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1. Introduction

In the last decades, several attempts have been made to capture mathematically the concept of “complexity” of a
sequence, The notion is connected with quite deep mathematical properties, including rather elusive concept of ran-
domness in a string (see e.g, [5,16,19]), and the “richness of the language”. The string complexity is defined as the
number of distinct substrings of the underlying string. More precisely, if X is a sequence and [(X) is its set of fac-
tors (distinct subwords), then the cardinality |I(X)| is the complexity of the sequence. For example, if X = aabaa then
I(X)={v,a, b, aa,ab, ba, aab, aba, baa, aaba, abaa, aabaa} and |I(X)| =12 (v denotes the empty string). Sometimes the com-
plexity of a string is called the I-complexity [3]. This measure is simple but quite intuitive. Sequences with low complexity
contain a large number of repeated substrings and they eventually become periodic.

In general, however, information contained in a string cannot be measured in absolute and a reference string is required.
To this end we introduced in [6] the concept of the joint string complexity, or J-complexity, of two strings. The J-complexity
is the number of common distinct factors in two sequences. In other words, the J-complexity of sequences X and Y is equal
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Fig. 1. Joint complexity of simulated texts (3rd Markov order) of English, vs French (top), Polish (bottom) languages, versus average theoretical (plain). The
X-axis is the length of the text, while the y-axis shows the joint complexity.
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Fig. 2. Average theoretical joint complexity of 3rd Markov order text of English, vs French (top), and vs Polish (bottom) languages, versus order estimate
0(n*). The x-axis is the length of the text, while the y-axis shows the joint complexity.

to J(X,Y)=[I(X)NI(Y)|. We denote by [, the average value of J(X,Y) when X is of length n and Y is of length m. In
this paper, we study the joint string complexity for Markov sources when n =m.

The J-complexity is an efficient way of estimating similarity degree of two strings. For example, genome sequences of
two dogs will contain more common words than genome sequences of a dog and a cat. Similarly, two texts written in the
same language have more words in common than texts written in very different languages. Thus, the J-complexity is larger
when languages are close (e.g. French and Italian), and smaller when languages are different (e.g. English and Polish); see
Figs. 1, 2. In fact, texts in the same language but on different topics (e.g. law and cooking) have smaller J-complexity than
texts on the same topic (e.g. medicine). Furthermore, string complexity has a variety of applications in detection of similarity
degree of two sequences, for example “copy-paste” in texts or documents that will allow to detect plagiarism. It could also
be used in analysis of social networks (e.g. tweets that are limited to 140 characters) and classification. Therefore it could
be a pertinent tool for automated monitoring of social networks (see [1,18] for some experimental results). However, real
time search in blogs, tweets and other social media must balance quality and relevance of the content, which — due to
short but frequent posts — is still an unsolved problem. For these short texts precise analysis is highly desirable. We call it
the “small data” problem and we hope our rigorous asymptotic analysis of the joint string complexity will shed some light
on this problem. In this paper we offer a precise analysis of the joint complexity together with some experimental results
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(cf. Figs. 1 and 2) confirming usefulness of the joint string complexity for text discrimination. To better model real texts,
we assume that both sequences are generated by Markov sources making the analysis quite involved. To overcome these
difficulties we shall use powerful analytic techniques such as multivariate generating functions, multivariate depoissonization
and Mellin transform [2], spectral matrix analysis, and saddle point methods.

String complexity was studied extensively in the past. The literature is reviewed in [13] where precise analysis of string
complexity is discussed for strings generated by unbiased memoryless sources. Another analysis of the same situation was
also proposed in [6] where for the first time the joint string complexity for memoryless sources was presented. It was
evident from [6] that precise analysis of the joint complexity is quite subtle requiring singularity analysis and infinite
number of saddle points. In this paper we deal with the joint string complexity for Markov sources. To the best of our
knowledge this problem was never tackled before except in our recent conference paper [9]. As expected, its analysis is
rather sophisticated but at the same time quite rewarding. It requires generalized (two-dimensional) dePoissonization and
generalized (two-dimensional) Mellin transforms.

In [6] it is proved that the [-complexity of two texts generated by two different binary memoryless sources grows as

HK

V,/oelogn

for some ¥ < 1 and y, o > 0 depending on the parameters of the sources. When sources are statistically identical, then the
J-complexity growth is O(n), hence k¥ = 1. When the texts are identical (i.e, X =Y), then the J-complexity is identical to

the I-complexity and it grows as g [13]. Indeed, the presence of a common factor of length O(n) inflates the J-complexity

to O(n?), where n is the string length.

We should point out that our experiments indicate a very slow convergence of the complexity estimates for memoryless
sources. Furthermore, memoryless sources are not appropriate for modeling many sources, e.g., natural languages. In this
paper and [9] we extend the [-complexity estimates to Markov sources of any order for a finite alphabet. Although Markov
models are no more realistic in some applications than memoryless sources, they seem to be fairly good approximation for
text generation.

Here, we derive a second order asymptotics for J-complexity for Markov sources of the following form

nl(

¥ Jalogn+ B

for some B,y > 0 with « < 1. This new estimate converges faster, although for small text lengths of order n = 10? one
needs to compute additional terms of the asymptotic expansion. In fact, for some Markov sources our analysis indicates
that J-complexity oscillates with n. This is manifested by the appearance of a periodic function in the leading term of our
asymptotics. Surprisingly, this additional term even further improves the convergence for small values of n.

Let us now summarize in full our main results Theorems 1-9. In our first main result Theorem 1 we observe that
the joint string complexity [n, can be asymptotically analyzed by considering a simpler quantity called the joint prefix
complexity denoted as Cp ;. To define it, let X be a set of infinite strings, and we define the prefix set Z(X) of X as the
set of prefixes of X. Let X and ) be now two sets of strings and we define the joint prefix complexity as the number of
common prefixes, ie. |Z(X) NZ(Y)|. When A, is a set of n independently generated strings by Markov source 1 and ),
is a set of m independently generated strings by source 2, then Cp jn is Cpm = E|Z(R) N Z(Vm)|) — 1 which represents the
number of common prefixes between A, and Y. In the remaining part of the paper we only deal with the joint prefix
complexity Cpm. We show in Theorem 1 that | Jpm — Cam| = O (n€ +m*) for some € > 0, suggesting that we may focus our
attention on simpler to analyze quantity, namely Cy m.

First, in Theorem 2 we considered two statistically identical sources and prove that the joint string complexity grows
linearly with n: For certain sources called noncommensurable there is a constant in front of n (that we determine) while for
commensurable sources the factor in front of n is a fluctuating periodic function of small amplitude. We shall see these two
cases permeate all our results. Then we deal in Theorem 3 with a special sources in which the underlying Markov matrices
are nilpotent. After that we study general sources, however, we split our presentation and proofs into two parts. First, in
Theorems 4-5 we assume that one of the source is uniform. Under this assumption we develop techniques to prove our
results. Finally, in Theorem 7-9 we study the general case.

Let us now compare our theoretical results with experimental results on real/simulated texts generated in different
languages. In Fig. 1 we compare the joint complexity of a simulated English text with the same length texts simulated in
French and in Polish. In the simulation we use a Markov model of order 3. It is easy to see that even for texts of lengths
smaller than a thousand one can discriminate between these languages. In fact, computations show that for English versus
French we have ¥ =0.18; and versus Polish: k¥ = 0.1, Furthermore, for a Markov model of order 3 we find that English text
has entropy (per symbol): 0.944; French: 0.934; Polish: 0.665. The theoretical curves shown in Fig. 1 are obtained through
Theorem 8, however, for small values of the text length it is computed via the iterative resolution of functional equations
(49) and (51). Fig. 2 shows the continuation of our theoretical estimates up to n = 10'® and compared with the theoretical
estimate O(n*) as presented in Theorems 7-8.

The joint string complexity can be used to discriminate Markov sources [24] since, as already observed, the growth
of the joint string complexity is O (n*) with x =1 when sources are statistically indistinguishable and x < 1 otherwise.
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For example, we can use the joint string complexity to verify authorship of an unknown manuscript by comparing it to a
manuscript of known authorship and checking whether ¥ =1 or not. More precisely, we propose to introduce the following
discriminant function

d(X,Y)=1- L log J(X,Y)
logn
for two sequences X and Y of length n. This discriminant allows us to determine whether X and Y are generated by the
same Markov source or not by verifying whether d(X,Y) =0(1/logn) — 0 or d(X,Y) =1 — k + O(loglogn/logn) > 0,
respectively. In fact, we used it with some success to classify tweets (see SNOW 2014 challenge of tweets classification and
topic detection [1]).

The paper is organized as follows. In the next section we present our main results Theorems 1-9. We prove Theorem 1
in Section 3. Then we present some preliminary results in Section 4. In particular, we derive the functional equation for the
joint prefix complexity Cp m, establish some depoissonization results, and derive double Mellin transform. We first prove
the nilpotent case in Section 5. The proofs of Theorems 4-5 are presented in Section 6, and the proofs of Theorem 7-9 are
discussed in Section 7.

2. Main results

In this section we define precisely our problem, introduce some important notation, and present our main results Theo-
rem 1 — Theorem 9. The proofs are presented in the remaining parts of the paper and Appendix A.

2.1. Models and notations

We begin by introducing some general notation. Let X and w be two strings over the alphabet .A. We denote by |X|,
the number of times w occurs in X (e.g., |abbba|p, = 2 when X =abbba and w = bb). By convention |X|, = |X| + 1, where
v is the empty string.

Throughout we denote by X a string (text) whose complexity we plan to study. We also assume that its length [X| is
equal to n. Then we define I(X) ={w: |X]|y > 1}, that is, I(X) contains all distinct subwords of X. Observe that the string
complexity |I(X)| can be represented as

HXI= Y Tjxjy=1,

weA*

where 14 is the indicator function of the event A. Notice that |I(X)| is equal to the number of nodes in the associated
suffix tree of X [13,23] (see also [7,12]).

Now, let X and Y be two strings (not necessarily of the same length). We define the joint string complexity as the
cardinality of the set J(X,Y)=I1(X)NI(Y), that is,

| J(X.Y)| = Z 1|X|w21 X 1|Y\w21 i

weAd*

In other words, J(X, Y) represents the number of common and distinct subwords of both X and Y. For example, if X = aabaa
and Y =abbba, then J(X,Y)={v,a,b,ab, ba}.

In this paper we assume that both strings X and Y are generated by two independent Markov sources of order r (we
will only deal here with Markov of order 1, but extension to arbitrary order is straightforward). We assume that source i,
for i € {1,2} has the transition probabilities P;(a|b) from state b to state a, where a,b € A". We denote by P; (resp. P3)
the transition matrix of Markov source 1 (resp. source 2). The stationary distributions are respectively denoted by m1(a)
and my(a) for a € A". Throughout, we consider general Markov sources with transition matrices P; that may contain zero
coefficients. This assumption leads to interesting embellishment of our results.

Let X, and Y, be two strings of respective lengths n and m, generated by Markov source 1 and Markov source 2,
respectively. We write

Jnm =E(J(Xn, Ym)D) — 1= Z P(X|lw=DP(Y[w=1) (1)
weA*\v

for the joint complexity, i.e. omitting the empty string. In this paper we study jum for n = @(m).

It turns out that analyzing J, , is very challenging. It is related to the number of common nodes in two suffix trees, one
built for X and the other built for Y. We know that analysis of a single suffix tree is quite challenging [7,12,20]. Its analysis
is reduced to study a simpler structure known as tries, a digital tree built from prefixes of a set of independent strings
[15,23]. We shall follow this approach here. Therefore, we introduce another concept. Let A’ be a set of infinite strings, and
we define the prefix set Z(X) of X as the set of prefixes of X. Let X’ and Y be now two sets of strings and we define
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the joint prefix complexity as the number of common prefixes, i.e. |Z(X) NZ(})|. When A}, is a set of n independent strings
generated by source 1 and )}, is a set of m independent strings generated by source 2, then we define Cy , as

Cnm =E[Z(X) NZ(Vm)) — 1

which represents the number of common prefixes between A}, and V,.

Observe that we can re-write Cp, in a different way. Define Qi(w) for i = 1,2 as the number of strings in X and ),
respectively, whose prefixes are equal to w provided that strings in A" are generated by source 1 and strings in Y by source
2. Then, it is easy to notice that

Com= Y P(2y(w)> 1P (w)>1) 2)

weA*\v

which should be compared to (1).

The idea is that Cp;, is a good approximation of [, as we present in our first main result Theorem 1. We shall see in
Sections 4-7 that C, m are easier to analyze, however, far from simple. In fact, Cn ;» has a nice interpretation. It corresponds
to the number of common nodes in two tries built from A" and Y. We know [11,10,15,23] that tries are easier to analyze
than suffix trees.

2.2, Summary of main results

We now present our main theoretical results. In the first foundational result below we show that asymptotically we can
analyze Jn;, through the quantity G, defined above in (2). The proof can be found in Section 3.

Theorem 1. Let n and m be of the same order. Then there exists 1/2 < € < 1 such that

Jam=Com + 0(n® +m°) (3)

asn— oQ.

In the rest of the paper we shall analyze Cp ;. We should point out that the error term could be as large as the leading
term, but for sources that are relatively close the error term will be negligible.

Now we present a series of results each treating different cases of Markov sources. Moreover, our results depend on
whether the underlying Markov sources are commensurable or not so we next define them.

Definition 1 (Rationally related matrix). We say that a matrix M = [Mgp ]y pyc 42 is rationally related if ¥(a, b, c) € A? we have
Mgp + Mg — Mep € Z, where Z is the set of integers.

Definition 2 (Logarithmically rationally related matrix). We say that a matrix M = [mg] is logarithmically rationally related if
there exists a non zero real number x such that the matrix xlog*(M) is rationally related, where the matrix log*(M) is
composed of log(mgp) when mg, > 0 and zero otherwise. The smallest non negative value w of the real x defined above is
called the root of M.

The following matrix is an example of logarithmically rationally related matrix:

Nl = GOl 00

e bl el B S
(o=l e NP P S T
<=1 =l TP SN

Its root is 1/log?2.

Definition 3 (Logarithmically commensurable pair). We say that a pair of two matrices M = [Mgp]g p)c 42 and M’ = [m]; ] is
logarithmically commensurable if there exists a pair of real numbers (x, y) such that xlog* (M) 4 y log*(M’) is not null and is
logarithmically rationally related.

Notice that when M and M’ are both rationally related, then the pair is logarithmically commensurable. Nevertheless it
is possible to have logarithmically commensurable pairs with the individual matrices not logarithmically rationally related.
For example when log* M’ = 2 Q + log*M with Q an integer matrix.

We are now in the position to discuss our first main result for Markov sources that are statistically indistinguishable.
Throughout we present results for m =n.
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Theorem 2. Consider the average joint complexity of two texts of length n generated by the same general stationary Markov source,

that is, P := P =Py,

(i) [Noncommensurable Case.] Assume that P is not logarithmically rationally related. Then

2nlog?2
h

where h is the entropy rate of the source definedash =3}, ;. 4 7 (@) P(a|b).
(ii) [Commensurable Case.] Assume that P is logarithmically rationally related. Then there is € < 1 such that:

Jnn= +o(n) (4)

~ 2nlog2

nn =
h

where Qq(.) is a periodic function of small amplitude. (In Section 4.3 we compute explicitly Q.)

(1+ Qo(logn)) + 0 (n) (5)

Now we consider sources that are not the same and have respective transition matrices Py and P;. The transition
matrices are on A" x A", however, hereafter we deal mostly with r = 1. If (a, b) € A x A, we denote by P;(alb) the (a, b)-th
coefficient of matrix P;. For a tuple of complex numbers (51, 53) we write P(s1, S3) for the following matrix

P(s1., 52) = [(P1(alb)) " (P2(alb)) *?1g,pen-

In fact, we can write it as the Schur product, denoted as «, of two matrices Py(51) = (Py(alb))~1 and Py(s2) = (P2(alb)) 2,
that is, P(s1, 53) =P1(s1) » P2(s2).

To present succinctly our general results we need some more notation. Let (x|y) be the scalar product of vector x and
vector y. By A(s1,52) we denote the main eigenvalue of matrix P(sq,52), and u(sy, 53) its corresponding right eigenvector
(i.e, A(51,52)u(s1,s2) = P(s1,52)u(s1,52)), and £(s1,s2) its left eigenvector (i.e., A(S1,52)¢(51,52) = £(S1,52)P(51,52)). We
assume that (£ (51, S2)|u(s1, S2)) = 1. Furthermore, the vector x (51, 52) is defined as the vector (771 (@) 75172 (@) *2)4c 4 where
(i(a))qea is the left eigenvector of matrix P; for i € {1, 2}. In other words (;(a))qc4 is the stationary distribution of the
Markov source i.

We start our presentation with the simplest case, namely the case when the matrix P(0, 0) is nilpotent [14], that is, for
some K the matrix PX(0,0) is the null matrix. Notice that for nilpotent matrices ¥(s1, s3): PX(s1,52) =0.

Theorem 3. If P(sy, s) is nilpotent, then there exists yp such that
lim Jnn=7v0:= (1c(1—P(0,0)""|1) (6)
n—o0

where 1 is the unit vector, 1¢ the vector on A with 1¢(a) = 1 when a is common to both sources, and 1¢(a) = 0 otherwise.

This result is not surprising and rather trivial since the common factors can only occur in a finite window at the begin-
ning of the strings. It turns out that yy = 1168 for 3rd order Markov model of English versus Polish languages used in our
experiments.

From now on, we assume that P(sq, s2) is not nilpotent. We need to pay much closer attention to the structure of the
set of roots of the characteristic equation

Als1,82)=1

that will play a major role in the analysis. We discuss in depth properties of these roots in Section 4.5. Here we introduce
only a few important definitions.

Definition 4. The kernel K is the set of complex tuples (sq,s3) such that P(s1,sy) has its largest eigenvalue equal to 1. The
real kernel K =K NR2, i.e. the set of real tuples (51, S2) such that the main eigenvalue A(s1,52) =1.

The following lemma is easy to prove.
Lemma 1. The real kernel forms a concave curve in R2,

Furthermore, we introduce two important notations:

K = min —S51—S§ /
(S],Sz)elc{ L 2} ( )

Cc1,Cy) = ar min —851 — S82;. 8
( 1 2) g(.Sl.Sz) IC{ 1 2} ( )

Easy algebra shows that « < 1. Furthermore, in Appendix A we prove the following property.
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Lemma 2. Let ¢ and c, minimize —sy — s, where real tuple (s, 53) € K. Assume ¥(a, b) € A%: Py(a|b) > O thency <0andcy > —1.
Finally, we introduce a new concept 3K, the border of the kernel K, defined as follows,

Definition 5. We denote 8/ the subset of X made of the pairs (s1,s2) such %(s1, 52) = (c1, c2).

The case when both matrices P; and P, have some zero coefficients is the most intricate. Therefore, to present our
strongest results, we start with a special case when one of the source is uniform. Later we generalize it.

We first consider a special case when source 1 is uniform memoryless, i.e. Py = ﬁ—‘l ® 1 and the other matrix P, is not
nilpotent and general (that is, it may have some zero coefficients). In this case we always have ¢; <0 and c¢3 < 0. This case
we have the following theorem.

Theorem 4. Let P| = \7ll‘|1 ® 1 and P, # Py is a general transition matrix. Thus both ¢y and ¢ are between —1 and 0.
(i) [Mono periodic case.] If P, is not logarithmically rationally related, then there exists a periodic function Q1(x) of small amplitude
such that

K

Van

Cn,n =7
Vo logn+ B

(ii) [Double periodic case.] If P is logarithmically rationally related, then there exists a double periodic function! Q,(.) of small
amplitude such that

(1+ Qi(logn) +o(1)). 9

Con = —220 (1 + Qa(logn) +o(1)). (10)

Vaglogn + Ba

The constants y,, @ and S in the Theorem 4 are explicitly computable as presented next. To simplify our notation for
all (a,b) € A% we shall write Pa(alb) = P(alb) and Py =P. Therefore

P(s1,52) = |A]P'P(s) (11)
with P(s) =P(0, s). We also write 7 (a) = m3(a) and m (s) = [ (a) *]zeq, thus
m(s1,52) = AP (s3) . (12)
Let A(s1,S2) be again the main (largest) eigenvalue of P(s1, s3). We have
A(s1,52) = [APTA(s2) (13)

where A(s) is the main eigenvalue of matrix P(s). We also define u(s) as the right eigenvector of P(s) and £(s) as the left
eigenvector provided (£ (s)[u(s)) = 1. It is easy to see that

A(s) = (£ (s)[P(s)u(s)).

Now we can express ¢1 and ¢z defined in (8) in another way. Notice that if A(s1,52) =1, then in this case

s1 = —log 4 A(s2).

Define L(s) = log 4, A(s). Then c3 is the value that minimizes L(s) — s, that is,

M(c2)
=log|A|. (14)
Ac2)
Also ¢y = —L(c) and kK = —¢c1 — ¢z =ming{L(s) — s}. We have k <1 since L(0) =1.

We now can present explicit expression for the constants in Theorem 4.

Theorem 5. We consider the case P; = ‘]7'1 ® 1 and Py # Py has all non negative coefficients. Let f(s) = (m (s)|u(s)) and g(s) =
(¢ (s)|1). Furthermore, with \W(s) being the Euler psi function, define oy = L"(cy) where L(s) = log) 4 A(s), and

1 We recall that a double periodic function is a function on real numbers that is a sum of two periodic functions of non commensurable periods.
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Ba(s1,82) = —2 (‘9(51) + 1_;—51 -I-lOEIAI) +¥'(s1) — T + ¥'(s2) — G2
f(s2) (f’(Sz))z NEAC (g’(sz))2
f(s2) f(s2) g(s2) g(s2)
as well as
o5 o f(51)g(s2)(s1 4+ DI (s1)(s2 + DIG2)
A(s2) log |A|v2m
We have ¢ = — log|A| A(cay), and then
Com =1 y(c1,C2)
Vazlogn+ Ba(cr, c2)
K nK
+n Q(logn)Jro(M). (15)

The function Q (x) can be expressed as

Qx)= Z piXJ(s1+52) )/(Sl—,Sz) .
(51,52)€0/C* a2x + Pa(s1, 52)

If the matrix Py is logarithmically rationally related, then K is a lattice. Let w the root of Py then

2ik
oK = !(m + 2 +zinzw) (k. 0) eZQI,
logA|

and /xQ (x) is asymptotically double periodic. Otherwise (i.e., irrational case),

2ikm
IK=3{lc1+——.,c2), keZ
log 2

and /xQ (x) is asymptotically single periodic. The amplitude of Q is of order 1076,

Now we consider the case when the matrices Py and P, are general and Py # P,. If they contain some zero coefficients,
then we may have P(—1,0) # Py and/or P(0, —1) # P3. In this (very unlikely) case we may have P(—1,0) = P(0, —1) or
more generally they are conjugate. For example for matrices:

5 1 1 5 1

00 5 3 7 80 3

o L+ 11 11 1 1

P, = 884P_2884

=111 1 1 (275 1 1 1

2 4 4 8 4 4 8

1 5 1 5 1

3 8 0 3 00 3 g
we have

000 1

ot i

P(—1,0)=P(0, —1) = AR

03 1 3

00 0 g

If P(—1,0) =P(0, —1), then there is no unique solution (c1,cz) of the characteristic equation. As a consequence, we have
the following theorem:

Theorem 6. When P(—1,0) and P(0, —1) are conjugate matrices we have

Cnn = po(—)n" (1 +0(1)) (16)

where k < 1 is such that (—«,0) € K and yo(—«) are explicitly computable. When both matrices are logarithmically rationally
related, then

2 A conjugate matrix is a matrix obtained from a given matrix by taking the complex conjugate of each element of it.
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Cnn =y (—i)n* (1 + Qo(logn) + O (n~¢) (17)

where Qq(.) is small periodic function and € > 0.

In general, however, P(—1, 0) and P(0, —1) are not conjugate, and therefore, there is a unique (c1, ¢2) of the characteristic
equation A(cq,C2) = 1. As in the special case discussed above, c; > —1 and ¢ > —1, however, our results are quantitatively
different when c; > 0 or ¢ > 0. We consider it first in Theorem 7 below. Since both cases cannot occur simultaneously, we
dwell only on the case ¢; > 0; the case ¢y > 0 can be handled in a similar manner.

Theorem 7. Assume P(0, 0) is not nilpotent and ¢z > 0.
(i) [Noncommensurable Case.] We assume that P(—1, 0) is not logarithmically related. Let —1 < co < 0 such that (co, 0) € K. There
exist yy such that

Con=y1n (1 +0(1)) (18)

(ii) [Commensurable Case.] Let now P(—1, 0) be logarithmically rationally related. There exists a periodic function Q1(.) of small
amplitude such that

Con=y1n~ 1+ Q1(logn) + 0(n™) (19)

Finally, we handle the most intricate case when both ¢1 and c3 are between —1 and 0. Recall that when both matrix Pq
and Py have all positive coefficients, then P(—1,0) =Py and P(0, —1) = Ps.

Theorem 8. Assume that both ¢, and ¢, are between —1 and 0 and P(0, Q) is not nilpotent.
(i) [Non periodic Case.] If P(—1, 0) and P(0, —1) are not logarithmically commensurable matrices, then there exist «a, 2 and y2 such
that

K
Con= —22 (1+0(1). (20)

Vaglogn + Ba

(ii) [Mono periodic case.] If only one of the matrices P(—1,0) and P(0, —1) is logarithmically rationally related, then there exists a
periodic function Q5 (x) of small amplitude such that

yan*

Joplogn + B

(iii) [Double periodic case.] If both matrices Py and P, are logarithmically rationally related, then function Q»(.) is double periodic
with small amplitude such that

(1+ Qq(logn) +o(1)). (21)

Cn,n —

yan®

JVoaplogn+ B

In the three cases the constants 2, «a and f; are explicitly computable.

(1+ Qa(logn) +o(1)). (22)

Cn.n =

Remark. In the double periodic case when the 3K forms a lattice with commensurable vectors, the double periodic function
reduces to a simple periodic function.

At last, we provide explicit expressions for some of constants in previously stated results, in particular in the most
interesting Theorem 8. We denote H(s1,52) =1 — A(S1,52). Let H1(51,$2) = %}L(sl,sz), f(s1,52) = (; (51, $2)|u(sy, s2)) and
g(81,52) = (£ (51, 52)[1).

Theorem 9. Let cq and ¢y be between —1 and 0. In the general case we have

—i%(s1+52) 1
Can=r" Y y(s1,82)n (1 40 )) . )
raeax Ve logn+ B(s1. s2) logn

With H1, a2, B2(S1,52) and y (1, S2) such
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Fig. 3. Joint complexity: three simulated trajectories (black) versus asymptotic average (dashed red) for the case ¢z > 0. (For interpretation of the colors in
the figure(s), the reader is referred to the weh version of this article,)

d
Hy= —H(c1,c2)

951
52
o — AH — 23$ld$2H|
2= —Hl (51,82)=(€1,¢2)
a i) i) i)
Ftagf | 9581358
Ba(s1,52) = — 2 [ W(sy) + W(sp) + B T2m 4 B2
2 f g
[ Ag—255-8
+ ‘-I—”(S]) + \I”(Sz) + (‘)51652 + dS[ dSZ
f g
3 0 2
_ 351 f 352 f %g - 3_5)2g
f g
83 fiki 33 32 9%
- 05% EH - BS%BSZH 35135 v L) + H + EH as2 7 H
2 2H,q 2H,

and
F(s1)g(s2)(s1 + DI(s1)(s2 + 1)F(52).

$1,82) =
2] A(s2)log| Al 27

The expression for @y seems to be asymmetric in (51,52) In fact it is not since the maximum of sy 4+ sy for
(s1,52) € K attained on (c1, c2) necessarily implies that FH(C] cy) = ds H(cy,c2). Formally the constant « is equal to
2
AAq(C1, C2){(1|VAq(C1,c2)) where V is the gradient operator, A the Laplacian operator £ + ;S
2
Finally, we illustrate our results on two examples.

Example. [n Figs. 3 and 4 we plot the joint complexity for several pairs of strings X and Y. String X is generated by a
Markov source with the transition matrix P, and string Y is generated by a uniform memoryless source. We consider two
Markov sources for X with the following transition matrix:

0 05 02 08
P:L 0‘5] P:[U.S 0.2]' (24)

For the first P in Fig. 3 we have c3 > 0 (see Theorem 7) while for the second P in Fig. 4 we have c3 < 0 (cf. Theorem 4(i)).
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Fig. 4. Joint semi-complexity: three simulated trajectories (black) versus asymptotic average (dashed red)for the case c3 < 0.

3. Proof of Theorem 1

We recall that X and Y are two independent strings of length n and m, generated by two Markov sources characterized
by transition matrices Py and P, respectively. In the previous section we write |X],, and |Y|, for the number of w € A4
occurrences in X and Y. But it will be convenient to use another notation for these quantities, namely

olwy:=1Xlw, OZW):=|Y|w.

We shall use this notation interchangeably. Finally, we write A" = A* — {v}, that is, for the set of all nonempty words. As
observed in (1) we have

Jam= Y P(Ox(w) = D)P(OF(w)=1). (25)

weAt

In [22,10] the generating function of P(O,(w) > 1) for a Markov source is derived. It involves the autocorrelation poly-
nomial of w, as discussed below. However, to make our analysis tractable we notice that O;(w) >1,i=1,2, is equivalent
to w being a prefix of at least one of the n suffixes of X. But this is not sufficient to push forward our analysis. We need a
second much deeper observation that replaces dependent suffixes with independent strings to shift analysis from suffix trees
[12] to tries [15], as already observed in [7] and briefly discussed in Section 2. In order to accomplish it, we consider two
sets of infinite length strings of cardinality n and m, respectively, generated independently by Markov sources P; and P;. As
in Section 2 we denote by Qi (w) the number of strings for which w is a prefix when there are n strings generated by
source i, for i € {1, 2}. The average joint prefix complexity satisfies (2) that we repeat below

Com= Y P(Qu(w)=1)P(Q5(w)=1). (26)

weAt

Before we prove our first main result Theorem 1 we need some preliminary work. First, observe that it is relatively easy
to compute the probability P(€2,(w) = 1). Indeed,

P(Qy(w) = 1) =1~ (1— Pi(w))".

Notice that the quantity 1 — (1 — P(w))" is the probability that |A}|w > O where X}, is a set of n independently generated
strings. To prove Theorem 1 we must show that for Markov sources when n — oo

P(O}(w) = 1) ~ P(Qh(w) > 1)

which we do in the next key lemma.
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We denote by By the set of words of length k such that a word w € By, does not overlap with itself over more than k/2
characters (see [10,7,20] for more precise definition). It is proved in [20] that

> Pw)y=0(k)
weAk—By

where A is the set of all words of length k and 81 < 1 is the largest element of the Markovian transition matrix P. In order
to allow some transition probabilities to be equal to 0 we define

. log P(w)
p=-expl|lim sup ———
k,we Ak k

: . log P(w)
g=-exp | lim inf —.
k,we Ak, P(w)#£0 k

These quantities exist and are smaller than 1 since A is a finite alphabet [21,23]. In fact, they are related to Renyi’s entropy
of order +oo, respectively [23]. We write § = .,/p < 1.
Let Xp be a string of length n generated by a Markov source, For w € A%, define

dn(w) = P(Op(w) > 0) — (1 — (1 = P(w)"). (27)

We prove the following lemma.

Lemma 3. Let w € A¥ be of length k. There exists p > 1 and a sequence R,(w) = O (P(w)p ™) such that for all 1 > € > 0 we have:
(i) for w € By: dn(w) = O (NP(W)) k%) + Rn(w);
(ii) for w € A% — B¥: dp(w) = O (nP(W))<8%) + Rp(w).

Proof. Let No(2) = }_,.o P(On(w) = 0)z". We know from [10] that

Sw(z)
Dw(2)
where Sy, (z) is the autocorrelation polynomial of word w and D,y (z) is defined as follows

No(z) =

Dw(2) = Sw(@(1 —2) + ZP(W) (1 + Fuy,w, (2)(1 — 2)), (28)

where k = |w| is the length of word w with first symbol wy and the last symbol wy. Here F,p(z) for (a,b) eA? is a
generating function that depends on the Markov sources, as describe below. We also write Fy,(Z) when wy =a and w, =b.

Let P be the transition matrix of the Markov source. Let & be its stationary vector and for a € A let , be its coefficient
at symbol a. The vector 1 is the vector with all coefficients equal to 1 and I is the identity matrix. Assuming that the symbol
a (resp. b) is the first (resp. last) character of w, we have [22]

Fu@ = Fap = — [P—x @D A—2P+7 2 1) 1], (29)

Tl
where ® is the tensor product, and [A],; denotes the (a, b)th coefficient of matrix A. An alternative way to express Fy (Z)
is

1
€P-mT@1A-zP+r 1) 'ep) (30)

Fw(z)= .71'—
a

where e, for ¢ € A is the vector with a 1 at the position corresponding to symbol ¢ and all other coefficients are 0.
By the spectral representation of matrix P we have [14]

P=m®1+) Mui®;
i>1
where A; for i > 1 is the ith eigenvalue (in decreasing order) of matrix P (with A1 = 1), and u; (resp. ¢;) are their corre-
sponding right (resp. left) eigenvectors. Thus

)\.'
P-m@DI-zP+r 1) =) — wd (31)

and therefore the function Fy,(2) is defined for all z such that |z| < and is uniformly O(ﬁ).

i
22



58 P, Jacquet et al. / Theoretical Computer Science 844 (2020) 46-80

We now follow the approach from [20] that extends to Markovian sources the analysis presented in [7] for memoryless
sources (see also [10]). Let

Aw(@) =) dn(w)2"
n=0
be the generating function of d,(w) defined in (27). After some algebra we arrive at

PwW)z (14 (1-2)Fuw(2) 1 )

SRS g ( Dw(z) 1—z+P(w)z

(32)
We have
1 dz
dp(w) = — Aw(Z) —,
n(w) = o 55 W@
integrated on any loop encircling the origin in the definition domain of d, (z). Extending the result from [7], the authors

of [20] show that there exists p > 1 such that the function D, (z) defined in (28) has a single root in the disk of radius p.
Let Ay be this root. We have via the residue formula

dn(w) =Res(Aw(2), Aw)Ay" — (1 — P(w))" +dn(w, p) (33)
where Res(f(z), A) denotes the residue of function f(z) on complex number A. Thus
1 dz
dn(w, p) = it % AW(Z)F' (34)
|zI=p
We have
P(w)(1+(1—Ap)Fw(Aw))

Res(A , Aw) = 35

es(Ay(z), Aw) 1= Aw)Co (35)

where Cy = D/, (Aw). But since Dy (Ay) =0 we can write
A Sw(Aw)

Cw '
We can take the asymptotic expansion of A, and C,, as it is described in [10], in Lemma 8.1.8 and Theorem 8.2.2.

Anyhow the expansions were done in the memoryless case. But an extension to Markov sources simply consists in replacing
Sw(1) into Sy (1) + P(w)Fy (1), so we find

L, Pw
Aw = 1+ 5.5

- Fi LIe!
+P2(w) (450 - 50} 4+ 0(P(w)?),

Res(Ay(2), Ay) = — (36)

o (37)
Cw = =Sw(D)+ P(w) (k= Fu(1) — 2323}
+0(P(w)?).
These expansions also appear in [20].
From now the proof takes the same path as the proof of Theorem 8.2.2 in [10]. We define the function
AkSw(A
di ) = 202w oo (g pyy, (38)
w
More precisely, we define the function dy (x) = dyy (X) — dyy (0)e *. Its Mellin transform [23] is
oC
di (s)T(s) = f dyw ()X Vdx
0
defined for all M(s) € (=1, 0) with
A Sw(A
dty(9) = 20 (106 A,y — 1) 1= (~log(1 — P(w)))~ (39)
w

where I'(s) is the Euler gamma function. When w € By with the expansion of A, and since Sy (1) =1+ 0% and
S = 0 (ks*), we find that similarly as in [10]
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d},(s) = O (|s|ks*)P(w)! 5 (40)
and therefore by the reverse Mellin transform, for all 1 > € > 0:
—€+i00
dw(n) = 1 di, (s)I'(s)s "ds
v 2im w
—€—100
= 0 P(w)“ks"). (41)

When w e A¥ — By, it is not true that S, (1) =1+ 0 (%), thus it is shown in [20] that there exists & > 0 such that for all
w e A*: S, (2) > « for all z such that |z] < p. Therefore we get dy,(n) = O(n€P(w)€).
We set

Ra(w) =dw(0)e " +dn(w, p). (42)
We first investigate the quantity d,,(0). We prove that d, (0) = O(P(w)). Noticing that

P(w)

i 2
SW(])SW(1)+O(P(W) )

Sw(Aw) =Sw(1)+

we have the expansion

Sw(l)
Sw(1)

_AuSw(Aw) _,_ POW)
Cw Sw(l)

(Fw(l) + ) + O (P(w)?). (43)

Thus
P(w)
Sw(1)

Thus d, (0) = O (P(w)).
Now we need to consider d,(w, p). Since Ap(z) is clearly O(P(w)) and the integral Sb’A(z)
radius, the result is O(P(w)p™™). O

Sy ()
Sw(1)

dw(0) = — (Fw(l) + ) + 0(P(w))?). (44)

dz

irr s over the circle of

Now we are ready to prove Theorem 1.

Proof. Again staring with

Inm="Y_, P(O4(w) > 0)P(07 (W) > 0) (45)

weA*

we note that
P(0a(w) > 0) =1— (1= Py(W)" +dy(w),
P07 (W) > 0) =1— (1= Pa(w)™ +dZ (w).
Thus
Jnm=Com+ Y dy(W)P(07,(w) > 0)

weA

+ ) (== Pr(w)MdE(w). (46)

weA

We will give the proof for the first sum, since the proof for the second proof being somewhat similar. When w € By, we
have for all € >0

dl(w) = 0 P(w)<ks¥) + R} (w) (47)
and the R}l(w) terms are all O(Pq(w)p™™). We look at the sum

> nP(w)ksh.

k webyg

It is smaller than
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33 nPi(wk(g 8

k weAk

which is equal to n¢ Zkk(q‘g*]m)k. By choosing a value €; of € enough close to 1 so that g€~ 18; < 1 we have the n®
order. Notice that with §; = ,/p we must conclude that 1/2 < €1 < 1.
When w e A* — By, the 8'1‘ factor disappears in the right-hand side expression for d},(w). But in this case

> nPwy@ H =0m 8@ ),
weAk—By
and we conclude similarly.

It remains the sum ZweA* R;(W)Pz(om(w) > 0). For this we remark that P2(On(w) > 0) = 0 (mP3(w)). Therefore the
sum is of order p™"m3Y" . 4+« P1(W)P2(w). It turns out that

3 Pi(w)Pa(w) = 0(Afy)

weAk

where Aq; is the main eigenvalue of the Shur product matrix P; « P; (also known denoted P(—1, —1). Since A2z < 1 the
sum converges and is O(p~"m). O

4. Some preliminary results

In this section we first derive the recurrence on C,m which will lead to the functional equation on the double Poisson
transform C(z1, 2z3) of Cpm, that in turn allows us to find the double Mellin transform C*(s1,82) of C(z1,z2). Finally ap-
plying a double depoissonization we first recover the original C, , and ultimately the joint string complexity J,, through
Theorem 1.

4.1. Functional equations
Let a € A and define
Camn= Y P(Q2y(w)=1PQE(wW)>1)
weaA*

where w € a.4* means that w starts with an a € A. We recall that Q:',(W) represents the number of strings of length n that
start with prefix w.

Notice that Cqmns =0 when n =0 or m = 0. Using Markov nature of the string generation, the quantity Cgnm for
n,m > 1 satisfies the following recurrence for all a,b € A

Conm=1+3 > (:) (::)

acAng,Mq
x (P1(alb))"a(1 — Pq(alb))" "
x (Pa(alb))™ (1 — Pa(alb))™ ™ Cq,ny mq-

where ng (resp. ng) denotes the number of strings among n (resp. m) independent strings from source 1 (resp. 2) that have
symboal a followed by symbol b. Indeed, partitioning b.A* as {b} + 3", 4 a.A* we obtain the recurrence noting that strings
are independent and ("’;)(P1 (alb))"a(1 — P1(a|b))"" is the probability of ng out of n starting with ba. starts

In a similar fashion, the unconditional average Cp ; satisfies for n,m > 2

Com=1+Y Y (;) (::)”1 (@(1 = my (@)™

acAnNg,Mq

x 15 (@) (1 — 72(@))™ ™ Cgnm-
To solve it we introduce the double Poisson transform of Cq,m as

Ca(z1,22)= ) Canm—, 2o (48)

n,m=>0

that translates the above recurrence into the following functional equation:
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Ch(z1,22) = (1 —e ™) (1 —e ™)
+ Y Ca(P1(alb)z1, P2(alb)zy). (49)
aeA
To simplify it, we define the double Poisson transform
2z
172 e
n'm!

Cz1,z2)= ) Cam

n,m>0

i (50)

finding that

C(z1,z2)=(1 —e™3)(1 —e™%2)

+ ) Ca(m1(@)z1, Ta(@)z2). (51)
ac A

Our goal now is to find asymptotic expansion of C(z1,2z3) as z1,22 — oo in a cone around the real axis. This will be
accomplished in the next subsection using double Mellin transform. Granted it, we shall appeal to a double depoissonization
result to recover asymptotically Cy m and ultimately Jp m.

4.2. Double depoissonization

Once we know C(z1, z2) for z; =n, zg =m — oo we then need to recover C, . Double depoissonization lemma discussed
and proved in [10] (see Lemma 10.3.4) allows us to do exactly that but in order to apply it we need to postulate some
conditions on the underlying Poisson transforms. We briefly review double depoissonization next.

For a double sequence ap i, define

o0 Zn M
1,— 2 ,—
f(z1,22) = E an,mﬁe Z]ﬁe 22,

m,n=0 : '

o0 nt
Z.
2 g =

fn(z2) = 2 anm—=e 2.

m!

m=0

We notice that f(z1, z2) is the Poisson transform of the sequence f,,(z2) with respect to the variable z;. Now we postulate
certain conditions on f(z1,z2) and f,(z2) that will allow us to extract asymptotics of a, ,, from f(z1, z2).

First depoissonization. For z; € Sy :={zp : arg(zz) < 0} we postulate that there exist constants 8, «, B and D such that
71 €8p:|f(z1,22)] < B(z1|? + 1221
21 ¢ S0 : |f (21, 22)e” | < Dz e,
Therefore, from the one-dimensional analytic depoissonization of [8,23] for z3 € Sy, we have for all integers k > 0

B
fa(z2) = f(n,z2) + 0 (n‘“ + %) + 0(|za/PnPh).

Similarly, when z, ¢ Sy we postulate

71 € 8y 1| f (21, 22)e2| < D|zy|Pe1l
20 ¢ 80 ¢ 1 (21, 22)eF172) < Delailalzal

Thus for all integer k and Vz; ¢ Sih

fa(z2)e% = f(n, z2)e®? + 0 (nP~1e¥%2l) 4 0 (nfKel22l),

Second depoissonization. The above two conditions on f;,(z2), respectively for z; € & and z; ¢ Sy, allow us to depoissonize
fn(z2). For all k > f:

o for 73 € Sp: fulz2) = 0P +|22|P);
e for zo ¢ Sy: fn(z2)e%2 = o(nﬂeaIZzI)'
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These estimates are uniform. Therefore,
B B
n m
anm = fn(m) + 0 (E + 7) +0 (ﬂﬁm’gik) .

Since

B
fa(m) = f(n,m)+ 0 (nﬂ—l + m?)

and setting k > 8 + 1, we find the desired estimate.
Now we are ready for formulate our depoissonization lemma. In [10] it is shown that C(z1, z2) satisfies depoissonization
conditions for memoryless sources. In Appendix A we prove the following lemma.

Lemma 4 (Depoissonization). We have
n m

Com=Cn,m)+0 (= +-)
m n

for large n and m.

To find C(n, m) from C(z1, z2) we follow the Mellin transform approach, however for general sources we need to consider
a double Mellin transform. We start in the next subsection with a simple case when P; =P5.

4.3. Mellin transform for Py = Py: Proof of Theorem 2

We first present a general result for identical Markov sources, that is, P; = P, =P proving Theorem 2. In this case (49)
can be rewritten with ¢,(z) = C4(z, 2):

b(@)=(1—e""+ Y ca(Plab)z). (52)
acA
This equation is directly solvable by the Mellin transform defined as
o0
cj(s):fca(x)xs_ldx
0

that exists in the fundamental strip —2 < 9%(s) < —1. Properties of Mellin transform can be found in [4,23]. It follows that
for all b e A [23]

() =275 =T ) + Y (P(@alb))°ci(s). (53)
acA
It is better to write it in the matrix form. Let c(s) = [c}(5)]qc.4a be the vector of Mellin transforms c}(s) and P(s) =
[P~*(alb)]a,pea- Then (53) becomes
=27 =11 - P(s))_1

where, again, 1 is the vector of dimension |.A| made of all 1's, and I is the identity matrix.
We now can derive the Mellin transform c*(s) of c(z) := C(z, z) representing the unconditional joint string complexity.
From above and (51) we arrive at

tE) =027 -2I'(s) + Z(JT (@) cg(s) .
acA

which in matrix form can be rewritten as

¢*(s)= (27 = 2)T'(s) (1 + (1A = P(s)) "7 (5))) (54)

where m (s) is the vector made of coefficients 7 (@) ° and we recall (x|y) is the inner product of vectors x and y.
To find the behavior of c(z) for large z near the real axis we apply the inverse Mellin approach as discussed in [4,23].
We observe that

—3/2400
1
c(z2) = — j c*(s)z *ds.
2mi
—3/2—00
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The asymptotics of c(z) for |arg(z)| < @ is given by the residues of the function ¢*(s)z~° occurring at the poles s = —1 and
s = 0. They are respectively equal to
2log2
h

z
and

—1— (11— P(0,0))"'7 (0)}.

The first residues comes from the singularity of (I — P(s))"! at s = —1. This leads to Theorem 2(i). When P is rationally
related then there are additional poles on a countable set of complex numbers s, regularly spaced on the line M(sg) = —1,
and such that P(sg) has eigenvalue 1. These poles contributes to the periodic terms of Theorem 2(ii). The proof of Theorem 2
is now complete.

4.4. Double Mellin transform: Case P1 # P3

From now on we only consider the case Pq £ P, and therefore we need to study properties of C4(z, z) through double
Mellin transform defined as

[e.elNe o)
C;“(sl,Sz)szCa(zLZz)ZT_lzZZZ"dhde (55)
00

or similarly the Mellin transform C*(s1, 52) applied to C(z1, z2), provided we can find a strip a < M(s1), %(s2) < b where the
above transforms exist. Since for any y e R* and a function f we have the identity

f fyox ldx=a"s f fFeox* ldx
0 0

we conclude that

C*(s1,52) =T(s1)(s2)1 + P(s1, 52)C* (51, 52) (56)
or formally
C*(s1,52) = D(s1)[(s2) (1 — P(s1,52)) ' 1. (57)

However, the above formal derivation needs to be amended with a careful analysis of the convergence issues, which
we do next. Notice that for any a € A: Cq(z1,22) = 0(|z1| + |2z2|) when 21,23 — co. But as easy to check Cq(z1,22) is
also O(|z1] + |z2]) when zy,z3 — 0, therefore the Mellin transform is not appropriately defined in (55). To correct it, we
now introduce correction terms in the expression of C4(z1, z2) so that the corresponding Mellin transform exists for —2 <
M(s1), R(s2) < —1.

To continue, we now define a slightly modified Mellin transform, namely

C(z1,22) =C(z1,22) — D(z1, 22)
where

D(z1,z2) = z1€771C1(22) + z2e 2Ca(21) — C1 121200 7172

with

d
Ci(2) = EC(ZI 222 (z21,22)=0,2)

d
C(2) = —C(z1, 22)|(z1,22)=(2.0)-
02y
Notice that €(z1, 77) is now 0(|z1|2 +|z2/2) when z1, 2z — 0. We can show that C(z1,z2) = 0(|z1| + |22]) for (z1, z) in four
dimension cone containing Rt x R, therefore by Ascoli theorem %C(h ,Z2) = 0(1) in the same cone, D1(z) is O(|z]|) for
zeR"*, and similarly D2(z) is O(1). All of this is to state that E(ZI,Z;) is O(|z1| + |z2]) when zq, zp — oo, thus the Mellin
transform of C(z1, z2) is well defined for %i(s1), N(s2) € (—2, —1). Let C*(s1, $2) be the corresponding Mellin transform.
For a € A let Ci4(z) be the coefficient of the vector C;(z) corresponding to the symbol a. For b € A we have the
functional equation
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C1p(2) =1 —e_z+ZP1(GIb)C1a(Pz(ﬂ|b)Z) (58)
aceA

and the Mellin transform of Cy(z), say Cj(s) formally satisfies

Ci(s) =—-T(s)1 +P(—1,5)Cq(s) (59)

or

Ci(s) = —T'(s)A—P(—1,5)""1. (60)
Similarly the Mellin transform Cy(s) of C2(z) satisfies Ca(5) = I'(s)(I — P(s, —1))~'1. To finish, we notice that Ci=0d-
P(—1,—-1)".

Denoting C(s1, $2) = (I — P(s1, $2))~'1, we find

C*(s1.52) =T(s1)T'(52) (C(51. 52) + 52C(s1. — 1)

+ 51€(=1,52) +515C(~1, -1))

finally leading to

C*(s1.52) = T(s1)T'(52) (1 + (7 (51,52)[C(51, 52))) (61)

where 7 (51, 52) denotes the vector composed of 1 (a) *1ma(a) 2 for a € A and (|} is the vector internal product,
Our goal is to find Cp , (i.e., n =m). But by depoissonization it is asymptotically equal to C(n,n), therefore we must find
C(z, z) which by the inverse Mellin transform becomes

1 5
C(z,2) =D(z,2) + —— f fC*(s1 L5202 5 17%2ds1ds;.
(2im)?
1 P2

After some algebra we finally arrive at
Cz,o)=(1—-e 5%+

1 P e P P
W//F(S1)F(52)(JI(51,52)|C(S1,52)+52C(S1,—1)+S1C(—1,52)+51$2C(—1,—1))2_5'_521151!‘152 (62)
P1 02

where the integration is over the lines M(s1) = p1 and N(s1) = p2 with (p1, p2) belonging to the fundamental strip of
C*(s1,52): (=2, —1). We shall analyze asymptotically (62) in the next sections.

4.5. Properties of the kernel

We recall from Section 2 that we define the kernel K as the set of complexiuples (51,52) such that P(s1,S2) has
largest eigenvalue A(S1,S2) = 1. Furthermore, we also define 9/C as the subset of K consisting of the pairs (51, 52) such
M(s1,52) = (€1, c2) where

(c1,¢2) =arg min {—s1 —s2}.
(51,52)ek

We also denote aK* = aK — {(c1,¢2)}.
Let us start with the structure of the set k.

Definition 6. Let P be a matrix on A x A of complex coefficients pg, for all (a,b) € A2. Let Q be a matrix qgp. In the
following we say P and Q are conjugate if there exists a non-zero complex vector (Xg)qec4 such that gu = %Pub- We say

that such matrices are imaginary conjugate if |xq| =1 for all a € A.

Observe that: (i) two conjugate matrices have the same eigenvalue set; (ii) if u = (ug)qe4 is right eigenvector of P, then
(XqUg)ge is right eigenvector of Q. Similarly, if (£g)ge is left eigenvector of P, then (;—ﬂ Ca)ac A is the left eigenvector of Q.
The following lemma is essential and proved in [9] but we give an independent proof in Appendix A (see also [17]).

Lemma 5. Let M = [Mgp] (4, p)c 42 be a matrix such that mg, > 0. We assume that 1 is the largest eigenvalue of M. Let Q be a matrix
with coefficients qqp, = e®ibmgy, where 6, is real. The matrix Q has eigenvalue 1 if and only if Q is imaginary conjugate to matrix M.
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Corollary 1. Let ¢ € A. The matrix Q defined in Lemma 5 has eigenvalue 1 if and only if for all (a, b) € A2:

1
== (Oap +0ca —Op) €Z . (63)
2
Proof. If Q is conjugate to M, we should have a real vector 8;c.4 such that ¥(a, b) € A% Oqy = 6, — 6p. Then i) — 3255 )
thus ei(‘gcb_'gcﬂ) :eiaab. O
Lemma 6. Let ¢ € A. A tuple (sq, S2) belongs to K iff for all (a, b) € A% we have
J(s P1(alb)P1(cla J(s Py(alb)Pa(cla
(1)l 1(alb)Pi(cla) (2)l 2(|)2(|)€Z- (64)

2w 2T pich) 8T pyih)

Proof. Set M = P(c1,c2) and Q = P(sy,s3) for (s1,52) € K. Then, it follows directly from Corollary 1 with eifar —
(P1(a‘b))lfﬁ(ﬂ)(pz(alb))—ﬁ(sz)_ O

Furthermore, in Appendix A we prove the following important characterization of the set &. We say that a curve is
strictly concave (or strictly convex) if the is never linear, even locally.

Lemma 7. If P; and Py are not conjugate, then the set KC is strictly concave.
We summarize our knowledge about 9XC.

Theorem 10. There are three possible structures of dKC:

e the punctual case: K = {(c1, c3)}, this is the most typical case;

o the linear case: there exist a vector (x, y) € R? such that 81C = {(c1, ¢2) +ik(x, ), k € Z);

e the lattice case: there exists two vectors (x1, y1) and (3, y2) € R? which are not colinear such that 3K = {(c1,c2) +
ik1 (X1, y1) + ika(x2, y2), (k1. k2) € Z2.).

Proof. This follows from the fact that according to Lemma 6 if (cy, c2) + (51, 52) € K then Vk € Z (c1,c2) +k(s1, 52) € oK.
Furthermore if (c1,c2) + (57, 55) € 3K then (s1,52) + a(s}, s5) € dK. Thus K forms a lattice. In Lemma 6 this occurs when
Py and P; are rationally related.

When both matrices P; and P, are logarithmically rationally related then we are in the lattice case, and the lattice is
made of edges parallel to the axes. Anyhow the reverse is not necessarily true, although we don’t know an explicit example
of non logarithmically rationally related matrix which makes a pair of logarithmically commensurable matrices which would
lead to edges non parallel to the axes.

When only one matrix is logarithmically rationally related, then we are in the linear case, and 3/C is a set of periodic
points laying on one axis. It is nevertheless possible to have a linear case when none of the matrices is logarithmically
rationally related, for example when Py and P, are of the form log* Py =27Qq + M and log* Py = —27Qy + M where Qq
and Q; have integer coefficients but M is not rationally related (in this case xlog*P; + ylog*P; integers would implies
x=y. O

Now we establish some properties of the eigenvalue A(S1,52) of P(sq, S2).
Lemma 8. For all s3 such that M (sz) = ¢, assume 3Asq : (51, 52) € K then A(s1,52) =1 = NR(s1) < 1.

Proof. Notice that M(s1) = ¢y is not possible by construction since it would imply that (s1,52) € K. Let’s consider the
hypothesis %M(s1) > c1. But we have |A(s1,52)| < AL(N(s1), N(s2). Since NR(s1) > c1, each non zero coefficient of P(M(s1), N(s2))
are strictly smaller than the corresponding coefficients P(cq, ®(s2)) and therefore AL(M(s1), N(s2)) < A(c1, N(s2)) = 1 which
contradicts the hypothesis A(s1,52)=1. O

Lemma 9. We have A(c1, ¢2) > |Az(C1, C2)].
Proof. It follows from Perron-Frobenius that the main eigenvalue is unique. O

Let ¢ be a complex neighborhood of 0 such that Vs € U: |A(c2 4 5)| > |A2(c2 + $)|. Therefore the function A(cy + $) is
analytic. In Appendix A we prove the following lemma.
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Lemma 10. Let (xi, yi) be a sequence of complex numbers such that limy_, oo M(Xk, Yi) = (C1, C2) and |A(Xg, Vi)| — A(c1,02) = 1.
Then for all (s1, s2) € U we have

Aj(Xe 451, Ve +52)  Aj(c1+51,620+52)
k—o0 A(Xg + 51, Yk +52) A1 +51.62+52) "

Yj: (65)

and the function A(X + S1, ¥x + S2) are all analytic and uniformly bounded functions on a complex neighborhood of (0, 0) such that

klim A(Xg + 51, Y +52) = A(C1 +51,C2 +52) (66)
—>00

klim VA(Xk +51, Vi +52) =VA(c1 +51,02+52) . (67)
— 00

where V f is the gradient of f.

5. Proof of Theorem 3: Nilpotent case

In this section we consider the case when the matrix P(s1, 53) is nilpotent, that is, there exists K such that PX(sq,5,) =0
for all (51,52). We first provide a simple derivation, and then “recover” it through the Mellin approach.
Notice that for ze C

1+2z(1c|@—2zP(0,0) ") =1+ Y _ 2T (1¢c|P0,0)1)
k<K

is the generating function that enumerates all the common words between the language of source 1 and the language
of source 2, including the empty word. Let us call this set WW. Observe that (1¢|1) enumerate the word of length 1, and
[W| =1+ (1¢|(1—P(0,0))~ "1} is the total number of such common words. Notice that such words are all of length smaller
than K. Since the Markov source are stationary we also notice that  (0,0) =1c.

The quantity Jn ;, converges to

14+ (1c|0—=P(0,0) ')

when n,m — oo because all words in W will appear in both string almost surely. Indeed each word in w € W may not
appear in one string with exponentially small probability.
For similar reasons C, , will converge to

1+ (1c|1—P(0,0)7'1)

exponentially fast, because any word w € W may be prefix to none of n independent strings with a probability decaying
exponentially fast to 0.

Interestingly enough we can find partially this result via the reverse Mellin transform (62). Partially because the error
term is O(n~M) for all M > 0. Let

D(s1.52) = (m (51, 52)[C(s1. 52) +51€(s1. 1)
+51€(~1, 52) +5152C(—1, = 1)).
We notice that D(sq, s2) is never singular and furthermore for all s D(s, —1) = D(—1,5) = 0. Let

1

Dy=——
T (im)?

/ f [(s1)[(s2)D(s1, s)n 172,

L1 P2

Thus by (62) we find C(n,n) = (1—e ™) + Dy Let M be an arbitrary non negative (large) number. By moving the integration
path for s from 9(s2) = p1 to M(s2) = M we only met the poles of I'(s3) on s, = —1 with residues

1
L [ [(s1)D(s1, —1)n'~51ds;
2im
P1

and

1
—,—[[‘(sl)D(sLO)n*Slds].
2im
p1

The first residues is null since D(sy, —1) =0, thus
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1
Dp=—-— f ['(s1)D(s1,0)n " dsy
2im

P
1
E O ——— [(s1)(sp)n 51752
Gin)? f/ (s1)T(s2)
P M
where the second term in the right-hand side is O{n‘M‘f’l). The integration path —ﬁ f,m ['(s1)D(s1,0)n 51dsq can also
be moved on $i(s1) = M, the residues on s; = —1 is D(—1, 0)n, which is null, and on s; =0 is equal to D(0, 0). Thus
1
Dp=D(0,0) — it j I'(s1)D(s1,0n "' + O(n_M_'O]). (68)
M

Since ﬁ fM ['(s1)D(s1.0)n~5" = 0(n~M) and that D(0,0) = (1c|(I — P(0,0))~ 1}, this concludes the proof.
6. Special case: Proofs of Theorems 4-5

To simplify our presentation we will first assume that

1
Al
i.e. the first source is uniform and memoryless. We will see in the next section how to translate these results into the

general case.
In this case, we have

Pq 1®1,

P(s1.52) = | A" P(s2) (69)

with P(s) = P(0, s). We also write 7 (a) = m2(a) and 7 (s) = m (0, 5), thus

T (s1,52) = A" (s7) . (70)

Let A(S1,S2) be the main (largest) eigenvalue of P(s1, $2). We have

A(s1.52) = A" A(s2) (71)

where A(s) is the main eigenvalue of matrix P(s). We also define u(s) as the right eigenvector of P(s) and £(s) as the left
eigenvector provided (£ (s)[u(s)) = 1.
We first present some simple results regarding A(s) and L(s) = log 4| A(s).

Lemma 11. The function L(s) is convex when s is real.

Proof. The function (—L(s),s) describes the set KC which is known to be a concave curve by Lemma 1. Notice that the proof
will also be valid for the general case. O

The proof of the following lemma is left for the reader.

Lemma 12. We have the following identities:
A(s) = (LSIP(SU(S) =D g Gal(s)up(s)P(alb) %,
A(s) = (E)IP(s)u(s)) = 3, p La(s)up(s)P(alb) ~*(—log P(alb)), (72)
A'(s) = ()P (S)U()) = 3 g La(s)Up(s) P(alb) —*(log P(alb))?.

Finally, to compute some of the constants in Theorems 4-5, we need to computer L”(s). To do so, let X, =
T éa®)up(s)P(alb)*. Clearly, by Lemma 12 we have 3", X5 = 1 and

2
L"(s)= ) xap(ogP(alb))* — | ) xaplogPaib) | . (73)
a,b a,b

Now we are ready to derive our results presented in Theorems 4-5. The starting point is the Mellin transform C*(s1,52)
shown in (61) with C*(s1,52) presented in (57). To recover Cp, we first need to find the inverse Mellin transform of (61).
For —2 < p < —1 we have
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C(z,z) —D(z,2) =

1 Tk —51—5
(2'.7)2 f C*(s1,82)z 1 2dsqdsy
R(s1)=NR(s2)=p
_ 1 f (s1)T(s2) (€51, 52) + 52€(51, —1)
= Qi) 1 2 1,52 2C(s1,

R(s1)=NR(s2)=p
+ 51C(— 1, 52) +5152C(—1, = 1)) 25 ~*2ds s,

where €(s1,52) = (I — P(s1,52)) "' 1 and

C(s1,52) = (m(s1,52) A= P(s1,52)) ' 1).
Since C(z,2) =D(z,2) + 0(z M) for any M > 0 when %(z) — oo we find

Cz,z2) — 1+ 0@z M=

i [(s1)l(s2) (74)
R(sD=N(s2)=p

x (Cls1,52) +52C(51, =1) $1€(=1,52) +5152C(—=1, 1)) 251" dsqdsy.

To analyze it asymptotically, we investigate the set of singularities of (I — P(sq, s2) Lin f(sl, s2). Recall that K is the set of
complex numbers (51, S2) such that I —P(sq,S3) is degenerate, ie. (I — P(s1,50)) 1is singular.

Let A1(5), A2(5) ..., A 4/(5)) be the eigenvalues of P(s) in the non-increasing order (e.g., A(S) := A1(s)) while u;(s) and
£i(s)) are respectively the right and the left eigenvectors of P(s) associated with A;(s) subject to (£;(s)|ui(s)) = 1. By the
spectral representation of matrices [23], we have

|A|
(I—=P(si,52)) '=)"

i=1

m“i(h)@ff(sz) (75)

where ® denotes the tensor product. Observe that (I — P(s1,5,)) ! cease to exist at (s1,5y) satisfying [A|51A;(52) = 1, that
is, for s1 := L; x(s2) where

Lik(s2) = ¥(]0g;\i(32) + 2ikm).
—log|A|

The eigenvalues A;(s) are individually analytic functions of s in any complex neighborhood where the order of the
eigenvalues modulus does not change (i.e. |Aj_1(s)| > |Ai($)| > |Ai+1(s)| for all i). But any function of the form }_; f(Xi(s))
is analytic even when the eigenvalue sequence is not strictly decreasing, as long as f() is analytic. To simplify our analysis,
we also postulate that none of the eigenvalue is identically equal to zero, that is, we assume logA;(s) exists except on a
countable set R = {s: 3i:Ai(s) = 0}. It should be pointed out that there are cases when some eigenvalues are identically
equal to zero. For example, for memoryless sources we have for all i > 2: 4;(s) =0 which we already discussed in [6,10] so
we will omit them here.

In order to evaluate the integral in (74) we first use (75) and then apply the residue theorem. To simplify, for 1 < j < |A|,
let fi(s)=(m(s)[u;(s)) and g;(s) = (£;(s)|1). Define (here we set s:=53)

|Al
1 [i©gOULixITE) -
Iz, p)= o ZZ - ® oz A ZLik()=5gg (76)
m(s):p keZ ]:]
1 -~ —5
Iz, p)= T [ C(0,s)I"(s)z°ds. (77)
R(s)=p
Furthermore, let
e iOEiDT L) )
D=0 TS o ve)

thus
1 -5
I(z,p)—ﬂz f H (s, 2)I'(s)z%ds.
1 9is)=p

The next lemma is crucial for the asymptotic evaluation of C(z, z) which by depoissonization lead to asymptotics of Cy
and ultimately [y p.
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Lemma 13. For any M > 0 and for some p > —1, we have

Cz,2) =141z p) = J(z,p) + 0(z ™) (79)
forz — oo,
Proof. In the inverse Mellin expression we see that for M(sy) = R(s2) = —1 we have |P(51,52) < P(—1,—1) and

P(—1,—1) <P;(—1) and P,(—1). Since the matrix P(s1, s) is not nilpotent there exists (a, b) € A? such that |P(sq,$2)a5| <
P(a|b). Consequently, there exists k such that |P¥(s1,$5)|1 <1 or more precisely |A1(s1,52)| <1 — €’ for some €’ > 0. Thus
there exists € > 0 such that for all 51,52 M(s1) > —1 +€ and %(s32) > —1 + € implies that I — P(s1, 52) is not degenerate.
To evaluate the inverse Mellin transform we apply standard approach by moving the line of integration to “catch up”
relevant singularities, however, in our case there some complications. We move the integration path by increasing p. This
does not change the value of I(z, p) and J(z, p) as long as the functions in the integral paths are analytic and not singular.
When the path encounter a singularity we will use the residue theorem. But we may have a problem when any of the
functions A; ceases to be analytic. However, we shall see that when we sum all the terms of the integrand of I(z, p) we
obtain an analytic function derived from (7 (51, 52)(I — P(51,52))11). Indeed we have the (somewhat complicated) identity

Iz.p)=Y f (n(s)|(P(s>)"exp(
keZp(s)=p

knowing that any analytical function f(.) can be applied to matrix P(s) as long its eigenvalues do not correspond to a
singularity of the function f(.). Therefore the only singularities that we meet when we move the integration line of I(z, p)
are the elements of R ={s: Xi(s) =0, for some i}.

If @ € 'R, is one of these singularity, thus we have A;(#) =0, then the function L;(s) = log| (logl (s) + 2ikm) is
meromorphic around 6. However if # is a simple pole of A;(s), then moving around # would be equwalent to add 1 to the
integer k: logAi(s) — logAi(s) + 2im. If the root is of multiplicity £ it is equivalent to add ¢ to the integer k. In any case the
function Hj(s, z) being invariant when ¢ is added to k, turns out to be fully analytic around @, and the integration path in
1(z, p) can be moved over 6.

However, the function A;(s) is a non polar singular on s =0, hence there will be a contribution coming from the inte-
gration of H;(s,z)I"(s)z™F on an arbitrary small loop around 8. Since R(L; (s)) - —oo when s — 0, having R(L; x(s)) < —M
will guarantee that the contribution is in 0(z'~™) and can be included in the error term.

Moving the integration path from R(s1) = M(s2) = p to R(s1) = R(s2) = —1 + € will only hit the poles of I'(s1)I"(s3) at
s1 =—1 and s3 = —1. By construction of the function E(sl,sz) +s1’C\(f1,sz) +526(s1, —-1) +s152‘(?(71,71), the residues at
these points are zero. Therefore the expression

(logP(s) + 211{3‘[])) ( ——(logP(s) + 2iknl)) T)ds, (80)

og 1
og|.A| log | A|

_ -y ! [
C(z,z2)—14+0(z )_(Zm)2 [(s1)I(s2)

NR(s1)=N(s2)=p
x (C(s1,52) +52C(51, = 1)
51€(=1,52) + 5152C(=1, =1)) =517 %2dsyds;

still holds for p = —1 +e€.

Now we take the integration contour for $; and we move it from f(s;) = p to %(s;) = M — p. By doing so we encounter
many poles:
(i) The poles of (l —P(s1,52)) Vats = Ljk(s2). The residues is exactly the expression I(z, p).
(ii) The poles of C(S1,sz)F(51) at §1 = 0 which has residues — [(z, p).
(iii) The double pole of C(sl, —DI(s1)z™" at s; =0 since (I — P(s1,52))" ! is singular at (s1,52) = (0, —1) because
A1(0, —1) = 1. It leads to the residue

1 -5
o ] sI'(s)(alogz + b)z >ds (81)

R($)=p
for some real number a and b coming from the derivative of f1(s) and g1(s) at s =0. But when one moves the integration
path of (81) to M(s) = M the function s['(s)(alogz + b) has no singularity since sI'(s) is not singular on the interval
1—1, +o0l, and thus the integration on N(s) =M is O(Z’M), which can be included in the error term. O

In the following we denote L(s) = L1 o(s). The rule of the game is that we move the integration abscissa of I(z, p) and
J(z, p) to the left (i.e. to larger values) on the value ¢; which minimizes the argument L(s) — s. Moving the integration
path one meets some poles of I'(—L;(s)) when L;(s) = 0. In fact when the matrices are strictly non negative, this case only
applies to j > 2. It turns out that when sisa pole for I'(—Lj(s)) then it is at the same time a pole of c, s). The residues of
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1(z, p) and J(z, p) when passes over such value are the same and cancel. Therefore C(z,z) =1+1(z, p) — J(z, p)+ 0(z™™)
for all values of p <0.

6.1. Proof of Theorems 4 and 5

Now we are going to prove Theorems 4 and 5 corresponding to the case where quantities ¢; and ¢ are both in the
interval [—1, 0] in the case where one source is uniform memoryless. In this case, the main contribution to C(z, z) doesn't
come from the poles, as in the previous section, but rather from the saddle point of zl.0~% (in fact, infinitely many saddle
points).

We start with reviewing some properties of the kernel X and the main eigenvalue. Recall that d/C is the set of complex
tuples (s1,52) satisfying |A|*TA(s2) = 1 such that R(s1) =c1 and N(sy) = 2. Its structure is crucial for our asymptotic
analysis.

From the general Theorem 10 we deduce that only two cases are possible when one source, say source 1, is uniform
(since P; is logarithmically rationally related):

e the lattice case when P; is also logarithmically rationally related, we call this case the rational case;
e the linear case when P, is not logarithmically rationally related, we call this case the irrational case.

Now we focus on proving in the next four lemmas that the main eigenvalue is well separated.

Lemma 14. Let ty be a real number. We have the equivalence
Bis1.52) € 0K I(s2) =12 = |A(ca +il2)] < A(c2).
Proof. Let sy = ¢y +itz. By the Perron-Frobenius, we have |A(52)| < A(c2) since R(s3) = ¢z and |P(s2)| = P(cy) (by taking the

modulus element-wise). If |A(s2)| = A(c2), then there will be t; such that |A|‘t12x(sz) = A(c3), and therefore (cq +it1,52) €
IK. O

Lemma 15. We have a non zero spectral gap, that is, A(c) > Az(c2).
Proof. It follows from Perron-Frobenius that the main eigenvalue is unique. O

Let 4 be a complex neighborhood of 0 such that Vs € U: |A(C2 + 5)| > |A2(C2 + 5)|. Therefore the function A(cy + S) is
analytic.

Lemma 16. Let s, be a sequence such that N(sy) = c2 and |A(S;)| — A(c2). Then for all s € U we have
lim L(sk +5) — L(sx) = L(ca +5) — L(c2) (82)
k—00
lim L'(sg+s)=1L"(cz +5). (83)
k—00

The convergence also holds for any derivative of function L'(s), and the function A(sy + s) is analytic and uniformly bounded on a
complex neighborhood of 0.

Proof. It turns out that limy|A(c1, Sk)| = [A|“A(c2) = 1. There exists X, such that 9R(xy) =cq1 and A(xg, Sk) = |A(C1, Sk

Hence Lemma 10 applies. Thus for any complex number s
Aj(se+5) im Aj(Xk, Sk +5)
k—o0 A(Sk +5) k—>00 A(Xg, Sk +S)

_Ajler,cz+s)  Ajlea +5)

© Mcr,ca+s) Acea+8)

vj:

(84)

Lj(ca+s)

i | < 1 thus A(cz + 5) is analytic because it never cross the value

Since % < 1, there exists If such that Vs e i4:
of another eigenvalue and so is A(Sy + $).

Hence, the logarithm of the eigenvalue, L(sy +5) — L(5k) converges to L(cz +5) — L(c2). The property |A(c1 +5,C2+52)| >
Aa(ca + ) for all s € implies the analyticity of L(cz +s), and therefore L'(c3 +5). O

In passing, we have L'(sg) — 1 and L”(sy) — a3.
Finally, we prove that the main eigenvalue dominates all other eigenvalues in a complex neighborhood of ¢3.
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Lemma 17. There exists € > 0 such that for all i # 1 and for all s such that R(s) = cy:
[Ai(s)] < A(c2) —€. (85)

Proof. This is a consequence of previous lemmas. Suppose that there exists s such that |A2(sg)| — A(c2). This implies that
[A(Sk)| — A(c2), but by previous lemma |A(Sg)| = Az2(C2) =A(c2) —€. O

Now we are in the position to evaluate the integral of C(z,z) by the saddle point methods. Recall that for all M > 0
we have C(z,2) = [(z,c3) — J(z,c2) + 1+ 0(z'"M) where I(z,p) and J(z, p) are given by (76). We already prove that
J(z,c2) = 0(z°2) = 0(z¢¢) for some € > 0 (in fact € = L(cy) > 0). We reinforce it in the next lemma.

Lemma 18. There exists € > 0 such that
1
C(z,z2) =1+ T f Hi(s, 2)I'(s)z5ds + 0 (Z™¢) (86)
im
R(s)=c2

where k = —c1 — ¢ and we recall that

Hiz.s)=Y [19)816)TN(=L1k(5)

— A(s)log| Al

Proof. By Lemma 17 for all j > 1 we have log 4 |2;(s)| < log 4,A(c2) — € for some € > 0, thus the contribution of
fm(s):.;2 Hj(s,z)T'(s)z~%ds is of order

IT(s) |22 L —9ds = 0 (ZL(Cz)—cz—e) —0(# ),
R(s)=c2

as desired. O

Rational Case. We assume now that the matrix log*(ﬁl’) is rationally balanced. The matrix P(s + 2imrv) is then imaginary

conjugate with the matrix P(c|c)2™VP(s) and L(s + 2imv) = L(5) + 2imv log P(c|c). Thus M(L(cs + it)) is periodic in t with

period 27 v. Furthermore, L'(s) is also periodic with period 2 v. Thus, S¢ = ¢z + 2im v for £ € Z are saddle points of zH®)—,
We concentrate now on the term k=0 in H1(s,2)T(s)z* in (86). Define

d? f1(s)g1(s)
ba(s) = = log (W F(fL(s))F(s)) : (87)
Notice that by (s) = B2(—L(s), s) mentioned in Theorem 8. Since the function
f(s)g(s)
log (Ts) F(—L(S))F(S))
has bounded variations, we have the classic saddle point result [4,23]
1 F(9)g(s) s
— ——T'(—=L()I ds =
5 "G) (=L(s)(s)z s
R(s)=c3
S S
= Wr(—usmr(sz)
7 (se)
ZL(se)—s¢

(1+o(1)). (88)

% V27 (a2 log z + ba(s¢))

Notice that R(L(s¢) — S¢) = k. When adding the contribution from the L(s) + % we obtain the expression for

Q(logz) with 9K = {(—L(s¢) — %—‘,51@), (k,£) € Z?). The double periodicity comes from the fact that ./xQ (x) =

3 e Qe TP 4 o(1) when x — oo for some incommensurable® pair of real numbers («,8) and complex numbers
{Gk.e} k. eyez2-

3 Recall that a pair of numbers (x, 8) is commensurable if there exists a real number v such that the vector (var, vB) € Z?2; otherwise the pair is
incommensurable,
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Irrational Case. We now turn to the irrational case. Let A > 0 be a number such that for all |s| < A we have |A(cz +5)| >
|[A2(€c2 + $)|; thus L(cy + $) is analytic. We assume that ¢y < 0 is the only saddle point on 9i(s) = ¢y for |J(s)| < A. There
also exists a3 > 0 such that

[t <A= §1t(L(Cz+it)—L(C2))5—0{3t2 . (89)
From the previous analysis we know that

1 f(5)5(s)

2im A(s) log | A|

KeZ  9is)=cy.|5(s)| <A

2ikm
xT (—L(s) — —)

log | A|
- [‘(s)zL(S)75+2ik”/|°g‘Alds
= Q(logz)(1 +0(1)). (90)
Assume now (89) and define
2ikmw
g(s)zz l"(s— = |A|)| . (91)
keZ g
The function £(s) is continuous and bounded as long as M(s) is bounded. Our aim is to prove that
1 (s)g(s)
- ———&(—L(s
G ' e ‘S( (s))
R(s)=C2,|3(5)|>A
g Z
x T (s)|2* 25 = o(—), (92)

J9ogz

which will complete the proof of Theorem 4.

We know that |f(s)g(s)| < f(c2)g(c2). In addition, we know that for 9(s) = c; we have R(L(s)) < L(cz) as long as
3(s) # 0. We also have |A(s)| > €’ for some €’ > 0 since the matrix P(s) stays away from the null matrix. Therefore, we
need to estimate

T ()| N —C2gs . )
N()=c2,|3(5)|>A

For any € > 0, the portion of the line :R(s) = ¢, where R(L(s)) < L(c3) — €, contributes z€~¢ to C(z, z). Our attention must
turn to the values of s on this line such that :M(L(s)) is arbitrary close to L(cy). In particular, we are interested in the local
maxima of M(L(s)) that are arbitrary close to L(cz). Indeed, these local maxima play a role in the saddle point method.

Let us consider the sequence of those maxima denoted by s; for £ € N such that ®(L(s¢)) — L(c3). By Lemma 10 we
know that for all real t L(s¢ + it) — L(s¢) — L(Ca +it) — L(c2) and that L'(sy + it) — L’(c + it). Therefore for all real t such
(/<A

lim sup (MN(L(s¢ +it)) —N(L(se))) < fa3t2. (94)

£—00

We define I(A) to be the set of complex numbers s such that M(s) = ¢z and ming{|s — s¢|} > A.
Lemma 19. There exists € such that for all s € I{(A): W(L(s)) < L(cy) — €.

Proof. Assume s € I(A). Since s is not a local maxima, we study the variation of M(L(s)) around the local maxima s;.
Without loss of generality we assume that sy — A is between s and sg, thus R(L(sg — A)) > M(s). Since limsup R(L(s¢ — A)) <
L(cy) — 3A% < L(cy) — € the lemma is proved. O

In view of the above, we conclude that
I (s)| 2" ~C2g5 <
N(s)=c2,|3(5)[=A

¥, ] T (s¢ +it)| M EEHD~C2g 4 0 (24€) . (95)
e
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By virtue of the properties of function I'(s) on the imaginary lines, there exists a real B > 0 such that Vs:
-"1‘(5)=Cz=>|rtr|13§{lr(5+if)l}EBIF(S)I~ (96)
Therefore, our analysis can be limited to
Z [ D (sg)| 2" EGeH~C2qp (97)

t <A

Finally, we establish a separation result.
Lemma 20. For ¢ tending to infinity, the s¢ are separated by a distance at least equal to A.

Proof. First, let us assume that ¢, £ — oo and |S¢ — S| — 0, then we have

L'(se) = L'(se) + (s — se)L” (5¢) + O(Ise — ser ). (98)

Since L”(s¢) — a # 0, then we cannot have L’(sp) = 1, thus sy cannot be a local maximum of M(L(s)). Second, if
liminf|s; — sp| > € for some € > 0 with |s; — S| < A, then using the inequality

lim sup R(L(sp)) — N(sp) < —a3lsy — spr|> < —ze? (99)

we cannot have R(L(s¢)) — L(c2). O

From the above we conclude
Zm(f.(Sg +i[))—C2dt e
[t|<A
ZICZEH(Sg)—[(Cz) Zﬂ‘i(L(Sy+i[}}—m([(5g)dt . ( 100)
[t]<A

In summary, the consequence of the previous lemma is that since limsup,_, ., M(L(s¢ +it)) — R(L(s;) < —a3t?, we have
(23]

; 1
lim sup f AAGeHD-Rsgp « (101)
Eﬁoom{A JVraslogz
and the properties of function I'(s) is that Y, |I'(s¢)| < cc. Therefore,
Z f [ (sg)| 2R L+ 2 gy
A EY
- ZK Z |l-|(s£)|z}“(51)71.(c‘2)
£
” ZNL(se+HO)—R(Llse) gp (102)
[t]=A
since lim,_, 5 20 ~L2) = 0, by the dominating convergence theorem. We finally arrive at
er(5£)|zm(s¢)4(c2) f ZRLLseHD)-R(L(se) g
¢ e/ <A
1
=o( (103)

\/logz)

In fact, the saddle point expansion is extendible to any order of \/ﬁ. This proves Theorems 4 and 5. In passing we

observe that when Py and P; are logarithmically commensurable, the line 9i(s1) = ¢1 contains an infinite number of saddle
points that contribute to the double periodic function Q3 (logn) (cf. [9] for more details).
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7. General case: Proofs of Theorem 6-9

We now look at the general case when Py # P3. The main difficulty of the general case is when Py and P, have some
zero coefficients, not at the same locations. For example P(—1,0) may differ from Pq, and P(0, —1) may differ from P,
since P(s1, 53) retains only the coefficients that are both non zero in P; and Py. For example, P(—1, 0) and P(0, —1) may be
conjugate while P; and P; are not. Indeed we can have P(—1,0) =P(0, —1) even when Py # P3.

In this section we first prove Theorem 6 which consider the case when P(—1,0) and P(0, —1) are conjugate. Then we
present a detailed proof of Theorem 7, and finally we briefly discussed proofs of Theorems 8-9.

Proof of Theorem 6. When P(—1,0) and P(0, —1) are conjugate, the situation is more similar to the case when P—1 =P,
discussed in Section 4. In particular there is no saddle point, and the analysis reduces to computing some residues of poles.
To start, we notice that in this case there exists a vector of real numbers (Xg)qec4 such that

P1(alb)P2(alb) > 0 = P2(3|b)z—zpl(a|b)-

As a consequence we have the same spectrum of P(c —s, §) for all ¢ and s, and thus we have the identity A(c—s,s) = A(c, 0).
We will prove the result when Va € A:x, = 1. This does not implies that P; = P; since the above identity only applies to
nonzero coefficients in both matrices. In fact we only have P(—1,0) = P(0, —1). We also notice that P(s,1 —s) is identical
for all s. We leave as an exercise the case where the X, are not identical. We notice that K consists of the tuple (s,1—5)
where s is real. We know that

Cz1,22) =(1—e )1 —e 2) + Y " Calmi (@21, T2(a)22). (104)
acA

The issue here is that the 7r1(a) are not necessarily equal to the mp(a) because they also depend on the other coefficients
of matrices P; and P, which are not tied up by the conjugation property (because their alter ego coefficients in the other
matrix are null). This implies that we have to consider a new matrix G(z) whose coefficients g, ,(2) for (a,b) € A? are

8a,b(2) = Ca(m1(b)z, 2(b)2).

Let P =P(—1,0) =P(0, —1), i.e. the matrix whose coefficients are those Pj(a|b) when Pi(a|b)P3(alb) > 0, and zero other-
wise.
From the functional equation

Ca(z1,22) =(1 —e ") (1 —e™*2) + Z Cc(Plalc)zq, P(alc)zz).
ceA
We have the identity

Zap(2) = (1—e M%) (1 — 702 L N g\ (P(a|0)2). (105)
ceA

We have

trace(G(2)) = ) | Ca(1(0)z, m2(a)2),
ac A

and then we can rewrite equation (104) for z1 =z =z as

C(z,z) = (1 — e %)% + trace(G(z)).

We then compute the Mellin transform G*(s) of G(z), which is a matrix of elements g%, (s) (i.e., Mellin transforms of gq 5(2))
that are equal to

2ap(&) =Ta(S)L() + Y _ g&,(s)P(ale)>.
ceA

Here
ra(s) = —mi(a)° —ma(a) ° + (mq(a) + m2(a))
is the Mellin transform of the term (1 — e 71®2)(1 — e=™2(®)2y i (105). Equivalently

G*(s) = I'(s)r(s) ® 1 + P(s, 0)G*(s) (106)
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or G(s) = (I— P(5,0) " 1T'(s)r(s) ® 1 where r(s) is the vector made of the rq(s)'s. The Mellin transform of C(z, z) which we
denote as c*(s) satisfies

c*(s) = (27° = 2)I'(s) + trace(G*(s)).

The first singularity of G(s) is the pole of (I1— P(s,0))~! which is at s = —« such that A(s, 0) = 1. The only singular term
of G*(s) at s = —« is on its main eigenvectors:

I'(s)
T-25.0) (£(s,0)®@u(s,0) (r(s) ® 1)
whose trace is
&(I‘(S)IU(S, D} (s, 0)[1).
1—A(s,0)
Thus the residue of trace(G*(s)) is
Yo(—k) = m(l'(—f()lu(—iﬂ 0)) (¢ (=, 0)[1).

The inverse Mellin gives

C(z,2)=(1—e %)%+ Zp(—k) (1 +0(1)). (107)

When P(—1,0) is logarithmically rationally related, there are several poles of (I — P(s, 0)) regularly spaced on the vertical
axis M(s) = —« giving a periodic contribution z¥Qg(logz). O

Proof of Theorem 7. Let H{(51,52) = as A(51,572) and

f(s1,52) = (m (51, 52)|u(s1.52)),  &(51,82) = (£ (51,52)[1).

We first notice that Lemma 11 about the convexity of Li(s) is still valid since it depends only on general properties of
the set K. Define now L;(s) implicitly as

Aj(—Ljg(s),s)=1.

where Aj(s1,52) is the jth eigenvalues of matrix P(sy,s2), listed in decreasing modulus. The index k indicates that these
functions can be polymorphic since the root of the equation A;(s1,$2) =1 for s fixed can be multiple as we have seen in
the case when one source is uniform memoryless. For j fixed, each of the functions Ljy(s) are homeomorphic as long as
Aj(Ljk(s),s) is non ambiguous ie. the jth eigenvalue has not the same modulus as the previous or next eigenvalues. This
would happen only on a discrete set of values s.

Let now for 1 < j<|A| and ke Z

Fix(s) = (7 (—Ljk(s), )W (—Ljk(s),s)), (108)

gjk(8) = (L ;(—Ljk(s),9)I1). (109)
Then

I(z, p) = (110)

L [ - § Ik O8O LM 10154,

” . kez) 1 35111( Ljk(s).s)
and
_L ra —$
J(z, p)_zm f C(0,s)I'(s)z"ds. (111)
N(s)=c;

With these new definitions the expression (79) in Lemma 13 is still valid, that is for all M > 0:

Cz2)=1+I@zp)+ ]z p)+ 0@z M).

The proof is indeed the same, the pole cancellations occur the same way and the identity between residues is formally the
same,
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We know that for all k we have A1(—Lqk(s),s) = 1. We assume that k =0 defines the branch where L1 o(s) is real when
s is real. To simplify we denote L(s) = L1 (s). We then move the integration path to the value s =c; which attains the
minimum of L(s) — s at s = k. We know that the

Hz.c2) =0

for € > 0 such that x — € > L(0). Therefore

C(z,2)=1+1(z,c2) + 0(z“€)

as in the case with uniform one source. Since z
fsn(s):cz (s)zE®—sds,

Thus we arrive to two cases: (i) either ¢; > 0 or ¢z > 0 or (ii) ¢1 and ¢z are both negative. In the first case the condition
of Theorem 7 applies. In the second case the condition of Theorem 8 applies. We consider the case ¢z > 0 (case ¢ >0 is
symmetric). Moving the integration toward 9(s) = c; one meets the pole of function I'(s) at zero.

When we meet the pole at s =0 by moving p toward the positive value we obtain a residue from I(z, p) equal to
Ej H;(0, z) and a residue from J(z, p) equal to E(O, 0). Notice that H1(0, z) = £2(z°?) since cg = L(0) > 0 while the residue
from J(z, p) is negligible. The function H1(0, z) turns out to be the leading term since the other terms are of order zLi®
for j>1 and M(L;j(0)) < L1(0). By moving again the integration path with $i(s) > 0 we arrive at R(s) = c3 thus

L)=s js at a minimum for real values of s, we have again a saddle point for

Clz,2)=Y Hj0,2)+1(z,c2)+ 0@ M.
j

We know from the previous discussion that I(z,c3) = 0(z¥) which is of order smaller than ZLO per definition of «.
Therefore we have C(z,z) =1+ H1(0, 2) + 0(z07¢) for some € > 0. Notice that

f1(0)g1(0)
r1(0)
where Q1(.) is a periodic function of periodic log|.A| and of mean 0 with small amplitude.
Recapitulating all cases of Theorem 7:
(i) when P(—1, 0) is not logarithmically related, then

H1(0,2) = z + Qq(logz)z*®

Cn,n = Y1(co, 0N~ °(1 4+ 0(1))
with
f(s1,52)8(51,52)(1 +51)"(s1)
Hq(s1,52) '

Y1(51,82) =

(ii) When P(—1, 0) is logarithmically commensurable

Crn=n"% n* "y (co +2ikmv,0) + O (n©~€)
keZ

where v is the root of P1. O

Remark. Remember that when all coefficients of Py are non-negative P(—1, 0) = P; which is not necessarily the case when
P; has some null coefficients.

Proof of Theorems 8 and 9. We need the following lemma which is basically equivalent of Lemmas 17 and 18 developed in
the special case.

Lemma 21. There exists € > 0 such that for all integers j > 1 and for all integers k the quantities

fj,k(s)gj,k(s)r(_Lj,k(S))r(S)ZLJ.‘k(S)_SdS
— - hj(—Ljk(5), )

(112)
R(s)=cy
are uniformly O (z¢).

Proof. The proof consists of showing that there exist € > 0 such that if A;(s1,52) =1 with %(sz) = ¢ then R(s1) > ¢1 +e.
First we prove that %i(s1) > ¢;. We know that |iq1(s1,52)| > |1j(s1,52)] = 1. Since [A1($1,82)] < A1(N(s1), N(s2)). We have
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M (s2) = 3, thus the inequality A1 (M(51),cz) > 1 implies that M(s1) > ¢y since A1 (M(s1), N(s2)) is strictly increasing in M(s1)
and N(sz).

Second we prove the existence of €. By absurdum we assume that there is a sequence of complex numbers (X, yx) such
that Aj(xk, k) =1 and R(yy) = ¢z and R(x) — ¢1 with N(xe) = c1. We know that |1 (X, Yi)| = |Aj(Xk, Yk)| = 1. From the
inequality

A1), R(Yie)) = A (X, i) =1

we get that |A(xy, yx)| — 1, since (M(xx), R(yg)) — (c1, c2). This would imply that

Ai(Xp,
‘ e 34,

A1(Xks Vi)

which contradicts Lemma 10. O

The above lemma fills the gap necessary to establish of Theorems 8 and 9 by following the footsteps of the proofs of
Theorems 4 and 5. O

Appendix A

Proof of Lemma 2. Let ¥(a, b) € A2 Py (alb) = 0. Thus (0, —1) € K, but since some P»(alb) may be zero, the point (—1,0)
may not be K. But if (—1, s2) € K with sy € R then s3 > 0, otherwise since P(—1, s3) <Py coefficientwise, then A(—1, 52) <
1. Similarly if (s1,0) € K then s7 > —1.

We know that the curve (—5§1, —52) is convex for (51, 52) € K, so is the curve (51, —S1 — $2), then —s1 — 53 is a function
of s1, say a(sy). We have a(0) =1 and a(—1) < 1. Thus the minimum value of a(s;) which is « is attained on ¢y which
must satisfies c; <0 We then have c; < 0 when the curve is strictly convex.

Similarly, the curve (s2, —s1 — S2) is convex, so is the function b(s3) = —s1 — s2. Since b(—1) =1 and b(0) <1 the
minimum is necessarily attained on ¢z > —1, and ¢z > —1 when it is strictly convex. O

Proof of Lemma 4. In order to prove Lemma 4 we adopt here the following general double depoissonization lemma that is
proved in [10] (see Lemma 10.3.4 in Chapter 10).

Lemma 22. Let a, m be a two-dimensional (double) sequence of complex numbers. We define the double Poisson transform f(z1, Z2)
of nm as
.z

m
f,2)= ) Gpm=te 17

n'm
n,m=>0

n
1

Let now Sy be a cone of angle & around the real axis. Assume that there exist B > 0, D > 0, @ < 1 and g such that for |z1], |z2| — oo:

(i) if 21,22 € Sp then | f(z1, 22)| = B(|z1|# + |221);
(ii) if 21,22 ¢ Sp then | f (21, zz)e"1772| = De®ln1ltelzl;
(iii) if z; € Sp and zj ¢ Sp for {i, j} = {1, 2} and | f (21, z2)€%i| < D|z;|Pe®/il.

Then
B B
n m
anm = f(n,m)+ 0 (— +—)
m n
for large m and n.

Just to prove the Lemma 4, we need to establish three conditions (i)-(iii) of Lemma 22. We accomplish it through a
generalization of the so called increasing domain approach discussed in [8,23].

We first prove the lemma for the generating functions Cg(z1,22) for every a € A. Assume now that p =
MaXq pye.a?,ieq1,2){Pi@lb)}. We denote by &Sk part of the cone &y that contains points such that |z]| < p"‘. Notice that
Sk C Sy for all integer k. We also notice C(z1,22) = 0((|z1] + |z2]}%) when z1,zz — 0, therefore we can define

" |Ca(z1, 22)|
a€A,(21,22)€8 xS |z1]| + | 22|

We use the functional equation
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Ch(z1.22) = (1= (1 +z1)e (1 — (1 +z22)e"2) + Z Cq (P1(alb)zy, Pa(alb)zz) . (113)
ae A

In the above equation, we notice that if (21, 22) € Skr1 X Skq1 — Sk X Sk, then for all (a,b) € A? (P1(alb)zq, Pa(alb)zz) are
in Si x S, and therefore we have for some fixed 8 > 0 and for all b € A:
ICp(21, 22)| < Bk(z Pi(alb)|z1] + Pa(alb)|zal) + B = Bi(lz1] +1z2) + B (114)
ac A

since |1 — (1 + z;)e~#| is uniformly bounded for all integers k by some /B for both i € {1,2} when (z1, z3) € S. Thus, we
can derive the following recurrent inequality:

By < By + B max —————} =By + Bp~. (115)
o (21,22) €811 xS 1 —Sk xS |21] + |22]
We should notice that
min {lz1l +1z2l} = p~* (116)

(21,22) €Sk 41 X Spy1 —Sk xS

because one of the number z; has modulus greater than p*. It turns out that limy_, « By < 0o, establishing condition (i) of
the double depoissonization Lemma 22.

Now we are going to establish condition (iii). To this end we define G as the complementary cone of Sy and G as the
portion made of the point of modulus smaller than p~*. We will use cos# < & < 1, therefore ¥z € G: |e?| < e*l, We define
Dy as

|Ca(21, 22)e"1 22

Dy = max . (117)
ac A, (z1.22)G, < Gy eXpla|z1| + &|z2])

We define Gq(z1,22) = Cq(z1, 22)e*1 122, we have the following equation
Gblz1,22) = (6" —1—z1)(e* — 1 —23) + ) _ Ca(P1(alb)z1, Pa(alb)zp) ¢! ~F1@Mar+(1-FalabDzz (118)
acA

We notice that if (z1,22) € Gry1 % Grt1 — Gk x Gk, then all (Pq(alb)zy1, Pa(alb)zz) are in Gy x Gy and therefore we have for
all be A:

|Gp(z1, 22)| < Dy, (Z exp ((P1(alb)a + (1 — Py(alb)) cos ) |z1| + (Pa(alb)e + (1 — Pz(ﬂlb))cosé’)lzzl))
acA

¥ (ECOSB\le F14 |Z1 |)(ec059\22| +14 |22|)_
We notice that V(a, b) € A% and Vi € {1, 2}:

Pi(alb)x + (1 — Pi(alb)) cosf —a < —(1 — p)(ox — cos@) . (119)
We also have e<s?1Zil 41 4 |z;| = ecosflzil(2 4 ﬁ). therefore
|Gp(21, 22)] < Dk|A|€7(17p)(a7(:059)(‘21lHZZI) i 1 )2ef(otfc059)(|21|+\zz|) . (120)
exp(a(|z1] +|zz0)) — e cost

Since (z1,22) € Gr+1 X Grp1 — Gk x Gy implies |z1| + |z2]| = ,o"‘ it follows
1
cost

We clearly have limy_, o Dy < co and condition (iii) is established.
The proof of condition (ii) for z; and z; being in S and G is a mixture of the above proofs. Furthermore, the proof
about the unconditional generating function C(zq, z3) is a trivial extension. O

)Zef(mfcosﬂ)p"‘ _ (121)

Dgy1 < max [Dk’ |A|Dge~(1-PI@—cost)p™ | (5 4 e

Proof of Lemma 5. Let u = (Ug)qc4 be the right eigenvector of M and (Vg)qea be the right eigenvector of Q. Let also
Vg = Xqlig. If 1 is the eigenvalue, we have for all ¢ € A:

. o X
(1 —ePcme)u, = chbube”’“’ x_b . (122)
b#c ¢

If eifec £ 1, then
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(1 —e®emec)uc] > (1= mecue. (123)
By the Perron-Frobenius theorem all u, are real non negative. Suppose that |x;| = maxgea{|Xql}. If 3d € A: Ml 9 or if

xc|
(b,b') € (A —{c})?: eifen b £ eify ;b Then

g X
chbuberefb—b < chbub . (124)
bc e B

But we also know that

(1 =mec)e =) mepity . (125)
b#c

Therefore, we have e« =1 and for all b e A: |xy| = |X|, and for all (b, ") € (A — {c})?: efefh% = el % But since for all
be A |xp| = |xc| every symbol in A can play the role of c. Since for all ce A

0 X
(1= Me) = ) meptupe™® > =3 " meptty (126)
b#c € b
we simply have V(a,b) € A: ek — 1. Denoting x, = e we prove the expected result. The converse proposition is

immediate. 0O

Proof of Lemmas 1 and 7. We call £ the set of real tuples such that A(s1,$2) < 1. The set K is the topological border of K
and since A(s1, S2) decreases when s; or sz decrease, it is the upper border. We will show that K is a convex set and thus
its upper border is concave. Let (x;,x2) and (y1, y2) be two elements of IC and « and 8 two non negative real numbers
such that o + 8 = 1. We want to prove that (ax; + By1, X3 + By2) € K.
By construction
Plaxi + By1, axa + By2) =Plaxi, axa) xP(By1, By2)

where * denotes the Schur product. For (51,52) € K let u(s1, s2) the right main eigenvector of P(sq, S2), i.e.
P(s1, s2)u(sy, 52) = A(s1, s2)u(sy, s2)-
We know that A(s1,52) <1 therefore

P(s1,s2)u(sy, s2) < u(sy, s2)

coefficientwise. Let u(s, s2)*® denotes the vector u(sq, s3) with all its coefficients raised to power . We want to give an
estimate of

P(axy, axa) xP(By1, By2)

applied to the vector

u(x1, x2)** xu(ys, y2)**.

Let a € A the coefficient of the vector

P(axy, axy) x P(By1, By2)u(xi, x2)* »u(y1, y2)**
corresponding to symbol a is equal to

> up(x1, x2)* Pr(alb) 1 Pa(alb)**2up(y1, y2)? P1(alb) ™"

beA

Pa(alb) ™2 > " up(x1, x2)* P1(alb) ™ Pa(alb)~**2up(y1. y2)* P1(alb)™P¥' Py (alb)~F72.
be A

Using Hélder inequality, the above quantity is smaller than

a B
(Zub(m,xz)ﬁ(aw)"lpz(aw)"2) (Zub(yl,yz)m(aw’)”Pz(aw’)ﬂ) : (127)
be A b'eA
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The above terms are respectively A(x1, X2)uq(x1,%2) and L(¥1, y2)Uq(¥1, ¥2). Therefore the vector

P(ax1, ax2) x P(By1, By2)u(x1, x2)** xu(y1, y2)**

is coefficientwise smaller than

A% (x1, x)AP (y1, y2)u(x, x2)** xu(yy, y2)*P.

Since A% (X1, x2)A(*(y1, y2) <1 by Perron-Frobenius the main eigenvalue of P(cex; + B¥1, @Xs + B¥3) is smaller than or
equal to 1, consequently (ax; + By1,aXa + By2) € K.

The Hélder inequality is an equality if and only if the vectors (uq(x1, X2)P(X1,X2))ac.4 and (uqg(y1, Y2)P(¥1,¥2))geA are
colinear, which happens when P(x1,x2) and P(y1, ¥2) are conjugate, which is equivalent to the fact that Py and P, are
conjugate (on the coefficients which are non zero). 0O

Proof of Lemma 10. Consider the matrix mP(xk, ¥i). Since the coefficients of this matrix are bounded, there is no loss
in generality to consider the sequence of matrices converging to a matrix M. The matrix M and matrix Q = P(c1, ¢2), as
defined in Lemma 5, are imaginary conjugate i.e. the coefficients of M are of the form

ef(ea—Gb)Pl (a|b)‘c1 PZ (alb)—fz (128)

for some vector of real numbers 8,. Therefore, M and P(cy, ¢c) have the same spectrum. The spectrum of WP(X,‘, Vi)

converges to the spectrum of M. Furthermore, the right eigenvector u(xy, yi) converges to the vector e%u4(c1, c2) and the
left eigenvector & (xk, yi) converges to e~ tq(C1,C2).
For any pair of complex numbers (s1,$2) we have the identity

1 1
———P(xg + 51, Y +52) = —————P(xk, yi) *P(51,52) . (129)
AlXg, Vi) AXk, Vi)

Thus ml"(x;c + S1, Yk + $2) converges to M = P(s1,s2) and is conjugate to P(c1 + $1,C2 + $2). Since the eigen spectrum
of mp(xk + 51, Yk + S2) converges to the eigen spectrum of P(cy + s1,¢2 + S3), thus we have A(xy + S1, Yk + S2) —
A(c1 + s1,C2 + 52). We also have |A(xy + S1, Yk + S2)| > |A2(Xk + S1, Yk + S2)| when k is large enough with (s1,52) in the

complex neighborhood U2 which implies the analyticity of A(xg + $1, Yk + 52). Thus by Ascoli theorem the derivatives
converge, too. 0O
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