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Abstract—Graph models often give us a deeper understanding of real-world networks. In the case of biological networks they help in

predicting the evolution and history of biomolecule interactions, provided we map properly real networks into the corresponding graph

models. In this paper, we show that for biological graph models many of the existing parameter estimation techniques overlook the

critical property of graph symmetry (also known formally as graph automorphisms), thus the estimated parameters give statistically

insignificant results concerning the observed network. To demonstrate it and to develop accurate estimation procedures, we focus on

the biologically inspired duplication-divergence model, and the up-to-date data of protein-protein interactions of seven species

including human and yeast. Using exact recurrence relations of some prominent graph statistics, we devise a parameter estimation

technique that provides the right order of symmetries and uses phylogenetically old proteins as the choice of seed graph nodes. We

also find that our results are consistent with the ones obtained frommaximum likelihood estimation (MLE). However, the MLE approach

is significantly slower than our methods in practice.

Index Terms—Biological networks, protein-protein interaction, parameter estimation, duplication-divergence, random graphs

Ç

1 INTRODUCTION

MANY biological processes are regulated at the level of
interactions between protein molecules. In recent dec-

ades, the development of experimental and bioinformatic
methods allow researchers to obtain and make publicly
available growing amount of data of various biological
mechanisms involving different proteins. The whole net-
work of these events that can be found and reconstructed
using various techniques is customarily summarized as pro-
tein-protein interaction (PPI) networks. The PPI networks
are often described as undirected graphs with nodes repre-
senting proteins and edges corresponding to protein-pro-
tein interactions.

The proliferation of biological data, in turn, encouraged a
study of a series of theoretical models to develop a deeper
understanding of the evolution and structural properties of
the network representation. However, proper fitting of the
biological data and development of statistical tests to check
the validity of the models are critical to take advantage of the
theoretical developments in graph models. The parameter
estimation remains as a challenging problem in biological
networks like PPIs, mainly because most of the classical esti-
mation procedures were developed for static networks, and
not tailored to specific properties of biological data and its
underlying dynamics. In this paper, we propose a parameter

estimation scheme for biological data with a new perspective
of symmetries and recurrence relations, and point out many
fallacies in the previous estimation procedures.

In this paper, we assume that the networks evolve
according to the following duplication-divergence stochas-
tic graph model.

Duplication-Divergence Model (DD-Model). There is a wide
agreement [1], originally stemming from Ohno’s hypothesis
on genome growth [2], that the main mechanism driving
evolution of PPI networks is the duplication mechanism, in
which new proteins appear as copies of some already exist-
ing proteins in the network. This is supplemented by a cer-
tain amount of divergence of random mutations that lead to
some differences between patterns of interaction for the
source protein and the duplicated protein.

There are many variations of duplication-divergence
models in the literature, although they have not yet been
studied or compared systematically. In this work, we use
the model suggested by Pastor-Satorras et al. in [3], recom-
mended in several surveys [4], [5] as a good possible theo-
retical match for PPI networks.

The model of Pastor-Satorras et al. constructs the graph
as described below. Let N kðuÞ be the the set of neighbors of
vertex u at time k. Given an undirected, simple, seed graph
Gn0 on n0 nodes and target number of nodes n, the graph
Gkþ1 with kþ 1 nodes evolves from the graph Gk as follows
(the subscript k in Gk can also be interpreted as time instant
k). First, a new vertex v is added to Gk. Then the following
steps are carried out:

� Duplication: Select an node u from Gk uniformly at
random. The node v thenmakes connections toN kðuÞ.

� Divergence: Each of the newly made connections
from v to N kðuÞ are deleted with probability 1� p.
Furthermore, for all the nodes in Gk except N kðuÞ,
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create an edge from each of them to v independently
with probability r

k.
The above process is repeated until the number of nodes

in the graph reaches n. We denote the graph Gn generated
from the DD-model with parameters p and r, starting from
seed graph Gn0 , by Gn � DD� modelðn; p; r; Gn0Þ. Note that
the above model generalizes pure duplication model when
p ¼ 1; r ¼ 0 [6], [7]. In some variations of the model (e.g.,
[8]), the nodes v and u will make a connection indepen-
dently with a probability q that is much larger than r=k.
However, the addition of q does not introduce significant
changes in the properties of the graph, therefore we do not
consider such a variation in this work.

1.1 Motivation and Contributions

In this work, we rigorously study the problem of parameter
estimation in the duplication-divergence model using PPI
datasets of seven species. The following points motivate
this work and we present our key results with them.

Symmetries of the Graph. One important feature of the net-
works that was neglected in the previous studies is the dis-
tribution of the number of symmetries generated by the
fitted models with fine-tuned parameters. The symmetries
of a graph H are formally called automorphisms which is
defined as the set of all permutations p of the vertex set of
H with the property that, for any vertices u and v, we have
pðuÞ � pðvÞ if and only if u � v where � represents an edge
(i.e., an automorphism is a an adjacency preserving permu-
tation). For the real-world PPI networks it turns out that the
number of symmetries is considerably high, which is in
stark contradiction with properties of many random graph
models. For example, it is known that graphs generated
from Erdo��s-R�enyi model [9] and from preferential attach-
ment model [10] are asymmetric with high probability.
Therefore they cannot be reasonably justified as underlying
generation schemes for PPI networks. We shall also see that
the same phenomena may occur for the DD-model with
some ranges of the parameters p and r.

Automorphisms are rarely studied in the context of bio-
logical networks and graph models. So far there are no theo-
retical results on automorphisms in the duplication-
divergence model except the work in [11] for the limiting
case of r ¼ 0, where it was discovered that when both p ¼ 0
and p ¼ 1 the model produces graphs with a significant
amount of symmetry.

Our main focus in this work is to take into account the
number of automorphisms of the observed network to
restrict the parameter search to a more meaningful range.
Moreover, we show that most parameters outputted by pre-
vious estimation techniques fail to produce graphs having
an order of automorphisms close to that of the PPI networks
and therefore they are, in this regard, do not fit the DD-
model well. We also note that cross-checking with the num-
ber of automorphisms of the real-world network forms a
null hypothesis test for the model under consideration.

Moreover, there are close relations between automor-
phism group of a graph and eigenvalues of the associated
graph matrices (commonly called spectrum of a graph) [12].
The graph spectrum concisely abstracts many key character-
istics of the graph like the number of triangles and other

subgraphs, number of walks of a specified length, number
of spanning trees etc. If the existing parameter estimation
methods fit the given graph into a model that is not in agree-
ment in terms of the number of automorphisms, the spec-
trum and many characteristics of the fitted graph do not get
matched to the given graph.

Graph Parameter Recurrences. It is widely recognized that
the asymptotics of structural properties such as the degree
distribution and number of edges of the DD-model are cru-
cial parameters, upon which judgment about the fitness of
the model could be made. From the theoretical point of
view, the analysis for the DD-model was presented in [13],
[14], supporting the case that graphs derived from this
model exhibit (under certain assumptions) power-law-like
behavior. Moreover, the frequency of appearance of certain
graph structures called graphlets (small subgraphs such as
triangles, open triangles, etc.) can be viewed as another cri-
terion for model fitting (see [4], [15] and the references
therein). The triangles and wedges (paths of length 2 or star
with two nodes) are particularly crucial as they are directly
related to the network clustering coefficient. The high value
of this coefficient is recognized in general as a significant
characteristic of some biological networks including PPI
networks [16], differentiating these networks from those
which can be obtained, for example, from Erdo��s-R�enyi or
preferential attachment models.

Our approach is based on recreating graph evolution from
a single snapshot of the observed network. We apply, for the
first time, rigorous analyses to estimate parameters with the
recurrence relations of degree and the number of wedges and
triangles, recreating the dynamic process of DD-model con-
struction. The advantages of this approach are twofold: first,
the use of accurate iterative formulas allow us to achieve
more realism and precision for finite graphs, which is in con-
trast to most of the previous studies that derive parameter
estimates exclusively in terms of steady-state behavior. Sec-
ond, it is not proven whether the steady state for suchmodels
even exists andwhether the whole randomprocess converges
asymptotically (see Section 4 formore details).

Maximum Likelihood Method. To substantiate the accuracy
of our estimation technique, we apply the maximum likeli-
hood method (MLE) with the importance sampling to the
parameter inference problem, adapting the work of Wiuf
et al. [17] to the DD-model (see Section 5.2 for the implemen-
tation and details). It turns out that the results of the MLE
method are very similar to those that derived from our esti-
mation method, and the estimated parameters in both the
techniques generate data that is consistent with the observed
network in terms of the number of automorphisms.

However, the MLE algorithm has much larger computa-

tional complexity,Q n3 1
"2

� �
compared toQ n 1

" log 1
"

� �
needed

by our approach based on the recurrences (n and � being the
number of nodes and required resolution). Therefore, the
analysis of graphs using MLE method is significantly slower
for networks in practice and its application is impractical for
networks exceeding 1000 nodes, which includes most of the
real-world PPI networks. Furthermore, in the case of MLE, a
large set of parameter values maximizes the likelihood func-
tion when the true p value is close to one, thus making it less
reliable (see Section 6.1).
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Seed Graph Choice

It is well known that seed graphs play an important role in
biological networks, and its improper selection will affect
the estimated parameters of the fitted model [5], [18]. In par-
ticular, the task of determining the suitable range of param-
eters for the duplication-divergence model is always done
under assumptions concerning the seed graph. In this work,
we improve on the existing solutions by choosing the seed
graph on the basis of phylogenetic ages of the proteins in
the PPI data – the oldest proteins forms the seed graph.
Although such a choice of seed graph is completely absent
in prior literature, it is a natural pick as the seed graph itself
is defined as the network that is comprised of the oldest
entities in the given network.

1.2 Outline of the Paper

In Section 2, we describe the PPI datasets that are considered
in this paper. The influence of parameters of the DD-model on
graph symmetries and the p-value calculation for comparing
with the observed graph are given in Section 3. In Section 4,
we provide a critique of various deficiencies of the previous
approaches to PPI networks parameter estimation, like lack of
symmetries and overemphasis on power-law behavior.
Section 5 describes our approach based on both automor-
phisms counting and exact iterative formulas for certain
graph statistics. In this section, we also present an MLE algo-
rithm for parameter inference and compare it with our
approach in terms of their complexity and practical usage.

Section 6 contains numerical results for both synthetic data
generated from the DD-model and real-world PPI networks.
Section 7 reports the conclusions of the paper with a discus-
sion of obtained results and their significance. At the end, in
Section 8 and 9, we provide, as a supplement, an implementa-
tion of theMLE algorithm and the proof of ourmain theorem.

Table 1 provides the list of main notations used in the
paper.

2 DATASETS

We use protein-protein interaction networks (PPI) to verify
the estimation techniques proposed in this paper. The data
is collected from the BioGRID, a popular curated biological
database of protein-protein interactions. The networks
formed from protein-protein interaction data are further
cleaned by removing self-interactions (self-loops), multiple
interactions (multiple edges), and interspecies (organisms)
interactions of proteins. Thus the considered PPI networks
only have physical and intra-species interactions. Unlike
some of the previous studies that consider only the largest
connected component, the DD-model we focus in this work
incorporates disconnected subgraphs and isolated nodes.

Table 2 shows the different PPI datasets considered in this
paper. We have also listed the logarithm of the number of
automorphisms in the original graph, obtained using a pub-
licly available program nauty [19]. We note here that the
PPI dataset is growing as new interactions getting added on
every new release of the dataset. Many previous studies
were using older and less complete versions of the data, and
therefore it is important to repeat the estimation procedures
from those studies and compare them to ourmethods.

2.1 Selection of Seed Graph Gn0

Previous studies typically assume the seed graph Gn0 as the
maximal clique (or the largest two cliques) in the graph Gn

[4], [5]. Here we consider a novel formulation for the seed
graph. We select the seed graph as the graph induced in the
PPI networks by the oldest proteins. That is, the proteins in
the observed PPI data that are known to have the largest
phylogenetic age (taxon age). It is reasonable to expect that
the same protein which appeared over different species also
appears in their common ancestor. Hence proteins shared
across many different, distant species are supposed to be
older than others.

More precisely, the age of a protein is based on a family’s
appearance on a species tree, and it is estimated via protein

TABLE 1
List of Main Notations

Notation Meaning

Gobs Observed real-world network
Gn0 Seed graph (initial graph) with n0 nodes
Gn Realization of the DD-model with fixed

parameters and n number of nodes
p; r Parameters of the DD-model
g Power law exponent
AutðGÞ Automorphism group of graph G
jAutðGÞj Number of automorphisms of graph G
N sðtÞ Set of neighbors of node t at time s
�
sðtÞ Degree of a node t at time s

DðGnÞ n�1
Pn

i¼1 �nðiÞ
D2ðGnÞ n�1

Pn
i¼1 �2nðiÞ

S2ðGnÞ Number of wedges (stars with two nodes) in Gn

C3ðGnÞ Number of triangles in Gn

TABLE 2
Statistics of PPI Networks Used in This Paper and the Generated Seed Graph Gn0 With Nodes of the Largest Phylogenetic Ages

Original graph Gobs Seed graph Gn0

Organism Scientific name # Nodes # Edges log jAutðGÞj # Nodes # Edges

Baker’s yeast Saccharomyces cerevisiae 6;152 531;400 267 548 5;194
Human Homo sapiens 17;295 296;637 3026 546 2;822
Fruitfly Drosophila melanogaster 9;205 60;355 1026 416 1;210
Fission yeast Schizosaccharomyces pombe 4;177 58;084 675 412 226
Mouse-ear cress Arabidopsis thaliana Columbia 9;388 34;885 6696 613 41
Mouse Mus musculus 6;849 18;380 7827 305 7
Worm Caenorhabditis elegans 3;869 7;815 3348 185 15
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family databases and ancestral history reconstruction algo-
rithms.We use Princeton ProteinOrthologyDatabase (PPOD)
[20] along with OrthoMCL [21] and PANTHER [22] for the
protein family database and asymmetric Wagner parsimony
as the ancestral history reconstruction algorithm. These algo-
rithms can be accessed via ProteinHistorian software [23].

Table 2 also lists the statistics of seed graphs Gn0 for dif-
ferent PPI networks. Even if the original PPI network is con-
nected, the DD-model under consideration allows a
disconnected graph to be the seed graph. Thus, similar to
the formation of the PPI network, we consider the graph
induced by oldest proteins including isolated nodes and
disconnected subgraphs, not restricting ourselves to a con-
nected component that introduces biases in the results.

3 INFLUENCE OF PARAMETERS ON SYMMETRIES

OF THE MODEL

For certain range of values of the parameters p and r of the
DD-model, given n and Gn0 , we show in this section that
the model generates virtually only asymmetric graphs.
However, we can put forward a question: are there any val-
ues of parameters that will yield graphs with the number of
automorphisms (i.e., the number of adjacency preserving
permutations of the vertex set) close to the real-world PPIs?

In Fig. 1, we present the average number of symmetries in
the logarithmic scale for graphs with different sizes generated
from the DD-model with a fixed set of parameters. As p; r! 0
or when p becomes very close to 1 we observe significantly
larger values for the average number of automorphisms (since
the generated graphs tend to have numerous isolated nodes or
they become closer to a complete graph). For instance in
Fig. 1a, p ¼ 1; r ¼ 0:4 has E½logAutðGnÞ� ¼ 1114, and p ¼
0; r ¼ 0:4 has E½logAutðGnÞ� ¼ 1253. But for large ranges of p
and r, it is practically impossible to generate a graph exhibiting
any noticeable symmetries. For example, p ¼ 0:2; r ¼ 2:4 has
E½logAutðGnÞ� ¼ 3:2; p ¼ 0:6; r ¼ 0 has E½logAutðGnÞ� ¼ 1:3;
and p ¼ 0:4; r ¼ 2:4 hasE½logAutðGnÞ� ¼ 0:12. These observa-
tions are consistent for different n andGn0 too, though the spe-
cific range of values of parameterswill obviously change.

The number of automorphisms in the DD-model behaves
differently as in many other graph models. The preferential-
attachment graphs are asymmetric (no nontrivial symme-
tries) with high probability when the number of edges a
new node brings into the graph exceeds 2 [10], and almost
every graph from the Erdo��s-R�enyi model is asymmetric [9].
On the other hand, the DD-model exhibits a large number

of symmetries and it grows with the number of nodes, as
shown in Fig. 1.

These findings allow us to argue that only certain subsets
of ðp; rÞ pairs correspond to the expected number of auto-
morphisms in the order of the required value. This means
that it can be reasonably used as a falsification tool to dis-
card certain parameter ranges and to verify parameter esti-
mation methods. We provide a simple statistical test for
checking the possibility of generating the required number
of symmetries with the estimated parameters.

Statistical Test for Significance of the Number of Symmetries
With the Estimated Parameters. Given the real-world network
Gobs, seed graph Gn0 , and the estimated parameters ðbp; brÞ of
the DD-model, we can estimate the statistical significance of
the estimates with respect to the number of symmetries in
Gobs as follows. Let Gð1Þn ; . . . ; GðmÞn be m graphs generated
from DD� modelðn; bp; br;Gn0Þ. Then the p-value is now calcu-
lated as follows:

pu ¼ 1

m

Xm
i¼1

1flog jAutðGðiÞn Þj � log jAutðGobsÞjg

pl ¼ 1

m

Xm
i¼1

1flog jAutðGðiÞn Þj � log jAutðGobsÞjg;

with 1fAg as the indicator function of the event A. Then
p-value ¼ 2 minfpu; plg. As an example, for a fixed parame-
ter set, the empirical distribution of log jAutðGÞj is shown in
Fig. 2. The distribution is symmetrical and this justifies use
of the symmetrical definition of p-value. A lower p-value

Fig. 1. Effect of the DD-model parameters on the number of automorphisms: Logarithm of the expected number of automorphisms of graphs
generated from the DD-model for various values of p and r. The seed graphGn0 ¼ K20.

Fig. 2. Normalized histogram of logarithm of number of automorphisms
whenGn � DD� modelð500; 0:3; 0:4;K20Þ.

SREEDHARAN ET AL.: REVISITING PARAMETER ESTIMATION IN BIOLOGICAL NETWORKS: INFLUENCE OF SYMMETRIES 839

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2021 at 20:16:17 UTC from IEEE Xplore.  Restrictions apply. 



indicates that the estimated parameters do not fit the
observed network, and a higher value gives an argument
for the estimated parameters being in agreement with the
number of symmetries in Gobs.

4 PARAMETER ESTIMATION AND WHY EXISTING

METHODS FAIL IN PRACTICE?

Previous methods for the parameter estimation problem in
the DD-model was first sketched in [3] and then considered
more rigorously in [13]. Later, [4], [5] provided some exten-
sions to the estimation procedures using the mean-field
approximation of the average degree DðGobsÞ together with
the steady-state expression of the power-law exponent g of
the degree distribution. Then, the values of p and r are com-
puted, respectively, from the formulas:

g ¼ 1þ 1

p
� pg�2 (1)

r ¼ 1

2
� p

� �
DðGobsÞ; for p <

1

2
: (2)

Table 3 presents the estimates of parameters p and r
using the above method. Additionally, we present the aver-
age logarithm of the number of automorphisms computed
from 10;000 graphs generated from the DD-model with the
estimated parameters.

4.1 Mismatch in the Number of Symmetries
and Graph Statistics

Comparing Tables 2 and 3,we observe that the number of sym-
metries of the graphs which are generated by the DD-model

with parameters estimated via the mean-field approach differs
significantly with that of the real-world PPI networks. More-
over, the estimated p-values are consistently zero for all the
species because the observed values of the parameters under
investigation fall far outside the range of the empirical distribu-
tion of the parameters for synthetic graphs generatedwith esti-
mated p and r. This shows that the previously established
estimation methods of the DD-model fail to capture the critical
graph property of automorphisms, and thus do not fit the PPI
networks accurately.

As shown in Table 2, the PPI networks exhibit some sig-
nificant amount of symmetry, but far less than the maximum
possible value (equal to n logn), which is attained when
every node can be interchanged with every other node. This
observation, along with the p-value test in Section 3, allow us
to discard not only many models which produce only asym-
metric graphs with high probability (such as Erdo��s-R�enyi or
preferential attachment model), but also effectively stands as
a hypothesis test to verify that the fitting obtained by an esti-
mation procedure can be safely assumed to match the model
underlying real-world structures.

Similarly, for certain graph statistics DðGnÞ; S2ðGnÞ and
C3ðGnÞ (see Table 1 for notation), which are considered later
in Section 5.1 for deriving our methods, we observe from
Table 4 that the estimated parameters do not yield graphs
that have the considered statistics close to the observed
graph. Here the p-values are calculated in an equivalent
way of number symmetries, just that now it is computed
with respect to the graph statistics.

Next, we point out several other deficiencies in the known
estimation procedures, which could be the reasons behind
such a divergence between the number of symmetries of the
PPI networks and its proposed theoretical model.

4.2 Power-Law Behavior

The parameter estimation of the DD-model introduced in
prior works, such as the one that was presented at the
beginning of this section, assumes that the PPI networks are
scale-free. This property, stating that the degree distribution
of the PPI networks is heavy-tailed or, more precisely, that
the number of vertices of degree k is proportional to k�g for
some constant g > 0 [24], [25]. With this assumption, some
(see [8] for example) argue that the estimated value of the
exponent for the PPI networks satisfies 2 < g < 3. How-
ever, there are counterarguments to this claim, and it is chal-
lenged on statistical grounds that the PPI graphs do not fall
into the power-law degree distribution category [26], [27].

TABLE 3
Estimated Parameters of the DD-Model Using the Mean-Field

Approach, the Average Number of Symmetries With the
Estimated Parameters, and the p-Value of its Statistical

Significance With Respect to the Actual Number of
Symmetries for the PPI Data in Table 2

Organism bp br E½log jAutðGnÞj� p-value

Baker’s yeast 0.28 38.25 0 0
Human 0.43 2.39 10.81 0
Fruitfly 0.44 0.75 3771.99 0
Fission yeast 0.46 1.02 897.48 0
Mouse-ear cress 0.44 0.43 18596.72 0
Mouse 0.48 0.12 34961.69 0
Worm 0.47 0.14 15700.26 0

TABLE 4
Comparison of Some Graph Statistics of the Observed Graph and That of the Synthetic

Data With Parameters Estimated via the Mean-Field Approach

Organism DðGobsÞ E½DðGnÞ� p-value S2ðGobsÞ E½S2ðGnÞ� p-value C3ðGobsÞ E½C3ðGnÞ� p-value

Baker’s yeast 172.76 115.10 0 220.35M 45.33M 0 9.77M 370.49K 0
Human 34.30 19.39 0 52.25M 7.02M 0 1.07M 105K 0
Fruitfly 13.11 7.87 0 2.94M 1.45M 0 195.96K 77.61K 0
Fission yeast 27.64 6.72 0 7.42M 215.84K 0 223.61K 1.14K 0
Mouse-ear cress 7.39 2.23 0 2.98M 44.46K 0 23.34K 23.27 0
Mouse 5.35 0.82 0 2.95M 9.33K 0 10.22K 0.79 0
Worm 4.04 0.90 0 346.13K 5.32K 0 2.41K 0.49 0
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To each of the PPI networks in Table 2, we fit the coeffi-
cients of power-law distribution with the cut-off following
the methodology of Clauset et al. [28]. We note here that cut-
off is required in all the cases since the power-law behavior
mostly happens in the tails of the degree distribution. How-
ever, we find that the cutoff neglects a huge percentage of
the data. For example, for a fitting of baker’s yeast PPI net-
work, as shown in Fig. 3, the cutoff is 582, which is at 94.98
percentile of the degree data, i.e., the power-law fitting does
not take into account 94.98 percent of the data. With the cut-
off and the percentiles of all the species listed in Table 5, we
remark that any method to estimate the parameters p and r
involving power-law exponent do not give reliable approxi-
mations since it discards the vast majority of the data.

4.3 Steady State Assumption

Previous research on the DD-model, both on the level of the-
oretical analysis of the model properties and the level of
parameter estimation of real-world PPI networks, focus
heavily on the asymptotic and steady-state behavior [3].
Most of the previous results on the functional form of cer-
tain graph statistics in the DD-model are under the strong
assumption of steady-state [8], [29]. But they do not provide
any theoretical proof for convergence to steady-state. More-
over, these steady-state asymptotic results, even when
achievable, do not give any bounds on the rate of conver-
gence. This, in turn, raises questions about the straightfor-
ward applicability of such theoretical results to parameter
estimation.

The previously used methods of parameter estimation
also suffer from another issue: for simplicity, they assume
that the average degree of the network does not change dur-
ing the whole evolution from Gn0 to Gn. This is not only
highly implausible in practice, but also impose direct rela-
tion between p and r, and hides any dependency that might
be discovered from various properties of the networks.

4.4 Seed Graph Choice

As shown by previous studies (most notably in Hormozi-
dari et al. [5]), choice of the seed graph plays a significant
role in graph evolution, directly contributing to the order of
growth of many important graph statistics.

The seed graph is typically assumed to be the largest cli-
que (or a connected graph of the largest two cliques) of the
observed graph. Then random vertices and edges are gradu-
ally added to the network, preserving the average degree of
the final network, to make the size of the network to a fixed
value of n0. This method is motivated by the infinitesimally
small probability with which there could appear a clique of a
greater size during graph evolution. Such a procedure has
no formal theoretical guarantees and does not have any clear
justification from a biological perspective [5].

Our natural approach to select the seed graph is based on
the extra-network information about the estimated age of
proteins, described in Section 2.1.

5 MAIN RESULTS

Our main constructive results concern the relation between
the parameters of the model and the number of symmetries
exhibited by graphs generated from it. Additionally, we pres-
ent two parameter estimation algorithms, one based on recur-
rences characteristic for certain graph statistics, the other
based on thewell-knownmaximum likelihood approach.

5.1 Our Method: Parameter Estimation Using
Recurrence Relations

Our basic tool to infer the parameters of DD-model for a
given the PPI network is a set of the exact recurrence rela-
tions for basic graph statistics, which relate their values at
time k and kþ 1 of graph evolution. Such recurrence rela-
tions are sufficient to estimate model parameters, as the
whole sequence of graphs from the initial graph Gn0 to the
final graph Gn can be split into steps consisting of the addi-
tion of a single vertex and the changes introduced by the
added vertex.

Typically, five statistics of the random graph Gn are stud-
ied in literature: number of edges EðGnÞ, mean degree of the
network DðGnÞ ¼ n�1

Pn
i¼1 degnðiÞ, mean squared degree

D2ðGnÞ ¼ n�1
Pn

i¼1 deg
2
nðiÞ, number of triangles (3-cliques)

C3ðGnÞ, and number of wedges S2ðGnÞ (wedges are also
called 2-stars or paths of length 2 in prior literature, and
number of wedges includes counts of triangles and open
triangles).

However, for every graph H on n vertices it is true that
EðHÞ ¼ n

2DðHÞ and S2ðnÞ ¼ n
2 ðD2ðHÞ �DðHÞÞ. Therefore, it

is sufficient to analyze only the three of above-mentioned
graph statistics:DðnÞ, S2ðnÞ and C3ðnÞ.

As a first step, we derive the following recurrence rela-
tions for the chosen statistics.

Fig. 3. Power-law fitting of the Baker’s yeast data: Complementary
cumulative distribution function (CCDF) of the degrees and the fitted
power-law lines. The solid green plot represents the CCDF curve. The
dashed red line is the fitted power-law assuming a cutoff (i.e., neglecting
initial part of the CCDF curve), while the dotted green line is the fitted
power-law without assuming a cutoff.

TABLE 5
Estimated Power Law Exponent and Required
Cutoff Percentile With the Mean-Field Approach

Organism bg Cutoff percentile

Baker’s yeast 4.55 94.98
Human 2.85 92.33
Fruitfly 2.71 88.00
Fission yeast 2.43 88.31
Mouse-ear cress 2.68 93.89
Mouse 2.29 78.58
Worm 2.41 88.23
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Theorem 1. If Gnþ1 � DD� modelðnþ 1; p; r; GnÞ, then

E½DðGnþ1ÞjGn�

¼ DðGnÞ 1þ 2p� 1

nþ 1
� 2r

nðnþ 1Þ
� �

þ 2r

nþ 1

E½D2ðGnþ1ÞjGn�

¼ D2ðGnÞ 1þ 2pþ p2 � 1

nþ 1
� 2rð1þ pÞ

nðnþ 1Þ þ
r2

n2ðnþ 1Þ
� �

þDðGnÞ 2p� p2 þ 2prþ 2r

nþ 1
� 2rþ 2r2

nðnþ 1Þ þ
r2

n2ðnþ 1Þ
� �

þ 2r2 þ 2r

nþ 1
� r2

nðnþ 1Þ
E½C3ðGnþ1ÞjGn�

¼ C3ðGnÞ 1þ 3p2

n
� 6pr

n2
þ 3r2

n3

� �
þD2ðGnÞ pr

n
� r2

n2

� �
þDðGnÞ r

2

2n

E½S2ðGnþ1ÞjGn�

¼ S2ðGnÞ 1þ 2pþ p2

n
� 2ðpþ 1Þr

n2
þ r2

n3

� �
þDðGnÞ prþ pþ r� prþ rþ r2

n
þ r2

n2

� �
þ r2

2
� r2

2n
:

Proof. See Section 9. tu
In Fig. 4, we verify Theorem 1 by comparing E½Dn�, for

various n, computed using theory and experiments.
The expressions given in Theorem 1 implicitly define a

function E½DðGnÞjGn0 � ¼ FDðn; p; r;Gn0Þ, which is a corner-
stone of our algorithm. Similar functions exist for recur-
rences based on other statistics of Gn0 and Gn. Now we
claim that the result of Theorem 1 in terms of expectation
can be used for the graph statistics with high probability

too. Fig. 5 shows the concentration of empirical distribution
of different graph statistics.

Although we don’t need an explicit formula for FD in our
algorithm, we may derive one from the recurrences:

E½DðGnÞjGn0 � ¼ DðGn0Þ
Yn�1
k¼n0

1þ 2p� 1

kþ 1
� 2r

kðkþ 1Þ
� �

þ
Xn�1
k¼n0

2r

kþ 1

Yn�1
l¼kþ1

1þ 2p� 1

lþ 1
� 2r

lðlþ 1Þ
� �

:

Although this is outside of the scope of this article, we note
that such an expression allows us to find, for example, the
asymptotic order of growth forDðGnÞ and for other statistics.

Algorithm 1. Estimation of p via Recurrence Relation of
DðGnÞ
1: function RECURRENCE-RELATION (n, r, Gn0 ,DðGnÞ, ")
2: Dmin  FDðn; 0; r; Gn0Þ,Dmax  FDðn; 1; r; Gn0Þ
3: ifDmin > DðGnÞ orDmax < DðGnÞ then
4: return “no suitable solution for p”
5: pmin  0, pmax  1
6: while pmax � pmin > " do
7: p0  pminþpmax

2 ,D0  FDðn; p0; r; Gn0Þ
8: ifD0 < DðGnÞ then pmin  p0 else pmax  p0

9: return pmin

Though closed form solution of recurrences with Gn and
Gn0 could be difficult to obtain, Theorem 1 is sufficient to
formulate an efficient algorithm for finding the parameters
of the model. The crucial feature is that all parameters are
monotonic, that is, the larger the parameters p and r, the
larger the values ofDðGnÞ and other statistics.

Algorithm 1 presents our estimation technique for find-
ing bp with the recurrence relation for DðGnÞ (which will be
DðGobsÞ when we consider real-world network), assuming br

Fig. 4. Comparison of E½DðGnÞ� computed via Theorem 1 and via experiments.

Fig. 5. Empirical distribution of graph statistics: Gn � DD� modelð100; 0:5; 1:5; K10Þ. Coefficient of variation (CV ) is defined as the ratio of empirical
standard deviation and empirical mean. The lower values of CV in the sub-figures show the concentration of the considered graph statistics.
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is known beforehand. However, sufficient number of sam-
ples of br from the interval ½0; n0� is adequate to get a feasible
solution set of fðbp; brÞg with a desired resolution. The algo-
rithm also works for recurrence relations of S2ðGnÞ and
C3ðGnÞwith evident modifications.

We note here that for each graph property under consider-
ation, D, S2 or C3, the estimation algorithm returns a curve
(more precisely, a set of feasible points).Now, ifwe find a con-
currence in the solutions to the recurrence relations of various
graph statistics, we know that a necessary condition for the
presence of duplication-divergence model has been satisfied.
On the other hand, if the curves were not having a common
crossing point, it suggests that the DD-model may not be the
appropriate fit for the observed network.Wedenote the above
estimation procedure using the recurrence relations of all
three graph statistics as the RECURRENCE-RELATIONmethod.

5.2 Parameter Estimation via Maximum
Likelihood Method

An alternativeway of estimating parameters of the DD-model
is the maximum likelihood estimation (MLE). With MLE, the
estimated parameters bp and br are given bymaxu¼ðp;rÞLðu;GnÞ,
where the likelihood function is Lðu; GnÞ is the probability of
generatingGn fromGn0 for fixed parameters u, i.e.,

Lðu;GnÞ :¼ PrðGnjGn0 ; uÞ

¼
X

Gn0þ1;...;Gn�1;Gn2GðGn0 ;GnÞ

Yn
k¼n0þ1

PrðGkjGk�1; uÞ;

where GðGn0 ; GnÞ is the set of all sequences of graphs that
starts with Gn0 and ends at Gn. Given a fixed sequence of
graph evolution history ðGn0 ; . . . ; Gn�1; GnÞ, it is straightfor-
ward to calculate the likelihood, but Lðu; GnÞ requires sum-
mation over all histories, which has exponential number of
possibilities. In [17], the authors present an importance sam-
pling strategy to approximate the likelihood and thereby
estimate the parameters. It is based on the idea of traversing
backwards in history (Gn toGn�1 and Gn�1 toGn�2 likewise)
on one sample path of graph evolution sequence via Mar-
kov chain. We adapt their algorithm to our DD-model and
the complete algorithm is presented later in Section 8.

We now provide a brief description of the importance
sampling procedure. The idea is to express likelihood in
terms of a known reference parameter u0 instead of
unknown u. Now, the likelihood can be rewritten as an
expectation with respect to u0 and can be estimated via
Monte Carlo simulations (see [17] for more details):

Lðu; GnÞ ¼ Eu0

Yn
k¼n0

Sðu0; u; Gk; vÞ
" #

;

where

Sðu0; u; Gk; vÞ ¼ 1

k
vðGk; u; vÞ vðGk; u0Þ

vðGk; u0; vÞ :

Here vðGk; u; vÞ is the probability of creating the graph Gk

from Gk�1 through the addition of a node v, with parameter
as u. v can be chosen as any node in Gk such that its removal
would result in a positive probability Gk�1 under the DD-
model. The variable vðGk; uÞ is the transition probability
vðGk; u; vÞ, summed over all possible v. In fact, vðGk; u; vÞ

itself is the normalized sum of vðGk; u; v; wÞ, over all possible
nodes w, which is the probability of producing a graph Gk

fromGk�1 by adding a node v that is duplicated fromnodew.

5.3 Computational Complexity of Parameter
Estimation Methods

Let us now assume that the n0 is fixed and we are interested
in results up to a resolution ", that is, the values of p and r
are stored in such a way that two numbers within a distance
less than " are indistinguishable.

For our Algorithm 1, RECURRENCE-RELATION, a single pass
requires Q n log 1

"

� �
, as it uses a binary search for p and for

every intermediate value of p it executes exactly n� n0 steps
of for loop, each requiring constant time. Now it is sufficient
to sample n0

" different values of r, therefore the total running
time to find suitable ðbp; brÞ pairs is Q n 1

" log 1
"

� �
.

On the other hand, theMLE algorithmneeds to compute at
every step values of the v function for all possible pairs of v
andw for each graphGk. This is the case because inDD-model
every vertex v could be a duplicate of every other vertex w
always with some non-zero probability at every stage of the
algorithm. Thismeans thatwe requireQðk2Þ steps at each iter-

ation of the algorithm; therefore Q
Pn

k¼n0 k
2

� �
¼ Qðn3Þ steps

in total. Unfortunately, even clever bookkeeping and amorti-
zation is notmuch of a help here.

Additionally, we need to estimate the likelihood for each
pair ðp; rÞ independently, as maximum likelihood function
does not have the monotonicity property, so it requires in

total Q n3 1
"2

� �
steps to find all feasible pairs up to a desired

resolution of �.

Moreover, as it was suggested by Wiuf et al. in [17],
importance sampling provides good quality results only for
at least 1000 independent trials. This adds up a constant fac-
tor not visible in the big-Q notation, but significant in prac-
tice, effectively making the algorithm infeasible for the real-
world data without using supercomputer power.

6 NUMERICAL EXPERIMENTS

In this section, we evaluate our methods on synthetic
graphs and real-world PPI networks.

We made publicly available all the code and data of this
project at https://github.com/krzysztof-turowski/
duplication-divergence. The code supports random graph
models and real-world networks.

Estimation of Tolerance Interval. We find the tolerance inter-
val of the estimated p and r values for the fitted DD-model as
follows. For a given networkGobs and a seed graph Gn0 , first
the RECURRENCE-RELATION algorithm outputs a set of solutions
fðbp; brÞg. For each of the feasible pairs, we then estimate the
confidence interval of the graph property with which recur-
rence was calculated. For instance, if the property used was
the empirical mean D, graph samples generated from
DD� modelðn; bp; br;Gn0Þ are used to estimate expectation
E½DðGnÞ� and varianceVar½DðGnÞÞ�. A 95 percent confidence
interval ofDðGnÞ is then given by the values

E½DðGnÞ� 	 1:96Var½DðGnÞÞ�:
The Gaussian distribution assumption used in the above
expression is indeed a good approximation for the
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distribution of D for large n. Now by fixing bp, we can calcu-
late a tolerance interval ðbrmin; brmaxÞ for the estimated param-
eter br. In the following experiments, for demonstrating the
above approach, we focus on two graph statistics D and C3

(parameter estimation will include S2 too).
Parameter Estimation Procedure for the Experiments. Our

parameter estimation procedure can be summarized follows:

1) We employ the RECURRENCE-RELATION algorithm for
solving graph recurrences of the three graph statis-
tics D, S2 and C3, and we identify a set of solutions
for p and r.

2) With Gn � DD� modelðn; bp;br;Gn0Þ, we find the toler-
ance interval of br using the confidence interval of
DðGnÞ and C3ðGnÞ, as explained in the above
subsection.

3) We look for crossing points of the plots in the figure,
and the range of values of p and r where the confi-
dence intervals meet around the crossing point. We
call such a range of values as feasible-box.

4) Though any point in the feasible-box is a good esti-
mate of p and r, to improve the accuracy, we uni-
formly sample a fixed number of points from the box
and choose the pair that gives maximum p-value
with respect to the number of automorphisms of the
given graph Gobs.

The Theorem 1 provides theoretical guarantees (in the
expected sense) for the RECURRENCE-RELATION algorithm and
the idea of convergence of the three curves, the solution set
ofD, S2 and C3 statistics, in the above estimation procedure.
But in practice, we allow some discrepancy in the conver-
gence of the three curves. In the following experiments, we
declare that the DD-model fits the given dataset when at
least two curves converge and there is an intersection
among the confidence intervals of the three curves or when
one curve and the confidence interval of another curve
intersect.

6.1 Synthetic Graphs

In this section, we derive preliminary insights by studying
our method and maximum likelihood estimation (MLE)
empirically on synthetic data. See Sections 5.2 and 8 for the
MLE implementation. We note here that the infeasibility of
the MLE method for large graphs (e.g., with tens of thou-
sands of vertices) is already explained in Section 5.3 and the
comparison, in this section, between our method and the
MLE on small graphs is provided only to prove the compet-
itiveness of our approach as to the MLE method.

We generate two random graph samples Gð1Þn and Gð2Þn

from the DD-model with the following parameters:

Gð1Þn � DD� modelðn ¼ 100; p ¼ 0:1; r ¼ 0:3; Gn0 ¼ K20Þ;
Gð2Þn � DD� modelðn ¼ 100; p ¼ 0:99; r ¼ 3:0; Gn0 ¼ K20Þ:

The choice of parameters in Gð1Þn and Gð2Þn show different
regimes in the following studies. Moreover the parameters
are chosen in such a way that the generated graphs have
non-trivial symmetries.

Figs. 6a and 6b plot the sets of feasible points identified
by the recurrence relations using RECURRENCE-RELATION

method. The light shaded bands show the tolerance

intervals of r. We observe that the crossing points and the
tolerance intervals are fairly close to the original parame-
ters. Figs. 6c and 6d display the heat-plot of log-likelihood
function of the MLE for different values of the parameters
and the maximum value of the log-likelihood in the heat-
plot will give the parameters outputted by the MLE. The
log-likelihood function maximizes at ðp; rÞ pairs close to the
original parameters, but not up to the resolution of RECUR-

RENCE-RELATION method.
In Table 6 we produce the statistical significance of the

best estimated parameter pairs via both the RECURRENCE-
RELATION and the MLE. The best pair is found in the RECUR-

RENCE-RELATION method from 1000 uniform samples in the
feasible-box centered at the point where the three curves are
in agreement, and for the MLE, it is found from 1000 uni-
form samples in the maximum log-likelihood area if no
unique maximizer exists. The estimates from both the tech-
niques demonstrate the presence of the DD-model in the

given graphs Gð1Þn and Gð2Þn (p-value > 0:1), the best pair of

RECURRENCE-RELATION estimator has much higher p-value
and certainly outperforms MLE.

We note that for the first graph Gð1Þn the results obtained
by both methods are almost identical, in terms of
E½log jAutðGnÞj� and p-values. For the second graph Gð2Þn , the
log-likelihood function of MLE is nearly flat for large values of p,
and thus MLE returns less reliable estimates. This in turn
results in a larger deviation of the number of automor-
phisms from the observed graph. Our algorithm on the
other hand provides a better estimate even when p is close
to 1. To sum up, we find that our algorithm does not per-
form worse than MLE in terms of quality and achieves bet-
ter performance than MLE when p is high. It also has much
lower computational complexity than the MLE. The MLE
requires more than 1 million computations for this particu-
lar example, where as RECURRENCE-RELATION needs only at
most 100 computations (scaling factors excluded). Detailed
complexity calculations are provided in Section 5.3.

6.2 Real-World PPIs

We apply recurrence-based estimator to PPI networks of
seven species listed in Table 2. As mentioned in Section 2.1,
the seed graph Gn0 is assumed as the graph induced by the
nodes having the largest phylogenetic age.

The MLE solution is almost impossible to calculate for
the PPI networks. Even for the smallest PPI network
(Worm), MLE requires around 58 billion computations to
obtain a result for a single ðp; rÞ parameter set.

Fig. 7 presents plots of RECURRENCE-RELATION estimator for
seven species. In all the figures, the plots meet or come very
close at a specific point. This illustrates the presence of the
DD-model in all the considered species. Furthermore,
Table 7 calculates the statistical significance of the fitted
DD-model with respect to the number of automorphisms in
the observed PPI networks. The estimated p-values are
remarkably high and most often much larger than 0.4
(except in one case), demonstrating that the fitted DD-mod-
els exhibit symmetries closer to the real-world PPIs.

If we compare our parameter estimation results on the
the PPI data (Table 7) with the known estimation procedure
based on mean-field approximation (Table 3), we find a
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large difference in the values of p and r. To explain this dif-
ference, we show in Table 5 that the mean-field estimation
procedure typically discards more than 85 percent of the
data to estimate the power-law exponent g, and the estima-
tion of parameters p and r is based on g (see (1) and (2)),
thus making them erroneous. Moreover, we observe that
results of the mean-field estimation are closer to the D
curve, but not to S2 or C3 curves in Fig. 7, and hence they do
not yield statistically significant log jAutðGnÞj. This means
that the mean-field method, due to the simplifications
involved in its procedure, is able to capture only certain
characteristics, but missed others that are no less important.

7 DISCUSSION

We focus in this work on fitting dynamic biological net-
works to a probabilistic graph model, from a single

snapshot of the networks. Our attention here is on a key
characteristic of the networks – the number of automor-
phisms – that is often neglected in modeling. Using the
number of automorphisms as a measure to sample parame-
ters from the parameter space may raise serious questions
about its practicality (like some slower maximum likelihood
estimation methods for graph fitting). To address this, our
approach in this paper to combine the number of symme-
tries with a faster method of recurrence relations, which
allows us to narrow down the parameter search, finds high
relevance in practice.

We argue that many existing parameter estimation tech-
niques fail to take into account the number of symmetries
of real-world networks, leading to serious concerns in the
fitting methodology. Previous studies made unrealistic
assumptions like the steady-state behavior of the model,
and it could be the reason behind erroneous estimates.

TABLE 6
Results on Synthetic Networks: Average Number of Automorphisms and p-Value

RECURRENCE-RELATION MLE

Model parameters log jAutðGobsÞj bp br E½log jAutðGnÞj� p-value bp br E½log jAutðGnÞj� p-value

p ¼ 0:1, r ¼ 0:3 81.963 0.09 0.3 81.974 0.980 0.1 0.3 78.794 0.820
p ¼ 0:99, r ¼ 3:0 16.178 0.99 2.5 16.588 0.980 0.95 0.3 0.368 0

Fig. 6. Results on synthetic networks: RECURRENCE-RELATION and maximum likelihood estimation (MLE) methods. The yellow squares represent the
parameters estimated via our RECURRENCE-RELATION method, and the black squares denote the MLE method (see Table 6 for more details). We also
estimate the parameters by the existing mean-field approach (using (1) and (2)), but the estimated values are very different from the true value; for
the graph in (a), we get p̂ ¼ 0:51 and r̂ as a negative value, and for the graph in (b), p̂ ¼ 0:15; r̂ ¼ 15:42.

SREEDHARAN ET AL.: REVISITING PARAMETER ESTIMATION IN BIOLOGICAL NETWORKS: INFLUENCE OF SYMMETRIES 845

Authorized licensed use limited to: Purdue University. Downloaded on June 05,2021 at 20:16:17 UTC from IEEE Xplore.  Restrictions apply. 



Our proposed fitting method based on exact recurrence
relations, derived from rigorous theory, with minimal
assumptions works well on synthetic data and real-world
protein-protein interaction (PPI) networks of seven spe-
cies. We also formulate a simple statistical test in terms of
the number of symmetries. Since the PPI networks are
expanding with new protein-protein interactions getting
discovered, we make sure to use up-to-date data so that
the fitted parameters in this paper can serve as a bench-
mark for future studies.

We note here that the method introduced in this work
is applicable to a variety of dynamic network models, as
for many models there exist recurrence relations similar

to the ones presented here. A systematic way of parame-
ter estimation can also be seen as an introductory work to
other important problems in biological networks. One
example of such a problem is the temporal order problem
[30]: given a network, the task is to recover the chronol-
ogy of the node arrivals in the network. Parameter estima-
tion provides us with better knowledge about the specific
characteristics of the model that retains temporal informa-
tion in its structure.

8 MAXIMUM LIKELIHOOD ALGORITHM

Function MAXIMUMLIKELIHOODVALUE, as shown below in
Algorithm 2, presents a single pass of the MLE tech-
nique. Here u0 ¼ ðp0; r0Þ is the initial parameter set which
can be chosen with some extra knowledge of the given
network or even arbitrarily; but with a proper choice of
u0, a faster convergence to the true value of likelihood is
guaranteed.

We note here that the MLE procedure has to be run mul-
tiple times, and the average of the L’s (see algorithm) from
the multiple runs gives an estimate of the likelihood at the
inputted ðp; rÞ. The procedure needs to be repeated for all
the relevant ðp; rÞ pairs. The estimated parameters are the
points for which the likelihood function is maximized. See
Section 5.2 for details.

Fig. 7. Parameter estimation of the PPI networks in Table 2 with our RECURRENCE-RELATION method. The yellow squares represent the parameters
chosen by the RECURRENCE-RELATION method (Table 7), and the black squares denote the estimated value by the existing mean-field method
(Table 3).

TABLE 7
Parameters of the Real-World PPI Networks Estimated

Using RECURRENCE-RELATION Method

Organism bp br E½log jAutðGnÞj� p-value

Baker’s yeast 0.98 0.35 293.27 0.71
Human 0.64 0.49 2998.81 0.51
Fruitfly 0.53 0.92 1073.83 0.64
Fission yeast 0.983 0.85 705.278 0.74
Mouse-ear cress 0.98 0.49 6210.36 0.13
Mouse 0.96 0.32 8067.56 0.67
Worm 0.85 0.35 3352.91 0.48
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Algorithm 2. Single Run for the Likelihood Value
Computation

functionMAXIMUMLIKELIHOODVALUE(G, n, n0, p, r, p0, r0)
L 1
for k ¼ n; n� 1; . . . ; n0 þ 1 do
Pick v at random with Pr½v� � vðG; p0; r0; vÞ
L L 
 1k

P
u2G vðG;p0;r0 ;uÞ
vðG;p0;r0 ;vÞ vðG; p; r; vÞ

Remove v from G
return L

function v(G, p, r, v)
sum 0, n jV ðGÞj
for u 2 V ðGÞ, u 6¼ v do
both jN nðuÞ \ N nðvÞj
onlyv  jN nðvÞ n N nðuÞj
onlyu  jN nðuÞ n N nðvÞj
none n� jN nðuÞ [ N nðvÞj
sum þ¼ pboth r

n

� �onlyvð1� pÞonlyu 1� r
n

� �none
return sum

9 PROOF OF THEOREM 1

Let degtðsÞ be the degree at time t of a vertex added at time s,
which is same as node label s, and parentðtÞ be a vertexwhich
was chosen fromGt�1 for the duplication step at time t.

It follows from the definition of the model that degree of
the new vertex nþ 1 is the total number of edges from the
vertex nþ 1 to N nðparentðnþ 1ÞÞ (each of which is formed
from choosing nodes independently fromN nðparentðnþ 1ÞÞ
with probability p) and to all other vertices (each of which is
formed from nodes chosen independently from a set
V ðGnÞnN nðparentðnþ 1ÞÞwith probability r

n).
It can be then expressed as a sum of two independent

binomial variables:

degnþ1ðnþ 1Þ � Bin degnðparentðnþ 1ÞÞ; pð Þ
þ Bin n� degnðparentðnþ 1ÞÞ; r

n

� �
:

1. Recurrence forDðGnÞDðGnÞ

E½degnþ1ðnþ 1Þ �� Gn�

¼
Xn�1
k¼0

Prðdegnðparentðnþ 1ÞÞ ¼ k
�� GnÞ

�
Xk
a¼0

k

a

� �
pað1� pÞk�a

�
Xn�k
b¼0

n� k

b

� �
r

n

� �b
1� r

n

� �n�k�bðaþ bÞ

¼
Xn�1
k¼0

Prðdegnðparentðnþ 1ÞÞ ¼ k
�� GnÞ pkþ r

n
ðn� kÞ

� �
¼ p� r

n

� �Xn�1
k¼0

kPrðdegnðparentðnþ 1ÞÞ ¼ k
�� GnÞ þ r:

Since in the definition of the model it is stated that the par-
ent is selected uniformly at random, we know that
Prðparentðnþ 1Þ ¼ i

�� GnÞ ¼ 1
n and therefore

DðGnÞ ¼
Xn
i¼1

Prðparentðnþ 1Þ ¼ i
�� GnÞdegnðiÞ

¼
Xn�1
k¼0

kPrðdegnðparentðnþ 1Þ �� GnÞ ¼ kÞ:

Combining the last two equations, we get

E½degnþ1ðnþ 1Þ �� Gn� ¼ p� r

n

� �
DðGnÞ þ r:

Using the above, we find the following recurrence for the
mean degree of Gnþ1:

E½DðGnþ1Þ
�� Gn�

¼ 1

nþ 1
E
Xnþ1
i¼1

degnþ1ðiÞ
�� Gn

" #

¼ 1

nþ 1

Xn
i¼1

degnðiÞ þ 2E degnþ1ðnþ 1Þ �� Gn

	 
 !

¼ 1

nþ 1
nDðGnÞ þ 2E½degnþ1ðnþ 1Þ �� Gn�
� �

¼ DðGnÞ 1þ 2p� 1

nþ 1
� 2r

nðnþ 1Þ
� �

þ 2r

nþ 1
:

Now from the law of total expectation:

E½DðGnþ1Þ�

¼ E½DðGnÞ� 1þ 2p� 1

nþ 1
� 2r

nðnþ 1Þ
� �

þ 2r

nþ 1
:

2. Recurrence forD2ðGnÞD2ðGnÞ

E½deg2nþ1ðnþ 1Þ �� Gn�

¼
Xn�1
k¼0

Prðdegnðparentðnþ 1ÞÞ ¼ k
�� GnÞ

�
Xk
a¼0

k

a

� �
pað1� pÞk�a

�
Xn�k
b¼0

n� k

b

� �
r

n

� �b
1� r

n

� �n�k�b
ðaþ bÞ2

¼
Xn�1
k¼0

Prðdegnðparentðnþ 1ÞÞ ¼ k
�� GnÞ

�
 
k2 p2 � 2pr

n
þ r2

n2

� �
þ k p� p2 þ 2pr� rþ 2r2

n

� �

þ r2 þ r� r2

n

!

¼ D2ðGnÞ p2 � 2pr

n
þ r2

n2

� �
þDðGnÞ p� p2 þ 2pr� rþ 2r2

n
þ r2

n2

� �
þ r2 þ r� r2

n
;
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since we have, as before,

D2ðGnÞ ¼
Xn
i¼1

Prðparentðnþ 1Þ ¼ i
�� GnÞdeg2t ðiÞ

¼
Xn�1
k¼0

Prðdegnðparentðnþ 1ÞÞ ¼ k
�� GnÞk2:

Now we proceed with the second moment of degree dis-
tribution of Gn. Let Inþ1ðiÞ be an indicator variable whether
there is an edge between nþ 1 and i. Then the following
basic results follows:Xn

i¼1
I2nþ1ðiÞ ¼

Xn
i¼1

Inþ1ðiÞ ¼ degnþ1ðnþ 1Þ;

and

E
Xn
i¼1

degnðiÞInþ1ðiÞ
�� Gn

" #
¼
Xn
i¼1

degnðiÞE½Inþ1ðiÞ
�� Gn�

¼
Xn
i¼1

degnðiÞ
degnðiÞ

n
pþ n� degnðiÞ

n

r

n

� �
¼ 1

n

Xn
i¼1

deg2t ðiÞ p� r

n

� �
þ 1

n

Xn
i¼1

degnðiÞr

¼ p� r

n

� �
D2ðGnÞ þ rDðGnÞ:

Now,

E½D2ðGnþ1Þ
�� Gn� ¼ 1

nþ 1
E
Xnþ1
i¼1

deg2nþ1ðiÞ
�� Gn

" #

¼ 1

nþ 1
E
Xn
i¼1

deg2t ðiÞ þ 2
Xn
i¼1

degnðiÞInþ1ðiÞ
"

þ degnþ1ðnþ 1Þ þ deg2nþ1ðnþ 1Þ �� Gn

#

¼ D2ðGnÞ 1þ 2pþ p2 � 1

nþ 1
� 2rð1þ pÞ

nðnþ 1Þ þ
r2

n2ðnþ 1Þ
� �

þDðGnÞ

� 2p� p2 þ 2prþ 2r

nþ 1
� 2rþ 2r2

nðnþ 1Þ þ
r2

n2ðnþ 1Þ
� �

þ 2r2 þ 2r

nþ 1
� r2

nðnþ 1Þ :

Then from the law of total expectation we obtained the
desired formula.

3. Recurrence for S2ðGnÞS2ðGnÞ The recurrence for S2ðGnÞ is
straightforward from the following deterministic relation for
every graph:

S2ðGnÞ ¼ n

2
D2ðGnÞ �DðGnÞð Þ:

Alternatively, it can be computed from the following rela-
tion using similar methods as before:

E½S2ðGnþ1Þ
�� Gn� ¼ E

Xnþ1
i¼1

degnþ1ðiÞ
2

� � �� Gn

" #
:

4. Recurrence for C3ðGnÞC3ðGnÞ Finally, we find the expected
number of triangles in the following way. Let us denote by
etðA;BÞ the number of edges with one endpoint in A and
other in B, and by etðAÞ the number of edges with both
edges in A for some fixed A;B � V ðGtÞ, at time t.

For brevity, let us also introduce the following notations.

� NP ðnþ 1Þ ¼ N nðparentðnþ 1ÞÞ – the set of neigh-
bors of the parent of nþ 1 in Gn,

� X1ðGnÞ :¼ enðNP ðnþ 1ÞÞ – the number of edges
within (open) neighborhood of the parent of nþ 1 in
Gn,

� X2ðGnÞ :¼ en NP ðnþ 1Þ; V ðGnÞ nNP ðnþ 1Þð Þ – the
number of edges between (open) neighborhood of
the parent of nþ 1 and other vertices in Gn,

� X3ðGnÞ :¼ en V ðGnÞ nNP ðnþ 1Þð Þ – the number of
edges between vertices not connected to the parent
of nþ 1 in Gn.

It can be easily verified that

X1ðGnÞ ¼ 3CðGnÞ
n

;

X1ðGnÞ þX2ðGnÞ ¼ D2ðGnÞ;
X1ðGnÞ þX2ðGnÞ þX3ðGnÞ ¼ n

2
DðGnÞ:

Therefore,

E½C3ðGnþ1Þ
�� Gn�
¼ C3ðGnÞ þ p2E½X1ðGnÞ

�� Gn�

þ pr

n
E½X2ðGnÞ

�� Gn� þ r2

n2
E½X3ðGnÞ

�� Gn�

¼ C3ðGnÞ 1þ 3p2

n
� 6pr

n2
þ 3r2

n3

� �
þD2ðGnÞ pr

n
� r2

n2

� �
þDðGnÞ r

2

2n
:

We can now apply the law of total expectation to get the
final result.
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