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Abstract

Most real world combinatorial optimization problems are affected by noise in
the input data, thus behaving in the high noise limit like large disordered par-
ticle systems, e.g. spin glasses or random networks. Due to uncertainty in
the input, optimization of such disordered instances should infer stable pos-
terior distributions of solutions conditioned on the noisy input instance. The
maximum entropy principle states that the most stable distribution given the
noise influence is defined by the Gibbs distribution and it is characterized by
the free energy. In this paper, we first provide rigorous asymptotics of the dif-
ficult problem to compute the free energy for two combinatorial optimization
problems, namely the sparse Minimum Bisection Problem (sMBP) and Lawler’s
Quadratic Assignment Problem (LQAP). We prove that both problems exhibit
phase transitions equivalent to the discontinuous behavior of Derrida’s Random
Energy Model (REM). Furthermore, the derived free energy asymptotics lead
to a theoretical justification of a recently introduced concept (Buhmann, 2010)
of Gibbs posterior agreement that measures stability of the Gibbs distributions
when the cost function fluctuates due to randomness in the input. This rel-
atively new stability concept may potentially provide a new method to select
robust solutions for a large class of optimization problems.
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1. Introduction

1.1. Overview

Combinatorial optimization arises in many real world settings and these
problems are often notoriously difficult to solve due to data dependent noise in
the parameters defining such instances. Algorithms that minimize these noisy
instances or approximate their global minimum return a solution that is a ran-
dom variable due to input randomness and that is most often highly unstable.
Therefore, we ask the natural questions: What is the distribution of the output
returned by the algorithm? Can we stabilize such an output distribution by
regularizing the algorithm?

Algorithm design in noise affected real world settings requires both statistical
as well as computational considerations: first, we have to ensure that outputs
of algorithms are typical in a statistical sense, i.e., they have to occur with
high probability. Second, such typical outputs have to be computable in an
efficient way with efficient resources. The reader should notice that statistical
requirements dominate computational ones in an epistemological sense: A com-
putational result has to be rejected if it is atypical since it lacks predictive power.
Computationally, we might require significantly different algorithmic resources
(time and space) to calculate typical solutions for typical inputs compared to
minimizing the empirical risk .

Due to the statistical nature of inference, we have to efficiently compute
posterior distributions of solutions given input data. Open theoretical issues
emerge for this strategy, e.g., analytical computation of macroscopic properties
like entropy, expected log-partition function or expected costs (Frenk et al.,
1985; Talagrand, 2003). The expected log-partition function known also as the
free energy, appeared in the context of combinatorial optimization since the mid
80’s; see e.g., Vannimenus and Mézard (1984) which explored the free energy
properties of the traveling salesman problem. An intriguing property of free
energy is the emergence of discontinuities of certain order when changing the
concentration of the posterior distribution. Such abrupt changes of macroscopic
properties, also known as phase transitions, are characteristic features of various
large systems and have generated a long-lasting interest in theory of discrete
structures (see Cohen, 1988;  Luczak, 1994).

The concept “free energy” found also applications in theoretical computer
science. Recently, in a series of papers on robust learning, Buhmann (2010);
Busse et al. (2013) introduced a robustness score function called the expected
log-posterior agreement (eLPA) for measuring “goodness” of robust solutions.
Although the eLPA arose in a different field, it is tightly connected to computing
free energies, as we see later in the paper. Furthermore, estimating the free
energy for combinatorial optimization problems allow us to justify theoretically
some experimental results obtained for these problems.

For the sake of completeness we should mention here that the statistical
physics community developed an equally intensive research interest for finding
theoretical laws that govern the behavior of macroscopic thermodynamic prop-
erties as the free energy. Many interesting models of such large systems were
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introduced relatively early, e.g. the Sherrington-Kirkpatrick (SK) spin glass
model (see Sherrington and Kirkpatrick, 1975). It required, however, consider-
able time and effort to develop rigorous techniques for solving them. For exam-
ple, Derrida (1981) introduced a very simple, but exactly solvable model called
random energy model (REM) as the limit of the SK models family. Later, Aizen-
man et al. (1987) published an exact solution in the high-temperature phase for
the SK model. The general question of the exact free energy behavior became
increasingly fascinating: it triggered a new wave of latest research (see Bovier
et al., 2002; Talagrand, 2003). The reader should also note that many interest-
ing heuristic tools have been developed in the context of statistical physics over
the last several decades, such as the replica method (Parisi, 2009), the cavity
method (Mézard and Parisi, 2003) and meanfield approximation schemes with
belief propagation algorithms.

1.2. Notation and setting

We consider optimization problems that can be formulated as follows (for
explanation see Fig. 1): let n be some integer determining the size of the problem
(e.g., number of vertices in a graph, size of a matrix, etc.), and Sn a finite set
of objects (e.g., set of edges, elements of a matrix, etc). Let X denote the input
to the problem (data).

Figure 1: Illustration of the notation: each of the solutions (examples shown in the figure
are ci, cj , ck) includes N (in the figure N = 7) objects from the underlying set Sn. The
cost function of a solution is the sum of weights assigned to the objects, which belong to that
solution.

Define Cn as a finite set of all feasible solutions (e.g. bisections of a graph),
and Sn(c) ⊆ Sn, c ∈ Cn, as a finite set of objects belonging to the feasible
solution c (e.g., set of edges belonging to a bisection). Let wi(X) = Wi, i ∈ Sn,
be the weight assigned to the i-th object. In this paper we consider optimiza-
tion problems for which the cost function and optimization task are defined as
follows:

R(c,X) =
∑

i∈Sn(c)

wi(X) and copt(X) = arg min
c∈Cn

R(c,X). (1)

We also denote the cardinality of the feasible set as m (i.e., m := |Cn|) and
the cardinality of Sn(c) as N for all c ∈ Cn (i.e., N := |Sn(c)|). In this paper,

3



we focus on optimization problems in which logm = o(N) holds true (see Sz-
pankowski, 1995). We call these optimization problems parameter rich since the
logarithm of the solution space cardinality scales sub-linearly with the number
N of objects that belong to a solution c.

1.3. Finding the optimal Gibbs posterior

Most real world combinatorial optimization problems are affected by noise in
the input data X. Therefore, they behave like large disordered particle systems,
e.g., random networks or spin glasses. Like physical systems, they optimize an
application dependent functional (cost function), and their solutions are char-
acterized by the maximum entropy method. In view of this stochastic setting,
we suggest to “robustify” the solution by sampling it from some posterior dis-
tribution p(c|X). In the framework of maximum entropy, it is well justified
(see Vannimenus and Mézard (1984)) to use Gibbs distributions, known also
as Gibbs posteriors, for the posterior distribution p(c|X) leading to a channel
presented in Fig. 2.

posterior distribution

pβ(c|X)

sampling c from

pβ(c|X)

optimal solution

c∗

Figure 2: Standart risk minimization (upper) solution and a solution obtained via sampling
from approximating posterior distribution (lower).

Definition 1. Suppose we are given an optimization problem defined by a cost
function R(c,X) ∈ R, where c is a solution from the finite solution space C
and X is a random data instance. Then the Gibbs posterior distribution
pβ(c|X) is defined as

pβ(c|X) =
1

Z(β,X)
exp(−βR(c,X)) with Z(β,X) =

∑
c′∈C

exp(−βR(c′, X)) .

(2)

The term Z(β,X) is known as the partition function. The Gibbs distribution
is parameterized by a parameter β which is called the inverse temperature. For
any β the Gibbs posterior assigns the highest weights to those solutions that
have the smallest costs, and β controls the level of concentration of pβ(c|X)
around minimal solutions (see Fig. 3a).

In passing we remark that we will sometimes omit X as an argument of
Z(β,X) and R(c,X) for the sake of brevity. Expectation E[.], variance Var[.]
and other probabilistic operations are meant to be evaluated with respect to the
distribution of X, if not explicitly stated otherwise.

Obviously, β somewhat contributes to robustness of pβ(c|X). But then the
question arises: what is the right way to measure how good a particular choice
of β is? To answer that, we investigate what happens to pβ(c|X) when the input
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Figure 3: (a): Schematic depiction of two Gibbs posteriors pβ(·|X′) and pβ(·|X′′), which may
underfit (low β), be optimal (intermediate β) or overfit (high β) depending on the regularizing

inverse temperature β. (b): the value of the empirical agreement kernel k̂β(X′, X′′) as a
function of β, computed for the toy example of the Figure (a). The value β = 2.8 maximizes
this kernel, meaning that the two posteriors are possibly “stable” and “informative”.

Figure 4: Experimental results for the averaged log-posterior agreement of a clustering problem
(Chehreghani et al., 2012).
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data fluctuates. Let us assume that two noisy instances X ′ and X ′′, come from
the same source. Intuitively (see Fig. 3a), for values of β that are very small,
the posteriors pβ(c|X ′) and pβ(c|X ′′) are very similar (we will informally say
“stable”), but they do not carry much information due to their large variance (we
will informally say “non-informative”). Conversely, using values of β that are
very high result in very informative posteriors but they are simultaneously very
sensible to noise (observe that the best solution toX ′′ is highly improbable under
pβ(·|X ′)). One of the ways to balance between these two limits of under- and
overfitting is to introduce the posterior agreement kernel for two data instances
that show how ”close” p(c|X) and p(c|X ′) are.

A natural measure of agreement between pβ(c|X ′) and pβ(c|X ′′) is defined
by the overlap between the two posteriors in the solution space. Buhmann
(2010) introduced the log-posterior agreement kernel for two instances defined
below.

Definition 2. The posterior agreement kernel for two instances X ′, X ′′ is
defined as

k̂β(X ′, X ′′) =
∑
c∈C

pβ(c|X ′)pβ(c|X ′′)

=

∑
c∈C exp(−β(R(c,X ′) +R(c,X ′′)))

Z(β,X ′)Z(β,X ′′)
∈ [0, 1] . (3)

Then Buhmann (2010) also introduced a generalization capacity that quan-
titatively measures the maximum of expected log-posterior agreement:

Definition 3. The generalization capacity I of a cost function R(c,X) is
defined as

I := sup
β

EX′,X′′ log |C|
∑
c∈C

pβ(c|X ′)pβ(c|X ′′) := EX′,X′′ log
(
|C| k̂β(X ′, X ′′)

)
.

(4)

The optimal β is thus, according to Buhmann (2010), obtained through
maximizing the expected log-posterior agreement. In a toy example presented
in Figure 3b the posterior kernel is shown. We see that it has a clear maximum
w.r.t. the temperature, and this behavior is usually observed. In fact, this is
also confirmed by recent experimental results from (Chehreghani et al., 2012)
shown in Figure 4. In this paper, in Theorem 4 we provide theoretical justifi-
cation for such behavior by considering in details two optimization problems,
namely sparse Minimum Bisection Problem (sMBP) and Lawler’s Quadratic
Assignment Problem (LQAP).

1.4. Computing free energy density

In order to estimate the posterior kernel (3) we need to evaluate E logZ(β,X ′),
E logZ(β,X ′′) as well as E log

∑
c∈C exp

(
−β(R(c,X ′) +R(c,X ′′))

)
, i.e. the ex-

pected log-partition functions. For a large n this task represents a computational
bottleneck and is known to pose a notoriously difficult mathematical challenge

6



(see Talagrand (2003)). We address this issue in our paper and provide new
solutions and novel lower bounding techniques. More precisely, we compute the
Helmholtz free energy density defined next.

Definition 4. The free energy of a set of solutions (configurations) C is defined
as

F(β) = −EX [logZ(β,X)]/ log |C| . (5)

It is known (Bovier et al., 2002; Talagrand, 2003), that obtaining asymptotic
bounds for this quantity is a difficult mathematical problem. In this paper we
address it for tghe two special cases sMBP and LQAP.

1.5. Contributions and structure of this paper

The two main contributions of our paper are: (i) mathematically rigor-
ous asymptotic analysis of the free energy for two optimization problems (i.e.,
sparse MBP and Lawler QAP) in the high-temperature regime. We shall find
phase transitions which are equivalent to the discontinuities of REM and high-
temperature SK (Derrida, 1981; Aizenman et al., 1987) (ii) rigorous asymptotic
computation of the quantity called the expected log-posterior agreement (eLPA)
and interpreting the semantics of this quantity (Buhmann, 2010; Chehreghani
et al., 2012; Busse et al., 2013).

The paper is organized as follows. Formal definitions and main result theo-
rems are stated in Section 2. In Section 2.1 the problems under consideration
are described, while in Sections 2.2 (namely, Theorems 2, 3 and 4) and 2.3 the
statements of our contribution are provided and discussed. Proofs of the main
results can be found in Sections 3 and 4. In Section 5 we provide simulation
details and some new conjectures.

2. Main Results

In this paper we focus on two optimization problems, namely the sparse
Minimum Bisection Problem (sMBP) and the Lawler Quadratic Assignment
Problem (LQAP). Formal definitions are given below. However, we should add
that many of our results hold for a larger class of optimization problems as long
as logm = o(N) (see Szpankowski, 1995). In the rest of the paper we will utilize

the temperature rescaling β = β̂
√

logm/N with β̂ = O(1) which together with
logm = o(N) explains β → 0 limit. This rescaling was justified in (Buhmann
et al., 2014).

For these two problems we shall provide tight asymptotics for the free en-
ergy (5), and compute asymptotically the log-posterior agreement as well as β̂∗

that maximizes the posterior kernel.

2.1. Minimum bisection and quadratic assignment optimization problems

This section introduces combinatorial optimization problems that will be
used to describe our findings. These problems fall into the logm = o(N) class
specified in Sec. 1.2 and cover a wide range of practical applications in signal
processing and neural information processing.
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Minimum bisection problem (MBP). Consider a complete undirected weighted
graph G = (V,E,X) of n vertices, where n is an even number. The input data
instance X is represented by (random) weights (Wi)i∈E of the graph edges.

A bisection is a balanced partition c = (U1, U2) of the vertices in two disjoint
sets: U1, U2 ⊂ V , U1 t U2 = V , |U1| = |U2| = n

2 . Now Sn = E and Cn is the
set of all bisections of graph G, while Sn(c) is the set of all edges cut by the
bisection c. The cost of a bisection c is the sum of the weights of all cut edges
R(c) =

∑
i∈Sn(c)Wi.

The minimum bisection problem finds the bisection of the graph with min-
imum cost. A simple calculation (we omit here 1/2 constant for the sake of

brevity) shows that |Cn| = m =
(
n
n/2

)
and |Sn(c)| = N = n2

4 , and that

logm = log

(
n

n/2

)
∼ log

(
2n
√

2

πn

)
= n log 2− 1

2
log n+O(1), (6)

which shows that the minimum bisection problem belongs to the class of stochas-
tic optimization problems discussed in this paper (i.e., logm = o(N)).

Sparse minimum bisection problem (Sparse MBP or sMBP). We actually will
focus on the sparse Minimum Bisection Problem in which the disjoint subsets
are of the size |U1| = |U2| ≡ d where d grows at least logarithmically and at
most linearly which we write as log � d� n. Thus, N = d2 and the following
holds

logm = log

(
n

d

)(
n− d
d

)
= log

n!

d!(n− 2d)!
∼ 2d log n. (7)

Thus the problem falls into the class logm = o(N) since we assume log n� d.

Quadratic Assignment Problem (QAP). We consider two n× n real-, positive-
valued matrices, namely the weight matrix V and the distance matrix H. The
solution space Cn is the set of the n-element permutations Sn. The cost function
is then R(π, V,H) =

∑n
i,j=1 Vij ·Hπ(i),π(j) for π ∈ Sn. In our terms, the object

space is the set of products of entries of V and H constrained by a relation
on the indices: Sn = {Vij · Hπ(i),π(j) | 1 ≤ i, j ≤ n;π ∈ Sn}. In our notation,
N = |Sn(π)| = n2 and m = |Cn| = n! and thus logm ∼ n log n = o(N) is
satisfied.

Lawler Quadratic Assignment Problem (Lawler QAP or LQAP). Lawler (1963)
introduced a generalization of the QAP where the distance and weight matri-
ces are replaced by a 4-dimensional matrix Q with i.i.d. values: R(π,Q) =∑n
i,j=1Qi,j,π(i),π(j) for π ∈ Sn. It is interesting to see that this generalization

does not change the combinatorial structure of the problem: a Lawler QAP can
be built from a normal QAP and thus falls into our class.

2.2. Free energy, expected log-posterior agreement and its phase transition

In order to give a full picture, before presenting our main results we first
derive a tight upper bound on the free energy as discussed in (Buhmann et al.,
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2014). Interestingly, it shows that there is a phase transition in the second-order
term of the upper bound of the free energy. Such a phase transition is a char-
acteristic feature of various large-scale systems (see  Luczak, 1994; Talagrand,
2003; Mézard and Montanari, 2009).

First, let us state our main assumptions that we use throughout the paper.

Common Theorem Setting. Consider a class of combinatorial optimization
problems in which:

(A) the cardinality m of the set of feasible solutions and the size N of every
feasible solution are related as logm = o(N), and we adopt the scaling

β = β̂
√

logm/N ;

(B) weights Wi are identically (not necessarily independently) distributed with
mean µ and variance σ2 and that the moment generating function of the
negative centered weights (−W i) is finite, i.e. G(t) ≡ E[exp(−tW i)] <∞
exists for some t > 0;

(C) within a given solution c, the weights are mutually independent, i.e. for all
c ∈ Cn, the set {Wi | i ∈ Sn(c)} is a set of mutually independent variables.

To get a flavour of bounding E[logZ] we first observe that E[logZ] ≤ logE[Z]
(by Jensen’s inequality). We can evaluate E[Z] as follows:

E[Z] = E
[∑
c∈C

exp(−βR(c))
]

= exp(−βNµ)E
[∑
c∈C

exp
(
−β(R(c)−Nµ)

)]
= exp(−βNµ)mGN (β). (8)

Thus
logE[Z] = −βNµ+ logm+N logG(β) (9)

since the set of random variables Wi belonging to the same solution are mutually
independent variables. Throughout we write R(c) = R(c)− E[R] = R(c)−Nµ
for the centralized cost, and G(β) for the moment generating function of the
centralized weight W i = Wi − µ.

We can expand G(β) into the Taylor series around zero and obtain

G(β) = 1 +
1

2
β2σ2 +O(β3). (10)

We find as long as β → 0

logE[Z] = −βNµ+ logm+N logG(β)

= −βNµ+ logm+N log
(

1 +
1

2
β2σ2 +O(β3)

)
= −βNµ+ logm+

1

2
Nβ2σ2(1 +O(β)). (11)

Now we apply the rescaling from the Common Theorem Setting

β = β̂

√
logm

N
(12)
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for some constant β̂ leading to

logE[Z] + βNµ

logm
= 1 +

1

2
β̂2σ2(1 +O(β)). (13)

In terms of E[logZ] we find

E[logZ] + β̂µ
√
N logm

logm
≤ 1 +

1

2
β̂2σ2

(
1 +O

(√
logm

N

))
. (14)

But there is a surprise! Let us denote

φ(β) = E[logZ] + βNµ =: E[log Ẑ(β)] (15)

where Ẑ(β) =
∑
c∈C exp(βR(c)) withR(c) = −∑i∈S(c)W i. It is easy to observe

that
βmax
c∈C

R(c) ≤ log Ẑ(β). (16)

Using the upper bound obtained in (14) we find

E[maxc∈C R(c)]

logm
≤
√

N

logm

(
β̂−1 +

1

2
β̂σ2

)
. (17)

Choosing β̂∗ =
√

2/σ that minimizes the right-hand side of (17) we arrive at

E[max
c∈C

R(c)] ≤
√

2σ2N logm (18)

Now proceeding as in Talagrand (2003, Proposition 1.1.3) we obtain

φ′(β) ≤ E[max
c∈C

R(c)]. (19)

But for β > β∗ := β̂∗
√

logm/N ,

φ(β) ≤ φ(β∗) + φ′(β∗)(β − β∗), (20)

since φ(β) is known to be convex. Applying the upper bound for φ′(β) yields

E[log Ẑ] ≤ β̂σ
√

2 logm (21)

and the upper bound for the second β̂ region is obtained. Observe that in this
region the growth is linear with respect to β̂.

In summary, we have the following upper bounds.

Theorem 1 (Buhmann et al. (2014)). Under the common setting of the current
section the following holds:

lim
n→∞

E[logZ(β,X)] + β̂µ
√
N logm

logm
≤
{

1 + β̂2σ2

2 , β̂ <
√

2
σ ,

β̂σ
√

2, β̂ ≥
√

2
σ .

(22)

Remark. The general upper bound proven above is unfortunately not tight.
Consider the (non-sparse) minimum bisection problem with d = n/2. Under

10



the same general assumptions for the weights, it can be shown that a tighter
bound holds for β̂ ≤ 1√

log 2σ

lim
n→∞

E[logZ(β,X)] + β̂µ
√
N logm

logm
≤ 1 +

β̂2σ2

4
. (23)

We prove (23) in Appendix A. �

We proceed now to state our results. For some combinatorial optimization
problems, the asymptotical upper bound of Theorem 1 turns out to be tight.
Below we present two main results which give the asymptotically matching lower
bounds for the Sparse MBP and Lawler QAP. For the Sparse MBP we develop a
novel approach of proving it since the techniques proposed by Talagrand (2003,
Chapter 1) seem not to work.

Theorem 2. Consider Sparse MBP complying with Common Theorem Setting
whose edge weights have mean µ and variance σ2. Then the following holds:

lim
n→∞

E[logZ(β,X)] + β̂µ
√
N logm

logm
=

{
1 + β̂2σ2

2 , β̂ <
√

2
σ ,

β̂σ
√

2, β̂ ≥
√

2
σ

(24)

provided log� d� n2/7/
√

log n.

Let us now consider the Lawer QAP. In this case, we apply a slightly modified
approach developed in Talagrand. However, we should point out that LQAP has
some dependency that were not present in Derrida’s model for which Talagrand
proposed his method.

Theorem 3. Consider Lawler QAP complying with Common Theorem Setting,
whose matrix entries have mean µ and variance σ2. Then the following holds:

lim
n→∞

E[logZ(β,X)] + β̂µ
√
N logm

logm
=

{
1 + β̂2σ2

2 , β̂ <
√

2
σ ,

β̂σ
√

2, β̂ ≥
√

2
σ .

(25)

The matching lower bounds for sMBP and LQAP given above in Theorems 2
and 3 allow us to present theoretical justification for the behavior of the posterior
agreement kernel as shown in Figure 4. To see that, we observe that

EX′,X′′ log
∑
c∈C

pβ(c|X ′)pβ(c|X ′′) (26)

= EX′,X′′ log
∑
c∈C

exp(−β(R(c,X ′) +R(c,X ′′)))
Z(β,X ′)Z(β,X ′′)

= EX′,X′′ logZ(β,X ′, X ′′)− EX′ logZ(β,X ′)− EX′′ logZ(β,X ′′),
(27)

where we Z(β,X ′, X ′′) can naturally be defined as a “partition function”.

Z(β,X ′, X ′′) :=
∑
c∈C

exp(−β(R(c,X ′) +R(c,X ′′))). (28)
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Eventually this allows us to use the above theorems to compute all the three
terms of (26).

To make the final step, we first need to formalize how exactly X ′ and X ′′ are
obtained: let us assume that the two instances X ′ and X ′′ are both represented
by two sets of weights X ′ = {W ′i} and X ′′ = {W ′′i } through adding two “noise”
instances δX ′ = {δW ′i} and δX ′′ = {δW ′′i } to the same “signal” instance X =
{Wi} all the mentioned sets being of the same size |S|:

W ′i = Wi + δW ′i , W ′′i = Wi + δW ′′i for i ∈ S. (29)

We also require that the signal and noise weights have certain means and vari-
ances:

E[Wi] = µ Var[Wi] = σ2 (30)

E[δW ′i ] = E[δW ′′i ] = 0 Var[δW ′i ] = Var[δW ′′i ] = σ̃2. (31)

We define the noise-to-signal ratio as γ = σ̃/σ.
Applying Theorems 2 and 3 we are led to the following result for the posterior

agreement kernel.

Theorem 4. Consider Sparse MBP or Lawler QAP complying with the Com-
mon Theorem Setting. Let set X be “signal” weights with mean µ and variance
σ2 and two sets δX ′, δX ′′ be “noise” with mean 0, and variance σ̃2, all the sets
of the same size. Let X ′ = X + δX ′ and X ′′ = X + δX ′′ (elementwise sum)
be the two problem instances. Let γ := σ̃/σ be noise-to-signal ratio. Then the
expectation of the log-posterior agreement (3) satisfies

lim
n→∞

EX,δX′,δX′′ log
(
|C| k̂β(X ′, X ′′)

)
logm

= η(β̂), (32)

where

η(β̂) =


(β̂σ)2, β̂σ <

√
2√

4+2γ2

β̂σ
√

2
√

4 + 2γ2 − (β̂σ)2(1 + γ2)− 1,
√

2√
4+2γ2

≤ β̂σ <
√

2√
1+γ2

β̂σ
√

2
(√

4 + 2γ2 − 2
√

1 + γ2
)

+ 1,
√

2√
1+γ2

≤ β̂σ
(33)

In particular, the expected log-posterior agreement is maximized at the eLPA-
optimal inverse temperature:

β̂∗ ≡ β̂∗eLPA =

√
2 + γ2

σ(1 + γ2)
. (34)

2.3. Discussion of the results

First, the reader should notice that the free energy of Sparse MBP (24)
and of Lawler QAP (25) exhibit a phase transition similar to that of Derrida’s
Random Energy Model (REM) (Derrida, 1981, Section V). We like to emphasize
that Sparse MBP and Lawler QAP introduce some correlation between costs of
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pairs of solutions, while REM defines a technically much simpler setting without
any correlations between cost values.

Second, regarding the behavior of expected log-posterior agreement (4) shown
in Theorem 4, we can notice that it shows two phase transitions with quadratic,
mixed and linear phases, which corresponds to three phases of the Generalized
REM, well explained in (Derrida and Gardner, 1986, Section 3). Its behavior is
visualized in Fig. 5. We make the following brief observations, explaining the
combinatorial meaning for an approximate learning process:

— The normalized eLPA in (33) depends on the temperature by the product

β̂σ, which pronounces the fact that the reference scale for the temperature of
Gibbs posteriors is adjusted by the amount of signal in data.

— The noise-to-signal ratio γ plays the crucial role. For a fixed signal σ, the
optimal temperature β̂∗ grows to

√
2/σ, as the noise-to-signal vanishes (γ → 0,

i.e. σ̃ � σ). This behavior supports our intuition that a posterior adapted to

the signal variance is better to choose in the absence of noise. Optimal β̂∗ is
located in the so called retrieval phase.

Figure 5: Behavior of the expected log-posterior agreement (4).

— The high temperature phase β̂ → 0 results in low eLPA meaning that
informative solutions cannot be found by sampling from Gibbs posteriors (which
are too “broad”) in this phase.

— Freezing phase β̂ →∞: the decreasing expected low-posterior agreement
reflects the instability of local minima under perturbations δX ′, δX ′′. Solutions
do not generalize and a learning algorithm cannot extract information from
dataset X ′ and test it on X ′′.

Third, we compare the log-posterior agreement behavior to the previous
experimental evidence of Chehreghani et al. (2012, Fig. 2), which shows the
same shape of log-posterior agreement. Although the referred paper has an
experimental nature and considers another optimization problem, it proves the
concept in a nutshell, thereby showing that the theorems presented in this paper
support to the approach pioneered in (Buhmann, 2010; Busse et al., 2013).

Forth, Theorems 2 and 3 allow to directly optimize the expected Gibbs risk

Epβ(c|X),X [R(c,X)] = − ∂

∂β
EX logZ(β,X), (35)

by means of applying differentiation to the results of these theorems on the
right-hand side. As a simple corollary, we thus obtain the following theorem:

Theorem 5 (Minimizing expected Gibbs risk). The expected Gibbs risk (35) is

13



minimized at the GR-optimal inverse temperature:

β̂∗GR := arg min
β̂

Epβ(c|X),X [R(c,X)] =

√
2 + 2γ2

σ(1 + γ2)
. (36)

It is interesting to compare GR-optimal (36) and eLPA-optimal (34) inverse
temperatures:

β̂∗eLPA =

√
2 + γ2

σ(1 + γ2)
and β̂∗GR =

√
2 + 2γ2

σ(1 + γ2)
(37)

and not that they have a slight difference: eLPA selects slightly less (by a factor

of
√

1 + γ2

2+γ2 ) inverse temperature. This can be interpreted as follows: eLPA

approach tends to be a bit more conservative, selecting slightly “broader” Gibbs
posterior as opposed to expected Gibbs risk minimization.

3. Proof of Theorem 2: Matching Lower Bound for Sparse MBP

In this section we present a proof of the matching lower bound for Sparse
MBP. The proof technique that we propose here is novel to the best of our
knowledge and was also used in (see Magner et al., 2015, 2016).

The proof is broken into several lemmas. Let us start with defining D as
elementwise overlap between two solutions (i.e. number of shared edges) sampled
uniformly at random. We will refer to this uniform distribution as D.

Lemma 6. The following holds

#{vertex-non-overlapping}
m2

= 1−Θ(d2/n). (38)

Proof. Observe that

#{vertex-non-overlapping}
m2

=

(
n
d

)(
n−d
d

)(
n−2d
d

)(
n−3d
d

)(
n
d

)2(n−d
d

)2 =

(
n−2d
d

)(
n−3d
d

)(
n
d

)(
n−d
d

) . (39)

We now use Stirling’s approximation, for any integer c to find(
n− cd
d

)
≤ (n− cd)d

d!
=
nd(1− cd/n)d

d!
∼ nd(1− cd2/n)

d!
. (40)

Similarly,(
n− cd
d

)
≥ (n− (c+ 1)d)d

d!
=
nd(1− (c+ 1)d/n)d

d!
∼ nd(1− (c+ 1)d2/n)

d!
.

(41)
Applying these bounds we find

#{vertex-non-overlapping}
m2

≤ (1− 2d2/n)(1− 3d2/n)

(1− d2/n)(1− 2d2/n)
∼ 1− 2d2/n (42)
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and

#{vertex-non-overlapping}
m2

≥ (1− 3d2/n)(1− 4d2/n)

(1− d2/n)
∼ 1− 6d2/n. (43)

This completes the proof. �

Lemma 7. The following holds:

PD(D = 0) ∼ #{vertex-non-overlapping}
m2

(44)

Proof.

PD(D = 0) =
#{vertex-non-overlapping}

m2
(45)

+
#{edge-non-overlapping | vertex-overlapping}

m2
.

Since the following inclusion holds:

{edge-non-overlapping|vertex-overlapping} ⊆ {vertex-overlapping}, (46)

we can conclude that

#{edge-non-overlapping | vertex-overlapping}
m2

≤ {vertex-overlapping}
m2

(47)

=
m2 − {vertex-non-overlapping}

m2
= 1− 1 + Θ(d2/n) = o(1),

(48)

where the last equation comes from Lemma 6 and d = o(n). Hence, the the
following holds:

PD(D = 0)

#{vertex-non-overlapping}/m2
= 1 (49)

+
#{edge-non-overlapping | vertex-overlapping}/m2

#{vertex-non-overlapping}/m2

= 1 +
o(1)

1 + o(1)
= 1 + o(1), (50)

which proves the lemma. �

These two lemmas allow us to estimate the expected value of D.

Lemma 8. The following holds:

EDD = O(d4/n). (51)

Proof. To compute EDD, observe

EDD = 0 · PD(D = 0) +

N∑
k=1

k · PD(D = k) ≤ N
N∑
k=1

PD(D = k) (52)

= d2 · PD(D 6= 0) = d2
(
1− PD(D = 0)

)
∼ Θ(d4/n), (53)
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where the last asymptotic equivalence follows from Lemmas 6 and 7. The less-
than-equal sign turns Θ into O. The lemma is proven. �

Now we are in the position to prove Theorem 2. Let us now introduce an
event A for some ε we choose later:

A := {Z ≥ εEZ}. (54)

This implies, by Chebychev inequality,

1− P(A) ≤ P
(
|Z − EZ| ≥ (1− ε)EZ

)
≤ VarZ

(1− ε)2(EZ)2
. (55)

In Lemma 13 of Appendix B we prove the following (see also (Buhmann et al.,
2014)):

VarZ = (EZ)2
(
ED
(G(2β)

G2(β)

)D
− 1
)
. (56)

Expanding G(2β) and G2(β) in Taylor’s series, we find

VarZ ∼ (EZ)2
(
σ2β2EDD

)
. (57)

Thus (55) can be further rewritten as

1− P(A) ≤ VarZ

(1− ε)2(EZ)2
∼ σ2β2EDD

(1− ε)2
= O

(
β2EDD
(1− ε)2

)
(58)

= O
(

d4 logm

n(1− ε)2N

)
= O

(
d3 log n

n(1− ε)2

)
, (59)

where we used Lemma 8 for EDD asymptotics.
We now proceed to compute E logZ along the way of (Magner et al., 2015):

E logZ = E[logZ | A] · P(A) + E[logZ1(A)] (60)

≥ (logEZ + log ε)P(A) + E[logZ1(A)]. (61)

But by (11) we find

logEZ = −βNµ+ logm+
1

2
Nβ2σ2 + o(β2). (62)

Let the above expression be denoted as L(β,N,m, σ) for the sake of brevity.
So, using (59), we rewrite (61):

E logZ ≥
(
L(β,N,m, σ) + log ε

)
·
(

1−O
(
d3 log n

n(1− ε)2

))
+ E[logZ1(A)] (63)

= L(β,N,m, σ) + log ε−
(
L(β,N,m, σ) + log ε

)
· O
(
d3 log n

n(1− ε)2

)
(64)

+ E[logZ1(A)].
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Thus,

E logZ + βNµ

logm
≥ 1 +

β̂2σ2

2
+

log ε

logm
−
(
L(β,N,m, σ) + log ε

)
· O
(
d3 log n

n(1− ε)2

)
(65)

+ E[logZ1(A)].

Now we introduce below assumption (66) proved later to be true: assume
that

d3 log n

n(1− ε)2
→ 0 (n→∞). (66)

Having that we notice(
L(β,N,m, σ) + log ε

)
· O
(
d3 log n

n(1− ε)2

)
= o(1), (67)

i.e. it is small and thus is further neglected. So we can rewrite

E logZ + βNµ

logm
& 1 +

β̂2σ2

2
+

log ε

logm
+

E[logZ1(A)]

logm
. (68)

We now estimate the term E[logZ1(A)]. For some solution c,

E[logZ1(A)] ≥ E[log e−βR(c)
1(A)] = E[−βR(c) · 1(A)] (69)

= E[−β(R(c) + ER) · 1(A)] = E[−βR(c)1(A)]− βER · P(A)
(70)

≥ −βE[|R(c)|]− βO(N)(1− P(A)) (71)

≥ −βO(
√
N)− βO

(
N

d3 log n

n(1− ε)2

)
. (72)

Thus, essentially,

E[logZ1(A)]

logm
≥ − β

logm
O
(
N

d3 log n

n(1− ε)2

)
∼ −O

(
d7/2
√

log n

n(1− ε)2

)
= o(1) (73)

provided d = o(n2/7/
√

log n) which we also write as d � n2/7/
√

log n. Conse-
quently, (68) becomes

E logZ + βNµ

logm
& 1 +

β̂2σ2

2
+

log ε

logm
−O

(
d7/2
√

log n

n(1− ε)2

)
. (74)

We will now choose ε in order to produce the lower bounds, and then check
that assumption (66) is satisfied. For β̂ > β̂∗ :=

√
2/σ we choose

ε = m−(1−β̂σ
√

2+ β̂2σ2

2 ).

This gives
E logZ + βNµ

logm
& β̂σ

√
2− o(1), (75)
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since for this choice ε = o(1), yielding

O
(
d7/2
√

log n

n(1− ε)2

)
= o(1) (76)

by our choice of d. For this choice of ε the assumption (66) holds.

For β̂ ≤ β̂∗ :=
√

2/σ we choose ε = 1/2, yielding

E logZ + βNµ

logm
& 1 +

β̂2σ2

2
+ o(1), (77)

since
log ε

logm
= o(1), O

(
d7/2
√

log n

n(1− ε)2

)
= o(1) (78)

and the assumption (66) holds. This completes the proof of Theorem 2. �

4. Proof of Theorem 3: Matching Lower Bound for Lawler QAP

In this section we present the proof of Theorem 3 for the matching lower
bound for the Lawler QAP.

Theorem 1 gives us a general upper bound. To find the matching lower
bound we follow Talagrand (2003) that we briefly review. We should point out
up front that Talagrand’s technique was designed for proving the matching lower
bound for the Random Energy Model (REM) without any dependency. In our
case, there are clear dependency between solutions, however, not strong enough
to destroy the the essence of our argument, thought the details are much more
involved as discussed below.

To start, as in Talagrand, we define Y to be the cardinality of the solution
subset for which the centered negative cost function R(c) is large enough, that
is,

Y := card{c : R(c) ≥ un(β̂)}, (79)

where we set in our case

un(β̂) =

{
β̂σ2
√
N logm, β̂ < β̂∗

β̂∗σ2
√
N logm, β̂ ≥ β̂∗. (80)

We also define
an = P(R(c) ≥ un(β̂)), (81)

and the event A as
A = {Y ≤ man/2}.

Observe that
E[Y ] = man (82)

and by Markov inequality

P(A) ≤ P
(
(Y − E[Y ])2 ≥ m2a2

n/4
)
≤ 4Var[Y ]

m2a2
n

≤ 4E[Y 2]

m2a2
n

− 1. (83)
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To follow Talagrand’s approach, w need to show that E[Y 2]/(man)2 → 1 so that
P(A)→ 0 which we formulate as the following lemma proved at the end of this
section.

Lemma 9. There exits ε > 0 such that

P(A) = O(n−ε) (84)

for large n.

In order to establish it and present a concise proof of our matching bound,
we need one more technical result regarding large deviations of P(R(c) ≥ un(β̂))
formulated next.

Lemma 10. Define β̂∗ <
√

2/σ. The following holds

logP(R(c) ≥ un(β̂)) = −un(β̂)2

2Nσ2
+ o(logm) (85)

where un(β̂) is defined in (80) above.

Proof We will demonstrate the result only for β̂ < β̂∗. The proof is identical for
the right region of β̂. The main tool of this demonstration is the Gärtner-Ellis
large-deviation theorem, as best described in (Dembo and Zeitouni, 2009). The
following developments introduce the quantities at play in this theorem.

First observe that

P(R(c) ≥ un(β̂)) = P(
1√

N logm
R(c) ≥ β̂σ2).

Define the logarithmic generating function of R(c)/
√
N logm:

Λn(λ) := logEe
λ 1√

N logm
R(c)

= N log Ĝ

(
λ√

N logm

)
, (86)

where Ĝ(λ) is the moment generating function of a negative centered weight
(−W ). The last transition is valid because we assume that the weights within
a solution are independent as expressed by assumption (C). Define the limiting
moment generating function as

Λ(λ):= lim
n→∞

1

logm
Λn(λ logm) (87)

= lim
n→∞

N

logm
log Ĝ

(
λ

√
logm

N

)
(88)

=
λ2σ2

2
(89)

because Ĝ(λ) = 1 + λ2σ2

2 + o(λ2) for λ→ 0.
The Gärtner-Ellis theorem (Dembo and Zeitouni, 2009, Theorem 2.3.6) yields

lim
n→∞

1

logm
logP(R(c) ≥ un(β̂)) = −Λ∗(β̂σ2) (90)
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where Λ∗(x) = sup
λ>0

λ · x − Λ(λ) = x2/
(
2σ2
)

is the Fenchel-Legendre transform

of Λ(λ). Hence,

logP(R(c) ≥ un(β̂)) = − β̂
2σ2

2
logm+ o(logm) (91)

= −un(β̂)2

Nσ2
+ o(logm) (92)

The proof for β̂ ≥ β̂∗ is similar in all aspects. �

Now, we are in the position to prove Theorem 3 granted Lemma 9 that we
prove at the end of this section. To accomplish it, we need a lower bound for
E[log Ẑ(β)]. We consider two cases conditioning on event A defined above and
its complementary event Ω\A.

We have on event Ω\A

Ẑ(β) =
∑
c∈Cn

exp(βR(c)) ≥
∑

c:R(c)≥un(β̂)

exp(βun(β̂)) (93)

≥ Y exp(βun(β̂)) (94)

≥ man
2

exp(un(β̂)). (95)

Therefore,

E[1Ω\A log Ẑ(β)] ≥ (1− P(A))
(

logm+ log an − log 2 + βun(β̂)
)
. (96)

On event A, we derive the lower bound in the following way. Choosing an
arbitrary solution c0, we notice that Ẑ(β) ≥ exp(βR(c0)) and thus

E[1A log Ẑ(β)] ≥ −βE[−1AR(c0)] ≥ −βE[|R(c0)|] ≥ −Lσβ
√
N + o(1), (97)

where L is some constant coming from expectation of half-normal distribution,
which is the limiting distribution for |R(c0)|. Here we use the fact that |R(c0)|
converges in distribution to a half-normal (due to CLT), and then we determine
that, due to the dominated convergence theorem and uniform integrability of
|R(c0)| (Feller, 1971, Ch. XVI.7), the expectation value of |R(c0)| also converges
to the one of half-normal.

Combining (96) and (97), we obtain

E[log Ẑ(β)] ≥ (1− P(A)) (logm+log an−log 2+βun(β̂))−Lσβ
√
N+o(1). (98)

In summary, by Lemmas 9 and 10 we arrive at

E[log Ẑ(β)]

logm
≥ 1− un(β̂)2

2σ2N logm
+
βun(β̂)

logm
− Lσβ

√
N

logm
+ o(1) (99)

= 1− un(β̂)2

2σ2N logm
+
βun(β̂)

logm
+ o(1). (100)
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Now for the regime β̂ < β̂∗, recall that un(β̂) = β̂σ2
√
N logm, which yields

E[log Ẑ(β)]

logm
≥ 1 +

β̂2σ2

2
+ o(1). (101)

For regime β̂ ≥ β̂∗, un(β̂) = β̂∗σ2
√
N logm, hence

E[log Ẑ(β)]

logm
≥ 1− β̂∗ 2σ2

2
+ β̂β̂∗σ2 + o(1). (102)

All in all, we have

lim
n→∞

E[logZ(β,X)] + β̂µ
√
N logm

logm
≥


1 +

β̂2σ2

2
, β̂ < β̂∗,

1− β̂∗ 2σ2

2
+ β̂β̂∗σ2, β̂ ≥ β̂∗.

(103)
Theorem 3 is proven if we establish Lemma 9, which we do next.

Proof of Lemma 9. First, note that if solutions (permutations) π and π′ have k
common points, then they share k2 entries of the 4-dimensional matrix Q (out
of the N = n2 entries appearing in R(π,X)). Besides, since the solution space
Cn (the set of permutations of size n) is a group, there exists a permutation π′′

such that π′ = π ◦ π′′. Thus, counting the common points between π and π′ is
equivalent to counting the fixed points of π′′, which is a well-studied problem.

The number of permutations with k fixed points is the rencontre number
(see e.g., Szpankowski (2001))

Dn,k =
n!

k!

n−k∑
j=0

(−1)j

j!
. (104)

Therefore, the number of ordered pairs of permutations sharing k fixed points
is

Bn,k = n!Dn,k =
n!2

k!

n−k∑
j=0

(−1)j

j!
. (105)

Similarly to the case of the sMBP, we can break down E[Y 2] using those
elements

E[Y 2] =
∑

π,π′∈Cn
P
(
R(π,X) ≥ un(β̂) and R(π′, X) ≥ un(β̂)

)
(106)

=

N∑
k=0

Bn,kP
(
On,k + In,k ≥ un(β̂) and O′n,k + In,k ≥ un(β̂)

)
(107)

where On,k, O
′
n,k ∼ N (0, N − k2), In,k ∼ N (0, k2) are independent of each

other, In,k represents the sum of the entries shared by the two solutions, and
On,k, O

′
n,k the entries exclusive to one of the two.
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Let us now bound the probability

pn,k(β̂) = P
(
On,k + In,k ≥ un(β̂) and O′n,k + In,k ≥ un(β̂)

)
(108)

that two solutions with k2 shared entries exceed the threshold un(β̂). This
is exactly the probability that the two coordinates of a multivariate centered

normal vector with covariance matrix
(
n2 k2

k2 n2

)
σ2 exceed un(β̂). Applying the

results of (Savage, 1962) about multivariate Gaussian bounds, we have

pn,k ≤
σ2

2πun(β̂)2

√
(n2 + k2)3

n2 − k2
exp

(
− un(β̂)2

(n2 + k2)σ2

)
(109)

=
1

2πβ̂2σ2

1

n2 log n!

√
(n2 + k2)3

n2 − k2
exp

(
−β̂2σ2 n2 log n!

(n2 + k2)σ2

)
(110)

for k < n.
For k = n, pn,n = an and we know that

an ∼
nσ√

2πun(β̂)
exp

(
−un(β̂)2

2n2σ2

)
(111)

=
1

√
2π log n!β̂σ

exp

(
− β̂

2σ2

2
log n!

)
. (112)

Combining equations (105), (107), (110) and (112) yield

E[Y 2]

m2a2
n

. Sn =

n−1∑
k=0

1

k!

n−k∑
j=0

(−1)j

j!

 1

n2

√
(n2 + k2)3

n2 − k2
e

(
1− n2

n2+k2

)
β̂2σ2 logn!

+

√
2π log n!β̂σ

n!
exp(

β̂2σ2

2
log n!). (113)

It is obvious that the term outside of the sum will tend to 0 as long as
β̂ <
√

2/σ. Let us now address the asymptotics of

Sn =

n−1∑
k=0

1

k!

n−k∑
j=0

(−1)j

j!

 1

n2

√
(n2 + k2)3

n2 − k2
e

(
1− n2

n2+k2

)
β̂2σ2 logn!

. (114)

For that, set k = o
(

n
logn

)
and consider the following approximations of various

terms of Sn.
First,

n−k∑
j=0

(−1)j

j!
=

1

e
+O

( 1

(n− k)!

)
. (115)

Second,

1

n2

√
(n2 + k2)3

n2 − k2
= 1 +O

(k2

n2

)
. (116)
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Eventually,

e

(
1− n2

n2+k2

)
β̂2σ2 logn! ∼ e

k2

n2 n logn = 1 +O
(k log n

n

)
. (117)

Plugging back into Sn, we find

Sn =

∞∑
k=0

1

k!
· 1

e
·
(

1 +O
(k2

n2

))
·
(
O
(k log n

n

))
= 1 +O

( 1

nε

)
, (118)

provided that k = n1−ε

logn . Thus,

E[Y 2]

m2a2
n

→ 1 +O(n−ε) and P(A) ≤ 4Var[Y ]

m2a2
n

= O(n−ε). (119)

This proves the lemma. �

5. Remarks, Conjectures and Future Work

This paper investigates the asymptotics of the information score called the
expected log-posterior agreement to validate cost functions and algorithms for
“parameter rich” combinatorial optimization problems. As subtasks, first we
provided rigorous derivations for free energy of Sparse MBP and Lawler QAP.
However, for general MBP and QAP we do not expect the lower bound to match
the upper bound found in Theorem 1. In fact, based on extensive simulation
we concluded that there is an additional scaling in the part of linear growth.
To establish it, we realize that we need some new techniques to prove lower
bounds. Second, we showed that two second order phase transitions occur for
the expected log-posterior agreement. Our analysis and experimental results
show three regions of the expected log-posterior agreement: a high temperature
phase with low information, a retrieval phase and a disordered frozen phase.
Only the retrieval phase can be used for efficient sampling solutions. While
investigating the asymptotics of the log-posterior agreement and free energy
we faced a challenging mathematical problem leading to new research on the
interplay between statistical physics and computation. We hope that techniques
presented here can be successfully used for a large class of different combinatorial
structures and problems.

We also have proposed empirically-inspired conjectures for approximating
free energy for general problems (i.e. for MBP, QAP, and potentially other
problems). These conjectures are well supported by our experiments and by a
rigorous analysis for special cases (i.e. conjecture turns into proven asymptotics
for Sparse MBP, Lawler QAP), as explained below.

5.1. Sampling procedure for simulating the free energy

To produce simulations of the partition function for any given optimization
problem, we use a Metropolis-Hastings procedure to sample solutions at a given
temperature 1/β, coupled with an importance sampling cooling schedule scheme
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to efficiently sample solutions at low temperature levels. Below, we provide a
brief review of importance sampling.
Importance sampling. Let us assume that samples from a distribution Q over
a random variable X are given. Then, the expectation EPφ(X) of a function
φ(X) under a distribution P can be estimated by sampling X under Q with

ÊN =
1

N

N∑
i=1

φ(Xi)
P(Xi)

Q(Xi)
, since EQÊN =

1

N

N∑
i=1

EQφ(Xi)
P(Xi)

Q(Xi)
= EPφ(X).

(120)
This method is called the importance sampling since each sample is “reweighted”
using the target distribution.

We adapt it for the computation of Gibbs distribution partition functions.
Suppose we have Gibbs distribution at temperature 1/β over a space C defined
by a cost function R : C → R. The probability of c ∈ C is P(c|β) = e−βR(c)/Z(β)
where Z(β) =

∑
c∈C e−βR(c) is the partition function. Let us assume the parti-

tion function Z(β) is given and we can sample from the Gibbs distribution at
temperature 1/β′. Then

Z∗N (β, β′) =
1

N

N∑
i=1

Z(β)e−(β′−β)R(ci) (121)

is an unbiased estimator of Z(β′) when sampled under P(·|β). Its precision is
controlled by the relative variance:

Varrel
P(·|β)Z

∗
N (β, β′) =

VarP(·|β)Z
∗
N (β, β′)

E2
P(·|β)Z

∗
N (β, β′)

=
1

N

(
Z(2β′ − β)Z(β)

Z(β′)2
− 1

)
. (122)

Observe that when β differs significantly from β′, the variance may be large,
leading to poor simulations results. Furthermore, when β is close to β′, the
variance is small, thus simulations are more accurate.

Our goal is to estimate the partition function for a wide range of β. The
difficulties arise mostly for large values of β, since the partition function is
then very concentrated. To overcome this, we apply our importance sampling
philosophy and simulate first the partition function for small values of β (this
makes the partition function more uniform and easier to estimate). Once we
have computed the partition function for small β, we use equation (121) to
evaluate it for the targeted value β′. But that is not the end of the story since we
need to proceed in small steps using a cooling schedule β0 = 0 < β1 < · · · < βk
in order to reach the regions of the solution space contributing the most to the
partition function. This is called a cooling schedule (Huber, 2012). In practice,
we use a Metropolis-Hastings procedure to sample from the Gibbs distribution
at a given temperature.

5.2. Results of the simulation

Figure 6 shows the simulation of the free energy in the case of the minimum
bisection problem (d = n/2) for different graph sizes n. The dashed line corre-
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(a) Full view
(b) A zoom on the right part of the
plot

Figure 6: Second-order terms of the free energy rate in the case of the minimum bisection
problem. The edge weights are i.i.d. and generated from a Gaussian distribution N (µ =
20, σ = 5). Every curve is the average of 10 different problem instances. The curve labeled
“upper bound” corresponds to the prediction of Theorem 1.

(a) Standard deviation of σ = 1 (b) Standard deviation of σ = 2.4

Figure 7: Second-order terms of the free energy rate in the case of the quadratic assignment
problem. The distance and weight matrix entries are i.i.d. and generated from equal Gaussian
distributions so that the product of two entries has mean µ = 4 and varying standard deviation.
Every curve is the average of 10 different problem instances. The curve labeled “upper bound”
corresponds to the prediction of Theorem 1.

sponds to the upper bound defined in Theorem 1. It appears that the general
behavior is quite good for the quadratic part of the free energy while for the lin-
ear part there is some discrepancy (a multiplicative factor correction is needed).

Figure 7 shows the simulation of the free energy in the case of the quadratic
assignment problem for different graph sizes n. The dashed line corresponds to
the upper bound defined in Theorem 1. The two plots correspond to different
variances. Interestingly, in this problem the correction coefficient depends on the
variance, which was not the case for the minimum bisection problem. Indeed,
the correction coefficient is around 1/12 for σ = 1.0 and near 1/8 for σ = 2.4.

5.3. Conjecture

Based on our empirical results presented in Figures 6 and 7, we are able to
conjecture a more precise behavior of the free energy for the two optimization
problems discussed in this paper. We shall introduce a correction coefficient α
whose value is determines experimentally in the sequel.

Conjecture 1. Consider a class of combinatorial optimization problems com-
plying with Common Theorem Setting, weights Wi having mean µ and variance
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(a) σ = 0.3 (b) σ = 2.4

Figure 8: Influence of the correction in the case of the quadratic assignment problem for
different standard deviation. The mean is µ = 4 and µV = µH and σ2

V = σ2
H .

σ2. Then the free energy satisfies

lim
n→∞

E[logZ(β,X)] + β̂µ
√
N logm

logm
=

{
1 + α2 β̂

2σ2

2 , β̂ <
√

2
ασ

αβ̂σ
√

2, β̂ ≥
√

2
ασ

(123)

for some α ≥ 1.

The correction coefficient α is related to the variance of the partition function
which involves strong correlations between feasible solutions (that was largely
ignored in (Buhmann et al., 2014)). Based on our experimental results, we
conclude that α is well approximated by the following formula

α =

√
EXVarcR(c,X)

EcVarXR(c,X)
=

√
EXVarcR(c,X)

Nσ2
(124)

where the expectation Ec[·] is taken w.r.t. to all feasible solutions selected
uniformly.

Appendix A. A Tighter Upper Bound for MBP

The general upper bound proven in Theorem 1 above is unfortunately not
tight. To show it we consider the general minimum bisection problem with n
vertices, that is, d = n. In this case, N = |Sn(c)| = n2/4 is the number of edges
cut in a bisection, and m = |Cn| =

(
n
n/2

)
is the number of possible bisections.

Thus we are still in our framework of logm = o(N), and therefore we define a

scaling β = β̂
√

logm/N .

Theorem 11. For the general minimum bisection problem the following holds
for β̂ ≤ 1√

log 2σ

lim
n→∞

E[logZ(β,X)] + β̂µ
√
N logm

logm
≤ 1 +

β̂2σ2

4
. (A.1)

Remark. The idea of the proof is that the minimum bisection problem is a
constrained version of the Sherrington-Kirkpatrick model, which is a spin model
where all the spins are independent (cf. Sherrington and Kirkpatrick, 1975). In
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the minimum bisection problem, it is required that the partition of the graph
be balanced, or equivalently rephrased in spin model terms, it is required that
there is the same number of up-spins as down-spins.

Therefore, the only difference between the two problems is the solution space.
More precisely, we have CMBP

n ⊂ CSK
n . Hence

ZMBP(β) =
∑

c∈CMBP
n

e−βR(c,X) ≤
∑
c∈CSKn

e−βR(c,X) = ZSK(β), (A.2)

which allows us to extend any upper bound on ZSK to ZMBP. In particular,
Talagrand provides such an upper bound in (Talagrand, 2003).
Proof of Theorem 11 First, we introduce some alternate notations for the
minimum bisection problem in order to ease the transition to the Sherringkton-
Kirkpatrick formalism. Denote by G an undirected weighted complete graph
with n vertices. The problem consists in finding a bisection of the graph (a
partition in two subsets of equal size) of minimum cost. More formally, define
by gij the weight assigned to the edge between vertices i and j (gij = gji).
Denote by ci ∈ {−1, 1} an indicator of the subset containing vertex i.

We need to find c ∈ {−1, 1}n such that
∑
i ci = 0 (balance condition) and

the sum of the weights of cut edges

R(c,X) =
∑

ci=−cj
i<j

gij (A.3)

is minimal. Here, X denotes a problem instance of size n, i.e. the particular
values (gij)ij of the edge weights.

Define the partition function as

Z(β,X) =
∑
c∈Cn

e−βR(c,X) (A.4)

where Cn = {c ∈ {−1, 1}n|∑i ci = 0} is the solution space. Let us now prove
Theorem 11. Observe that

logZ(β,X) + β̂µ
√
N logm = logZ(β,X) + βµN

= log
∑
c∈Cn

e−β(R(c,X)−Nµ) = logZ(β,X), (A.5)

where the edge weights of X are defined by gij = gij − µ. Hence without loss
of generality, we will only consider centered problem instances in the rest of the
proof. For clarity, the explicit mention of the dependence to X is dropped in
the partition function, i.e. Z(β,X) := Z(β).

Then, let us relax our problem by allowing the partitions to be unbalanced:

Z∗(β) =
∑
c∈C∗n

e−βR(c) (A.6)

where C∗n = {−1, 1}n is the relaxed set of solutions. Since Cn ⊂ C∗n, it follows
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that
Z(β) ≤ Z∗(β). (A.7)

Now rewrite the cost function as

R(c) =
∑

ci=−cj
i<j

gij =
1

2

(∑
i<j

gij −
∑
i<j

cicjgij

)
=

1

2

(∑
i<j

gij +
√
nRSK(c)

)
(A.8)

where

RSK(c) = − 1√
n

∑
i<j

cicjgij (A.9)

is the cost function of the Sherrington-Kirkpatrick model. This entails

Z∗(β) = e−
β
2

∑
i<j gij

∑
c∈C∗n

e−
√
nβ
2 RSK(c) = e−

β
2

∑
i<j gijZSK

(√nβ
2

)
(A.10)

where
ZSK(β) =

∑
c∈C∗n

e−βR
SK(c) (A.11)

is the partition function associated with the Sherrington-Kirkpatrick model.
Since the gij are centered, it follows that

E
[
logZ∗(β)

]
= E

[
logZSK

(√nβ
2

)]
. (A.12)

We need now the following statement from (Talagrand, 2003), that we present
next.

Theorem 12 (Talagrand, 2003, Theorem 2.2.1). If β < 1
σ , we have

lim
n→∞

1

n
E
[
logZSK(β)

]
=
β2σ2

4
+ log 2. (A.13)

Now let us determine the limit of
√
nβ:

√
nβ =

√
n β̂

√
logm

N
=
√
n β̂

√
log
(
n
n/2

)
n2/4

∼ √n β̂
√
n log 2

n2/4
= 2
√

log 2 β̂ (A.14)

Thus, we can use Theorem 12 to obtain, for β̂ < 1√
log 2σ

lim
n→∞

1

n
E
[
logZSK

(√nβ
2

)]
=
( β̂2σ2

4
+ 1
)

log 2. (A.15)

The equivalence logm
n ∼ log 2 (in n→∞) and (A.12) both allow to write

lim
n→∞

E[logZ∗(β)]

logm
=
β̂2σ2

4
+ 1 (A.16)
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for β̂ < 1√
log 2σ

. Now (A.7) implies that

lim
n→∞

E[logZ(β)]

logm
≤ β̂2σ2

4
+ 1 (A.17)

for β̂ < 1√
log 2σ

. �

Appendix B. Proof of (56)

We prove the following lemma that establishes (56).

Lemma 13. For any β > 0 we have

VarZ = (EZ)2
(
ED
(G(2β)

G2(β)

)D
− 1
)

(B.1)

where D is a random variable denoting the size of the elementwise overlap for
two solutions c, c′ ∈ C, chosen uniformly at random (this uniformness is ad-
dresses in D). Here, G(β) is the moment generating function of the negative
weights (−Wi).

Proof. Let
Z(β) = exp(−βNµ)Ẑ(β), (B.2)

where, as previously, Ẑ(β) =
∑
c∈C exp(βR(c)) with R(c) = −∑i∈S(c)W i. To

compute VarẐ, we proceed as follows

EẐ2 = E
[∑
c∈C

exp(βR(c)) ·
∑
c′∈C

exp(βR(c′))
]

(B.3)

=
∑
c,c′∈C

E exp
(
−β
( ∑
i∈S(c)

W i +
∑

j∈S(c′)

W j

))
.

Now define the elementwise overlap between the solutions c and c′ as Sovr(c, c
′) :=

S(c)∩S(c′), and its cardinality d = d(c, c′) := |S(c, c′)|. We also define the sym-
metric difference Sovr(c, c

′) := S(c)4S(c′) and continue the chain of equalities:

EẐ2 =
∑
c,c′∈C

E exp
(
−β
(

2
∑

i∈Sovr(c,c′)
W i +

∑
j∈Sovr(c,c′)

W j

))
. (B.4)

Here the sets of weights Sovr(c, c
′) and Sovr(c, c

′) are independent, allowing us
to decompose the expectation into the product:

EẐ2 =
∑
c,c′∈C

E exp
(
−β
(

2
∑

i∈Sovr(c,c′)
W i

))
· E exp

(
−β
( ∑
j∈Sovr(c,c′)

W j

))

=
∑
c,c′∈C

(
Ĝ(2β)

)d(
Ĝ(β)

)2(N−d)
=
(
Ĝ(β)

)2N ∑
c,c′∈C

(
Ĝ(2β)

(Ĝ(β))2

)d
. (B.5)
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Now assume that the probability of the two solutions c and c′, chosen uniformly
at random, to have a d-element overlap is PD(d) and rewrite the above as follows:

EẐ2 =
(
Ĝ(β)

)2N N∑
d=0

m2PD(d)

(
Ĝ(2β)

(Ĝ(β))2

)d
= m2

(
Ĝ(β)

)2N N∑
d=0

PD(d)

(
Ĝ(2β)

(Ĝ(β))2

)d

= (EẐ)2
N∑
d=0

PD(d)

(
Ĝ(2β)

(Ĝ(β))2

)d
. (B.6)

We conclude that

VarẐ = EẐ2 − (EẐ)2 = (EẐ)2

(
ED
(
Ĝ(2β)

(Ĝ(β))2

)D
− 1

)
. (B.7)

Recalling that Z(β) = exp(−βNµ)Ẑ(β) and, as well, G(β) = exp(−βµ)Ĝ(β),
we obtain the version without hats:

VarZ = EZ2 − (EZ)2 = (EZ)2

(
ED
(
G(2β)

(G(β))2

)D
− 1

)
. (B.8)

This proves Lemma 13.
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Bovier, A., Kurkova, I., Löwe, M., 2002. Fluctuations of the free energy in the
rem and the p-spin sk models. The Annals of Probability 30 (2), 605–651.

Buhmann, J. M., 2010. Information theoretic model validation for clustering. In:
International Symposium on Information Theory (ISIT). Austin, TX, USA,
pp. 1398–1402.

Buhmann, J. M., Gronskiy, A., Szpankowski, W., 2014. Free energy rates for a
class of very noisy optimization problems. In: Analysis of Algorithms (AofA).
France, pp. 67–78.

Busse, L., Chehreghani, M., Buhmann, J. M., 2013. German Conference on
Pattern Recognition. Springer Berlin Heidelberg, Berlin, Heidelberg, Ch. Ap-
proximate Sorting, pp. 142–152.

Chehreghani, M. H., Busetto, A.-G., Buhmann, J. M., 2012. Information the-
oretic model validation for spectral clustering. In: International Conference
on Artificial Intelligence and Statistics (AISTATS). Vol. 22. pp. 495–503.

Cohen, J. E., 1988. Threshold phenomena in random structures. Discrete Ap-
plied Mathematics 19 (1), 113–128.
”alex5.bbl” 121 lines, 5452 characters Mathematics 19 (1), 113–128.

30



Dembo, A., Zeitouni, O., 2009. Large deviations techniques and applications.
Vol. 38. Springer Science & Business Media.

Derrida, B., 1981. Random-energy model: An exactly solvable model of disor-
dered systems. Phys. Rev. B 24, 2613–2626.

Derrida, B., Gardner, E., 1986. Solution of the generalised random energy
model. Journal of Physics C: Solid State Physics 19 (13), 2253–2274.

Feller, W., 1971. An Introduction to Probability Theory and Its Applications,
2nd Edition. Vol. 2. Wiley, NY.

Frenk, J. B. G., van Houweninge, M., Kan, A. H. G. R., 1985. Asymptotic
properties of the quadratic assignment problem. Mathematics of Operations
Research 10 (1), 100–116.

Huber, M. L., 2012. Approximation algorithms for the normalizing constant of
gibbs distributions. arXiv preprint arXiv:1206.2689.

Lawler, E. L., 1963. The quadratic assignment problem. Management science
9 (4), 586–599.

 Luczak, T., 1994. Phase transition phenomena in random discrete structures.
Discrete Mathematics 136 (1), 225 – 242.

Magner, A., Szpankowski, W., Kihara, D., 2015. On the Origin of Protein Su-
perfamilies and Superfolds. Scientific Reports, 5: 8166.

Magner, A., Kihara, D., Szpankowski, W., 2016. The boltzmann sequence-
structure channel. Proceedings of the IEEE, 2016; also IEEE International
Symposium on Information Theory, ISIT 2016, Barcelona, Spain, July 10-15,
2016. pp. 255–259.
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Vannimenus, J., Mézard, M., 1984. On the statistical mechanics of optimization
problems of the travelling salesman type. Phys. Rev. Lett. 35, 1792–1796.

32


	Introduction
	Overview
	Notation and setting
	Finding the optimal Gibbs posterior
	Computing free energy density
	Contributions and structure of this paper

	Main Results
	Minimum bisection and quadratic assignment optimization problems
	Free energy, expected log-posterior agreement and its phase transition
	Discussion of the results

	Proof of Theorem 2: Matching Lower Bound for Sparse MBP
	Proof of Theorem 3: Matching Lower Bound for Lawler QAP
	Remarks, Conjectures and Future Work
	Sampling procedure for simulating the free energy
	Results of the simulation
	Conjecture

	A Tighter Upper Bound for MBP
	Proof of (56)

