
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL.XX, NO.XX, APRIL 2018 1

Randomized Linear Algebra Approaches to Estimate
the Von Neumann Entropy of Density Matrices

Eugenia-Maria Kontopoulou, Gregory-Paul Dexter, Wojciech Szpankowski, Fellow, IEEE
Ananth Grama, and Petros Drineas

Abstract—The von Neumann entropy, named after John von
Neumann, is the extension of classical entropy concepts to the
field of quantum mechanics and, from a numerical perspective,
can be computed simply by computing all the eigenvalues of a
density matrix, an operation that could be prohibitively expensive
for large-scale density matrices. We present and analyze three
randomized algorithms to approximate the von Neumann entropy
of density matrices: our algorithms leverage recent developments
in the Randomized Numerical Linear Algebra (RandNLA) lit-
erature, such as randomized trace estimators, provable bounds
for the power method, and the use of random projections to
approximate the eigenvalues of a matrix. All three algorithms
come with provable accuracy guarantees and our experimental
evaluations support our theoretical findings showing considerable
speedup with small accuracy loss.

Index Terms—von Neumann entropy, randomized algorithms,
randNLA, Taylor polynomials, Chebyshev polynomials, random
projections

I. INTRODUCTION

Entropy is a fundamental quantity in many areas of science
and engineering. The von Neumann entropy, named after John
von Neumann, is the extension of classical entropy concepts
to the field of quantum mechanics, and its foundations can be
traced to von Neumann’s work on Mathematische Grundlagen
der Quantenmechanik1. In his work, Von Neumann introduced
the notion of the density matrix, which facilitated the extension
of the tools of classical statistical mechanics to the quantum
domain in order to develop a theory of quantum measurements.

From a mathematical perspective (see Section I-A for de-
tails) the density matrix R is a symmetric positive semidefinite
matrix in Rn×n with unit trace. Let pi, i = 1 . . . n be the
eigenvalues of R in decreasing order; then, the entropy of R
is defined as2

H(R) = −
n∑
i=1

pi ln pi. (1)

The above definition is a proper extension of both the Gibbs
entropy and the Shannon entropy to the quantum case and
implies an obvious algorithm to compute H(R) by first
computing the eigendecomposition of R; known algorithms
for this task necessitate O(n3) time [1]. Clearly, as n grows,

E. Kontopoulou, G. Dexter, W. Szpankowski, A. Grama and P.
Drineas are with the Department of Computer Science, Purdue University,
West Lafayette, IN, 47906 USA e-mail: {ekontopo, gdexter, szpan, ayg,
pdrineas}@purdue.edu

1Originally published in German in 1932; published in English under the
title Mathematical Foundations of Quantum Mechanics in 1955.

2R is symmetric positive semidefinite and thus all its eigenvalues are non-
negative. If pi is equal to zero we set pi ln pi to zero as well.

such running times are impractical. For example, [2] describes
an entangled two-photon state generated by spontaneous para-
metric down-conversion, which can result in a density matrix
with n ≈ 108.

Motivated by the above discussion, we seek numerical
algorithms that approximate the von Neumann entropy of large
density matrices, e.g., symmetric positive definite matrices
with unit trace, faster than the trivial O(n3) approach. Our
algorithms build upon recent developments in the field of
Randomized Numerical Linear Algebra (RandNLA), an in-
terdisciplinary research area that exploits randomization as a
computational resource to develop improved algorithms for
large-scale linear algebra problems. Indeed, our work here
focuses at the intersection of RandNLA and information
theory, delivering novel randomized linear algebra algorithms
and related quality-of-approximation results for a fundamental
information-theoretic metric.

A. Background

We will focus on finite-dimensional function (state) spaces.
In this setting, the density matrix R represents the statistical
mixture of pure states and has the form

R =

k∑
i=1

piψiψ
T
i ∈ Rn×n. (2)

The vectors ψi ∈ Rn for i = 1 . . . k represent the k ≤ n
pure states and can be assumed to be pairwise orthogonal and
normal while the pi’s correspond to the probability of each
state and satisfy pi > 0 and

∑k
i=1 pi = 1. From a linear

algebraic perspective, eqn. (2) can be rewritten as

R = ΨΣpΨ
T ∈ Rn×n, (3)

where Ψ ∈ Rn×k is the matrix whose columns are the vectors
ψi and Σp ∈ Rk×k is a diagonal matrix whose entries are the
(positive) pi’s. Given our assumptions for ψi, ΨTΨ = I;
also R is symmetric positive semidefinite with its non-zero
eigenvalues equal to the pi and corresponding left/right singu-
lar vectors equal to the ψi’s; and tr (R) =

∑k
i=1 pi = 1.

Notice that eqn. (3) essentially reveals the (thin) Singular
Value Decomposition (SVD) [1] of R. The Von Neumann
entropy of R, denoted by H(R) is equal to (see also eqn. (1))

H(R) = −
∑
i,pi>0

pi ln pi = −tr (R ln R) . (4)

The second equality follows from the definition of matrix func-
tions [3]. More precisely, we overload notation and consider

2 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL.XX, NO.XX, APRIL 2018

the full SVD of R, namely R = ΨΣpΨ
T , where Ψ ∈ Rn×n

is an orthogonal matrix whose top k columns correspond to
the k pure states and the bottom n−k columns are chosen so
that ΨΨT = ΨTΨ = In. Here Σp is a diagonal matrix whose
bottom n−k diagonal entries are set to zero. Let h(x) = x lnx
for any x > 0 and let h(0) = 0. Then, using the cyclical
property of the trace and the definition of h(x),

−
∑
i,pi>0

pi ln pi = −tr
(
Ψh(Σp)Ψ

T
)

= −tr (h(R))

= −tr (R ln R) . (5)

B. Our contributions

We present and analyze three randomized algorithms to
approximate the von Neumann entropy of density matrices.
The first two algorithms (Sections II and III) leverage two
different polynomial approximations of the matrix function
H(R) = −tr (R ln R): the first approximation uses a Tay-
lor series expansion while the second approximation uses
Chebyschev polynomials. Both algorithms return, with high
probability, relative-error approximations to the true entropy
of the input density matrix, under certain assumptions. More
specifically, in both cases, we need to assume that the input
density matrix has n non-zero eigenvalues, or, equivalently,
that the probabilities pi, i = 1 . . . n, corresponding to the
underlying n pure states are non-zero. The running time
of both algorithms is proportional to the sparsity of the
input density matrix and depends (see Theorems 1 and 3 for
precise statements) on, roughly, the ratio of the largest to the
smallest probability p1/pn (recall that the smallest probability
is assumed to be non-zero), as well as the desired accuracy.

The third algorithm (Section IV) is fundamentally different,
if not orthogonal, to the previous two approaches. It leverages
the power of random projections [4], [5] to approximate
numerical linear algebra quantities, such as the eigenvalues
of a matrix. Assuming that the density matrix R has exactly
k � n non-zero eigenvalues, e.g., there are k pure states with
non-zero probabilities pi, i = 1 . . . k, the proposed algorithm
returns, with high probability, relative error approximations
to all k probabilities pi. This, in turn, implies an additive-
relative error approximation to the entropy of the density
matrix, which, under a mild assumption on the true entropy
of the density matrix, becomes a relative error approximation
(see Theorem 5 for a precise statement). The running time
of the algorithm is again proportional to the sparsity of the
density matrix and depends on the target accuracy, but, unlike
the previous two algorithms, does not depend on any function
of the pi.

From a technical perspective, the theoretical analysis of
the first two algorithms proceeds by combining the power
of polynomial approximations, either using Taylor series or
Chebyschev polynomials, to matrix functions, combined with
randomized trace estimators. A provably accurate variant of
the power method is used to estimate the largest probability
p1. If this estimate is significantly smaller than one, it can
improve the running times of the proposed algorithms (see

discussion after Theorem 1). The third algorithm leverages
a powerful, multiplicative matrix perturbation result that first
appeared in [6]. Our work in Section IV is a novel application
of this inequality to derive bounds for RandNLA algorithms.

Finally, in Section V, we present a detailed evaluation
of our algorithms on synthetic density matrices of various
sizes, most of which were generated using Matlab’s QETLAB
toolbox [7]. For some of the larger matrices that were used in
our evaluations, the exact computation of the entropy takes
hours, whereas our algorithms return approximations with
relative errors well below 0.5% in only a few minutes.

C. Prior work
The first non-trivial algorithm to approximate the von

Neumann entropy of a density matrix appeared in [2]. Their
approach is essentially the same as our approach in Section III.
Indeed, our algorithm in Section III was inspired by their
approach. However, our analysis is somewhat different, lever-
aging a provably accurate variant of the power method as
well as provably accurate trace estimators to derive a relative
error approximation to the entropy of a density matrix, under
appropriate assumptions. A detailed, technical comparison
between our results in Section III and the work of [2] is
delegated to Section III-C.

Independently and in parallel with our work, [8] presented
a multipoint interpolation algorithm (building upon [9]) to
compute a relative error approximation for the entropy of a real
matrix with bounded condition number. The proposed running
time of Theorem 35 of [8] does not depend on the condition
number of the input matrix (i.e., the ratio of the largest to the
smallest probability), which is a clear advantage in the case
of ill-conditioned matrices. However, the dependency of the
algorithm of Theorem 35 of [8] on terms like (log n/ε)6 or
n1/3nnz(A)+n

√
nnz(A) could blow up the running time of

the proposed algorithm for reasonably conditioned matrices.
We also note the recent work in [10], which used Taylor

approximations to matrix functions to estimate the log determi-
nant of symmetric positive definite matrices (see also Section
1.2 of [10] for an overview of prior work on approximating
matrix functions via Taylor series). The work of [11] used
a Chebyschev polynomial approximation to estimate the log
determinant of a matrix and is reminiscent of our approach in
Section III and, of course, the work of [2].

We conclude the section by noting that our algorithms will
use two tools (described, for the sake of completeness, in the
Appendix) that appeared in prior work. The first tool is the
power method, with a provable analysis that first appeared
in [12]. The second tool is a provably accurate trace estimation
algorithm for symmetric positive semidefinite matrices that
appeared in [13].

II. AN APPROACH VIA TAYLOR SERIES

Our first approach to approximate the von Neumann entropy
of a density matrix uses a Taylor series expansion to approxi-
mate the logarithm of a matrix, combined with a relative-error
trace estimator for symmetric positive semi-definite matrices
and the power method to upper bound the largest singular
value of a matrix.

KONTOPOULOU et al.: RANDOMIZED LINEAR ALGEBRA APPROACHES TO ESTIMATE THE VON NEUMANN ENTROPY OF DENSITY MATRICES 3

A. Algorithm and Main Theorem

Our main result is an analysis of Algorithm 1 (see below)
that guarantees relative error approximation to the entropy
of the density matrix R, under the assumption that R =∑n
i=1 piψiψ

T
i ∈ Rn×n has n pure states with 0 < ` ≤ pi

for all i = 1 . . . n. The following theorem is our main quality-

Algorithm 1 A Taylor series approach to estimate the entropy.

1: INPUT: R ∈ Rn×n, accuracy parameter ε > 0, failure
probability δ, and integer m > 0.

2: Estimate p̃1 using Algorithm 6 (see Appendix) with t =
O(lnn) and q = O(ln(1/δ)).

3: Set u = min{1, 6p̃1}.
4: Set s =

⌈
20 ln(2/δ)/ε2

⌉
.

5: Let g1,g2, . . . ,gs ∈ Rn be i.i.d. random Gaussian vec-
tors.

6: OUTPUT: return

Ĥ (R) = lnu−1 +
1

s

s∑
i=1

m∑
k=1

g>i R(In − u−1R)kgi
k

.

of-approximation result for Algorithm 1.

Theorem 1. Let R be a density matrix such that all proba-
bilities pi, i = 1 . . . n satisfy 0 < ` ≤ pi. Let u be computed
as in Algorithm 1 and let Ĥ (R) be the output of Algorithm 1
on inputs R, m, and ε < 1; Then, with probability at least
1− 2δ, ∣∣∣Ĥ (R)−H (R)

∣∣∣ ≤ 2εH (R) ,

by setting m =
⌈
u
` ln 1

ε

⌉
. The algorithm runs in time

O
((

u

`
· ln(1/ε)

ε2
+ ln(n)

)
ln(1/δ) · nnz(R)

)
.

A few remarks are necessary to better understand the above
theorem. First, ` could be set to pn, the smallest of the
probabilities corresponding to the n pure states of the density
matrix R. Second, it should be obvious that u in Algorithm 1
could be simply set to one and thus we could avoid calling
Algorithm 6 to estimate p1 by p̃1 and thus compute u.
However, if p1 is small, then u could be significantly smaller
than one, thus reducing the running time of Algorithm 1, which
depends on the ratio u/`. Third, ideally, if both p1 and pn were
used instead of u and `, respectively, the running time of the
algorithm would scale with the ratio p1/pn.

B. Proof of Theorem 1

We now prove Theorem 1, which analyzes the performance
of Algorithm 1. Our first lemma presents a simple expression
for H (R) using a Taylor series expansion.

Lemma 2. Let R ∈ Rn×n be a symmetric positive definite
matrix with unit trace and whose eigenvalues lie in the interval
[`, u], for some 0 < ` ≤ u ≤ 1. Then,

H (R) = lnu−1 +

∞∑
k=1

tr
(
R(In − u−1R)k

)
k

.

Proof. From the definition of the von Neumann entropy and
a Taylor expansion,

H (R) = −tr
(
R ln

(
uu−1R

))
= −tr ((lnu)R)− tr

(
R ln(In − (In − u−1R))

)
= lnu−1 − tr

(
−R

∞∑
k=1

(In − u−1R)k

k

)
(6)

= lnu−1 +

∞∑
k=1

tr
(
R(In − u−1R)k

)
k

.

Eqn. (6) follows since R has unit trace and from a Taylor ex-
pansion: indeed, ln(In−A) = −

∑∞
k=1 Ak/k for a symmetric

matrix A whose eigenvalues are all in the interval (−1, 1).
We note that the eigenvalues of In−u−1R are in the interval
[0, 1 − (`/u)], whose upper bound is strictly less than one
since, by our assumptions, `/u > 0.

We now proceed to prove Theorem 1. We will condition
our analysis on Algorithm 6 being successful, which happens
with probability at least 1− δ. In this case, u = min{1, 6p̃1}
is an upper bound for all probabilities pi. For notational
convenience, set C = In − u−1R. We start by manipulating
∆ =

∣∣∣Ĥ (R)−H (R)
∣∣∣ as follows:

∆ =

∣∣∣∣∣
m∑

k=1

1

k
·

1

s

s∑
i=1

g>i RCkgi −
∞∑

k=1

1

k
tr
(
RCk

)∣∣∣∣∣
≤
∣∣∣∣∣∣

m∑
k=1

1

k
·
1

s

s∑
i=1

g
>
i RC

k
gi −

m∑
k=1

1

k
tr
(
RC

k
)∣∣∣∣∣∣ +

∣∣∣∣∣∣
∞∑

k=m+1

1

k
tr
(
RC

k
)∣∣∣∣∣∣

=

∣∣∣∣∣∣ 1s
s∑

i=1

g
>
i

 m∑
k=1

RC
k
/k

 gi − tr

 m∑
k=1

1

k
RC

k

∣∣∣∣∣∣︸ ︷︷ ︸
∆1

+

∣∣∣∣∣∣
∞∑

k=m+1

tr
(
RC

k
)
/k

∣∣∣∣∣∣︸ ︷︷ ︸
∆2

.

We now bound the two terms ∆1 and ∆2 separately. We
start with ∆1: the idea is to apply Lemma 10 on the matrix∑m
k=1 RCk/k with s =

⌈
20 ln(2/δ)/ε2

⌉
. Hence, with proba-

bility at least 1− δ:

∆1 ≤ ε · tr

(
m∑
k=1

RCk/k

)
≤ ε · tr

(∞∑
k=1

RCk/k

)
. (7)

A subtle point in applying Lemma 10 is that the matrix∑m
k=1 RCk/k must be symmetric positive semidefinite. To

prove this, let the SVD of R be R = ΨΣpΨ
T , where all three

matrices are in Rn×n and the diagonal entries of Σp are in the
interval [`, u]. Then, it is easy to see that C = In − u−1R =
Ψ(In − u−1Σp)Ψ

T and RCk = ΨΣp(In − u−1Σp)
kΨT ,

where the diagonal entries of In − u−1Σp are non-negative,
since the largest entry in Σp is upper bounded by u. This
proves that RCk is symmetric positive semidefinite for any k,
a fact which will be useful throughout the proof. Now,

m∑
k=1

RCk/k = Ψ

(
Σp

m∑
k=1

(In − u−1Σp)
k/k

)
ΨT ,

which shows that the matrix of interest is symmetric positive
semidefinite. Additionally, since RCk is symmetric positive
semidefinite, its trace is non-negative, which proves the second

4 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL.XX, NO.XX, APRIL 2018

inequality in eqn. (7) as well. We proceed to bound ∆2 as
follows:

∆2 =

∣∣∣∣∣∣
∞∑

k=m+1

tr
(
RCk

)
/k

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

k=m+1

tr
(
RCmCk−m

)
/k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

k=m+1

tr
(
C

m
C

k−m
R
)
/k

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∞∑

k=m+1

‖Cm‖2 · tr
(
C

k−m
R
)
/k

∣∣∣∣∣∣
(8)

= ‖Cm‖2 ·

∣∣∣∣∣∣
∞∑

k=m+1

tr
(
RC

k−m
)
/k

∣∣∣∣∣∣ ≤ ‖Cm‖2 ·

∣∣∣∣∣∣
∞∑

k=1

tr
(
RC

k
)
/k

∣∣∣∣∣∣ (9)

≤
(

1−
`

u

)m ∞∑
k=1

tr
(
RCk

)
/k. (10)

To prove eqn. (8), we used von Neumann’s trace inequality3.
Eqn. (8) now follows since Ck−mR is symmetric posi-
tive semidefinite4. To prove eqn. (9), we used the fact that
tr
(
RCk

)
/k ≥ 0 for any k ≥ 1. Finally, to prove eqn. (10),

we used the fact that ‖C‖2 = ‖In−u−1Σp‖2 ≤ 1−`/u since
the smallest entry in Σp is at least ` by our assumptions. We
also removed unnecessary absolute values since tr

(
RCk

)
/k

is non-negative for any positive integer k.
Combining the bounds for ∆1 and ∆2 gives∣∣∣Ĥ (R)−H (R)

∣∣∣ ≤ (ε+

(
1− `

u

)m) ∞∑
k=1

tr
(
RCk

)
k

.

We have already proven in Lemma 2 that
∞∑
k=1

tr
(
RCk

)
k

≤ H (R)− lnu−1 ≤ H (R) ,

where the last inequality follows since u ≤ 1. Collecting our
results, we get∣∣∣Ĥ (R)−H (R)

∣∣∣ ≤ (ε+

(
1− `

u

)m)
H (R) .

Setting

m =

⌈
u

`
ln

1

ε

⌉
and using

(
1− x−1

)x ≤ e−1 (x > 0), guarantees that
(1− `/u)m ≤ ε and concludes the proof of the theorem. We
note that the failure probability of the algorithm is at most 2δ
(the sum of the failure probabilities of the power method and
the trace estimation algorithm). Finally, we discuss the running
time of Algorithm 1, which is equal to O(s · m · nnz(R)).
Since p = O

(
ln(1/δ)
ε2

)
and m = O

(
u ln(1/ε)

`

)
, the running

time becomes (after accounting for the running time of Algo-
rithm 6)

O
((

u

`
· ln(1/ε)

ε2
+ ln(n)

)
ln(1/δ) · nnz(R)

)
.

3Indeed, for any two matrices A and B, tr (AB) ≤
∑

i σi(A)σi(B),
where σi(A) (respectively σi(B)) denotes the i-th singular value of A
(respectively B). Since ‖A‖2 = σ1(A) (its largest singular value), this
implies that tr (AB) ≤ ‖A‖2

∑
i σi(B); if B is symmetric positive

semidefinite, tr (B) =
∑

i σi(B).
4This can be proven using an argument similar to the one used to prove

eqn. (7).

III. AN APPROACH VIA CHEBYSCHEV POLYNOMIALS

Our second approach is to use a Chebyschev polynomial-
based approximation scheme to estimate the entropy of a
density matrix. Our approach follows the work of [2], but our
analysis uses the trace estimators of [13] and Algorithm 6 and
its analysis. Importantly, we present conditions under which
the proposed approach is competitive with the approach of
Section II.

A. Algorithm and Main Theorem

The proposed algorithm leverages the fact that the von Neu-
mann entropy of a density matrix R is equal to the (negative)
trace of the matrix function R ln R and approximates the
function R ln R by a sum of Chebyschev polynomials; then,
the trace of the resulting matrix is estimated using the trace
estimator of [13].

Let fm(x) =
∑m
w=0 αwTw(x) with α0 = u

2

(
ln u

4 + 1
)
,

α1 = u
4

(
2 ln u

4 + 3
)
, and αw = (−1)wu

w3−w for w ≥ 2. Let
Tw(x) = cos(w · arccos((2/u)x − 1)) and x ∈ [0, u] be
the Chebyschev polynomials of the first kind for any integer
w > 0. Algorithm 2 computes u (an upper bound estimate
for the largest probability p1 of the density matrix R) and
then computes fm(R) and estimates its trace. We note that
the computation g>i fm(R)gi can be done efficiently using
Clenshaw’s algorithm; see Appendix C for the well-known
approach.

Algorithm 2 A Chebyschev polynomial-based approach to estimate
the entropy.

1: INPUT: R ∈ Rn×n, accuracy parameter ε > 0, failure
probability δ, and integer m > 0.

2: Estimate p̃1 using Algorithm 6 (see Appendix) with t =
O(lnn) and q = O(ln(1/δ)).

3: Set u = min{1, 6p̃1}.
4: Set s =

⌈
20 ln(2/δ)/ε2

⌉
.

5: Let g1,g2, . . . ,gs ∈ Rn be i.i.d. random Gaussian vec-
tors.

6: OUTPUT: Ĥ (R) = − 1
s

∑s
i=1 g>i fm(R)gi.

Our main result is an analysis of Algorithm 2 that guarantees
a relative error approximation to the entropy of the density
matrix R, under the assumption that R =

∑n
i=1 piψiψ

T
i ∈

Rn×n has n pure states with 0 < ` ≤ pi for all i = 1 . . . n.
The following theorem is our main quality-of-approximation
result for Algorithm 2.

Theorem 3. Let R be a density matrix such that all proba-
bilities pi, i = 1 . . . n satisfy 0 < ` ≤ pi. Let u be computed
as in Algorithm 1 and let Ĥ (R) be the output of Algorithm 2
on inputs R, m, and ε < 1; Then, with probability at least
1− 2δ, ∣∣∣Ĥ (R)−H (R)

∣∣∣ ≤ 3εH (R) ,

by setting m =
√

u
2ε` ln(1/(1−`)) . The algorithm runs in time

O
((√

u

` ln(1/(1− `))
· 1

ε2.5
+ ln(n)

)
ln(1/δ) · nnz(R)

)
.

KONTOPOULOU et al.: RANDOMIZED LINEAR ALGEBRA APPROACHES TO ESTIMATE THE VON NEUMANN ENTROPY OF DENSITY MATRICES 5

The similarities between Theorems 1 and 3 are obvious:
same assumptions and directly comparable accuracy guaran-
tees. The only difference is in the running times: the Taylor
series approach has a milder dependency on ε, while the
Chebyschev-based approximation has a milder dependency on
the ratio u/`, which controls the behavior of the probabilities
pi. However, for small values of ` (`→ 0),

ln
1

1− `
= ln

(
1 +

`

1− `

)
≈ `

1− `
≈ `.

Thus, the Chebyschev-based approximation has a milder de-
pendency on u but not necessarily ` when compared to
the Taylor-series approach. We also note that the discussion
following Theorem 1 is again applicable here.

B. Proof of Theorem 3

We will condition our analysis on Algorithm 6 being
successful, which happens with probability at least 1−δ. In this
case, u = min{1, 6p̃1} is an upper bound for all probabilities
pi. We now recall (from Section I-A) the definition of the
function h(x) = x lnx for any real x ∈ (0, 1], with h(0) = 0.
Let R = ΨΣpΨ

T ∈ Rn×n be the density matrix, where both
Σp and Ψ are matrices in Rn×n. Notice that the diagonal
entries of Σp are the pis and they satisfy 0 < ` ≤ pi ≤ u ≤ 1
for all i = 1 . . . n.

Using the definitions of matrix functions from [3], we can
now define h(R) = Ψh(Σp)Ψ

T , where h(Σp) is a diagonal
matrix in Rn×n with entries equal to h(pi) for all i = 1 . . . n.
We now restate Proposition 3.1 from [2] in the context of our
work, using our notation.

Lemma 4. The function h(x) in the interval [0, u] can be
approximated by

fm(x) =

m∑
w=0

αwTw(x),

where α0 = u
2

(
ln u

4 + 1
)
, α1 = u

4

(
2 ln u

4 + 3
)
, and αw =

(−1)wu
w3−w for w ≥ 2. For any m ≥ 1,

|h(x)− fm(x)| ≤ u

2m(m+ 1)
≤ u

2m2
,

for x ∈ [0, u].

In the above, Tw(x) = cos(w · arccos((2/u)x − 1)) for
any integer w ≥ 0 and x ∈ [0, u]. Notice that the function
(2/u)x − 1 essentially maps the interval [0, u], which is
the interval of interest for the function h(x), to [−1, 1],
which is the interval over which Chebyschev polynomials are
commonly defined. The above theorem exploits the fact that
the Chebyschev polynomials form an orthonormal basis for
the space of functions over the interval [−1, 1].

We now move on to approximate the entropy H(R) using
the function fm(x). First,

−tr (fm(R)) = −tr

(
m∑

w=0

αwTw(R)

)
= −tr

(
m∑

w=0

αwΨTw(Σp)ΨT

)

= −
m∑

w=0

αwtr (Tw(Σp)) = −
m∑

w=0

αw

n∑
i=1

Tw(pi)

= −
n∑
i=1

m∑
w=0

αwTw(pi). (11)

Recall from Section I-A that H(R) = −
∑n
i=1 h(pi). We can

now bound the difference between tr (−fm(R)) and H(R).
Indeed,

|H(R)− tr (−fm(R))| =

∣∣∣∣∣−
n∑
i=1

h(pi) +

n∑
i=1

m∑
w=0

αwTw(pi)

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣h(pi)−
m∑
w=0

αwTw(pi)

∣∣∣∣∣
≤ nu

2m2
. (12)

The last inequality follows by the final bound in Lemma 4,
since all pi’s are the in the interval [0, u]. Recall that we also
assumed that all pis are lower-bounded by ` > 0 and thus

H(R) =

n∑
i=1

pi ln
1

pi
≥ n` ln

1

1− `
. (13)

We note that the upper bound on the pis follows since the
smallest pi is at least ` > 0 and thus the largest pi cannot
exceed 1 − ` < 1. We note that we cannot use the upper
bound u in the above formula, since u could be equal to one;
1− ` is always strictly less than one but it cannot be a priori
computed (and thus cannot be used in Algorithm 2), since ` is
not a priori known. We can now restate the bound of eqn. (12)
as follows:

|H(R)− tr (−fm(R))| ≤
u

2m2` ln(1/(1− `))
H(R) ≤ εH(R), (14)

where the last inequality follows by setting

m =

√
u

2ε` ln(1/(1− `))
. (15)

Next, we argue that the matrix −fm(R) is symmetric positive
semidefinite (under our assumptions) and thus one can apply
Lemma 10 to estimate its trace. We note that

−fm(R) = Ψ (−fm(Σp)) ΨT ,

which trivially proves the symmetry of −fm(R) and also
shows that its eigenvalues are equal to −fm(pi) for all
i = 1 . . . n. We now bound∣∣∣∣(−fm(pi))− pi ln

1

pi

∣∣∣∣ = |−fm(pi) + pi ln pi|

= |pi ln pi − fm(pi)|

≤ u

2m2
≤ ε` ln

1

1− `
,

6 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL.XX, NO.XX, APRIL 2018

where the inequalities follow from Lemma 4 and our choice
for m from eqn. (15). This inequality holds for all i = 1 . . . n
and implies that

−fm(pi) ≥ pi ln
1

pi
− ε` ln

1

1− `
≥ (1− ε)` ln

1

1− `
,

using our upper (1 − ` < 1) and lower (` > 0) bounds on
the pis. Now ε ≤ 1 proves that −fm(pi) are non-negative
for all i = 1 . . . n and thus −fm(R) is a symmetric positive
semidefinite matrix; it follows that its trace is also non-
negative. We can now apply the trace estimator of Lemma 10
to get∣∣∣∣∣tr (−fm(R))−

(
−

1

s

s∑
i=1

g>i fm(R)gi

)∣∣∣∣∣ ≤ ε · tr (−fm(R)) . (16)

For the above bound to hold, we need to set

s =
⌈

20 ln(2/δ)/ε2
⌉
. (17)

We now conclude as follows:∣∣∣H(R)− Ĥ (R)
∣∣∣ ≤ |H(R)− tr (−fm(R))|

+

∣∣∣∣∣tr (−fm(R))−
(
−

1

s

s∑
i=1

g>i fm(R)gi

)∣∣∣∣∣
≤ εH(R) + εtr (−fm(R))

≤ εH(R) + ε(1 + ε)H(R)

≤ 3εH(R).

The first inequality follows by adding and subtracting
−tr (fm(R)) and using sub-additivity of the absolute value;
the second inequality follows by eqns. (14) and (16); the third
inequality follows again by eqn. (14); and the last inequality
follows by using ε ≤ 1.

We note that the failure probability of the algorithm is at
most 2δ (the sum of the failure probabilities of the power
method and the trace estimation algorithm). Finally, we discuss
the running time of Algorithm 2, which is equal to O(s ·
m · nnz(R)). Using the values for m and p from eqns. (15)
and (17), the running time becomes (after accounting for the
running time of Algorithm 6)

O
((√

u

` ln(1/(1− `))
· 1

ε2.5
+ ln(n)

)
ln(1/δ) · nnz(R)

)
.

C. A comparison with the results of [2]

The work of [2] culminates to the error bounds described in
Theorem 4.3 (and the ensuing discussion). In our parlance, [2]
first derives the error bound of eqn. (12). It is worth empha-
sizing that the bound of eqn. (12) holds even if the pis are
not necessarily strictly positive, as assumed by Theorem 3: the
bound holds even if some of the pis are equal to zero.

Unfortunately, without imposing a lower bound assumption
on the pis it is difficult to get a meaningful error bound and
an efficient algorithm. Indeed, the error implied by eqn. (12)
(without any assumption on the pis) necessitates setting m
to at least Ω(

√
n) (perhaps up to a logarithmic factor, as we

will discuss shortly). To understand this, note that the entropy
of the density matrix R ranges between zero and ln k, where
k is the rank of the matrix R, i.e., the number of non-zero

pi’s. Clearly, k ≤ n and thus lnn is an upper bound for
H(R). Notice that if H(R) is smaller than n/(2m2), the
error bound of eqn. (12) does not even guarantee that the
resulting approximation will be positive, which is, of course,
meaningless as an approximation to the entropy.

In order to guarantee a relative error bound of the form
εH(R) via eqn. (12), we need to set m to be at least

m ≥
√

n

2εH(R)
, (18)

which even for “large” values ofH(R) (i.e., values close to the
upper bound lnn) still implies that m is O(ε−1/2

√
n/ lnn).

Even with such a large value for m, we are still not done:
we need an efficient trace estimation procedure for the matrix
−fm(R). While this matrix is always symmetric, it is not
necessarily positive or negative semi-definite (unless additional
assumptions are imposed on the pis, like we did in Theorem 3).
Unfortunately, we are not aware of any provably accurate,
relative error approximation algorithms for the trace of just
symmetric matrices: the results of [13], [14] only apply to
symmetric positive (or negative) semidefinite matrices. The
work of [2] does provide an analysis of a trace estimator for
general symmetric matrices (pioneered by Hutchinson in [15]).
However, in our notation, in order to achieve a relative error
bound, the final error bound of [2] (see eqns. (19) and (20)
in [2]), necessitates setting m to the value of eqn. (18).
However, in that case, p (the number of random vectors to be
generated in order to estimate the trace of a general symmetric
matrix) grows as a function of5 m4 = O(n2) (see eqn. (20)
in [2]), which is prohibitively large, as with that many random
vectors the running time of just the trace estimation algorithm
blows to O(n2nnz(R)), which could easily exceed the trivial
O(n3) running time to exactly compute H (R).

IV. AN APPROACH VIA RANDOM PROJECTION MATRICES

Finally, we focus on perhaps the most interesting special
case: the setting where at most k (out of n, with k � n) of
the probabilities pi of the density matrix R of eqn. (2) are non-
zero. In this setting, we prove that elegant random-projection-
based techniques achieve relative error approximations to all
probabilities pi, i = 1 . . . k. The running time of the proposed
approach depends on the particular random projection that is
used and can be made to depend on the sparsity of the input
matrix.

A. Algorithm and Main Theorem

The proposed algorithm uses a random projection matrix Π
to create a “sketch” of R in order to approximate the pis. In
words, Algorithm 3 creates a sketch of the input matrix R by
post-multiplying R by a random projection matrix; this is a
well-known approach from the RandNLA literature (see [4]
for details). Assuming that R has rank at most k, which is
equivalent to assuming that at most k of the probabilities pi in
eqn. (2) are non-zero (e.g., the system underlying the density
matrix R has at most k pure states), then the rank of RΠ is

5Up to logarithmic factors.

KONTOPOULOU et al.: RANDOMIZED LINEAR ALGEBRA APPROACHES TO ESTIMATE THE VON NEUMANN ENTROPY OF DENSITY MATRICES 7

Algorithm 3 Approximating the entropy via random projec-
tion matrices

1: INPUT: Integer n (dimensions of matrix R) and integer
k (with rank of R at most k � n, see eqn. (2)).

2: Construct the random projection matrix Π ∈ Rn×s (see
Section IV-B for details on Π and s).

3: Compute R̃ = RΠ ∈ Rn×s.
4: Compute and return the (at most) k non-zero singular

values of R̃, denoted by p̃i, i = 1 . . . k.
5: OUTPUT: p̃i, i = 1 . . . k and Ĥ (R) =

∑k
i=1 p̃i ln 1

p̃i
.

also at most k. In this setting, Algorithm 3 returns the non-zero
singular values of RΠ as approximations to the pi, i = 1 . . . k.

The following theorem is our main quality-of-approximation
result for Algorithm 3.

Theorem 5. Let R be a density matrix with at most k � n
non-zero probabilities and let ε < 1/2 be an accuracy
parameter. Then, with probability at least .9, the output of
Algorithm 3 satisfies ∣∣p2i − p̃2i ∣∣ ≤ εp2i
for all i = 1 . . . k. Additionally,∣∣∣H(R)− Ĥ (R)

∣∣∣ ≤ √εH(R) +

√
3

2
ε.

Algorithm 3 (combined with Algorithm 5 below) runs in time

O
(
nnz(R) + nk4/ε4

)
.

Comparing the above result with Theorems 1 and 3, we note
that the above theorem does not necessitate imposing any
constraints on the probabilities pi, i = 1 . . . k. Instead, it
suffices to have k non-zero probabilities. The final result is an
additive-relative error approximation to the entropy of R (as
opposed to the relative error approximations of Theorems 1
and 3); under the mild assumption H(R) ≥

√
ε, the above

bound becomes a true relative error approximation6.

B. Two constructions for the random projection matrix

We now discuss two constructions for the matrix Π and we
cite two bounds regarding these constructions from prior work
that will be useful in our analysis. The first construction is the
subsampled Hadamard Transform, a simplification of the Fast
Johnson-Lindenstrauss Transform of [16]; see [17], [18] for
details.
The following result has appeared in [5], [17], [18].

Lemma 6. Let U ∈ Rn×k such that UTU = Ik and let Π ∈
Rn×s be constructed by Algorithm 4. Then, with probability
at least 0.9, ∥∥∥n

k
UTΠΠTU− Ik

∥∥∥
2
≤ ε,

by setting s = O
(

(k + log n) · log kε2
)

.

6Recall that H(R) ranges between zero and ln k; if H(R) ≥
√
ε we get∣∣∣H(R)− Ĥ (R)

∣∣∣ ≤ c0√εH(R) with c0 = 1 +
√

3/4.

Algorithm 4 The subsampled Randomized Hadamard Trans-
form

1: INPUT: integers n, s > 0 with s� n.
2: Let S be an empty matrix.
3: For t = 1, . . . , s (i.i.d. trials with replacement) select

uniformly at random an integer from {1, 2, . . . , n}.
4: If i is selected, then append the column vector ei to S,

where ei ∈ Rn is the i-th canonical vector.
5: Let H ∈ Rn×n be the normalized Hadamard transform

matrix.
6: Let D ∈ Rn×n be a diagonal matrix with

Dii =

{
+1 , with probability 1/2
−1 , with probability 1/2

7: OUTPUT: Π = DHS ∈ Rn×s.

Our second construction is the input sparsity transform of [19].
This major breakthrough was further analyzed in [20], [21] and
we present the following result from [20, Appendix A1].

Algorithm 5 An input-sparsity transform

1: INPUT: integers n, s > 0 with s� n.
2: Let S be an empty matrix.
3: For t = 1, . . . , n (i.i.d. trials with replacement) select

uniformly at random an integer from {1, 2, . . . , s}.
4: If i is selected, then append the row vector eTi to S, where

ei ∈ Rs is the i-th canonical vector.
5: Let D ∈ Rn×n be a diagonal matrix with

Dii =

{
+1 , with probability 1/2
−1 , with probability 1/2

6: OUTPUT: Π = DS ∈ Rn×s.

Lemma 7. Let U ∈ Rn×k such that UTU = Ik and let Π ∈
Rn×s be constructed by Algorithm 5. Then, with probability
at least 0.9,

‖UTΠΠTU− Ik‖2 ≤ ε,

by setting s = O(k2/ε2).

We refer the interested reader to [21] for improved analyses
of Algorithm 5 and its variants.

C. Proof of Theorem 5
At the heart of the proof of Theorem 5 lies the following

perturbation bound from [6] (Theorem 2.3).

Theorem 8. Let DAD be a symmetric positive definite matrix
such that D is a diagonal matrix and Aii = 1 for all i. Let
DED be a perturbation matrix such that ‖E‖2 < λmin(A).
Let λi be the i-the eigenvalue of DAD and let λ′i be the i-th
eigenvalue of D(A + E)D. Then, for all i,

|λi − λ′i| ≤
‖E‖2

λmin(A)
.

Consider the matrix RΠΠTRT ; we will use the above
theorem to argue that its singular values are good approx-
imations to the singular values of the matrix RRT . Recall

8 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL.XX, NO.XX, APRIL 2018

that R = ΨΣpΨ
T where Ψ has orthonormal columns.

Note that the eigenvalues of RRT = ΨΣ2
pΨ

T are equal to
the eigenvalues of the matrix Σ2

p; similarly, the eigenvalues
of ΨΣpΨ

TΠΠTΨΣpΨ
T are equal to the eigenvalues of

ΣpΨ
TΠΠTΨΣp. Thus, we can compare the matrices

ΣpIkΣp and ΣpΨ
TΠΠTΨΣp.

In the parlance of Theorem 8, E = ΨTΠΠTΨ−Ik. Applying
either Lemma 6 (after rescaling the matrix Π) or Lemma 7,
we immediately get that ‖EA‖2 ≤ ε < 1 with probability at
least 0.9. Since λmin(Ik) = 1, the assumption of Theorem 8
is satisfied. We note that the eigenvalues of ΣpIkΣp are equal
to p2i for i = 1 . . . k (all positive, which guarantees that the
matrix ΣpIkΣp is symmetric positive definite, as mandated
by Theorem 8) and the eigenvalues of ΣpΨ

TΠΠTΨΣp are
equal to p̃2i , where p̃i are the singular values of ΣpΨ

TΠ.
(Note that these are exactly equal to the outputs returned by
Algorithm 3, since the singular values of ΣpΨ

TΠ are equal
to the singular values of ΨΣpΨ

TΠ = RΠ.) Thus, we can
conclude: ∣∣p2i − p̃2i ∣∣ ≤ εp2i . (19)

The above result guarantees that all pis can be approximated
up to relative error using Algorithm 3. We now investigate
the implication of the above bound to approximating the von
Neumann entropy of R. Indeed,

k∑
i=1

p̃i ln
1

p̃i
≤

k∑
i=1

(1 + ε)1/2pi ln
1

(1− ε)1/2pi

≤ (1 + ε)1/2

(
k∑

i=1

pi ln
1

pi
+

k∑
i=1

pi ln
1

(1− ε)1/2

)

= (1 + ε)1/2H(R) +

√
1 + ε

2
ln

1

1− ε

≤ (1 + ε)1/2H(R) +

√
1 + ε

2
ln(1 + 2ε)

≤ (1 +
√
ε)H(R) +

√
3

2
ε.

In the second to last inequality we used 1/(1−ε) ≤ 1+2ε for
any ε ≤ 1/2 and in the last inequality we used ln(1+2ε) ≤ 2ε
for ε ∈ (0, 1/2). Similarly, we can prove that:

k∑
i=1

p̃i ln
1

p̃i
≥ (1−

√
ε)H(R)− 1

2
ε.

Combining, we get∣∣∣∣∣
k∑
i=1

p̃i ln
1

p̃i
−H(R)

∣∣∣∣∣ ≤ √εH(R) +

√
3

2
ε.

We conclude by discussing the running time of Algorithm 3.
Theoretically, the best choice is to combine the matrix Π from
Algorithm 5 with Algorithm 3, which results in a running time

O
(
nnz(R) + nk4/ε4

)
.

V. EXPERIMENTS

In this section we report experimental results in order to
prove the practical efficiency of our algorithms. We show that
our algorithms are both numerically accurate and computation-
ally efficient. Our algorithms were implemented in MatLab; to
be precise, we used MATLAB R2016a on the Snyder cluster of
Purdue University. The (dedicated) node that we used consists
of two 10-Core Intel Xeon-E5 processors (2.60GHz) and 512
GBs of RAM.

We generated random density matrices for most of which
we used the QETLAB Matlab toolbox [7] to derive (real-
valued) density matrices of size 5, 000 × 5, 000, on which
most of our extensive evaluations were run. We also tested our
methods on a much larger 30, 000 × 30, 000 density matrix,
which was close to the largest matrix that Matlab would allow
us to load. We used the function RandomDensityMatrix
of QETLAB and the Haar measure; we also experimented
with the Bures measure to generate random matrices, but we
did not observe any qualitative differences worth reporting.
Recall that exactly computing the Von-Neumann entropy using
eqn. (1) presumes knowledge of the entire spectrum of the
matrix; to compute all singular values of a matrix we used
the svd function of Matlab. The accuracy of our proposed
approximation algorithms was evaluated by measuring the
relative error; wall-clock times were reported in order to
quantify the speedup that our approximation algorithms were
able to achieve.

A. Empirical results for the Taylor and Chebyshev approxi-
mation algorithms

We start by reporting results on the Taylor and Chebyshev
approximation algorithms, which have two sources of error:
the number of terms that are retained in either the Taylor
series expansion or the Chebyshev polynomial approximation
and the trace estimation that is used in both approximation
algorithms. We will separately evaluate the accuracy loss that
is contributed by each source of error in order to understand
the behavior of the proposed approximation algorithms.

Consider a 5, 000×5, 000 random density matrix and let m
(the number of terms retained in the Taylor series approxima-
tion or the degree of the polynomial used in the Chebyshev
polynomial approximation) range between five and 30 in incre-
ments of five. Let s, the number of random Gaussian vectors
used to estimate the trace, be set to {50, 100, 200, 300}. Recall
that our error bounds for Algorithms 1 and 2 depend on u,
an estimate for the largest eigenvalue of the density matrix.
We used the power method to estimate the largest eigenvalue
(let λ̃max be the estimate) and we set u to λ̃max and 6λ̃max.
Figures 1 and 2 show the relative error (out of 100%) for all
combinations of m, s, and u for the Taylor and Chebyshev
approximation algorithms. It is worth noting that we also
report the error when no trace estimation (NTE) is used in
order to highlight that most of the accuracy loss is due to the
Taylor/Chebyshev approximation and not the trace estimation.

We observe that the relative error is always small, typically
close to 1-2%, for any choice of the parameters s, m, and
u. The Chebyshev algorithm returns better approximations

KONTOPOULOU et al.: RANDOMIZED LINEAR ALGEBRA APPROACHES TO ESTIMATE THE VON NEUMANN ENTROPY OF DENSITY MATRICES 9

when u is an overestimate for λmax while the two algorithms
are comparable (in terms of accuracy) where u is very close
to λmax, which agrees with our theoretical results. We also
note that estimating the largest eigenvalue incurs minimal
computational cost (less than one second). The NTE line (no
trace estimation) in the plots serves as a lower bound for the
relative error. Finally, we note that computing the exact Von-
Neumann entropy took approximately 1.5 minutes for matrices
of this size.

5 10 15 20 25 30

Taylor terms

0%

5%

10%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

5 10 15 20 25 30

Chebyshev terms

0%

5%

10%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

Fig. 1. Relative error for 5, 000×5, 000 density matrix using the Taylor and
the Chebyshev approximation algorithms with u = λ̃max.

5 10 15 20 25 30

Taylor terms

0%

5%

10%

R
el

at
iv

e
er

ro
r

u 6
max

NTE
s=50
s=100
s=200
s=300

5 10 15 20 25 30

Chebyshev terms

0%

5%

10%

R
el

at
iv

e
er

ro
r

u 6
max

NTE
s=50
s=100
s=200
s=300

Fig. 2. Relative error for 5, 000×5, 000 density matrix using the Taylor and
the Chebyshev approximation algorithms with u = 6λ̃max.

The second dataset that we experimented with was a much
larger density matrix of size 30, 000×30, 000. This matrix was
the largest matrix for which Snyder’s memory was sufficient
to perform operations like the full SVD. Notice that since the
increase in the matrix size is six-fold compared to the previous
one and SVD’s running time grows cubically with the input
size, we expect the running time to compute the exact SVD to
be roughly 63 · 90 seconds, which is approximately 5.4 hours;

u
max

NTE 50 100 200 300

s

0

2

4

6

8

10

12

14

16

T
im

e(
se

c)

Taylor
Chebyshev

Fig. 3. Time (in seconds) to run the approximate algorithms for the
5, 000 × 5, 000 density matrix for m = 5. Exactly computing the Von-
Neumann entropy took approximately 90 seconds.

indeed, the exact computation of the Von-Neumann entropy
took approximately 5.6 hours. We evaluated both the Taylor
and the Chebyshev approximation schemes by setting the
parameters m and s to take values in the sets {5, 10, 15, 20}
and {50, 100, 200}, respectively. The parameter u was set to
λ̃max, where the latter value was computed using the power
method, which took approximately 3.6 minutes. We report the
wall-clock running times and relative error (out of 100%) in
Figures 5 and 4.

We observe that the relative error is always less than 1%
for both methods, with the Chebyshev approximation yielding
almost always slightly better results. Note that our Chebyshev-
polynomial-based approximation algorithm significantly out-
performed the exact computation: e.g., for m = 5 and s = 50,
our estimate was computed in less than ten minutes and
achieved less than .2% relative error.

50 100 150 200

s

0%

0.5%

1%

R
el

at
iv

e
er

ro
r

m=5

Taylor
Chebyshev

50 100 150 200

s

0%

0.5%

1%

R
el

at
iv

e
er

ro
r

m=10

Taylor
Chebyshev

50 100 150 200

s

0%

0.5%

1%

R
el

at
iv

e
er

ro
r

m=15

Taylor
Chebyshev

50 100 150 200

s

0%

0.5%

1%

R
el

at
iv

e
er

ro
r

m=20

Taylor
Chebyshev

Fig. 4. Relative error for 30, 000× 30, 000 density matrix using the Taylor
and the Chebyshev approximation algorithms with u = λ̃max.

The third dataset we experimented with was the tridiagonal

10 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL.XX, NO.XX, APRIL 2018

s
50 100 200

T
i
m
e
(
m
i
n
)

0

20

40

60
m=5

Taylor
Chebyshev

s
50 100 200

T
i
m
e
(
m
i
n
)

0

20

40

60
m=10

Taylor
Chebyshev

s
50 100 200

T
i
m
e
(
m
i
n
)

0

20

40

60
m=15

Taylor
Chebyshev

s
50 100 200

T
i
m
e
(
m
i
n
)

0

20

40

60
m=20

Taylor
Chebyshev

Fig. 5. Wall-clock times: Taylor approximation (blue) and Chebyshev
approximation (red) for u = λ̃max. Exact computation needed approximately
5.6 hours.

matrix from [11, Section 5.1]:

A =

2 −1 0 . . . 0

−1 2 −1
. . .

...

0
. 0

...
. . . −1 2 −1

0 . . . 0 −1 2

This matrix is the coefficient matrix of the discretized one-
dimensional Poisson equation:

f(x) = −d
2vx
dx

defined in the interval [0, 1] with Dirichlet boundary conditions
v(0) = v(1) = 0. We normalize A by dividing it with its trace
in order to make it a density matrix. Consider the 5, 000 ×
5, 000 normalized matrix A and let m (the number of terms
retained in the Taylor series approximation or the degree of the
polynomial used in the Chebyshev polynomial approximation)
range between five and 30 in increments of five. Let s, the
number of random Gaussian vectors used for estimating the
trace be set to 50, 100, 200, or 300. We used the formula

λi =
4

2n
sin2

(
iπ

2n+ 2

)
, i = 1, . . . , n

to compute the eigenvalues of A (after normalization) and we
set u to λmax and 6λmax. Figures 6 and 7 show the relative
error (out of 100%) for all combinations of m, s, and u for
the Taylor and Chebyshev approximation algorithms. We also
report the error when no trace estimation (NTE) is used.

We observe that the relative error is higher than the one
observed for the 5, 000 × 5, 000 random density matrix. We
report wall-clock running times at Figure 8. The Chebyshev-
polynomial-based algorithm returns better approximations for
all choices of the parameters and, in most cases, is faster than
the Taylor-polynomial-based algorithm, e.g. for m = 5, s =

5 10 15 20 25 30

Taylor terms

0%

2%

4%

6%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

5 10 15 20 25 30

Chebyshev terms

0%

2%

4%

6%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

Fig. 6. Relative error for 5, 000×5, 000 tridiagonal density matrix using the
Taylor and the Chebyshev approximation algorithms with u = λmax.

5 10 15 20 25 30

Taylor terms

0%

2%

4%

6%

R
el

at
iv

e
er

ro
r

u 6
max

NTE
s=50
s=100
s=200
s=300

5 10 15 20 25 30

Chebyshev terms

0%

2%

4%

6%

R
el

at
iv

e
er

ro
r

u 6
max

NTE
s=50
s=100
s=200
s=300

Fig. 7. Relative error for 5, 000×5, 000 tridiagonal density matrix using the
Taylor and the Chebyshev approximation algorithms with u = 6λmax.

50 and u = λmax, our estimate was computed in about two
seconds and achieved less than .5% relative error.

The fourth dataset we experimented with includes 5, 000×
5, 000 density matrices whose first top-k eigenvalues follow
a linear decay and the remaining 5, 000 − k a uniform
distribution. Let k, the number of eigenvalues that follow the
linear decay, take values in the set {50, 1000, 3500, 5000}.
Let m, the number of terms retained in the Taylor series
approximation or the degree of the polynomial used in the
Chebyshev polynomial approximation, range between five
and 30 in increments of five. Let s, the number of ran-
dom Gaussian vectors used to estimate the trace, be set to
{50, 100, 200, 300}. The estimate of the largest eigenvalue u
is set to λ̃max. Figures 9 to 12 show the relative error (out of
100%) for all combinations of k, m, s, and u for the Taylor
and Chebyshev approximation algorithms.

We observe that the relative error is decreasing as k in-
creases. It is worth noting that when k = 3, 500 and k = 5, 000

KONTOPOULOU et al.: RANDOMIZED LINEAR ALGEBRA APPROACHES TO ESTIMATE THE VON NEUMANN ENTROPY OF DENSITY MATRICES 11

u
max

NTE 50 100 200 300

s

0

2

4

6

8

10

12
T

im
e(

se
c)

Taylor
Chebyshev

Fig. 8. Wall-clock times: Taylor approximation (blue) and Chebyshev
approximation (red) for m = 5. Exact computation needed approximately
30 seconds.

the Taylor-polynomial-based algorithm returns better relative
error approximation than the Chebyshev-polynomial-based
algorithm. In the latter case we observe that the relative error
of the Taylor-based algorithm is almost zero. This observation
has a simple explanation. Figure 13 shows the distribution of
the eigenvalues in the four cases we examine. We observe
that for k = 50 the eigenvalues are spread in the interval
(10−2, 10−4); for k = 1, 000 the eigenvalues are spread in the
interval (10−3, 10−4); while for k = 3, 500 or k = 5, 000 the
eigenvalues are of order 10−4. It is well known that the Taylor
polynomial returns highly accurate approximations when it is
computed on values lying inside the open disc centered at a
specific value u, which, in our case, is the approximation to
the dominant eigenvalue. The radius of the disk is roughly
r = λm+1/λm, where m is the degree of the Taylor polyno-
mial. If r ≤ 1 then the Taylor polynomial converges; otherwise
it diverges. Figure 14 shows the convergence rate for various
values of k. We observe that for k = 50 the polynomial
diverges, which leads to increased errors for the Taylor-based
approximation algorithm (reported error close to 23%). In all
other cases, the convergence rate is close to one, resulting in
negligible impact to the overall error.

In all four cases, the Chebyshev-polynomial based algorithm
behaves better or similar to the Taylor-polynomial based
algorithm. It is worth noting that when the majority of the
eigenvalues are clustered around the smallest eigenvalue then
to achieve relative error similar to the one observed for the
QETLAB random density matrices, more than 30 polynomial
terms need to be retained, which increases the computational
time of our algorithms. The increase of the computational time
as well as the increased relative error can be justified by the
large condition number that these matrices have (remember
that for both approximation algorithms the running time de-
pends on the approximate condition number u/l). E.g., for
k = 50, the condition number is in the order of hundreds
which is significant larger than the roughly constant condition
number when k = 5, 000.

5 10 15 20 25 30

Taylor terms

10%

15%

20%

25%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

5 10 15 20 25 30

Chebyshev terms

0%

2%

4%

6%

8%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

Fig. 9. Relative error for 5, 000×5, 000 density matrix with the top-50 eigen-
values decaying linearly using the Taylor and the Chebyshev approximation
algorithms with u = λmax.

5 10 15 20 25 30

Taylor terms

0%

1%

2%

3%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

5 10 15 20 25 30

Chebyshev terms

0%

1%

2%

3%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

Fig. 10. Relative error for 5, 000 × 5, 000 density matrix with the top-
1000 eigenvalues decaying linearly using the Taylor and the Chebyshev
approximation algorithms with u = λmax.

B. Empirical results for the random projection approximation
algorithms

In order to evaluate our third algorithm, we generated low-
rank random density matrices (recall that the algorithm of
Section IV works only for random density matrices of rank k
with k � n). Additionally, in order to evaluate the subsampled
randomized Hadamard transform and avoid padding with all-
zero rows, we focused on values of n (the number of rows and
columns of the density matrix) that are powers of two. Finally,
we also evaluated a simpler random projection matrix, namely
the Gaussian random matrix, whose entries are all Gaussian
random variables with zero mean and unit variance.

We generated low rank random density matrices with ex-
ponentially (using the QETLAB Matlab toolbox) and linearly
decaying eigenvalues. The sizes of the density matrices we
tested were 4, 096 × 4, 096 and 16, 384 × 16, 384. We also

12 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL.XX, NO.XX, APRIL 2018

5 10 15 20 25 30

Taylor terms

0%

0.5%

1%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

5 10 15 20 25 30

Chebyshev terms

0%

0.5%

1%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

Fig. 11. Relative error for 5, 000 × 5, 000 density matrix with the top-
3500 eigenvalues decaying linearly using the Taylor and the Chebyshev
approximation algorithms with u = λmax.

5 10 15 20 25 30

Taylor terms

0%

0.5%

1%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

5 10 15 20 25 30

Chebyshev terms

0%

0.5%

1%

R
el

at
iv

e
er

ro
r

u
max

NTE
s=50
s=100
s=200
s=300

Fig. 12. Relative error for 5, 000 × 5, 000 density matrix with the top-
5000 eigenvalues decaying linearly using the Taylor and the Chebyshev
approximation algorithms with u = λmax.

generated much larger 30, 000 × 30, 000 random matrices
on which we only experimented with the Gaussian random
projection matrix.

We computed all the non-zero singular values of a ma-
trix using the svds function of Matlab in order to take
advantage of the fact that the target density matrix has low
rank. The accuracy of our proposed approximation algorithms
was evaluated by measuring the relative error; wall-clock
times were reported in order to quantify the speedup that our
approximation algorithms were able to achieve.

We start by reporting results for Algorithm 3 using the
Gaussian, the subsampled randomized Hadamard transform,
and the input-sparsity transform random projection matrices.
Consider the 4, 096 × 4, 096 low rank density matrices and
let k, the rank of the matrix, be 10, 50, 100, and 300. Let s,
the number of columns of the random projection matrix, range

i

10
0

10
1

10
2

10
3

10
4

λ
i

10
-4

10
-3

10
-2

10
-1

Eigenvalue Distribution

k=50

k=1000

k=3500

k=5000

Fig. 13. Eigenvalue distribution of 5, 000× 5, 000 density matrices with the
top-k = {50, 1000, 3500, 5000} eigenvalues decaying linearly and the
remaining ones (5, 000− k) following a uniform distribution.

Taylor Terms

5 10 15 20 25 30

C
o
n
v
e
rg

e
n
c
e
 R

a
ti
o

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05
Convergence of Taylor

k=50

k=1000

k=3500

k=5000

Fig. 14. Convergence radius of the Taylor polynomial for the 5, 000×5, 000
density matrices with the top-k = {50, 1000, 3500, 5000} eigenvalues
decaying linearly and the remaining ones (5, 000 − k) following a uniform
distribution.

from 50 to 1, 000 in increments of 50. Figures 15 and 16 depict
the relative error (out of 100%) for all combinations of k and
s. We also report the wall-clock running times for values of s
between 300 and 450 at Figure 17.

We observe that in the case of the random matrix with
exponentially decaying eigenvalues and for all algorithms the
relative error is under 0.3% for any choice of the parameters
k and s and, as expected, decreases as the dimension of the
projection space s grows larger. Interestingly, all three random
projection matrices returned essentially identical accuracies
and very comparable wall-clock running time results. This
observation is due to the fact that for all choices of k, after
scaling the matrix to unit trace, the only eigenvalues that were
numerically non-zero were the 10 dominant ones.

In the case of the random matrix with linearly decaying
eigenvalues (and for all algorithms) the relative error increases
as the rank of the matrix increases and decreases as the size
of the random projection matrix increases. This is expected:
as the rank of the matrix increases, a larger random projection

KONTOPOULOU et al.: RANDOMIZED LINEAR ALGEBRA APPROACHES TO ESTIMATE THE VON NEUMANN ENTROPY OF DENSITY MATRICES 13

space is needed to capture the “energy” of the matrix. Indeed,
we observe that for all values of k, setting s = 1, 000
guarantees a relative error under 1%. Similarly, for k = 10,
the relative error is under 0.3% for any choice of s.

The running time depends not only on the size of the matrix,
but also on its rank, e.g. for k = 100 and s = 450, our ap-
proximation was computed in about 2.5 seconds, whereas for
k = 300 and s = 450, it was computed in less than one second.
Considering, for example, the case of k = 300 exponentially
decaying eigenvalues, we observe that for s = 400 we achieve
relative error below 0.15% and a speedup of over 60 times
compared to the exact computation. Finally, it is observed
that all three algorithms returned very comparable wall-clock
running time results. This observation could be due to the fact
that matrix multiplication is heavily optimized in Matlab and
therefore the theoretical advantages of the Hadamard transform
did not manifest themselves in practice.

400 600 800 1000

s

0%

0.1%

0.2%

0.3%

R
el

at
iv

e
er

ro
r

k=10

Gaussian
Hadamard
Input Sparsity

400 600 800 1000

s

0%

0.1%

0.2%

0.3%

R
el

at
iv

e
er

ro
r

k=50

Gaussian
Hadamard
Input Sparsity

400 600 800 1000

s

0%

0.1%

0.2%

0.3%

R
el

at
iv

e
er

ro
r

k=100

Gaussian
Hadamard
Input Sparsity

400 600 800 1000

s

0%

0.1%

0.2%

0.3%

R
el

at
iv

e
er

ro
r

k=300

Gaussian
Hadamard
Input Sparsity

Fig. 15. Relative error for the 4, 096 × 4, 096 rank-k density matrix with
exponentially decaying eigenvalues using Algorithm 3 with the Gaussian (red),
the subsampled randomized Hadamard transform (blue), and the input sparsity
transform (black) random projection matrices.

The second dataset we experimented with was a 16, 384×
16, 384 low rank density matrix. We set k = 50
and k = 500 and we let s take values in the set
{500, 1000, 1500, . . . , 3000, 3500}. We report the relative
error (out of 100%) for all combinations of k and s in
Figure 18 for the matrix with exponentially decaying eigen-
values and in Figure 19 for the matrix with linearly decaying
eigenvalues. We also report the wall-clock running times for
s between 500 and 2, 000 in Figure 20. We observe that
the relative error is typically around 1% for both types of
matrices, with running times ranging between ten seconds and
four minutes, significantly outperforming the exact entropy
computation which took approximately 1.6 minutes for the
rank 50 approximation and 20 minutes for the rank 500
approximation.

The last dataset we experimented with was a 30, 000 ×
30, 000 low rank density matrix on which we ran Algo-
rithm 3 using a Gaussian random projection matrix. We set
k = 50 and k = 500 and we let s take values in the set

400 600 800 1000

s

0%

1%

2%

3%

4%

R
el

at
iv

e
er

ro
r

k=10

Gaussian
Hadamard
Input Sparsity

400 600 800 1000

s

0%

1%

2%

3%

4%

R
el

at
iv

e
er

ro
r

k=50

Gaussian
Hadamard
Input Sparsity

400 600 800 1000

s

0%

1%

2%

3%

4%

R
el

at
iv

e
er

ro
r

k=100

Gaussian
Hadamard
Input Sparsity

400 600 800 1000

s

0%

1%

2%

3%

4%

R
el

at
iv

e
er

ro
r

k=300

Gaussian
Hadamard
Input Sparsity

Fig. 16. Relative error for the 4, 096 × 4, 096 rank-k density matrix with
linearly decaying eigenvalues using Algorithm 3 with the Gaussian (red), the
subsampled randomized Hadamard transform (blue), and the input sparsity
transform (black) random projection matrices.

k=10

300 350 400 450

s

0

1

2

3

4
T

im
e(

se
c)

Gaussian
Hadamard
Input sparsity

k=50

300 350 400 450

s

0

1

2

3

4

T
im

e(
se

c)

Gaussian
Hadamard
Input sparsity

k=100

300 350 400 450

s

0

1

2

3

4

T
im

e(
se

c)

Gaussian
Hadamard
Input sparsity

k=300

300 350 400 450

s

0

1

2

3

4

T
im

e(
se

c)
Gaussian
Hadamard
Input sparsity

Fig. 17. Wall-clock times: Algorithm 3 on 4, 096× 4, 096 random matrices,
with the Gaussian (blue), the subsampled randomized Hadamard transform
(red) and the input sparsity transform (orange) projection matrices. The exact
entropy was computed in 1.5 seconds for the rank-10 approximation, in
eight seconds for the rank-50 approximation, in 15 seconds for the rank-100
approximation, and in one minute for the rank-300 approximation.

{500, 1000, 1500, . . . , 3000, 3500}. We report the relative
error (out of 100%) for all combinations of k and s in Fig-
ure 21 for the matrix with exponentially decaying eigenvalues
and in Figure 22 for the matrix with the linearly decaying
eigenvalues. We also report the wall-clock running times for
s ranging between 500 and 2, 000 in Figure 23. We observe
that the relative error is typically around 1% for both types of
matrices, with the running times ranging between 30 seconds
and two minutes, outperforming the exact entropy which was
computed in six minutes for the rank 50 approximation and
in one hour for the rank 500 approximation.

14 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL.XX, NO.XX, APRIL 2018

500 1000 1500 2000 2500 3000 3500

s

0%

1%

2%

3%

4%
R

el
at

iv
e

er
ro

r
k=50

Gaussian
Hadamard
Input Sparsity

500 1000 1500 2000 2500 3000 3500

s

0%

1%

2%

3%

4%

R
el

at
iv

e
er

ro
r

k=500

Gaussian
Hadamard
Input Sparsity

Fig. 18. Relative error for the 16, 384× 16, 384 rank-k density matrix with
exponentially decaying eigenvalues using Algorithm 3 with the Gaussian (red),
the subsampled randomized Hadamard transform (blue), and the input sparsity
transform (black) random projection matrices.

500 1000 1500 2000 2500 3000 3500

s

0%

1%

2%

3%

R
el

at
iv

e
er

ro
r

k=50

Gaussian
Hadamard
Input Sparsity

500 1000 1500 2000 2500 3000 3500

s

0%

1%

2%

3%

4%

R
el

at
iv

e
er

ro
r

k=500

Gaussian
Hadamard
Input Sparsity

Fig. 19. Relative error for the 16, 384× 16, 384 rank-k density matrix with
linearly decaying eigenvalues using Algorithm 3 with the Gaussian (red), the
subsampled randomized Hadamard transform (blue), and the input sparsity
transform (black) random projection matrices.

500 1000 1500 2000 2500 3000 3500

s

0%

0.5%

1%

1.5%

2%

2.5%

3%

3.5%

R
el

at
iv

e
er

ro
r

Relative error

k=50
k=500

Fig. 22. Relative error for the 30, 000× 30, 000 rank-k density matrix with
linearly decaying eigenvalues using Algorithm 3 with the Gaussian random
projection matrix for k = 50 (red) and for k = 500 (blue).

k=50

500 1000 1500 2000

s

0

10

20

30

40

T
im

e(
se

c)

Gaussian
Hadamard
Input sparsity

k=500

500 1000 1500 2000

s

0

0.5

1

1.5

T
im

e(
m

in
)

Gaussian
Hadamard
Input sparsity

Fig. 20. Wall-clock times: Algorithm 3 with the Gaussian (blue), the
subsampled randomized Hadamard transform (red) and the input sparsity
transform (orange) projection matrices. The exact entropy was computed in
1.6 minutes for the rank 50 approximation and in 20 minutes for the rank
500 approximation.

500 1000 1500 2000 2500 3000 3500

s

0%

0.5%

1%

1.5%

2%

2.5%

3%

3.5%

4%
R

el
at

iv
e

er
ro

r
k=50
k=500

Fig. 21. Relative error for the 30, 000 × 30, 000 rank-k density matrix
with exponentially decaying eigenvalues using Algorithm 3 with the Gaussian
random projection matrix for k = 50 (red) and for k = 500 (blue).

Running time

500 1000 1500 2000

s

0

0.5

1

1.5

2

2.5

T
im

e(
m

in
)

k=50
k=500

Fig. 23. Wall-clock times: rank-50 approximation (blue) and rank-500
approximation (red). Exact computation needed about six minutes and one
hour respectively.

KONTOPOULOU et al.: RANDOMIZED LINEAR ALGEBRA APPROACHES TO ESTIMATE THE VON NEUMANN ENTROPY OF DENSITY MATRICES 15

VI. CONCLUSIONS AND OPEN PROBLEMS

We presented and analyzed three randomized algorithms to
approximate the von Neumann entropy of density matrices.
Our algorithms leverage recent developments in the RandNLA
literature: randomized trace estimators, provable bounds for
the power method, the use of random projections to approxi-
mate the singular values of a matrix, etc. All three algorithms
come with provable accuracy guarantees under assumptions
on the spectrum of the density matrix. Empirical evaluations
on 30, 000 × 30, 000 synthetic density matrices support our
theoretical findings and demonstrate that we can efficiently
approximate the von Neumann entropy in a few minutes with
minimal loss in accuracy, whereas an the exact computation
takes over 5.5 hours.

An important open problem is to relax (or eliminate) the
assumptions associated with our three key technical results
without sacrificing our running time guarantees. It would
be critical to understand whether our assumptions are, for
example, necessary to achieve relative error approximations
and either provide algorithmic results that relax or eliminate
our assumptions or provide matching lower bounds and coun-
terexamples.

APPENDIX A
THE POWER METHOD

We consider the well-known power method to estimate the
largest eigenvalue of a matrix. In our context, we will use
the power method to estimate the largest probability pi for a
density matrix R.

Algorithm 6 Power method, repeated q times.
• INPUT: SPD matrix A ∈ Rn×n, integers q, t > 0.
• For j = 1, . . . , q

1) Pick uniformly at random a vector xj0 ∈ {+1,−1}n.
2) For i = 1, . . . , t

• xji = A · xji−1.

3) Compute: p̃j1 =
xj
t

T
Axj

t

xj
t

T
xj
t

.

• OUTPUT: p̃1 = maxj=1...q p̃
j
1.

Algorithm 6 requires O(qt(n + nnz(A))) arithmetic opera-
tions to compute p̃1. The following lemma appeared in [10],
building upon [12].

Lemma 9. Let p̃1 be the output of Algorithm 6 with q =
d4.82 log(1/δ)e and t =

⌈
log
√

4n
⌉
. Then, with probability at

least 1− δ,
1

6
p1 ≤ p̃1 ≤ p1.

The running time of Algorithm 6 is
O
(
(n+ nnz(A)) log(n) log

(
1
δ

))
.

APPENDIX B
TRACE ESTIMATORS

The following lemma appeared in [10] and is immediate
from Theorem 5.2 in [13]. It implies an algorithm to approx-
imate the trace of any symmetric positive semidefinite matrix

A by computing inner products of the matrix with Gaussian
random vectors.

Lemma 10. Let A ∈ Rn×n be a positive semi-definite
matrix, let 0 < ε < 1 be an accuracy parameter, and let
0 < δ < 1 be a failure probability. If g1,g2, . . . ,gs ∈ Rn
are independent random standard Gaussian vectors, then, for
s =

⌈
20 ln(2/δ)/ε2

⌉
, with probability at least 1− δ,∣∣∣∣∣tr (A)− 1

s

s∑
i=1

g>i Agi

∣∣∣∣∣ ≤ ε · tr (A) .

APPENDIX C
THE CLENSHAW ALGORITHM

We briefly sketch Clenshaw’s algorithm to evaluate Cheby-
shev polynomials with matrix inputs. Clenshaw’s algorithm is
a recursive approach with base cases bm+2(x) = bm+1(x) = 0
and the recursive step (for k = m,m− 1, . . . , 0):

bk(x) = αk + 2xbk+1(x)− bk+2(x). (20)

(See Section III for the definition of αk.) Then,

fm(x) =
1

2
(α0 + b0(x)− b2(x)) . (21)

Using the mapping x→ 2(x/u)− 1, eqn. (20) becomes

bk(x) = αk + 2

(
2

u
x− 1

)
bk+1(x)− bk+2(x). (22)

In the matrix case, we substitute x by a matrix. Therefore, the
base cases are Bm+2(R) = Bm+1(R) = 0 and the recursive
step is

Bk(R) = αkIn+2

(
2

u
R− In

)
Bk+1(R)−Bk+2(R) (23)

for k = m,m− 1, . . . , 0. The final sum is

fm(R) =
1

2
(α0In + B0(R)−B2(R)) . (24)

Using the matrix version of Clenshaw’s algorithm, we can now
rewrite the trace estimation g>fm(R)g as follows. First, we
right multiply eqn. (23) by g,

Bk(R)g = αkIng + 2

(
2

u
R− In

)
Bk+1(R)g −Bk+2(R)g,

yk = αkg + 2

(
2

u
R− In

)
yk+1 − yk+2. (25)

Eqn. (25) follows by substituting yi = Bi(R)g. Multiplying
the base cases by g, we get ym+2 = ym+1 = 0 and the final
sum becomes

g>fm(R)g =
1

2

(
α0(g>g) + g>(y0 − y2)

)
. (26)

Algorithm 7 summarizes all the above.

16 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL.XX, NO.XX, APRIL 2018

Algorithm 7 Clenshaw’s algorithm to compute g>fm(R)g.

1: INPUT: αi, i = 0, . . . ,m, R ∈ Rn×n, g ∈ Rn
2: Set ym+2 = ym+1 = 0
3: for k = m,m− 1, . . . , 0 do
4: yk = αkg + 4

uRyk+1 − 2yk+1 − yk+2

5: end for
6: OUTPUT: g>fm(R)g = 1

2

(
α0(g>g) + g>(y0 − y2)

)

REFERENCES

[1] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[2] T. P. Wihler, B. Bessire, and A. Stefanov, “Computing the Entropy of
a Large Matrix,” Journal of Physics A: Mathematical and Theoretical,
vol. 47, no. 24, p. 245201, 2014.

[3] N. J. Higham, Functions of Matrices: Theory and Computation.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2008.

[4] P. Drineas and M. W. Mahoney, “RandNLA: Randomized Numerical
Linear Algebra,” Communications of the ACM, vol. 59, no. 6, pp. 80–
90, 2016.

[5] D. P. Woodruff, “Sketching as a Tool for Numerical Linear Algebra,”
Foundations and Trends in Theoretical Computer Science, vol. 10, no.
1-2, pp. 1–157, 2014.

[6] J. Demmel and K. Veselic, “Jacobi’s Method is more Accurate than QR,”
SIAM Journal on Matrix Analysis and Applications, vol. 13, no. 4, pp.
1204–1245, 1992.

[7] N. Johnston, “QETLAB: A Matlab toolbox for quantum entanglement,
version 0.9,” http://qetlab.com, 2016.

[8] C. Musco, P. Netrapalli, A. Sidford, S. Ubaru, and
D. P. Woodruff, “Spectrum Approximation Beyond Fast Matrix
Multiplication: Algorithms and Hardness,” 2018. [Online]. Available:
http://arxiv.org/abs/1704.04163

[9] N. J. Harvey, J. Nelson, and K. Onak, “Sketching and streaming entropy
via approximation theory,” in IEEE Annual Symposium on Foundations
of Computer Science, 2008, pp. 489–498.

[10] C. Boutsidis, P. Drineas, P. Kambadur, E.-M. Kontopoulou, and
A. Zouzias, “A Randomized Algorithm for Approximating the Log
Determinant of a Symmetric Positive Definite Matrix,” Linear Algebra
and its Applications, vol. 533, pp. 95–117, 2017.

[11] I. Han, D. Malioutov, and J. Shin, “Large-scale Log-determinant Com-
putation through Stochastic Chebyshev Expansions,” Proceedings of the
32nd International Conference on Machine Learning, vol. 37, pp. 908–
917, 2015.

[12] L. Trevisan, “Graph Partitioning and Expanders,” 2011, handout 7.
[13] H. Avron and S. Toledo, “Randomized Algorithms for Estimating the

Trace of an Implicit Symmetric Positive Semi-definite Matrix,” Journal
of the ACM, vol. 58, no. 2, p. 8, 2011.

[14] F. Roosta-Khorasani and U. Ascher, “Improved Bounds on Sample Size
for Implicit Matrix Trace Estimators,” Foundations of Computational
Mathematics, vol. 15, pp. 1187–1212, 2015.

[15] M. F. Hutchinson, “A Stochastic Estimator of the Trace of the Influence
Matrix for Laplacian Smoothing Splines,” Communications in Statistics:
Simulation and Computation, vol. 19, no. 2, pp. 433–450, 1990.

[16] N. Ailon and B. Chazelle, “The Fast Johnson–Lindenstrauss Transform
and Approximate Nearest Neighbors,” SIAM Journal on Computing,
vol. 39, no. 1, pp. 302–322, 2009.

[17] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, “Faster
Least Squares Approximation,” Numerische Mathematik, vol. 117, pp.
219–249, 2011.

[18] J. A. Tropp, “Improved Analysis of the Subsampled Randomized
Hadamard Transform,” Advances in Adaptive Data Analysis, vol. 03,
no. 01, p. 8, 2010.

[19] K. L. Clarkson and D. P. Woodruff, “Low Rank Approximation and
Regression in Input Sparsity Time,” in Proceedings of the 45th annual
ACM Symposium on Theory of Computing. ACM Press, 2013, pp.
81–90.

[20] X. Meng and M. W. Mahoney, “Low-distortion Subspace Embeddings
in Input-sparsity Time and Applications to Robust Linear Regression,”
in Proceedings of the 45th annual ACM Symposium on Theory of
Computing, 2013, pp. 91–100.

[21] J. Nelson and H. L. Nguyn, “OSNAP: Faster Numerical Linear Algebra
Algorithms via Sparser Subspace Embeddings,” in Proceedings of the
46th annual IEEE Symposium on Foundations of Computer Science,
2013.

