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Revisiting Parameter Estimation in Biological
Networks: Influence of Symmetries
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Abstract—Graph models often give us a deeper understanding of real-world networks. In the case of biological networks they help in
predicting the evolution and history of biomolecule interactions, provided we map properly real networks into the corresponding graph
models. In this paper, we show that for biological graph models many of the existing parameter estimation techniques overlook the
critical property of graph symmetry (also known formally as graph automorphisms), thus the estimated parameters give statistically
insignificant results concerning the observed network. To demonstrate it and to develop accurate estimation procedures, we focus on
the biologically inspired duplication-divergence model, and the up-to-date data of protein-protein interactions of seven species
including human and yeast. Using exact recurrence relations of some prominent graph statistics, we devise a parameter estimation
technique that provides the right order of symmetries and uses phylogenetically old proteins as the choice of seed graph nodes. We
also find that our results are consistent with the ones obtained from maximum likelihood estimation (MLE). However, the MLE approach
is significantly slower than our methods in practice.
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1 INTRODUCTION

MANY biological processes are regulated at the level
of interactions between protein molecules. In recent

decades, the development of experimental and bioinfor-
matic methods allow researchers to obtain and make pub-
licly available growing amount of data of various biological
mechanisms involving different proteins. The whole net-
work of these events that can be found and reconstructed
using various techniques is customarily summarized as
protein-protein interaction (PPI) networks. The PPI net-
works are often described as undirected graphs with nodes
representing proteins and edges corresponding to protein-
protein interactions.

The proliferation of biological data, in turn, encouraged
a study of a series of theoretical models to develop a deeper
understanding of the evolution and structural properties
of the network representation. However, proper fitting of
the biological data and development of statistical tests to
check the validity of the models are critical to take advan-
tage of the theoretical developments in graph models. The
parameter estimation remains as a challenging problem in
biological networks like PPIs, mainly because most of the
classical estimation procedures were developed for static
networks, and not tailored to specific properties of biological
data and its underlying dynamics. In this paper, we propose
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a parameter estimation scheme for biological data with a
new perspective of symmetries and recurrence relations,
and point out many fallacies in the previous estimation
procedures.

In this paper, we assume that the networks evolve ac-
cording to the following duplication-divergence stochastic
graph model.

Duplication-divergence model (DD-model)
There is a wide agreement [1], originally stemming from
Ohno’s hypothesis on genome growth [2], that the main
mechanism driving evolution of PPI networks is the dupli-
cation mechanism, in which new proteins appear as copies
of some already existing proteins in the network. This is
supplemented by a certain amount of divergence of random
mutations that lead to some differences between patterns of
interaction for the source protein and the duplicated protein.

There are many variations of duplication-divergence
models in the literature, although they have not yet been
studied or compared systematically. In this work, we use
the model suggested by Pastor-Satorras et al. in [3], rec-
ommended in several surveys [4], [5] as a good possible
theoretical match for PPI networks.

The model of Pastor-Satorras et al. constructs the graph
as described below. Let Nk(u) be the the set of neighbors of
vertex u at time k. Given an undirected, simple, seed graph
Gn0

on n0 nodes and target number of nodes n, the graph
Gk+1 with k+1 nodes evolves from the graph Gk as follows
(the subscript k in Gk can also be interpreted as time instant
k). First, a new vertex v is added to Gk. Then the following
steps are carried out:
• Duplication: Select an node u from Gk uniformly at

random. The node v then makes connections to Nk(u).
• Divergence: Each of the newly made connections from
v to Nk(u) are deleted with probability 1 − p. Fur-
thermore, for all the nodes in Gk except Nk(u), create
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an edge from each of them to v independently with
probability r

k .
The above process is repeated until the number of nodes
in the graph reaches n. We denote the graph Gn generated
from the DD-model with parameters p and r, starting from
seed graphGn0

, byGn ∼ DD-model(n, p, r,Gn0
). Note that

the above model generalizes pure duplication model when
p = 1, r = 0 [6], [7]. In some variations of the model (e.g.
[8]), the nodes v and u will make a connection indepen-
dently with a probability q that is much larger than r/k.
However, the addition of q does not introduce significant
changes in the properties of the graph, therefore we do not
consider such a variation in this work.

Motivation and contributions
In this work, we rigorously study the problem of parameter
estimation in the duplication-divergence model using PPI
datasets of seven species. The following points motivate this
work and we present our key results with them.

Symmetries of the graph
One important feature of the networks that was neglected
in the previous studies is the distribution of the number of
symmetries generated by the fitted models with fine-tuned
parameters. The symmetries of a graph H are formally
called automorphisms which is defined as the set of all
permutations π of the vertex set ofH with the property that,
for any vertices u and v, we have π(u) ∼ π(v) if and only if
u ∼ v where ∼ represents an edge (i.e., an automorphism is
a an adjacency preserving permutation). For the real-world
PPI networks it turns out that the number of symmetries
is considerably high, which is in stark contradiction with
properties of many random graph models. For example, it
is known that graphs generated from Erdős-Renyi model [9]
and from preferential attachment model [10] are asymmetric
with high probability. Therefore they cannot be reasonably
justified as underlying generation schemes for PPI net-
works. We shall also see that the same phenomena may
occur for the DD-model with some ranges of the parameters
p and r.

Automorphisms are rarely studied in the context of
biological networks and graph models. So far there are no
theoretical results on automorphisms in the duplication-
divergence model except the work in [11] for the limiting
case of r = 0, where it was discovered that when both p = 0
and p = 1 the model produces graphs with a significant
amount of symmetry.

Our main focus in this work is to take into account
the number of automorphisms of the observed network to
restrict the parameter search to a more meaningful range.
Moreover, we show that most parameters outputted by
previous estimation techniques fail to produce graphs hav-
ing an order of automorphisms close to that of the PPI
networks and therefore they are, in this regard, do not fit the
DD-model well. We also note that cross-checking with the
number of automorphisms of the real-world network forms
a null hypothesis test for the model under consideration.

Moreover, there are close relations between automor-
phism group of a graph and eigenvalues of the associated
graph matrices (commonly called spectrum of a graph) [12].

The graph spectrum concisely abstracts many key charac-
teristics of the graph like the number of triangles and other
subgraphs, number of walks of a specified length, number
of spanning trees etc. If the existing parameter estimation
methods fit the given graph into a model that is not in
agreement in terms of the number of automorphisms, the
spectrum and many characteristics of the fitted graph do
not get matched to the given graph.

Graph parameter recurrences
It is widely recognized that the asymptotics of structural
properties such as the degree distribution and number of
edges of the DD-model are crucial parameters, upon which
judgment about the fitness of the model could be made.
From the theoretical point of view, the analysis for the
DD-model was presented in [13], [14], supporting the case
that graphs derived from this model exhibit (under cer-
tain assumptions) power-law-like behavior. Moreover, the
frequency of appearance of certain graph structures called
graphlets (small subgraphs such as triangles, open triangles,
etc.) can be viewed as another criterion for model fitting (see
[4], [15] and the references therein). The triangles and wedges
(paths of length 2 or star with two nodes) are particularly
crucial as they are directly related to the network clustering
coefficient. The high value of this coefficient is recognized
in general as a significant characteristic of some biological
networks including PPI networks [16], differentiating these
networks from those which can be obtained, for example,
from Erdős-Renyi or preferential attachment models.

Our approach is based on recreating graph evolution
from a single snapshot of the observed network. We apply,
for the first time, rigorous analyses to estimate parameters
with the recurrence relations of degree and the number of
wedges and triangles, recreating the dynamic process of
DD-model construction. The advantages of this approach
are twofold: first, the use of accurate iterative formulas
allow us to achieve more realism and precision for finite
graphs, which is in contrast to most of the previous stud-
ies that derive parameter estimates exclusively in terms
of steady-state behavior. Second, it is not proven whether
the steady state for such models even exists and whether
the whole random process converges asymptotically (see
Section 4 for more details).

Maximum likelihood method
To substantiate the accuracy of our estimation technique,
we apply the maximum likelihood method (MLE) with the
importance sampling to the parameter inference problem,
adapting the work of Wiuf et al. [17] to the DD-model (see
Section 5.2 for the implementation and details). It turns
out that the results of the MLE method are very similar
to those that derived from our estimation method, and the
estimated parameters in both the techniques generate data
that is consistent with the observed network in terms of the
number of automorphisms.

However, the MLE algorithm has much larger com-
putational complexity, Θ

(
n3 1

ε2

)
compared to Θ

(
n 1
ε log 1

ε

)
needed by our approach based on the recurrences (n and
ε being the number of nodes and required resolution).
Therefore, the analysis of graphs using MLE method is sig-
nificantly slower for networks in practice and its application
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is impractical for networks exceeding 1000 nodes, which in-
cludes most of the real-world PPI networks. Furthermore, in
the case of MLE, a large set of parameter values maximizes
the likelihood function when the true p value is close to one,
thus making it less reliable (see Section 6.1).

Seed graph choice
It is well known that seed graphs play an important role
in biological networks, and its improper selection will affect
the estimated parameters of the fitted model [5], [18]. In
particular, the task of determining the suitable range of
parameters for the duplication-divergence model is always
done under assumptions concerning the seed graph. In this
work, we improve on the existing solutions by choosing the
seed graph on the basis of phylogenetic ages of the proteins
in the PPI data – the oldest proteins forms the seed graph.
Although such a choice of seed graph is completely absent
in prior literature, it is a natural pick as the seed graph itself
is defined as the network that is comprised of the oldest
entities in the given network.

Outline of the paper
In Section 2, we describe the PPI datasets that are con-
sidered in this paper. The influence of parameters of the
DD-model on graph symmetries and the p-value calcula-
tion for comparing with the observed graph are given in
Section 3. In Section 4, we provide a critique of various defi-
ciencies of the previous approaches to PPI networks param-
eter estimation, like lack of symmetries and overemphasis
on power-law behavior. Section 5 describes our approach
based on both automorphisms counting and exact iterative
formulas for certain graph statistics. In this section, we
also present an MLE algorithm for parameter inference and
compare it with our approach in terms of their complexity
and practical usage. Section 6 contains numerical results for
both synthetic data generated from the DD-model and real-
world PPI networks. Section 7 reports the conclusions of
the paper with a discussion of obtained results and their
significance. At the end, in Section 8 and 9, we provide, as a
supplement, an implementation of the MLE algorithm and
the proof of our main theorem.

Table 1 provides the list of main notations used in the
paper.

Notation Meaning

Gobs Observed real-world network
Gn0 Seed graph (initial graph) with n0 nodes
Gn Realization of the DD-model with fixed

parameters and n number of nodes
p, r Parameters of the DD-model
γ Power law exponent
Aut(G) Automorphism group of graph G
|Aut(G)| Number of automorphisms of graph G
Ns(t) Set of neighbors of node t at time s
degs(t) Degree of a node t at time s
D(Gn) n−1

∑n
i=1 degn(i)

D2(Gn) n−1
∑n

i=1 deg
2
n(i)

S2(Gn) Number of wedges (stars with two nodes) in Gn

C3(Gn) Number of triangles in Gn

TABLE 1: List of main notations

2 DATASETS

We use protein-protein interaction networks (PPI) to verify
the estimation techniques proposed in this paper. The data
is collected from the BioGRID, a popular curated biologi-
cal database of protein-protein interactions. The networks
formed from protein-protein interaction data are further
cleaned by removing self-interactions (self-loops), multiple
interactions (multiple edges), and interspecies (organisms)
interactions of proteins. Thus the considered PPI networks
only have physical and intra-species interactions. Unlike
some of the previous studies that consider only the largest
connected component, the DD-model we focus in this work
incorporates disconnected subgraphs and isolated nodes.

Table 2 shows the different PPI datasets considered in
this paper. We have also listed the logarithm of the number
of automorphisms in the original graph, obtained using a
publicly available program nauty [19]. We note here that
the PPI dataset is growing as new interactions getting added
on every new release of the dataset. Many previous studies
were using older and less complete versions of the data, and
therefore it is important to repeat the estimation procedures
from those studies and compare them to our methods.

2.1 Selection of seed graph Gn0

Previous studies typically assume the seed graph Gn0
as the

maximal clique (or the largest two cliques) in the graph Gn
[4], [5]. Here we consider a novel formulation for the seed
graph. We select the seed graph as the graph induced in the
PPI networks by the oldest proteins. That is, the proteins in
the observed PPI data that are known to have the largest
phylogenetic age (taxon age). It is reasonable to expect that
the same protein which appeared over different species also
appears in their common ancestor. Hence proteins shared
across many different, distant species are supposed to be
older than others.

More precisely, the age of a protein is based on a family’s
appearance on a species tree, and it is estimated via pro-
tein family databases and ancestral history reconstruction
algorithms. We use Princeton Protein Orthology Database
(PPOD) [20] along with OrthoMCL [21] and PANTHER [22]
for the protein family database and asymmetric Wagner
parsimony as the ancestral history reconstruction algorithm.
These algorithms can be accessed via ProteinHistorian soft-
ware [23].

Table 2 also lists the statistics of seed graphs Gn0 for
different PPI networks. Even if the original PPI network
is connected, the DD-model under consideration allows a
disconnected graph to be the seed graph. Thus, similar to
the formation of the PPI network, we consider the graph
induced by oldest proteins including isolated nodes and
disconnected subgraphs, not restricting ourselves to a con-
nected component that introduces biases in the results.

3 INFLUENCE OF PARAMETERS ON SYMMETRIES
OF THE MODEL

For certain range of values of the parameters p and r of
the DD-model, given n and Gn0

, we show in this section
that the model generates virtually only asymmetric graphs.
However, we can put forward a question: are there any
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Original graph Gobs Seed graph Gn0

Organism Scientific name # Nodes # Edges log |Aut(G)| # Nodes # Edges

Baker’s yeast Saccharomyces cerevisiae 6,152 531,400 267 548 5,194
Human Homo sapiens 17,295 296,637 3026 546 2,822
Fruitfly Drosophila melanogaster 9,205 60,355 1026 416 1,210
Fission yeast Schizosaccharomyces pombe 4,177 58,084 675 412 226
Mouse-ear cress Arabidopsis thaliana Columbia 9,388 34,885 6696 613 41
Mouse Mus musculus 6,849 18,380 7827 305 7
Worm Caenorhabditis elegans 3,869 7,815 3348 185 15

TABLE 2: Statistics of PPI networks used in this paper and the generated seed graph Gn0
with nodes of the largest

phylogenetic ages.
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(c) n = 2000

Fig. 1: Logarithm of the expected number of automorphisms of graphs generated from the DD-model. The seed graph
Gn0

= K20.
values of parameters that will yield graphs with the number
of automorphisms (i.e., the number of adjacency preserving
permutations of the vertex set) close to the real-world PPIs?

In Figure 1, we present the average number of sym-
metries in the logarithmic scale for graphs with different
sizes generated from the DD-model with a fixed set of
parameters. As p, r → 0 or when p becomes very close
to 1 we observe significantly larger values for the average
number of automorphisms (since the generated graphs tend
to have numerous isolated nodes or they become closer to
a complete graph). For instance in Figure 1a, p = 1, r = 0.4
has E[log Aut(Gn)] = 1114, and p = 0, r = 0.4 has
E[log Aut(Gn)] = 1253. But for large ranges of p and r, it
is practically impossible to generate a graph exhibiting any
noticeable symmetries. For example, p = 0.2, r = 2.4 has
E[log Aut(Gn)] = 3.2; p = 0.6, r = 0 has E[log Aut(Gn)] =
1.3; and p = 0.4, r = 2.4 has E[log Aut(Gn)] = 0.12.
These observations are consistent for different n and Gn0

too, though the specific range of values of parameters will
obviously change.

The number of automorphisms in the DD-model be-
haves differently as in many other graph models. The
preferential-attachment graphs are asymmetric (no nontriv-
ial symmetries) with high probability when the number of
edges a new node brings into the graph exceeds 2 [10],
and almost every graph from the Er̋dos-Rényi model is
asymmetric [9]. On the other hand, the DD-model exhibits a
large number of symmetries and it grows with the number
of nodes, as shown in Figure 1.

These findings allow us to argue that only certain sub-
sets of (p, r) pairs correspond to the expected number of
automorphisms in the order of the required value. This
means that it can be reasonably used as a falsification tool
to discard certain parameter ranges and to verify parameter
estimation methods. We provide a simple statistical test for
checking the possibility of generating the required number

of symmetries with the estimated parameters.

Statistical test for significance of the number of symmetries
with the estimated parameters

Given the real-world network Gobs, seed graph Gn0 , and
the estimated parameters (p̂, r̂) of the DD-model, we can
estimate the statistical significance of the estimates with
respect to the number of symmetries in Gobs as fol-
lows. Let G

(1)
n , . . . , G

(m)
n be m graphs generated from

DD-model(n, p̂, r̂, Gn0
). Then the p-value is now calculated

as follows:

pu =
1

m

m∑
i=1

1{log |Aut(G(i)
n )| ≥ log |Aut(Gobs)|}

pl =
1

m

m∑
i=1

1{log |Aut(G(i)
n )| ≤ log |Aut(Gobs)|},

with 1{A} as the indicator function of the event A. Then
p-value = 2 min{pu, pl}. As an example, for a fixed param-
eter set, the empirical distribution of log |Aut(G)| is shown
in Figure 2. The distribution is symmetrical and this justifies
use of the symmetrical definition of p-value. A lower p-
value indicates that the estimated parameters do not fit the
observed network, and a higher value gives an argument
for the estimated parameters being in agreement with the
number of symmetries in Gobs.

4 PARAMETER ESTIMATION AND WHY EXISTING
METHODS FAIL IN PRACTICE?
Previous methods for the parameter estimation problem in
the DD-model was first sketched in [3] and then consid-
ered more rigorously in [13]. Later, [4], [5] provided some
extensions to the estimation procedures using the mean-
field approximation of the average degree D(Gobs) together
with the steady-state expression of the power-law exponent
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Fig. 2: Normalized histogram of logarithm of number of
automorphisms when Gn ∼ DD-model(500, 0.3, 0.4,K20).

γ of the degree distribution. Then, the values of p and r are
computed, respectively, from the formulas:

γ = 1 +
1

p
− pγ−2 and r =

(
1

2
− p
)
D(Gobs), for p <

1

2
.

Table 3 presents the estimates of parameters p and r
using the above method. Additionally, we present the aver-
age logarithm of the number of automorphisms computed
from 10,000 graphs generated from the DD-model with the
estimated parameters.

Organism p̂ r̂ E[log |Aut(Gn)|] p-value

Baker’s yeast 0.28 38.25 0 0
Human 0.43 2.39 10.81 0
Fruitfly 0.44 0.75 3771.99 0
Fission yeast 0.46 1.02 897.48 0
Mouse-ear cress 0.44 0.43 18596.72 0
Mouse 0.48 0.12 34961.69 0
Worm 0.47 0.14 15700.26 0

TABLE 3: Estimated parameters of the DD-model and aver-
age number of symmetries using mean-field approach.

Mismatch in the number of symmetries and graph statis-
tics
Comparing Tables 2 and 3, we observe that the number
of symmetries of the graphs which are generated by the
DD-model with parameters estimated via the mean-field
approach differs significantly with that of the real-world
PPI networks. Moreover, the estimated p-values are consis-
tently zero for all the species because the observed values
of the parameters under investigation fall far outside the
range of the empirical distribution of the parameters for
synthetic graphs generated with estimated p and r. This
shows that the previously established estimation methods
of the DD-model fail to capture the critical graph property
of automorphisms, and thus do not fit the PPI networks
accurately.

As shown in Table 2, the PPI networks exhibit some sig-
nificant amount of symmetry, but far less than the maximum
possible value (equal to n log n), which is attained when
every node can be interchanged with every other node. This
observation, along with the p-value test in Section 3, allow
us to discard not only many models which produce only
asymmetric graphs with high probability (such as Erdős-
Renyi or preferential attachment model), but also effectively
stands as a hypothesis test to verify that the fitting obtained

by an estimation procedure can be safely assumed to match
the model underlying real-world structures.

Similarly, for certain graph statistics D(Gn), S2(Gn) and
C3(Gn) (see Table 1 for notation), which are considered later
in Section 5.1 for deriving our methods, we observe from
Table 4 that the estimated parameters do not yield graphs
that have the considered statistics close to the observed
graph. Here the p-values are calculated in an equivalent
way of number symmetries, just that now it is computed
with respect to the graph statistics.

Next, we point out several other deficiencies in the
known estimation procedures, which could be the reasons
behind such a divergence between the number of symme-
tries of the PPI networks and its proposed theoretical model.

Power-law behavior
The parameter estimation of the DD-model introduced in
prior works, such as the one that was presented at the
beginning of this section, assumes that the PPI networks are
scale-free. This property, stating that the degree distribution
of the PPI networks is heavy-tailed or, more precisely, that
the number of vertices of degree k is proportional to k−γ

for some constant γ > 0 [24], [25]. With this assumption,
some (see [8] for example) argue that the estimated value
of the exponent for the PPI networks satisfies 2 < γ < 3.
However, there are counterarguments to this claim, and it
is challenged on statistical grounds that the PPI graphs do
not fall into the power-law degree distribution category [26],
[27].

To each of the PPI networks in Table 2, we fit the coeffi-
cients of power-law distribution with the cut-off following
the methodology of Clauset et al. [28]. We note here that
cutoff is required in all the cases since the power-law be-
havior mostly happens in the tails of the degree distribution.
However, we find that the cutoff neglects a huge percentage
of the data. For example, for a fitting of baker’s yeast PPI
network, as shown in Figure 3, the cutoff is 582, which is at
94.98 percentile of the degree data, i.e., the power-law fitting
does not take into account 94.98% of the data. With the
cutoff and the percentiles of all the species listed in Table 5,
we remark that any method to estimate the parameters p
and r involving power-law exponent do not give reliable
approximations since it discards the vast majority of the
data.

100 101 102 103

x

10−3

10−2

10−1

100

CCDF(x)

with cutoff

original

Fig. 3: Complementary cumulative distribution function
(CCDF) of baker’s yeast and power law fitting.

Steady state assumption
Previous research on the DD-model, both on the level of
theoretical analysis of the model properties and the level
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Organism D(Gobs) E[D(Gn)] p-value S2(Gobs) E[S2(Gn)] p-value C3(Gobs) E[C3(Gn)] p-value

Baker’s yeast 172.76 115.10 0 220.35M 45.33M 0 9.77M 370.49K 0
Human 34.30 19.39 0 52.25M 7.02M 0 1.07M 105K 0
Fruitfly 13.11 7.87 0 2.94M 1.45M 0 195.96K 77.61K 0
Fission yeast 27.64 6.72 0 7.42M 215.84K 0 223.61K 1.14K 0
Mouse-ear cress 7.39 2.23 0 2.98M 44.46K 0 23.34K 23.27 0
Mouse 5.35 0.82 0 2.95M 9.33K 0 10.22K 0.79 0
Worm 4.04 0.90 0 346.13K 5.32K 0 2.41K 0.49 0

TABLE 4: Comparison of certain graph statistics of the observed graph and that of the synthetic data with parameters
estimated via the mean-field approach.

Organism γ̂ Cutoff percentile

Baker’s yeast 4.55 94.98
Human 2.85 92.33
Fruitfly 2.71 88.00
Fission yeast 2.43 88.31
Mouse-ear cress 2.68 93.89
Mouse 2.29 78.58
Worm 2.41 88.23

TABLE 5: Estimated power law exponent and required
cutoff percentile with the mean-field approach

of parameter estimation of real-world PPI networks, focus
heavily on the asymptotic and steady-state behavior [3].
Most of the previous results on the functional form of
certain graph statistics in the DD-model are under the
strong assumption of steady-state [8], [29]. But they do not
provide any theoretical proof for convergence to steady-
state. Moreover, these steady-state asymptotic results, even
when achievable, do not give any bounds on the rate
of convergence. This, in turn, raises questions about the
straightforward applicability of such theoretical results to
parameter estimation.

The previously used methods of parameter estimation
also suffer from another issue: for simplicity, they assume
that the average degree of the network does not change
during the whole evolution from Gn0

to Gn. This is not only
highly implausible in practice, but also impose direct rela-
tion between p and r, and hides any dependency that might
be discovered from various properties of the networks.

Seed graph choice
As shown by previous studies (most notably in Hormozi-
dari et al. [5]), choice of the seed graph plays a significant
role in graph evolution, directly contributing to the order of
growth of many important graph statistics.

The seed graph is typically assumed to be the largest
clique (or a connected graph of the largest two cliques) of the
observed graph. Then random vertices and edges are gradu-
ally added to the network, preserving the average degree of
the final network, to make the size of the network to a fixed
value of n0. This method is motivated by the infinitesimally
small probability with which there could appear a clique
of a greater size during graph evolution. Such a procedure
has no formal theoretical guarantees and does not have any
clear justification from a biological perspective [5].

Our natural approach to select the seed graph is based
on the extra-network information about the estimated age
of proteins, described in Section 2.1.

5 MAIN RESULTS

Our main constructive results concern the relation between
the parameters of the model and the number of symmetries
exhibited by graphs generated from it. Additionally, we
present two parameter estimation algorithms, one based
on recurrences characteristic for certain graph statistics,
the other based on the well-known maximum likelihood
approach.

5.1 Our method: parameter estimation using recur-
rence relations

Our basic tool to infer the parameters of DD-model for
a given the PPI network is a set of the exact recurrence
relations for basic graph statistics, which relate their values
at time k and k + 1 of graph evolution. Such recurrence
relations are sufficient to estimate model parameters, as the
whole sequence of graphs from the initial graph Gn0 to
the final graph Gn can be split into steps consisting of the
addition of a single vertex and the changes introduced by
the added vertex.

Typically, five statistics of the random graph Gn are
studied in literature: number of edges E(Gn), mean degree
of the network D(Gn) = n−1

∑n
i=1 degn(i), mean squared

degree D2(Gn) = n−1
∑n
i=1 deg2

n(i), number of triangles
(3-cliques) C3(Gn), and number of wedges S2(Gn) (wedges
are also called 2-stars or paths of length 2 in prior literature,
and number of wedges includes counts of triangles and
open triangles).

However, for every graph H on n vertices it is true
that E(H) = n

2D(H) and S2(n) = n
2 (D2(H) − D(H)).

Therefore, it is sufficient to analyze only the three of above-
mentioned graph statistics: D(n), S2(n) and C3(n).

As a first step, we derive the following recurrence rela-
tions for the chosen statistics.

Theorem 1. If Gn+1 ∼ DD-model(n+ 1, p, r,Gn), then
E[D(Gn+1)|Gn]

= D(Gn)

(
1 +

2p− 1

n+ 1
− 2r

n(n+ 1)

)
+

2r

n+ 1

E[D2(Gn+1)|Gn]

= D2(Gn)

(
1 +

2p+ p2 − 1

n+ 1
− 2r(1 + p)

n(n+ 1)
+

r2

n2(n+ 1)

)
+D(Gn)

(
2p− p2 + 2pr + 2r

n+ 1
− 2r + 2r2

n(n+ 1)
+

r2

n2(n+ 1)

)
+

2r2 + 2r

n+ 1
− r2

n(n+ 1)
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E[C3(Gn+1)|Gn]

= C3(Gn)

(
1 +

3p2

n
− 6pr

n2
+

3r2

n3

)
+D2(Gn)

(
pr

n
− r2

n2

)
+D(Gn)

r2

2n

E[S2(Gn+1)|Gn]

= S2(Gn)

(
1 +

2p+ p2

n
− 2(p+ 1)r

n2
+
r2

n3

)
+D(Gn)

(
pr + p+ r − pr + r + r2

n
+
r2

n2

)
+
r2

2
− r2

2n
.

Proof. See Section 9.

In Figure 4, we verify Theorem 1 by comparing E[Dn],
for various n, computed using theory and experiments.

The expressions given in Theorem 1 implicitly define
a function E[D(Gn)|Gn0

] = FD(n, p, r,Gn0
), which is a

cornerstone of our algorithm. Similar functions exist for
recurrences based on other statistics of Gn0

and Gn. Now
we claim that the result of Theorem 1 in terms of expectation
can be used for the graph statistics with high probability too.
Figure 5 shows the concentration of empirical distribution of
different graph statistics.

Although we don’t need an explicit formula for FD in
our algorithm, we may derive one from the recurrences:

E[D(Gn)|Gn0
] = D(Gn0

)
n−1∏
k=n0

(
1 +

2p− 1

k + 1
− 2r

k(k + 1)

)

+
n−1∑
k=n0

2r

k + 1

n−1∏
l=k+1

(
1 +

2p− 1

l + 1
− 2r

l(l + 1)

)
.

Although this is outside of the scope of this article, we
note that such an expression allows us to find, for example,
the asymptotic order of growth for D(Gn) and for other
statistics.

Though closed form solution of recurrences with Gn and
Gn0

could be difficult to obtain, Theorem 1 is sufficient to
formulate an efficient algorithm for finding the parameters
of the model. The crucial feature is that all parameters are
monotonic, that is, the larger the parameters p and r, the
larger the values of D(Gn) and other statistics.

Algorithm 1 presents our estimation technique for find-
ing p̂ with the recurrence relation for D(Gn) (which will be
D(Gobs) when we consider real-world network), assuming
r̂ is known beforehand. However, sufficient number of
samples of r̂ from the interval [0, n0] is adequate to get a
feasible solution set of {(p̂, r̂)} with a desired resolution.
The algorithm also works for recurrence relations of S2(Gn)
and C3(Gn) with evident modifications.

We note here that for each graph property under con-
sideration, D, S2 or C3, the estimation algorithm returns a
curve (more precisely, a set of feasible points). Now, if we
find a concurrence in the solutions to the recurrence rela-
tions of various graph statistics, we know that a necessary
condition for the presence of duplication-divergence model
has been satisfied. On the other hand, if the curves were
not having a common crossing point, it suggests that the
DD-model may not be the appropriate fit for the observed
network. We denote the above estimation procedure using

Algorithm 1 Estimation of p via recurrence relation of
D(Gn).

1: function RECURRENCE-RELATION(n, r, Gn0
, D(Gn), ε)

2: Dmin ← FD(n, 0, r,Gn0
), Dmax ← FD(n, 1, r, Gn0

)
3: if Dmin > D(Gn) or Dmax < D(Gn) then
4: return “no suitable solution for p”
5: pmin ← 0, pmax ← 1
6: while pmax − pmin > ε do
7: p′ ← pmin+pmax

2 , D′ ← FD(n, p′, r,Gn0
)

8: if D′ < D(Gn) then pmin ← p′ else pmax ← p′

9: return pmin

the recurrence relations of all three graph statistics as the
RECURRENCE-RELATION method.

5.2 Parameter estimation via maximum likelihood
method
An alternative way of estimating parameters of the
DD-model is the maximum likelihood estimation (MLE).
With MLE, the estimated parameters p̂ and r̂ are given
by maxθ=(p,r) L(θ,Gn), where the likelihood function is
L(θ,Gn) is the probability of generating Gn from Gn0

for
fixed parameters θ, i.e.
L(θ,Gn) := Pr(Gn|Gn0

; θ)

=
∑

Gn0+1,...,Gn−1,Gn∈G(Gn0
,Gn)

n∏
k=n0+1

Pr(Gk|Gk−1; θ),

where G(Gn0
, Gn) is the set of all sequences of graphs

that starts with Gn0
and ends at Gn. Given a fixed se-

quence of graph evolution history (Gn0
, . . . , Gn−1, Gn), it

is straightforward to calculate the likelihood, but L(θ,Gn)
requires summation over all histories, which has exponen-
tial number of possibilities. In [17], the authors present an
importance sampling strategy to approximate the likelihood
and thereby estimate the parameters. It is based on the idea
of traversing backwards in history (Gn to Gn−1 and Gn−1
to Gn−2 likewise) on one sample path of graph evolution
sequence via Markov chain. We adapt their algorithm to our
DD-model and the complete algorithm is presented later in
Section 8.

We now provide a brief description of the importance
sampling procedure. The idea is to express likelihood in
terms of a known reference parameter θ0 instead of un-
known θ. Now, the likelihood can be rewritten as an ex-
pectation with respect to θ0 and can be estimated via Monte
Carlo simulations (see [17] for more details):

L(θ,Gn) = Eθ0

 n∏
k=n0

S(θ0, θ, Gk, v)

 ,
where

S(θ0, θ, Gk, v) =
1

k
ω(Gk, θ, v)

ω(Gk, θ0)

ω(Gk, θ0, v)
.

Here ω(Gk, θ, v) is the probability of creating the graph Gk
fromGk−1 through the addition of a node v, with parameter
as θ. v can be chosen as any node inGk such that its removal
would result in a positive probability Gk−1 under the DD-
model. The variable ω(Gk, θ) is the transition probability
ω(Gk, θ, v), summed over all possible v. In fact, ω(Gk, θ, v)
itself is the normalized sum of ω(Gk, θ, v, w), over all possi-
ble nodes w, which is the probability of producing a graph
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Fig. 4: Comparison of E[D(Gn)] computed via Theorem 1 and via experiments.
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Fig. 5: Empirical distribution of graph statistics: Gn ∼ DD-model(100, 0.5, 1.5,K10). Coefficient of variation CV is defined
as the ratio of empirical standard deviation and empirical mean. The lower values of CV in the sub-figures show the
concentration of the considered graph statistics.

Gk from Gk−1 by adding a node v that is duplicated from
node w.

5.3 Computational complexity of parameter estimation
methods
Let us now assume that the n0 is fixed and we are interested
in results up to a resolution ε, that is, the values of p and r
are stored in such a way that two numbers within a distance
less than ε are indistinguishable.

For our algorithm 1, RECURRENCE-RELATION, a single
pass requires Θ

(
n log 1

ε

)
, as it uses a binary search for p

and for every intermediate value of p it executes exactly
n − n0 steps of for loop, each requiring constant time.
Now it is sufficient to sample n0

ε different values of r,
therefore the total running time to find suitable (p̂, r̂) pairs
is Θ

(
n 1
ε log 1

ε

)
.

On the other hand, the MLE algorithm needs to compute
at every step values of the ω function for all possible pairs
of v and w for each graph Gk. This is the case because in
DD-model every vertex v could be a duplicate of every
other vertex w always with some non-zero probability at
every stage of the algorithm. This means that we require
Θ(k2) steps at each iteration of the algorithm; therefore
Θ
(∑n

k=n0
k2
)

= Θ(n3) steps in total. Unfortunately, even
clever bookkeeping and amortization is not much of a help
here.

Additionally, we need to estimate the likelihood for each
pair (p, r) independently, as maximum likelihood function
does not have the monotonicity property, so it requires in
total Θ

(
n3 1

ε2

)
steps to find all feasible pairs up to a desired

resolution of ε.
Moreover, as it was suggested by Wiuf et al. in [17],

importance sampling provides good quality results only for
at least 1000 independent trials. This adds up a constant
factor not visible in the big-Θ notation, but significant in

practice, effectively making the algorithm infeasible for the
real-world data without using supercomputer power.

6 NUMERICAL EXPERIMENTS

In this section, we evaluate our methods on synthetic graphs
and real-world PPI networks.

We made publicly available all the code and data
of this project at https://github.com/krzysztof-turowski/
duplication-divergence. The code supports random graph
models and real-world networks.

Estimation of tolerance interval

We find the tolerance interval of the estimated p and r
values for the fitted DD-model as follows. For a given
network Gobs and a seed graph Gn0

, first the RECURRENCE-
RELATION algorithm outputs a set of solutions {(p̂, r̂)}.
For each of the feasible pairs, we then estimate the con-
fidence interval of the graph property with which recur-
rence was calculated. For instance, if the property used
was the empirical mean D, graph samples generated from
DD-model(n, p̂, r̂, Gn0

) are used to estimate expectation
E[D(Gn)] and variance Var[D(Gn))]. A 95% confidence
interval of D(Gn) is then given by the values

E[D(Gn)]± 1.96 Var[D(Gn))].

The Gaussian distribution assumption used in the above
expression is indeed a good approximation for the distri-
bution of D for large n. Now by fixing p̂, we can calculate
a tolerance interval (r̂min, r̂max) for the estimated parame-
ter r̂. In the following experiments, for demonstrating the
above approach, we focus on two graph statistics D and C3

(parameter estimation will include S2 too).

https://github.com/krzysztof-turowski/duplication-divergence
https://github.com/krzysztof-turowski/duplication-divergence
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Parameter estimation procedure for the experiments
Our parameter estimation procedure can be summarized
follows:

1) We employ the RECURRENCE-RELATION algorithm for
solving graph recurrences of the three graph statistics D,
S2 and C3, and we identify a set of solutions for p and r.

2) With Gn ∼ DD-model(n, p̂, r̂, Gn0), we find the tolerance
interval of r̂ using the confidence interval of D(Gn) and
C3(Gn), as explained in the above subsection.

3) We look for crossing points of the plots in the figure,
and the range of values of p and r where the confidence
intervals meet around the crossing point. We call such a
range of values as feasible-box.

4) Though any point in the feasible-box is a good estimate of
p and r, to improve the accuracy, we uniformly sample a
fixed number of points from the box and choose the pair
that gives maximum p-value with respect to the number
of automorphisms of the given graph Gobs.

The Theorem 1 provides theoretical guarantees (in the
expected sense) for the RECURRENCE-RELATION algorithm
and the idea of convergence of the three curves, the solution
set of D, S2 and C3 statistics, in the above estimation
procedure. But in practice, we allow some discrepancy
in the convergence of the three curves. In the following
experiments, we declare that the DD-model fits the given
dataset when at least two curves converge and there is
an intersection among the confidence intervals of the three
curves or when one curve and the confidence interval of
another curve intersect.

6.1 Synthetic graphs

In this section, we derive preliminary insights by studying
our method and maximum likelihood estimation (MLE)
empirically on synthetic data. See Sections 5.2 and 8 for
the MLE implementation. We note here that the infeasibility
of the MLE method for large graphs (e.g. with tens of
thousands of vertices) is already explained in Section 5.3
and the comparison, in this section, between our method
and the MLE on small graphs is provided only to prove the
competitiveness of our approach as to the MLE method.

We generate two random graph samples G(1)
n and G

(2)
n

from the DD-model with the following parameters:

G(1)
n ∼ DD-model(n = 100, p = 0.1, r = 0.3, Gn0

= K20),

G(2)
n ∼ DD-model(n = 100, p = 0.99, r = 3.0, Gn0

= K20).

The choice of parameters in G
(1)
n and G

(2)
n show different

regimes in the following studies. Moreover the parameters
are chosen in such a way that the generated graphs have
non-trivial symmetries.

Figures 6a and 6b plot the sets of feasible points
identified by the recurrence relations using RECURRENCE-
RELATION method. The light shaded bands show the tol-
erance intervals of r. We observe that the crossing points
and the tolerance intervals are fairly close to the original
parameters. Figures 6c and 6d display the heat-plot of log-
likelihood function of the MLE for different values of the
parameters and the maximum value of the log-likelihood
in the heat-plot will give the parameters outputted by the
MLE. The log-likelihood function maximizes at (p, r) pairs

close to the original parameters, but not up to the resolution
of RECURRENCE-RELATION method.

In Table 6 we produce the statistical significance of the
best estimated parameter pairs via both the RECURRENCE-
RELATION and the MLE. The best pair is found in the
RECURRENCE-RELATION method from 1000 uniform sam-
ples in the feasible-box centered at the point where the three
curves are in agreement, and for the MLE, it is found from
1000 uniform samples in the maximum log-likelihood area
if no unique maximizer exists. The estimates from both the
techniques demonstrate the presence of the DD-model in
the given graphs G(1)

n and G
(2)
n (p-value > 0.1), the best

pair of RECURRENCE-RELATION estimator has much higher
p-value and certainly outperforms MLE.

We note that for the first graph G
(1)
n the results ob-

tained by both methods are almost identical, in terms of
E[log |Aut(Gn)|] and p-values. For the second graph G

(2)
n ,

the log-likelihood function of MLE is nearly flat for large values of
p, and thus MLE returns less reliable estimates. This in turn
results in a larger deviation of the number of automor-
phisms from the observed graph. Our algorithm on the
other hand provides a better estimate even when p is close to
1. To sum up, we find that our algorithm does not perform
worse than MLE in terms of quality and achieves better
performance than MLE when p is high. It also has much
lower computational complexity than the MLE. The MLE re-
quires more than 1 million computations for this particular
example, where as RECURRENCE-RELATION needs only at
most 100 computations (scaling factors excluded). Detailed
complexity calculations are provided in Section 5.3.

6.2 Real-world PPIs
We apply recurrence-based estimator to PPI networks of
seven species listed in Table 2. As mentioned in Section 2.1,
the seed graph Gn0 is assumed as the graph induced by the
nodes having the largest phylogenetic age.

The MLE solution is almost impossible to calculate
for the PPI networks. Even for the smallest PPI network
(Worm), MLE requires around 58 billion computations to
obtain a result for a single (p, r) parameter set.

Figure 7 presents plots of RECURRENCE-RELATION es-
timator for seven species. In all the figures, the plots meet
or come very close at a specific point. This illustrates the
presence of the DD-model in all the considered species.
Furthermore, Table 7 calculates the statistical significance
of the fitted DD-model with respect to the number of au-
tomorphisms in the observed PPI networks. The estimated
p-values are remarkably high and most often much larger
than 0.4 (except in one case), demonstrating that the fitted
DD-models exhibit symmetries closer to the real-world PPIs.

7 DISCUSSION

We focus in this work on fitting dynamic biological net-
works to a probabilistic graph model, from a single snapshot
of the networks. Our attention here is on a key characteristic
of the networks – the number of automorphisms – that is
often neglected in modeling. Using the number of automor-
phisms as a measure to sample parameters from the param-
eter space may raise serious questions about its practicality
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Fig. 6: Results on synthetic networks: RECURRENCE-RELATION and maximum likelihood estimation (MLE) methods

RECURRENCE-RELATION MLE

Model parameters log |Aut(Gobs)| p̂ r̂ E[log |Aut(Gn)|] p-value p̂ r̂ E[log |Aut(Gn)|] p-value

p = 0.1, r = 0.3 81.963 0.09 0.3 81.974 0.980 0.1 0.3 78.794 0.820
p = 0.99, r = 3.0 16.178 0.99 2.5 16.588 0.980 0.95 0.3 0.368 0

TABLE 6: Results on synthetic networks: average number of automorphisms and p-value

Organism p̂ r̂ E[log |Aut(Gn)|] p-value

Baker’s yeast 0.98 0.35 293.27 0.71
Human 0.64 0.49 2998.81 0.51
Fruitfly 0.53 0.92 1073.83 0.64
Fission yeast 0.983 0.85 705.278 0.74
Mouse-ear cress 0.98 0.49 6210.36 0.13
Mouse 0.96 0.32 8067.56 0.67
Worm 0.85 0.35 3352.91 0.48

TABLE 7: Parameters of the real-world PPI networks esti-
mated using RECURRENCE-RELATION method

(like some slower maximum likelihood estimation methods
for graph fitting). To address this, our approach in this paper
to combine the number of symmetries with a faster method
of recurrence relations, which allows us to narrow down the
parameter search, finds high relevance in practice.

We argue that many existing parameter estimation tech-
niques fail to take into account the number of symmetries
of real-world networks, leading to serious concerns in the
fitting methodology. Previous studies made unrealistic as-
sumptions like the steady-state behavior of the model, and

it could be the reason behind erroneous estimates. Our
proposed fitting method based on exact recurrence relations,
derived from rigorous theory, with minimal assumptions
works well on synthetic data and real-world protein-protein
interaction (PPI) networks of seven species. We also for-
mulate a simple statistical test in terms of the number of
symmetries. Since the PPI networks are expanding with new
protein-protein interactions getting discovered, we make
sure to use up-to-date data so that the fitted parameters in
this paper can serve as a benchmark for future studies.

We note here that the method introduced in this work
is applicable to a variety of dynamic network models, as
for many models there exist recurrence relations similar to
the ones presented here. A systematic way of parameter
estimation can also be seen as an introductory work to other
important problems in biological networks. One example of
such a problem is the temporal order problem [30]: given a
network, the task is to recover the chronology of the node
arrivals in the network. Parameter estimation provides us
with better knowledge about the specific characteristics of
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Fig. 7: Results on PPI networks: RECURRENCE-RELATION method

the model that retains temporal information in its structure.

8 MAXIMUM LIKELIHOOD ALGORITHM

Function MAXIMUMLIKELIHOODVALUE, as shown below in
Algorithm 2, presents a single pass of the MLE technique.
Here θ0 = (p0, r0) is the initial parameter set which can be
chosen with some extra knowledge of the given network
or even arbitrarily; but with a proper choice of θ0, a faster
convergence to the true value of likelihood is guaranteed.

We note here that the MLE procedure has to be run
multiple times, and the average of the L’s (see algorithm)
from the multiple runs gives an estimate of the likelihood at
the inputted (p, r). The procedure needs to be repeated for
all the relevant (p, r) pairs. The estimated parameters are
the points for which the likelihood function is maximized.
See Section 5.2 for details.

9 PROOF OF THEOREM 1
Let degt(s) be the degree at time t of a vertex added at time
s, which is same as node label s, and parent(t) be a vertex
which was chosen fromGt−1 for the duplication step at time
t.

It follows from the definition of the model that de-
gree of the new vertex n + 1 is the total number of
edges from the vertex n + 1 to Nn(parent(n+ 1)) (each

Algorithm 2 Single run for the likelihood value computa-
tion.

function MAXIMUMLIKELIHOODVALUE(G, n, n0, p, r, p0,
r0)

L← 1
for k = n, n− 1, . . . , n0 + 1 do

Pick v at random with Pr[v] ∼ ω(G, p0, r0, v)

L← L · 1k
∑

u∈G ω(G,p0,r0,u)

ω(G,p0,r0,v)
ω(G, p, r, v)

Remove v from G
return L

function ω(G, p, r, v)
sum← 0, n← |V (G)|
for u ∈ V (G), u 6= v do

both← |Nn(u) ∩Nn(v)|
onlyv ← |Nn(v) \ Nn(u)|
onlyu ← |Nn(u) \ Nn(v)|
none← n− |Nn(u) ∪Nn(v)|
sum += pboth

(
r
n

)onlyv (1− p)onlyu
(
1− r

n

)none
return sum

of which is formed from choosing nodes independently
from Nn(parent(n+ 1)) with probability p) and to all other
vertices (each of which is formed from nodes chosen inde-
pendently from a set V (Gn)\Nn(parent(n+ 1)) with prob-
ability r

n ).

It can be then expressed as a sum of two independent



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. ??, NO. ??, MONTH 20?? 12

binomial variables:
degn+1(n+ 1) ∼ Bin (degn(parent(n+ 1)), p)

+ Bin
(
n− degn(parent(n+ 1)),

r

n

)
.

1. Recurrence for D(Gn).
E[degn+1(n+ 1)

∣∣ Gn]

=
n−1∑
k=0

Pr(degn(parent(n+ 1)) = k
∣∣ Gn)

×
k∑
a=0

(
k

a

)
pa(1− p)k−a

×
n−k∑
b=0

(
n− k
b

)( r
n

)b (
1− r

n

)n−k−b
(a+ b)

=
n−1∑
k=0

Pr(degn(parent(n+ 1)) = k
∣∣ Gn)

(
pk +

r

n
(n− k)

)
=
(
p− r

n

) n−1∑
k=0

kPr(degn(parent(n+ 1)) = k
∣∣ Gn) + r.

Since in the definition of the model it is stated that the
parent is selected uniformly at random, we know that
Pr(parent(n+ 1) = i

∣∣ Gn) = 1
n and therefore

D(Gn) =
n∑
i=1

Pr(parent(n+ 1) = i
∣∣ Gn) degn(i)

=
n−1∑
k=0

kPr(degn(parent(n+ 1)
∣∣ Gn) = k).

Combining the last two equations, we get

E[degn+1(n+ 1)
∣∣ Gn] =

(
p− r

n

)
D(Gn) + r.

Using the above, we find the following recurrence for
the mean degree of Gn+1:

E[D(Gn+1)
∣∣ Gn]

=
1

n+ 1
E

[
n+1∑
i=1

degn+1(i)
∣∣ Gn

]

=
1

n+ 1

(
n∑
i=1

degn(i) + 2E
[
degn+1(n+ 1)

∣∣ Gn]
)

=
1

n+ 1

(
nD(Gn) + 2E[degn+1(n+ 1)

∣∣ Gn]
)

= D(Gn)

(
1 +

2p− 1

n+ 1
− 2r

n(n+ 1)

)
+

2r

n+ 1
.

Now from the law of total expectation:
E[D(Gn+1)]

= E[D(Gn)]

(
1 +

2p− 1

n+ 1
− 2r

n(n+ 1)

)
+

2r

n+ 1
.

2. Recurrence for D2(Gn).
E[deg2

n+1(n+ 1)
∣∣ Gn]

=
n−1∑
k=0

Pr(degn(parent(n+ 1)) = k
∣∣ Gn)

×
k∑
a=0

(
k

a

)
pa(1− p)k−a

×
n−k∑
b=0

(
n− k
b

)( r
n

)b (
1− r

n

)n−k−b
(a+ b)2

=
n−1∑
k=0

Pr(degn(parent(n+ 1)) = k
∣∣ Gn)

×
(
k2
(
p2 − 2pr

n
+
r2

n2

)
+ k

(
p− p2 + 2pr − r + 2r2

n

)

+ r2 + r − r2

n

)

= D2(Gn)

(
p2 − 2pr

n
+
r2

n2

)
+D(Gn)

(
p− p2 + 2pr − r + 2r2

n
+
r2

n2

)
+ r2 + r − r2

n
,

since we have, as before,

D2(Gn) =
n∑
i=1

Pr(parent(n+ 1) = i
∣∣ Gn) deg2

t (i)

=
n−1∑
k=0

Pr(degn(parent(n+ 1)) = k
∣∣ Gn)k2.

Now we proceed with the second moment of degree
distribution of Gn. Let In+1(i) be an indicator variable
whether there is an edge between n + 1 and i. Then the
following basic results follows:

n∑
i=1

I2n+1(i) =
n∑
i=1

In+1(i) = degn+1(n+ 1)

and

E

[
n∑
i=1

degn(i)In+1(i)
∣∣ Gn

]
=

n∑
i=1

degn(i)E[In+1(i)
∣∣ Gn]

=
n∑
i=1

degn(i)

(
degn(i)

n
p+

n− degn(i)

n

r

n

)

=
1

n

n∑
i=1

deg2
t (i)

(
p− r

n

)
+

1

n

n∑
i=1

degn(i)r

=
(
p− r

n

)
D2(Gn) + rD(Gn).

Now,

E[D2(Gn+1)
∣∣ Gn] =

1

n+ 1
E

[
n+1∑
i=1

deg2
n+1(i)

∣∣ Gn
]

=
1

n+ 1
E

[
n∑
i=1

deg2
t (i) + 2

n∑
i=1

degn(i)In+1(i)

+ degn+1(n+ 1) + deg2
n+1(n+ 1)

∣∣ Gn
]

= D2(Gn)

(
1 +

2p+ p2 − 1

n+ 1
− 2r(1 + p)

n(n+ 1)
+

r2

n2(n+ 1)

)
+D(Gn)

×
(

2p− p2 + 2pr + 2r

n+ 1
− 2r + 2r2

n(n+ 1)
+

r2

n2(n+ 1)

)
+

2r2 + 2r

n+ 1
− r2

n(n+ 1)
.

Then from the law of total expectation we obtained the
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desired formula.

3. Recurrence for S2(Gn). The recurrence for S2(Gn) is
straightforward from the following deterministic relation for
every graph:

S2(Gn) =
n

2
(D2(Gn)−D(Gn)) .

Alternatively, it can be computed from the following rela-
tion using similar methods as before:

E[S2(Gn+1)
∣∣ Gn] = E

[
n+1∑
i=1

(
degn+1(i)

2

) ∣∣ Gn
]
.

4. Recurrence for C3(Gn). Finally, we find the expected
number of triangles in the following way. Let us denote by
et(A,B) the number of edges with one endpoint in A and
other in B, and by et(A) the number of edges with both
edges in A for some fixed A,B ⊆ V (Gt), at time t.

For brevity, let us also introduce the following notations.
• NP (n+ 1) = Nn(parent(n+ 1)) – the set of neighbors

of the parent of n+ 1 in Gn,
• X1(Gn) := en(NP (n + 1)) – the number of edges

within (open) neighborhood of the parent of n + 1 in
Gn,

• X2(Gn) := en (NP (n+ 1), V (Gn) \NP (n+ 1)) – the
number of edges between (open) neighborhood of the
parent of n+ 1 and other vertices in Gn,

• X3(Gn) := en (V (Gn) \NP (n+ 1)) – the number of
edges between vertices not connected to the parent of
n+ 1 in Gn.

It can be easily verified that

X1(Gn) =
3C(Gn)

n
,

X1(Gn) +X2(Gn) = D2(Gn),

X1(Gn) +X2(Gn) +X3(Gn) =
n

2
D(Gn).

Therefore,
E[C3(Gn+1)

∣∣ Gn]

= C3(Gn) + p2E[X1(Gn)
∣∣ Gn]

+
pr

n
E[X2(Gn)

∣∣ Gn] +
r2

n2
E[X3(Gn)

∣∣ Gn]

= C3(Gn)

(
1 +

3p2

n
− 6pr

n2
+

3r2

n3

)
+D2(Gn)

(
pr

n
− r2

n2

)
+D(Gn)

r2

2n
.

We can now apply the law of total expectation to get the
final result.
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