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Abstract—Compression schemes for advanced data structures
have become a central modern challenge. Information theory has
traditionally dealt with conventional data such as text, images,
or video. In contrast, most data available today is multitype
and context-dependent. To meet this challenge, we have recently
initiated a systematic study of advanced data structures such as
unlabeled graphs [8]. In this paper, we continue this program
by considering trees with statistically correlated vertex names.
Trees come in many forms, but here we deal with binary plane
trees (where order of subtrees matters) and their non-plane
version (where order of subtrees doesn’t matter). Furthermore,
we assume that each name is generated by a known memoryless
source (horizontal independence), but a symbol of a vertex name
depends in a Markovian sense on the corresponding symbol of the
parent vertex name (vertical Markovian dependency). We first
evaluate the entropy for both types of trees. Then we propose
two compression schemes: COMPRESSPTREE for plane trees with
correlated names, and COMPRESSNPTREE for non-plane trees,
each running in linear time in the size of the input tree. We
prove that the former scheme achieves the lower bound within
two bits, while the latter is within a multiplicative factor of 1%
of the optimal compression ratio. For non-plane trees we also
design an optimal algorithm within two bits of the entropy, with
time complexity O(n?) (where n is the number of leaves in the
underlying non-plane tree).

I. INTRODUCTION

Over the last decade, repositories of various data have
grown enormously. Most of the available data is no longer in
conventional form, such as text or images. Instead, biological
data (e.g., gene expression data, protein interaction networks,
phylogenetic trees), topographical maps (containing various
information about temperature, pressure, etc.), medical data
(cerebral scans, mammogram, etc.), and social network data
archives are in the form of multimodal data structures, that is,
multitype and context dependent structures (see Figure 1). For
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efficient compression of such data structures, one must take
into account not only several different types of information,
but also the statistical dependence between the general data
labels and the structures themselves. In Figure 1 we show
an example of such a multimodal structure representing an
annotated protein interaction network in which graphs, trees,
DAGs, and text are involved.

Fig. 1: Annotated protein interaction network: nodes in the
network represent proteins in the human interactome, and there
is an edge between two nodes if and only if the two proteins
interact in some biological process. Associated with each node
is a position in a fixed ontology (encoded by a DAG whose
nodes represent classes of proteins defined by, say, structural
or functional characteristics) known as the Gene Ontology [1],
[2]. Nodes that are connected in the interaction network are
often close in the ontology.

This paper is a first step in the direction of the larger goal
of a unified framework for compression of multimodal graph
and tree structures. We focus on compression of trees with
structure-correlated vertex “names” (strings). There are myriad
examples of trees with correlated names. As an example, in
Figure 2 we present a Linnaean taxonomy of hominoid. As is
easy to see, names lower in the tree (children) are (generally)
variations of the name at the root of a subtree. Closer to the
models that we will consider, there are binary tree models of
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Fig. 2: Linnaean taxonomy of hominoid

speciation in phylogenetics, in which each vertex (representing
an organism or a species) is associated with a genome (a
DNA string); a parent-child relationship in this tree indicates
a biological parent-child relationship (either at the level of
species or individual organisms, depending on the application
context). Naturally, the genome of a child is related to that of
its parent; furthermore, the sequence of genomes in a given
path down the tree has a Markov property: a child’s genome is
related to that of its ancestors only through that of its parent.

To capture this intuitive behavior, we first formalize two
natural models for random binary trees with correlated names
and prove that they are equivalent (see Theorem 1 and Corol-
lary 1).

We focus on two variations: plane-oriented and non-plane-
oriented trees [3]. In plane-oriented trees, the order of subtrees
matters, while in non-plane-oriented trees (e.g., representing
a phylogenetic tree [20]) all orientations of subtrees are
equivalent (see Figure 3). For the plane-oriented case, we

N

Fig. 3: All plane-ordered representatives of one particular non-
plane tree.

give an exact formula for the entropy of the labeled tree (see
Theorem 2) as well as an efficient compression algorithm
based on arithmetic encoding whose expected code length
is within two bits of the optimal length. In the non-plane
case, we focus on unlabeled trees and first derive the entropy
rate (see Theorem 3). Then we propose two compression
algorithms: a simple one of time complexity O(n) (where n
is the number of leaves) that achieves compression within a
multiplicative factor of 1% of the entropy, and then an optimal
algorithm of time complexity O(n?) that is within two bits
from the entropy. We should point out that non-plane trees are
more challenging to study due to the typically large number
of symmetries. In particular, the entropy for non-plane trees
depends on what we call the tree Rényi entropy of order 2
discussed in the remark below Theorem 3.

Regarding prior work, literature on tree and graph com-
pression is quite scarce. For unlabeled graphs there are some

recent information-theoretic results, including [7], [8] (see also
[10]) and [9]. In 1990, Naor [7] proposed an efficiently com-
putable representation for unlabeled graphs (solving Turan’s
[11] open question) that is optimal up to the first two leading
terms of the entropy when all unlabeled graphs are equally
likely. Naor’s result is asymptotically a special case of recent
work of Choi and Szpankowski [8], who extended Naor’s
result to general Erd6s-Rényi graphs. In particular, in [8] the
entropy and an optimal compression algorithm (up to two
leading terms of the entropy) for Erd8s-Rényi graph structures
were presented. Furthermore, in [9] an automata approach
was used to design an optimal graph compression scheme.
There also have been some heuristic methods for real-world
graphs compression including grammar-based compression for
some data structures. Peshkin [23] proposed an algorithm
for a graphical extension of the one-dimensional SEQUITUR
compression method. However, SEQUITUR is known not to
be asymptotically optimal. For binary plane-oriented trees
rigorous information-theoretic results were obtained in [13],
complemented by a universal grammar-based lossless coding
scheme [14].

However, for structures with vertex names, which is the
topic of this paper, there have been almost no attempts at
theoretical analyses, with the notable exception of [12] for
sparse Erdés-Rényi graphs. The only significant algorithmic
results have been based on heuristics, exploiting the well-
known properties of special kinds of graphs: for example in
the case of Web graphs, their low degree and clustering [24]
(see also [25], [27]). Similarly, there are some algorithms with
good practical compression rate for phylogenetic trees (see
[26]); however, they too lack any theoretical guarantees of
their performance.

The tree models (without vertex names) that we consider
in this paper are variations of the Yule distribution [17],
which commonly arises in mathematical phylogenetics. Var-
ious aspects of these tree models have been studied in the
past (see, e.g., [16]), but the addition of vertex names and
the consideration of information-theoretic questions about the
resulting models seems to be a novel aspect of the present
work.

The rest of the paper is structured as follows: in Sec-
tion II, we formulate the models and present the main re-
sults, including entropy formulas/bounds and performances of
the compression algorithms. In Section III, we present the
derivations of the entropy results. In Section IV, we present
the compression algorithms and their analyses. Finally, in
Section V, we conclude with future directions.

II. MAIN THEORETICAL RESULTS

In this section we introduce the concepts of binary plane and
non-plane trees together with the notion of locally correlated
names associated with their vertices. Then we define two
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Fig. 4: A rooted plane tree and its standardization. The left tree
can be represented by the list of triples {(5,1,7),(1,2,3)}.
After standardization, this becomes {(1,2,5),(2,3,4)}. Note
that this is distinct from the tree {(1,2,3), (3,4,5)} or, equiv-
alently, {(5,1,7),(7,2,3)}.

models for these types of trees with correlated names and
show the equivalence of these two models.

A. Basic definitions and notation

We call a rooted tree a plane tree when we distinguish left-
to-right-order of the children of the nodes in the embedding of
a tree on a plane (see [3]). To avoid confusion, we call a tree
with no fixed ordering of its subtrees a non-plane tree (also
known in the literature as Otter trees [20]). In a non-plane tree
any orientation of subtrees is equivalent.

Let 7 be the set of all binary rooted plane trees having
finitely many vertices and, for each positive integer n, let 7,
be the subset of 7 consisting of all trees with exactly n leaves.
Similarly, let S and S,, be the set of all binary rooted non-
plane trees with finitely many vertices and exactly n leaves,
respectively.

We can also augment our trees with vertex names — given
the alphabet .4, names are simply words from A" for some
integer m > 1. Let LT, and LS,, be the set of all binary
rooted plane and non-plane trees with names, respectively,
having exactly n leaves with each vertex assigned a name
— a word from A™. In this paper we consider the case where
names are correlated with the structure as discussed below.

Formally, a rooted plane binary tree ¢ € 7,, can be uniquely
described by a set of triples (v;,vj, vy), consisting of a parent
vertex and its left and right children. Given such a set of triples
defining a valid rooted plane binary tree, we can standardize
it to a tree defined on the vertex set 2n—1] = {1,...,2n—1}
by replacing vertex v in each triple by the depth-first search
index of v. We then consider two trees to be the same if they
have the same standard representation. See the example in
Figure 4. Furthermore, a tree with names it € L7, can be
uniquely described as a pair (¢, f), where ¢t is a tree, described
as above, and f is a function from the vertices of ¢ to the
words in A™. We can also describe an element of L7, as a

set of pairs (v;,1;) for all ¢ = 1,2,...,2n — 1 (representing
the vertices) and their names. If we identify the vertices (v;)
with the integers 1,2,...,2n — 1, f can be described as a

sequence of 2n — 1 words from A™.

1) Tree notation: Here we give notation regarding trees that
will be used throughout the paper. Let ¢ be a binary plane tree,
and consider a vertex v in .

We denote by A\(¢,v) and p(t,v) the left and right child of
v in t, respectively (i.e., these are vertices in t). By t(v), we
shall mean the subtree of ¢ rooted at v. We denote by ¢ and
t% the left and right subtree of ¢, respectively. We denote by
A(t) the number of leaves in the tree ¢. Finally, we denote by
root(t) the root node of ¢.

B. The model

We now present a model for generating plane trees with
structure-correlated names. This model will be such that
individual names are tuples of independent and identically
distributed symbols, (a property which we shall call horizontal
independence), but the letters of names of children depend on
the name of the parent (vertical Markovian dependence).

Our main model MT) is defined as follows: given the
number n of leaves in the tree, the length of the names m, the
alphabet A (of size |.A|) and the transition probability matrix
P of size |A| x | A| (representing an ergodic Markov chain)
with its stationary distribution 7 (i.e. 7P = 7), we define
a random variable LT}, as a result of the following process:
starting from a single node with a randomly generated name
of length m by a memoryless source with distribution 7w, we
repeat the following steps until a tree has exactly n leaves:

o pick uniformly at random a leaf v in the tree generated
in the previous step,

o append two children vz and vy to v,

o generate correlated names for vy, and vy by taking each
letter from v and generating new letters according to P:
for every letter of the parent we pick the corresponding
row of matrix P and generate randomly the respective
letters for vy, and vg.

Alternatively, LT, is equivalent to an ordered pair of
random variables (7, F},), where T, is a random variable
supported on 7, and Fj, is a random variable supported on
sequences of words from A" of length 2n — 1.

Our second model, MT5 (also known as the binary search
tree model), is ubiquitous in the computer science literature,
arising for example in the context of binary search trees
formed by inserting a random permutation of [n — 1] into
a binary search tree [5]. Under this model we generate a
random tree T, as follows: ¢ is equal to the unique tree in
71 and we associate a number n with its single vertex. Then,
in each recursive step, let v1,vs,...,v; be the leaves of ¢,
and let integers nq,no, ..., n; be the values assigned to these
leaves, respectively. For each leaf v; with value n; > 1,
randomly select an integer s; from the set {1,...,n; — 1}
with probability ﬁ (independently of all other such leaves),
and then grow two edges from v; with left edge terminating
at a leaf of the extended tree with value s; and right edge



terminating at a leaf of the extended tree with value n; — s;.
The extended tree is the result of the current recursive step.
Clearly, the recursion terminates with a binary tree having
exactly n leaves, in which each leaf has assigned value 1; this
tree is 715,.

The assignment of names to such trees, given length m,
alphabet A, transition matrix P and its stationary distribution
m, proceeds exactly as in the M7} model: we first generate
a random word from A™ by a memoryless source with
distribution 7 and assign it to a root, then generate correlated
names for children, according to the names of the parents
and to the probabilities in P. Throughout the paper, we will
write P(y|x), for symbols z,y € A, as the probability of
transitioning from x to y according to the Markov chain P.
We will also abuse notation and write P(z) as the probability
assigned to x by 7.

Recall that A(t) is the number of leaves of a tree ¢, and
A(t(v)) denotes the number of leaves of a tree ¢ rooted at v. It
is easy to see [13] that under the model MT5, P(Th =t;) =1
(where t; is the unique tree in 77) and

1
n—1

P(Ta@ry = t")P(Taqr) = t"),
which leads us to the formula

II @atw)-n
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where V(t) is the set of the internal vertices of ¢. It turns out
that the probability distribution in the M7} model is exactly
the same, as we prove below.

Theorem 1. Under the model MT; it holds that

II atw)-n

veV ()

P(T, =t) = @)

where V (t) is the set of the internal vertices of t.

Proof. We follow [17] and use the concept of labeled his-
tories: a pair (t,£), where t € T, (generated by the model
MTy) and € is a permutation of the natural numbers from 1
to n— 1, assigned to the internal n — 1 vertices of ¢, such that
every path from the root forms an ascending sequence. If we
think of the internal nodes of ¢ as being associated with their
DFS numbers, then the permutation ¢ is a function mapping
each internal node of ¢ to the time at which its two children
were added to it. Thus, for instance, the root always receives
the number 1, meaning that £(1) = 1. Clearly, for each ¢,
each labeled history (¢, ) corresponds to exactly one sequence
of generation, as it defines uniquely the order of the leaves,
which are picked during consecutive stages of the algorithm.
Moreover, the probability of each feasible labeled history (¢, )
is equal to ﬁ since it involves choosing one leaf from k
available at the kth stage of the algorithm for k =1,...,n—1.

Therefore, denoting ¢(t) = [{&: (¢,&) is a labelled history}|,
we find

Note that if A(t(v)) = k for any vertex v of ¢, then we know
that the sequence of node choices corresponding to (¢, £) must
contain exactly k — 1 internal vertices from the subtree of v,
and that v is the first of them. Moreover, for the subsequence
in the sequence corresponding to (¢, &) of a subtree ¢(v) rooted
at vertex v, the sequences of A(t(v)Y) — 1 vertices from its
left subtree and of A(t(v)®)—1 vertices from its right subtree
are interleaved in any order. Thus we arrive at the following
recurrence for ¢(t):

o0 = (5 atPrae™
A(t) —2)!
- <A<tb>(— §>)!<A<2R> —ype(t)att™).

This recurrence can be solved by observing that each internal
vertex appears exactly once in the numerator, and that each
internal vertex not equal to the root r appears exactly once in
the denominator. Hence
[T (A(t(v)) —2)!
veV(t)
q(t) = :
AT (AG(w) = 1!
veV ()\{r}
Since A(t(r)) = A(t) = n, we thus obtain

I (A(t(v)) —2)!

ot) = veV (L) B (n—2)!
AT (AGw) = 1! I (Alw) -1)
veV (t)\{r} veV (t)\{r}
leading finally to
q(t) 1
P(T,=t) =
N A (D)
VeV (t)
which completes the proof. O

Clearly, both models are equivalent, since the underlying
binary plane trees have exactly the same probability distribu-
tions:

Corollary 1. The models MTy and MT5 are equivalent in
the sense that they lead to the same probability distribution
on trees.

We now can extend the above equivalence to non-plane
trees. We define models MS; and M S5 for non-plane trees:
just generate the tree according to M7} (respectively, MT5)
and then treat the resulting plane tree 7, as a non-plane one
Sn. Since MTy and M5 are equivalent, so are MS; and
M S5. In graph terminology, MS; and M .S, are unlabeled
version of their MT counterparts [8].



III. ENTROPY EVALUATIONS

In this section we estimate the entropy for the plane-oriented
trees with names and that of non-plane trees without names.
We shall see that the latter problem is mathematically more
challenging.

A. The entropy of the plane trees with names

Recall that A(LTL) is a random variable corresponding to
the number of leaves in the left subtree of LT,,. From the
previous section, we know that P(A(LTE) = i) = L. Let
also 7, denote the root of LT,,, for each n.

First, we observe that a tree with names LT, is uniquely
described by the quadruple (A(LTE), F,(r,), LTL, LTE),
where we recall F,,(r,) is the name associated with r,,, the
root of LT;,. Therefore
H(LT,|Fy(rn)) = H(A(LTE), Fo(ry), LT, LTE| Fy (r0)).
Second, using the fact that A(LTL) is independent from
F,(r,) and the fact that given the complete description of
the root (its name and the number of leaves in both subtrees),
LTE and LTZE are conditionally independent, we find

H(LT,|Fy(ry)) = H(A(LT,))
(LTE|E, (1), A(LTE) =

+Z

HUTEF (1), A(LTE) = ) B(A(LTE) = k).

k)+ 3)

From the definition of A(LT) we know that H(A(LTE)) =
logy(n —1).

Next, it is sufficient to note that the random variable LTF
conditioned on A(LTL) = k is identical to the random
variable LT} (the model has the hereditary property), and
the same holds for LT® and LT;,_j. Similarly, recalling that
A(+,+) and p(-,-) denote the left and right child of a given
node in a given tree, F,, on the left (or right) subtree of
LT, given F,,(A(LT,,r)) (respectively, F,,(p(LT,,r))) and
A(LTE) = k, has identical distribution to the random variable
Fy, (resp. F,—i) given Fy(ry) (resp. Fr—g(rn—x)).

Then we observe that

since F,,(A\(LT},,7,)) is already contained in LTL. To con-
tinue we see, by the chain rule, that the last entropy is equal
to

H(Fn()‘(LTna Tn))‘Fn(Tn)v A(LTf) = k) 4)
+ H(LTy |[Fu(MLTn, ), Fu(rn), A(LT,Y) = k)

but since the first term doesn’t depend on A(LTL) = k and
we can ignore F,(r,) in the second term we find that the
expression (4) is equal to
H(F,(MLTy,mn)) | Fn(ra)+
H(LTy|Fo(MLTp,70)), A(LTy) = k)

which finally becomes

mh(P) + H(LTE |F(rk)), (5)
where h(P) = — EA 7(a )bez P(bla)log P(bla) is the en-

tropy of the Markov process with transition matrix P and
stationary distribution 7. It is also the entropy of a child letter
given its parent letter. Note that the dependence of the names
on the tree structure is applied in establishing (5), since we use
the fact that the name of \(LT,,r,) is generated from that
of r,, its parent. Thus, by (3), this leads us to the following
recurrence:

H(LT,|Fo(r)) = logs (n — 1) + 2mh(P)

n—1 6
Fu(r))- ©

Here in (6) we encounter a recurrence, that will appear
also in several other places in the paper. Therefore, we state
the following technical lemma, yielding the solution to this
recurrence.

Lemma 1. The recurrence x1 = 0,

2
xn:an—l—mka, n>2 (7)
k=1
has the following solution for n > 2:
n—1
=a, —_— 8
Tn = Ot "Z K ( k + 1) ®

Proof. By comparing the equations for z,, and z,; for any
n > 2 we obtain

Tnil _ Tn | NMny1 — (n—1)an,
n+l n nin+1)
Substituting y, = £= and b, = % we get

n
yn+1:yn+bn:y2+zbk
k=2

n—1 n—1
Ak+41 ag 2ak
n = b = _ — —_—
y y”k;’“ y2+kz_2<k—|—1 k+k:(k:+1)>

an Qo —~ 20, a, — 2ay
=t 2+kZ:2k(k+1)_n+kZ:2k(k+l)

and finally, after multiplying both sides by n, we obtain the
desired result. O

This leads to our first main result.



Theorem 2. The entropy of a binary tree with names of fixed
length m, generated according to the model MT1, is given by

1 k—1
logy(n — 1) 4 2n ZOkg(Qk(H)) )

+2mh(P)(n — 1) + mh(r)
where h(mw) = — > w(a)logm(a).

acA
Proof. Clearly, H(LT,) = H(LT,|F,(rn)) + H(F,(r)).
Moreover if we apply Lemma 1 with z,, = H(LT,|F,(r,))
= logy(n — 1) + 2mh(P) to the equation (6) we find

H(LT,) =

and a,,

H(LT,|F.(r)) = logQ(n - 1) + th(P) (10)

n—1
But >~ 2k(k+1 =1/2 —1/n and H(F,(r,
which completes the proof. O

Remark. Note that the first two terms of the expression for
H(LT,) are equal to H(T,), the tree without names, while
the third and fourth terms correspond to H (F},|T},), the names
given the structure of the tree. Furthermore, note that because
F,, and T,, are statistically dependent, H(LT,,) is strictly less
than H(F,) + H(T,), the fundamental lower bound on the
expected code length if the names and the tree structure are
compressed separately. This is to be expected: if one is given
the multiset of names without any additional information about
the tree structure, then the compression of the names either
duplicates information from the tree (in the case where the
tree can be recovered from the names) or is suboptimal in
light of the fact that the dependence structure of the names
cannot be estimated. In either case, separate compression is
suboptimal.

Remark. We know that (see also [13])

log, (k
2
Z kk+1

for large n (we took n = 10°). The above series converges
slowly, with an error term of order O(log n/n). Therefore one
would prefer a more explicit formula, which we offer next for
large n. We approximate the sum using the Euler-Maclaurin
formula [4] by the integral

S weite

~ 1.736

log k /"_2 log(x) e
k+D)(k+2) )i @+DE+2)

) +L12( —n) + log (2— Z) log(n — 2)

)

+ L12

e
-

where

1—t
is the dilogarithmic integral. For large = the following holds
(18], [19]

* logt
Lis(z) = / 98" gt
1

. 1 2 7T2
Lis(z) = ~3 log” x — o + O(log x/x).

In fact, to get a better approximation of the sum we need two
extra terms in the Euler-Maclaurin formula which leads to the
following approximation

n—2

log k
k+rD)k+2)
_ 1, 1 1 23

which matches the first three digits of the sum.

Remark Note that the total entropy is proportional to n and m.
In a typical setting m = O(1) or ©(logn) (which is certainly
needed if we want all the labels to be distinct), so H(LT,)
would be O(n) or O(nlogn), respectively.

B. The entropy of the non-plane trees

Now we turn our attention to the non-plane trees and the
case when m = 0 or, equivalently, .S,, instead of LS,,. Let .S,
be the random variable with probability distribution given by
the M S, (or, equivalently, M S;) model. For any s € S and
t € T let t ~ s mean that the plane tree ¢ is isomorphic to the
non-plane tree s. Furthermore, we use the following notation:
[s] = {t € T:t ~ s}. For any t1,t2 € T, such that t; ~ s
and t5 ~ s it holds that P(7T,, = ¢1) = P(T,, = t2), since there
is also an isomorphism between them [17]. By definition, s
corresponds to |[s]| isomorphic plane trees, so for any ¢ ~ s
it holds that

IP)(Sn = S) = |[s]|P(Tn = t) (11)
P(T, = t|Sy, = 5) = I[Tl]l (12)

Let us now introduce two functions: X (¢) and Y (¢), which
are equal to the number of internal vertices of t € T with
unbalanced subtrees (unbalanced meaning that the number of
leaves in its left and right subtree are not equal) and the
number of internal vertices with balanced, but non isomorphic
subtrees, respectively. Similarly, let X (s) and Y (s) denote the
number of such vertices for s € S. Clearly, for any ¢t € T,
s € S such that ¢ ~ s it is straightforward that X (¢) = X (s)
and Y (t) = Y (s). Moreover, observe that any structure s € S
has exactly
9 X (s)+Y (s)

[s]l =

distinct plane orderings, since each vertex with non isomorphic
subtrees can have either one of two different orderings of the
subtrees, whereas when both subtrees are isomorphic we have
only one ordering.



Now we conclude that

H(T,|S,)
=— Y P(T,=t58,=s)logP(T, =t|S, = s)
tETn,sES,
= Y P(Sy=s)loglls]|
SES, ,t~s
= Y P(Sy=5)(X(s)+Y(s)
SES, ,t~s
= Y P(T, = )(X(t) + Y (t)) = EX, + EY,
teT,

where we write X,, := X(T,) and Y,, := Y(T},). We thus
need to evaluate EX,,+IEY,,. It turns out to be easiest to do this
by determining the expected value of a random variable Z,,
(giving the number of internal vertices with isomorphic child
subtrees in a tree of size n) satisfying Z,, = n—1—(X,,+Y,),
but we first determine E[X,,], which will be useful later, in
the proof of Theorem 6.

The stochastic recurrence for X,, can be expressed as

follows: X; = 0 and
n
X'”/ = XUnfl + Xn_Unfl + I (Un—l # 5)

for n > 2, where U, is the variable on {1,2,...,n} with
uniform distribution, and the indicator (denoted by I(-)) con-
tributes whenever the left and right subtrees of the root are of
unequal size. This leads us to the following formula for EX,:

1 n—1
EX, = n_1 I;E(XMUnfl = k) =
n—1
- n—=k +E (I <U71,—1 7é %) |Un—1 = k))
) n 9
—EI (Un_1 ] 5) +— ;IEXZ-.
Clearly,

ifn>2,nmod2=0,
if n >3, nmod 2 = 1.

(o #3) -1

Using z, = EX,, and a,, = EI (U,,—1 # %), we may apply
Lemma 1 to find

n—1

L(n—1)/2]

2 2
EX, = =
n =t kzzzk(kJrl) kzzl (2k — 1)2k(2k + 1)
ICNEI. ) .
=antnfl=l %—1 2% okl

SN O

Fig. 5: An example of 51 %51, §2 * 62, 63 * 53, Where §; is, say,
the left subtree in the jth pictured tree.

The first term of the summation in the previous expression is
equal to

1 _
2k 1 furthermore, for any k£ > 1, we have T =

m so that the summation can be written as
2 2k—1 2k

n+1
2

di

-1
| ) o
This implies

L(n—l)/QJ (—1)k+
2
E[X,) :an—l—n<1— - — (2{
n

k
(n— 1)/2 1)k+1>

) s
9 Z

=2n(1 —In 2) +O(1) = n-0.6137.

k=3

n+1
2

In order to estimate the entropy we need to introduce
another function Z(¢): the number of internal vertices of ¢
with isomorphic subtrees. Obviously,

X +Y(t)+Z(t) =n—1.

Given s € S we may define Z(¢,s) as the number of internal
vertices with both subtrees isomorphic to s. Clearly, Z(T),) =

> Z(Tn,s), and EZ,, :=EZ(T,).
s€S
Let us also use s * s as a shorthand for a non-plane tree

having both subtrees of a root isomorphic to s. The stochastic
recurrence on Z,(s) becomes

Zn(s)=1(T, ~sxs)+ Zy, ,(8)+ Zn_vu,_,(s)

which leads us to
n—1

2
EZ,(s) = EI(T,L~5*5)+7Z]EZ,€

Moreover, since under the condition that A(TL) = k the event
that T,, ~ s * s is equivalent to the intersection of the events
Tf ~ g and Tf ~ &, we have

n—1
1
EI (T, ~s%s) = n_lkz:lP(Tn ~sxs|U, 1 =k)
P2(T, /5 ~ s
=I(n=2A(s)) Pz ~5)

n—1

Now, we apply Lemma 1 with z,, = EZ,(s) and

Pz (Tn/g ~ 5)
n—1

=1 (n=2A(s))



to ultimately find (after some algebra)

[(n+1)/2] b
EZ, = o(1), 14
"4 @k DRk D) o), a9
where b, = EskeTk P2(T}, = s;) (see also [21] for analytic

derivations of (14)). It is easy to compute by (see Fig. 5) for
a few small values of k, namely

Lo, 22 B -
2 9 144 2?105)
In fact, in [21] we show that b, satisfies for n > 2 the
following recurrence

n—1
1

by =by=1, by=

with by = 1.

Using (15) we find EZ,, = n(0.3725:i: 10~%), and therefore

Since H(T,) — H(S,) = H(T,|Sn), on average the com-
pression of the structure (the non-plane tree) requires asymp-
totically 0.6275n fewer bits than the compression of any
plane tree isomorphic to it. Furthermore, using Theorem 2,
we conclude this section with the following result.

Sn)/n of

Theorem 3. The entropy rate h(s) = lim, o H(
the non-plane trees is

h(s) = h(t) — h(t]s) ~ 1.109 ...
where
hltls) = 1D 2k—1 2k+1)’

:1
= log, (k
2 2
S
with by, = EskeTk PQ(Tk = Sk).

Remark. The probability b, = >, 7. P?(Ty = sz) is often
called the coincidence probability, and in fact is related to
the Rényi entropy of order 2 for trees that we introduce next.
Recall that for general o > 0, the Rényi entropy of a random
variable X supported on some set X’ is given by

— log (Z PX = x]a> .

We will specialize the above to our distribution on trees and
o = 2. Tt is relatively easy to check that the following quantity
is ©(1) as n — oo:

ha(X) =

hh(n) = —log EteTn P*(T, =1t)

n

and we write h} = lim,, . hi(n), if the limit exists. Then

bn = sz(Tn = t) ~ exp(inhé)
t

for large n. Actually, using [22] we prove in [21] that
by, ~ 6n - p"

where p = 0.3183843834378459 ... . Thus hi =

—log(p).

IV. ALGORITHMS

The main idea of the algorithms presented here for plane
and non-plane trees is to use a version of the arithmetic coding
scheme. We start from the interval [0,1) and we traverse the
tree to be compressed: at each vertex and at each letter of
the names (if present) we split the current interval into parts
depending on some known probability distributions. Then, we
pick as a new interval: one that represents the value associated
with the current vertex (the number of leaves in the left
subtree) or with the current letter of the name.

After we traverse the whole tree, we obtain an interval [a, b).
The crucial idea is that any two intervals corresponding to
different trees are disjoint and the length of each interval is
equal to the probability of generating its underlying plane tree.
For plane trees, we present an optimal algorithm running in
time O(n?log? nloglogn) (in the worst case). For non-plane
trees we present a suboptimal algorithm that runs in O(n) time
(if binary numbers can be multiplied in O(1) steps) and an
optimal algorithm that runs in O(n?
only consider non-plane trees without names to simplify our
presentation.

) time. In this case, we

A. Algorithm COMPRESSPTREE for plane trees with names

Here we explain our algorithm for compression of a plane
tree with names.

As was mentioned above, first we set the interval to [0, 1)
and then traverse the vertices of the tree and its names (we
will call this tree with names It,, in what follows). Here, we
traverse the tree in DFS order, first descending to the left
subtree and then to the right.

At each step, if we visit an internal node v, we split the
interval according to the probability of the number of leaves
in the left subtree. That is, if the subtree rooted at v has k
leaves and It,,(v)" has [ leaves, then we split the interval into
k —1 equal parts and pick [-th subinterval as the new interval.
Then if v is the root of l¢,,, for every letter of the name F),(v)
we split the interval according to the distribution 7 and pick
the subinterval representing the respective letter of F,(v). If
v is not the root, for every letter of the name F,(v), we split
the interval according to transition probability distribution in
P according to the respective letter in F),(u), where u is the
parent of v, and pick the subinterval representing the letter of
F,(v). Finally, when we obtain an interval [a,b), we output
the first [—log, (b — a)] bits of 2. The pseudocode of this
algorithm, called COMPRESSPTREE is presented next:

function COMPRESSPTREE(It,,)
[a,b) < CompressPTreeRec(lty,)



a+b
pb—a, <+

return C\") = first [—logp] + 1 bits of =

function COMPRESSPTREEREC(t)
v 4 100t (t)
[+ 0,h+1
fori=1,2,...,
range < h —1
h <l 4+ range >
z€A: ©<Fy(v);
l <1+ range >
z€A: z<Fy(v);
if A(v) > 2 then
(lie fts Puept) + CompressPTreeRec(t®)
range < h —1
h <l 4 range * hjc st
L1+ range *ljcre
(Lrights Pright) < CompressPTreeRec(t!)
range < h —1
h <=1+ range * hyign

l < l+range * lyight
return [, h)

m do

P(x|Fy(u);)
P(z|Fy(u))

Example. Suppose that A = {a, b} with the transition matrix
p_ 0.7 0.3
0.2 0.8

Observe that m = (0.4,0.6). Then for the following tree our
algorithm COMPRESSPTREE proceeds as follows:

(16)

vy aa v = [0.5,1)
TN = [0.5,0.7)
vy :ab vs 1 ba a = [0.5,0.58)

>
=

s = [0.5,0.58)
N [

vz:ab wv4:bb a—a = [0.5,0.556)

and finally, we obtain [0.550282624,0.5507567872). We take
the middle point of it (0.5505197056) and return its first
[—10g(0.5507567872 — 0.550282624)] + 1 = 13 bits in the
binary representation, that is 1000110011101.

Next we present a proof of correctness and optimality of
COMPRESSPTREE algorithm for the plane trees.

Theorem 4. Letr It denote a given plane tree with vertex
names. The algorithm COMPRESSPTREE computes an interval

whose length is equal to P(LT,, = It).

Proof. Let F,(v); be the i-the letter of the name associated
with vertex v in LT,,. Let also [a;:, bi+) be the interval assigned
to the tree [t by the algorithm. We want now to prove that
by — a; and ]P’(LTn = [t) are equal to

11 A(lt(v) — 1 lt 1 HP i) IT T PFa()il Fu(w):)
vEV(lt) u—vi=1

where V(It) is the set of internal vertices of It, r = root(lt),
and the product indexed by v — v runs over all pairs of
vertices (u,v) such that u is a parent of v in [t.

The equality

m

bit — ayy = H Ai(v _1HP
veV(it)
[T T P(Fu(w)il Fulu)s)
u—v =1

is straightforward from the description of the algorithm: we
scale the length of the interval by the (A(lt(v)) — 1)~ for
each internal vertex as we split the interval into A(lt(v)) — 1
equal parts and pick one of them. Independently, for each letter
of the name of the root we scale the length of the interval by
the probability of it under a distribution 7. Furthermore, for
each letter of names of non-root vertices by the conditional
probability of it, depending on a transition matrix P and the
respective letter for the parent.
The equality

P(LT, =1t)= [] AT =1 lt HP(Fn(T)i)
veV(lt)
11 HP(F )i F(u);)

u—veLT, i=1

can be proved by induction on n. Clearly, for n = 1 the
above holds for any m (owing to the horizontal memoryless
assumption and the fact that It consists of a single leaf node):
P(LTy =1t) = H P(Fy(r);). Assume now, that the equality

holds for all 1 < k: < n and all possible trees [t of size k with
names. Therefore, by the induction assumption, it holds that
(w € A™ being the name of the root for [t):

[T attw) -1

veV (It)

P(LTk = lt|Fk(7’) = w) =

m

IRIGEE

u—vi=1

il Fr(u);)

for any w € A™ and any 1 < k < n. Then, for a tree It of
size n,

P(LT, = It|F,(r)
L feeo

(P(LT,7))il En(r)s)

:w)

LT, T))Zan(T)l)

[
P(LT, = it"|F, (A1t 1)) = w")
-P(LTE = t®|F, (p(it, 7)) = w').

Using the induction assumption and the fact that the event
LT, = It contains also the information that F,(r) = w, we
find

P(LT, =1t) =P(LT, =1t,F,(r) =

w) =

= P(LT, = It|Fy(r) = w)P(F, (r) = w),



as desired. O

Clearly, if two given plane trees with names It,It' € LT,
are different, then their respective intervals do not overlap.
Indeed, if two trees, It and [t' are different, then they have
different shapes as trees or a different letter in a name for
some node. In either case, when the first difference occurs,
we proceed into disjoint subintervals for It and It’. Further
steps can only shrink both intervals — therefore the resulting
intervals of both trees are also disjoint.

Therefore, as in the arithmetic coding (see [6]) if we take
the first [—logP(LT,, = It)] + 1 = [—log(b —a)] + 1 bits
of the middle of the interval [a,b) we find a codeword iV,
which, as a binary number, is guaranteed to be inside this
interval.

Theorem 5. The average length of a codeword Cy(ll) of
COMPRESSPTREE is only within 2 bits from the entropy.

Proof. From the analysis above, we know that:

EC) = Y P(LT, = it)([—logy P(LT, = It)] +1) <
ItelTn
> —P(LT, = It)log, P(LT, = It) + 2 = H(LT,) + 2
elTy,

which completes the proof. O

Finally, we deal with the complexity of the algorithm. In
fact, the complexity depends on the model of computation.
If we assume that we can multiply two arbitrary numbers
in O(1) time, then clearly the worst-case time complexity
of the algorithm is O(n). If not, we assume each number
is represented by a pair (num,den). Clearly, if we have n
leaves, then 0 < num < den < n! so we can write num
and den on O(nlogn) bits. Therefore, if we denote by A(n)
and T'(n), respectively, the average-case and worst-case time
complexity, then these satisfy

n—1
A(n) = ﬁZA(k)+O(nlog2nloglogn)

k=1
T(n) < ml?x[T(k:)—r-T(n—k)}+O(n10g2nloglogn),
with a base case of A(1) = O(1) and T(1) = O(1).

Here, the O(nlog®nloglogn) is a bound on the number
of bit operations needed to multiply two n logn-bit numbers
(see [28]. Solving these recurrences, we get that the worst-
case complexity is T'(n) = O(n?log® nloglogn), while on
average it is A(n) = O(nlog® nloglogn) by Lemma 1.

B. Algorithms for non-plane trees

For non-plane trees without vertex names, we present two
algorithms: a suboptimal (in terms of expected code length)
compression algorithm called COMPRESSNPTREE that runs in
worst-case O(n) time, and an optimal algorithm OPTNPTREE

that runs in worst-case O(n?) time (provided we can multiply
two binary numbers in O(1) time).

B1: Suboptimal but Time-Efficient Algorithm COMPRESS-
NPTREE

As before, we first set the interval to [0, 1) and then traverse
the vertices of the tree. However, now we visit always the
smaller subtree (that is, the one with the smaller number of
leaves) first (ties are broken arbitrarily).

At each step, if we visit an internal node v, we split the
interval according to the probabilities of the sizes of the
smaller subtree — that is, if the subtree rooted at v has k leaves
and its smaller subtree has [ leaves, then if k is even we split

2_ and one interval

the interval into g — 1 parts of length =
of length ﬁ Otherwise, k is odd, so we split the interval

into k—gl parts, all of equal length. For example, if £k = 6,
then the subintervals have lengths 2, 2 and £ of the original

interval. If £ = 7, then the subintervals have length equal to
% of the original interval. Finally, in both cases we pick [-th
subinterval as the new interval. The pseudocode of algorithm
is presented below:

function COMPRESSNPTREE(s,,)

[a,b) <+ CompressN PTreeRec(s,)

a+b
pb—a, r

2
return C\°) = first [—logp] + 1 bits of =

function COMPRESSNPTREEREC(s)
[+ 0,h<1
if A(s) > 2 then
if A(st) < A(s%) then
w1 < SL, Wy <— SR
else
w1 < SR, wa <— SL
Uieft, Pueft) < CompressN PTreeRec(w:)
range < h —1
h <l +range * hesy
L+ l+range *ljcrt
(Lrights hrignt) < CompressN PTreeRec(ws)
range < h —1
h <1+ range * hpight
I« 1+ range * lrighs
return [, h)
Here, we abuse notation slightly: we assume that the non-plane
tree s, is given as an arbitrary plane-oriented representative.
Then sZ and sZ are defined with respect to this representative.
Next, we present a proof of correctness of the COMPRESS-
NPTREE algorithm for the non-plane trees, together with the
analysis of its performance. The algorithm does not match
the entropy rate for non-plane trees, since for every vertex
with two non isomorphic subtrees of equal sizes, it can visit
either subtree first — resulting in different output intervals, so
different codewords too. Clearly, such intervals are shorter than
the length of the optimal interval (which would be equal to the



sum of the lengths of all intervals that can be obtained using
COMPRESSNPTREE, given a tree s as an input); therefore, the
codeword will be longer. However, given EY,,, the expected
redundancy rate is within 1% of the entropy rate as proved in
Theorem 6 below.

Lemma 2. For a given non-plane tree s with exactly Y (s)
vertices with balanced but not isomorphic subtrees, COM-
PRESSNPTREE computes an interval whose length is equal
10 27V IP(S,, = s).

Proof. Let [as,bs) be an interval returned by our algorithm,
provided its input was s. Then, in fact we want to prove that
by —as =27V GIP(S,, = s).

Fix a plane tree t ~ s corresponding to the order of the
visited vertices of s so that for any vertex of ¢, its left subtree
is visited before its right subtree. Let its interval (compressed
using the algorithm for plane trees) be [a¢, bt).

Now, observe that b, —a, = 2X() (b, — a;), where X(s) is
a number of vertices with unbalanced subtrees in s, because at
each step, when we encounter such vertex, we scale the length
of the interval twice as much for ¢ when compared to s. When
we encounter a vertex with balanced subtree, we scale both
equally.

However, we already noted that all plane tree isomorphic to
s have the same probabilities and there are |[s]| = 2X(5)+Y(s)
many of them. Therefore (knowing that X (s) = X(t) and
Y (s) =Y (t) for any t ~ s), we have

P(S, = s) = |[s]|P(T, = t) = 2XOTY (T, =1¢)
= 2XOHY ) (p, — g,) = 2Y ) (b, — a),
which completes the proof. O

As before, if we use the arithmetic coding scheme on an
interval generated from a tree s, we find a codeword 07(12),
which, as a binary number, is guaranteed to be inside this
interval. Moreover, we know the following.

Theorem 6. The average length of a codeword C’,(LQ) from
algorithm COMPRESSNPTREE does not exceed 1.013H (S,),
where H(S,,) is entropy estimated in Theorem 3.

Proof. From Lemma 2, we know that

ECY = 3 B(S, = s) ([f log, (27 P(S, =5))1+1)

SES,

< > P —log, P(S, = s) + Y (s) +2)
seS,
=H(Sn) +2+ Y P(S, =s)Y(s)
SES),
W) 24 > P(T, = s5)Y(t) = H(S,) + 2+ EY,,.

teTn

When combined with the asymptotic behaviour of Y;, we find,
using (13) and (14),

EY, . n—1—-EX,

. n
lim — = lim
n—oo N n—o00 n

—EZn <0.014

that leads to
. ECY
lim

n—o0 N

EY,

< lim MJF—” <1.124
n

n—oo n

and

c® EY, 0.014
li <1+ K <1 <1.013
W Sy ST ') S T

as needed. O

In passing, we should point out that the running time (both
worst- and average-case) is of the same asymptotic order
as that of COMPRESSPTREE, since the additional step of
comparing the sizes of subtrees can be made to incur only
an extra cost of O(n) arithmetic operations (comparisons of
O(log n)-bit numbers).

B2: Optimal algorithm for non-plane trees

In this section we present an optimal compression algorithm
for non-plane trees based on arithmetic encoding. In order to
accomplish it we need to define a total order among non-
plane trees and compute efficiently the probability distribution
P(S, < s), where < is the order to be defined. Recall again
that S is the set of all non-plane trees and S, is the set of all
non-plane rooted trees on n leaves. Furthermore, A(s) is the
number of leaves of the non-plane tree s.

We start with the definition of our total ordering. In what
follows, we will denote by subtrees(s) the set of subtrees of
the tree s rooted at the children of its root.

Definition 1 (Total ordering on the set of non-plane trees).
The relation < on S is defined as follows: s1 < so if and only
if one of the following holds:

. A(Sl) < A(82),

e or A(sy1) = A(s2) and min{subtrees(s;)} <
min{subtrees(ss)},
e or A(s;) = A(sz), min{subtrees(s;)} =
min{subtrees(sz)} and max{subtrees(s1)} <
max{subtrees(sz)}.

Here, min and max are defined recursively in terms of the
order relation.

Theorem 7. The relation < is a total ordering on S.

Proof. The reflexivity and anti-symmetry are straightforward
since either s; < sy Or s1 = S Or S1 > So.

To prove the transitivity, we assume that s; < sg and so <
sg. Now, if A(s1) < A(s2) or A(s2) < A(ss3), then A(sy) <
A(s3) (so 1 < s3), as from the definition of < we know that
A(Sl) S A(Sg) S A(Sg)

The only remaining possibility is that A(s;) =
A(s2) =  A(s3). Then, we proceed similarly:
if  min{subtrees(s1)} < min{subtrees(sz)} or
min{subtrees(sz)} < min{subtrees(ssz)},  then

min{subtrees(s;)} < min{subtrees(ss)} (s0 s1 < s3)



since from the definition of < if A(s1) = A(sz) = A(ss),
then min{subtrees(s;)} <  min{subtrees(s2)} <
min{subtrees(ss)}.

Therefore, the only missing case is when A(s;) = A(sy) =
A(s3) and min{subtrees(s;)} = min{subtrees(sa)} =
min{subtrees(s3)}. Since we know that s; < sz and
sa < s, this implies that max{subtrees(s;)} <
max{subtrees(sz)} < max{subtrees(s3)} by induction, and
this completes the proof. [

In what follows, we denote by less(s),gtr(s) the min-
imum/maximum root subtree, respectively, of s under the
ordering just introduced. Moreover, we let T, denote the
(random) plane tree from which .5, is generated, and we recall
the notation 7% and T:® for the left and right subtrees of T,.

The basic plan is to determine an efficient algorithm that,
given a non-plane tree s, outputs P(S,, < s) and P(S,, = s).
This will allow us to construct an arithmetic coding scheme as
follows: we associate to s the half-open interval [a, b), whose
left endpoint is given by P(S,, < s) and whose right endpoint
is P(S,, < s). The length of this interval is clearly P(S,, = s),
and, because of our total ordering on non-plane trees, for two
trees s; < S, the right endpoint of s; is less than or equal
to the left endpoint of so. That is, the two intervals do not
overlap. Having this interval in hand, we take the midpoint
and truncate its binary representation as usual. This will give
a uniquely decodable code whose expected length is within 2
bits of the entropy H(S,,).

Now we are in a position to derive the probabilities P(S,, =
s) and P(S,, < s).

First, we derive an expression for P(S,, = s). In the case
where s has two non-equal subtrees, we have

P(S, = s) = P(less(S,,) = less(s), gtr(Sy,) = gtr(s))
= P(TE ~less(s), T ~ gtr(s))
+P(TE ~ gtr(s), TE ~ less(s))
where we recall ~ denotes isomorphism. To calculate the first

term on the right-hand side, we condition on the number of
leaves in the left subtree of T, taking the correct value:

a7

P(TL ~less(s), TR ~ gtr(s))
— P(A(TE) = Afless(s))
“P(TE ~less(s), TR ~ gtr(s))|A(TE) = A(less(s)))
= ﬁ “P(Saqess(s)) = less(s)) - P(Sa(atr(s)) = &tr(s))-

Here, we have applied the conditional independence of the left
and right subtrees of 7;, given the number of leaves in each.
It turns out that the second term of (17) is equal to the first,
so we get in this case

= =1y P(Sndess(s = less(s)) - P(Saggu(s) = 8tr(s)-

In the case where the two subtrees of s are identical, only
a single term in (17) is present, and it evaluates to

= “P(SA(ess(s)) = 1ess(s)) - P(Sa(gtr(s)) = gtr(s))
1

n—1

P2(SA(less(s)) = IGSS(S)).

Thus, in each case, we have derived a formula for P(S,, =
s) that may be recursively computed with O(n) arithmetic
operations in the worst case.

It remains to derive an expression for P(.S,, < s). We again
first consider the case where s has two non-identical subtrees.
Following the definition of <, this event is equivalent to

[A(less(Sy)) < A(less(s))]
u {[A(less(Sn)) = A(less(s))] N [less(Sy) < less(s }

N [less(Sy,) = less(s)]

u {[A(less(Sn)) = A(less(s))]

N [gtr(S,) < gtr(s ]
(18)

The terms of this union are disjoint, so the total probability
is the sum of the probabilities of the individual intersection
events.

The first event is equivalent to the union of the disjoint
events that the left subtree of T, has < A(less(s)) leaves or
more than n — A(less(s)) leaves. The probability of this event
is thus

P(A(less(Sy)) < A(less(s))) =2 - %.

The second and third events can be similarly written in terms
of disjoint unions of events involving the left and right subtrees
of T,,. This gives recursive formulas for their probabilities.
Since the formulas are conceptually simple to derive but
tedious to write out explicitly, we do not list them, but we
mention that at most 4 recursive tree comparison calls are
necessary to evaluate P(S, < s): we need to know the
probability that a tree of the appropriate size is < less(s),
= less(s), < gtr(s), and = gtr(s).

Finally, we compute P(S,, < s) in the case where the two
subtrees of s are equal. This happens if

A(less(Sp)) < n/2

or A(less(S,)) = n/2 and either subtree of S, is less than
the tree s’ comprising the two subtrees of s.
The probability of the first event is

P(A(less(Sy)) < n/2)
=P(A(TE) < n/2) + P(A(TE) > n/2)
1
n—1




The probability of the second event may be computed by con-
ditioning: the probability that A(less(S,,)) = A(TL) = n/2 s
—L_and the probability, conditioned on this event, that either
subtree of S,, is less than s’ is

n—1"

P(TE < s UTE < §'|A(TE) =n/2)

=1 -B(T} > §|A(TE) = n/2) - P(TL > §'|A(TE) = n/2)
=1-(1-P(S,/2 <))

where we have used the conditional independence of the two
subtrees of T;, given their sizes.

Thus, the quantities P(S, < s) and P(S, = s) may
be recursively computed. Importantly, all of the involved
probabilities are rational numbers, and arithmetic operations
are only performed on integers with value at most 0(2”2), S0
that the interval corresponding to s in our arithmetic coding
scheme is exactly computable in polynomial time.

With these results in hand, the aforementioned arithmetic
coding scheme, in which the interval corresponding to a tree
s € 8y is [P(Sn < 9),P(S, < s)), which we call OPT-
NPTREE, yields the following optimal compression result:

Theorem 8. The expected code length of the algorithm OPT-
NPTREE is at most H(S,,) + 2 bits.

Finally, we analyze the running time of the natural recursive
algorithm for computing the left and right endpoints of the
interval for s. We note that, to use the recursive formulas for
the probabilities, we need to know less(s). To facilitate this,
we can first construct a canonical representative plane tree t
isomorphic to s, in which for each internal node of ¢, the left
subtree is less than or equal to the right one. Note that the
left and right subtrees of ¢ are then canonical representations
of less(s) and gtr(s), respectively. To construct such a tree
from an arbitrary plane representative of s € S,, can be done
recursively, as the following algorithm shows:

function CANONIZE (t,,)

> Base case

if n < 2 then return ¢,

> Recursive case

CANONIZE (tL)

CANONIZE (t)

if tL > tZ then

swap tk, tF

return ¢,
When testing whether or not tZ > t2, we can take advantage
of the fact that both subtrees have already been canonized. This
saves some time in determining which subtree of each subtree
is the lesser one. Nonetheless, the number of comparisons
needed to compare two trees is O(n) in the worst case.

To analyze the CANONIZE algorithm, denote by C(n) the
number of integer comparisons used by the algorithm on a
given tree t. It satisfies the recurrence

C(n) = C(A(Y)) + C(A(™) + O(n),

with a base case of C(1) = O(1). The solution of this
recurrence is O(nz) in the worst case, but on average is
O(nlogn).

Having a canonical representative of s in hand, calculating
the left and right endpoints of the corresponding interval takes
©O(1) arithmetic operations at each recursive step (and, thanks
to the canonical representation, deciding which subtree is the
lesser one takes ©(1) time), plus O(n) operations to evaluate
the probability P(S (iess(s)) = less(s)). Thus, if we denote by
T'(n) the number of arithmetic and tree comparison operations
to determine the left and right endpoints of the interval for a
canonical representation ¢ with n leaves, we have

T(n) < T(A(E")) + T(A(Y) + O(n),

with a base case of T'(1) = O(1). Solving this, we find that,
in the worst case, 7'(n) = O(n?). Thus, in total, the number
of arithmetic and tree comparison operations, including the
construction of the canonical representation, is at most ©(n?)
in the worst case.

Now we refine the analysis by taking into account the time
taken by the arithmetic operations. In the calculation of each
interval endpoint, we must keep track of an integer numerator
and denominator. In each step, the numerator and denominator
are both at most @(2"2), so each may be represented exactly
with ©(n?) bits. Each arithmetic operation between two
such numbers takes at most O(n?lognloglogn) bit opera-
tions (since multiplying two N-digit numbers takes at most
O(Nlog Nloglog N) operations). Furthermore, taking into
account the lengths of the involved integers, the algorithm for
computing P(Sa(s) = ') takes time O(n?log” nloglogn)
(since A(s’) < n, and an easy inductive proof shows that
the lengths of the integers required for the calculation never
exceed O(n!)). Then the recurrence for the running time 7'(n)
becomes

T(n) = T(A(Y)) + T(A(tR)) + O(n?log? nloglogn),

again with a base case of T'(1) = O(1). Solving this, we get
that

T(n) = O(n®log® nloglogn).

Since this is asymptotically larger than the time taken to con-
struct the canonical representation, the worst-case total running
time is O(n?log? nloglogn). The average-case running time
can similarly be shown to be O(n?log? nloglogn).

V. CONCLUSION

In this paper we first studied binary plane trees with
correlated names and its entropy — which gives the funda-
mental lower bound on the compression rate — and finally
designed an algorithm achieving this bound within an additive
constant number of bits in expectation. We also derived the
more challenging entropy for non-plane trees and designed



an optimal (in terms of expected code length) O(n?)- time
algorithm, as well as a suboptimal O(n)-time algorithm (in
a model in which arithmetic operations can be done in O(1)
time).

The future directions may focus on construction of universal
compression schemes for the presented models (e.g., in the
setting where the transition matrix for the names is not known).
One may also introduce some horizontal dependency between
the letters of the names, using for example mixing sources
(noting that a Markov horizontal dependency would be a trivial
extension of the results of the present paper). Very recent work
[15] concentrates on another nontrivial extension, namely to
d-ary recursive trees (described in [3]), in which each internal
vertex has exactly d children.

Finally, as argued in the introduction, our broader goal is to
propose adequate models, bounds and algorithms for a wider
class of structures, for example random graphs with vertex
names.
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