p − kp)tp log2(t)

)
+O(t−A)

for a certain constant C2.
Therefore, it is sufficient to take λ =

(
((k + 1)p − kp) log2(t)

)−1
and d =

AC3((k + 1)p − kp)tp log2(t) for sufficiently large C3 to obtain the final result.

Now we return to the proof of the main theorem. Let Zk = deg(k+1)t(s) −
degkt(s). We know that for p > 0

EZk = ED(G(k+1)t)− ED(Gkt) = C1 ((k + 1)p − kp) tp(1 + o(1))

for some constant C1.
Let now define the following events:

A1 =

[
Zk ≤

tp

f(t)

]
A2 =

[
tp

f(t)
< Zk ≤ C2((k + 1)p − kp)tp log2(t)

]
A3 =

[
Zk > C2((k + 1)p − kp)tp log2(t)

]
for a constant C2 such that (from the lemma above) Pr[A3] = O(t−2). Here f(t)
is any (monotonic) function such that f(t)→∞ as t→∞.

We know that

EZk = E [Zk|A1] Pr [A1] + E [Zk|A2] Pr [A2] + E [Zk|A3] Pr [A3]

EZk ≥ C1 ((k + 1)p − kp) t2p−1

E [Zk|A1] ≤
t2p−1

f(t)

E [Zk|A2] ≤ C2((k + 1)p − kp)tp log2(t)
E [Zk|A3] ≤ (k + 1)t

and therefore for sufficiently large t it holds that

Pr[A1] ≤
C2 ((k + 1)p − kp) log2(t)− C1 ((k + 1)p − kp)

C2 ((k + 1)p − kp) log2(t)− 1
f(t)

≤ 1− C1

2C2 log
2(t)

.

Let now τ = kt. Then,

Pr
[
D(Gτ ) ≤ tpf−1(t)

]
= Pr

[
k⋂
i=1

Yi ≤
tp

f(t)

]
≤

k∏
i=1

(
1− C1

2C2 log
2(t)

)
.

Therefore, if we assume k = 2AC2

C1
log3(t), we get

Pr

[
D(Gτ ) ≤

tp

f(t)

]
= exp (−A log(t)) = O(t−A)
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and finally

Pr

[
D(Gt) ≤

C3

Ap
tp log−3p−ε(t)

]
= O(t−A).

for some constant C3 and any ε > 0.


