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Abstract

Andersson and Nilsson introduced in 1993 a level-compressed trie (in short: LC trie)
in which a full subtree of a node is compressed to a single node of degree being the
size of the subtree. Recent experimental results indicated a “dramatic improvement”
when full subtrees are replaced by “partially filled subtrees”. In this paper, we provide
a theoretical justification of these experimental results showing, among others, a rather
moderate improvement of the search time over the original LC tries. For such an
analysis, we assume that n strings are generated independently by a binary memoryless
source with p denoting the probability of emitting a “1” (and q = 1−p). We first prove
that the so called α-fillup level Fn(α) (i.e., the largest level in a trie with α fraction of
nodes present at this level) is concentrated on two values whp (with high probability);
either Fn(α) = kn or Fn(α) = kn +1 where kn = log 1√

pq
n− | ln(p/q)|

2 ln3/2(1/
√

pq)
Φ−1(α)

√
ln n+

O(1) is an integer and Φ(x) denotes the normal distribution function. This result
directly yields the typical depth (search time) Dn(α) in the α-LC tries, namely we
show that whp Dn(α) ∼ C2 log log n where C2 = 1/| log(1 − h/ log(1/

√
pq))| for p 6= q

and h = −p log p − q log q is the Shannon entropy rate. This should be compared
with recently found typical depth in the original LC tries which is C1 log log n where
C1 = 1/| log(1−h/ log(1/ min{p, 1−p}))|. In conclusion, we observe that α affects only
the lower term of the α-fillup level Fn(α), and the search time in α-LC tries is of the
same order as in the original LC tries.
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poissonization.
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1 Introduction

Tries and suffix trees are the most popular data structures on words [7]. A trie is a digital
tree built over, say n, strings (the reader is referred to [12, 14, 25] for an in depth discussion
of digital trees.) A string is stored in an external node of a trie and the path length to
such a node is the shortest prefix of the string that is not a prefix of any other strings (cf.
Figure 1). Throughout, we assume a binary alphabet. Then each branching node in a trie
is a binary node. A special case of a trie structure is a suffix tree (cf. [25]) which is a trie
built over suffixes of a single string.

Since 1960 tries were used in many computer science applications such as searching
and sorting, dynamic hashing, conflict resolution algorithms, leader election algorithms,
IP addresses lookup, coding, polynomial factorization, Lempel-Ziv compression schemes,
and molecular biology. For example, in the internet IP addresses lookup problem [15, 23]
one needs a fast algorithm that directs an incoming packet with a given IP address to its
destination. As a matter of fact, this is the longest matching prefix problem, and standard
tries are well suited for it. However, the search time is too large. If there are n IP addresses
in the database, the search time is O(log n), and this is not acceptable. In order to improve
the search time, Andersson and Nilsson [1, 15] introduced a novel data structure called the
level compressed trie or in short LC trie (cf. Figure 1). In the LC trie we replace the root
with a node of degree equal to the size of the largest full subtree emanating from the root
(the depth of such a subtree is called the fillup level). This is further carried on recursively
throughout the whole trie (cf. Figure 1).

Some recent experimental results reported in [8, 17, 18] indicated a “dramatic improve-
ment” in the search time when full subtrees are replaced by “partially fillup subtrees”. In
this paper, we provide a theoretical justification of these experimental results by considering
α-LC tries in which one replaces a subtree with the last level only α-filled by a node of degree
equal to the size of such a subtree (and we continue recursively). In order to understand
theoretically the α-LC trie behavior, we study here the so called α-fillup level Fn(α) and
the typical depth or the search time Dn(α). The α-fillup level is the last level in a trie that
is α-filled, i.e., filled up to a fraction at least α (e.g., in a binary trie level k is α-filled if it
contains α2k nodes). The typical depth is the length of a path from the root to a randomly
selected external node; thus it represents the typical search time. In this paper we analyze
the α-fillup level and the typical depth in an α-LC trie in a probabilistic framework when
all strings are generated by a memoryless source with P(1) = p and P(0) = q := 1 − p.
Among other results, we prove that the α-LC trie shows a rather moderate improvement
over the original LC tries. We shall quantify this statement below.

Tries were analyzed over the last thirty years for memoryless and Markov sources (cf.
[2, 9, 11, 12, 14, 19, 20, 24, 25]). Pittel [19, 20] found the typical value of the fillup level
Fn (i.e., α = 1) in a trie built over n strings generated by mixing sources; for memoryless
sources

Fn
p∼ log n

log(1/pmin)
=

log n

h−∞
where pmin = min{p, 1 − p} is the smallest probability of generating a symbol and h−∞ =
log(1/pmin) is the Rényi entropy of infinite order (cf. [25]). We let log := log2. In the
above, we write Fn

p∼ an to denote Fn/an → 1 in probability, that is, for any ε > 0 we have
P((1 − ε)an ≤ Fn ≤ (1 + ε)an) → 1 as n → ∞.
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Figure 1: A trie and its associated full LC trie.

This was further extended by Devroye [2], and Knessl and Szpankowski [11] who, among
other results, proved that the fillup level Fn is concentrated on two points kn and kn + 1,
where kn is an integer

1
log p−1

min

(log n − log log log n) + O(1) (1)

for p 6= 1/2. The depth in regular tries was analyzed by many authors who proved that whp
(with high probability, i.e., with probability tending to 1 as n → ∞) the depth is about
(1/h) log n (where h = −p log p−(1−p) log(1−p) is the Shannon entropy rate of the source)
and that it is normally distributed when p 6= 1/2 [20, 25].

The typical depth (search time) of the original LC tries was analyzed by Andersson and
Nilsson [1] and by Devroye [3] for unbiased memoryless sources (cf. also [21, 22]). This was
only recently extended to general memoryless sources by Devroye and Szpankowski [4] who
proved that, for p 6= 1/2,

Dn
p∼ log log n

− log (1 − h/h−∞)
(2)

where, we recall, h−∞ = log(1/pmin).
In this paper we shall prove some rather surprising results. First of all, for 0 < α < 1

we show that the α-fillup level Fn(α) is whp equal either to kn or kn + 1 where

kn = log 1√
pq

n − | ln(p/q)|
2 ln3/2(1/

√
pq)

Φ−1(α)
√

ln n + O(1) (3)

where Φ(x) is the standard normal distribution function. As a consequence, we find that if
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p 6= 1/2, the depth Dn(α) of the α-LC is for large n typically about

log log n

− log
(
1 − h/ log(1/

√
pq)

) .

The (full) 1-fillup level (i.e., α = 1) Fn shown in (1) should be compared to the α-fillup
level Fn(α) presented in (3). Observe that the leading term of Fn(α) is not the same as
the leading term of Fn when p 6= 1/2. Furthermore, α contributes only to the second term
asymptotics. When comparing the typical depths Dn and Dn(α) we conclude that both
grow like log log n with two constants that do not differ by much (cf. Figure 2 in the next
section). This comparison led us to a statement in the abstract that the improvement of
α-LC tries over the regular LC tries is rather moderate. We may add that for relatively
slowly growing functions such as log log n the constants in front of them do matter (even
for large values of n) and perhaps this led the authors of [8, 17, 18] to their statements.

The paper is organized as follows. In the next section we present our main results
which are proved in the next two sections. We first consider a poissonized version of the
problem for which we establish our findings. Then we show how to depoissonize our results
completing our proof for the α-fillup. In the last section we prove our second main result
concerning the depth.

2 Main Results

Consider tries created by inserting n random strings of 0 and 1. We will always assume
that the strings are (potentially) infinite and that the bits in the strings are independent
random bits, with P(1) = p and thus P(0) = q := 1 − p; moreover we assume that different
strings are independent.

We let Xk := #{internal nodes filled at level k} and Xk := Xk/2k, i.e., the proportion
of nodes filled at level k. Note that Xk may both increase and decrease as k grows, while

1 ≥ Xk ≥ Xk+1 ≥ 0.

Recall that the fillup level of the trie is defined as the last full level, i.e. max{k : Xk = 1},
while the height is the last level with any nodes at all, i.e. max{k : Xk > 0}. Similarly, if
0 < α ≤ 1, the α-fillup level Fn(α) is the last level where at least a proportion α of the
nodes are filled, i.e.

Fn(α) = max{k : Xk ≥ α}.
We will in this paper study the α-fillup level for a given α with 0 < α < 1 and a given

p with 0 < p < 1.
We have the following result, where whp means with probability tending to 1 as n → ∞,

and Φ denotes the normal distribution function. Theorem 1 is proved in Section 4, after
first considering a Poissonized version in Section 3.

Theorem 1. Let α and p be fixed with 0 < α < 1 and 0 < p < 1, and let Fn(α) be the
α-fillup level for the trie formed by n random strings as above. Then, for each n there is an
integer

kn = log 1√
pq

n − | ln(p/q)|
2 ln3/2(1/

√
pq)

Φ−1(α)
√

ln n + O(1)

such that whp Fn(α) = kn or kn + 1. Moreover, EXkn = α + O(1/
√

log n) for p 6= 1/2.
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Thus the α-fillup level Fn(α) is concentrated on at most two values; as in many similar
situations (cf. [2, 11, 19, 25]), it is easily seen from the proof that in fact for most n it is
concentrated on a single value kn, but there are transitional regimes, close to the values of
n where kn changes, where Fn(α) takes two values with comparable probabilities.

Note that when p = 1/2, the second term on the right hand side disappears, and
thus simply kn = log n + O(1); in particular, two different values of α ∈ (0, 1) have their
corresponding kn differing by O(1) only. When p 6= 1/2, changing α means shifting kn by
Θ(log1/2 n). By Theorem 1, whp Fn(α) is shifted by the same amounts.

To the first order, we thus have the following simple result.

Corollary 2. For any fixed α and p with 0 < α < 1 and 0 < p < 1,

Fn(α) = log 1√
pq

n + Op(
√

ln n);

in particular, Fn(α)/ log1/
√

pq n
p→ 1 as n → ∞.

Surprisingly enough, the leading terms of the fillup level for α = 1 and α < 1 are
quantitatively different for p 6= 1/2. It is well known, as explained in the introduction, that
the regular fillup level Fn is concentrated on two points around log n/ log(1/pmin), while the
partial fillup level Fn(α) concentrates around kn ∼ log n/ log(1/

√
pq). Secondly, the leading

term of Fn(α) does not depend on α and the second term is proportional to
√

log n, while
for the regular fillup level Fn the second term is of order log log log n.

A formal proof of our main result is presented in the next two sections where we first
consider a Poissonized version of the problem (cf. Section 3) followed by depoissonization
(cf. Section 4). However, before proceeding we present a heuristic argument leading to the
first term of Fn(α). First, observe that among all 2k binary strings of length k most of
them have about k/2 zeroes and k/2 ones. Thus, the probability that one of the input
strings begins with a particular string of length k is usually about (pq)k/2 = (

√
pq)k, and

the average number of such strings is about n(
√

pq)k. To find the first term of Fn(α) we
just set: n(

√
pq)k = Θ(1) leading to

Fn(α) ∼ log 1√
pq

n.

In passing, we observe that when analyzing 1-fillup, we have to consider the worst case with
all 0’s or all 1’s, which occurs with probability pk

min.
Theorem 1 yields several consequences for the behavior of α-LC tries. In particular, it

implies the typical behavior of the depth, that is, the search time. Below we formulate our
second main result concerning the depth for α-LC tries delaying the proof to Section 5; cf.
(2) and [4, 22] for LC tries.

Theorem 3. For any fixed 0 < α < 1 and p 6= 1/2 we have

Dn(α)
p∼ log log n

− log
(
1 − h

log(1/
√

pq)

) (4)

as n → ∞ where h = −p log p − (1 − p) log(1 − p) is the entropy rate of the source.
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Figure 2: The constants in front of log log n terms for the regular 1-LC trie (C1) and α-LC
trie (C2).

As a direct consequence of Theorem 3 we can numerically quantify experimental results
recently reported in [17] where a “dramatic improvement” in the search time of α-LC tries
over the regular LC tries was observed. In a regular LC trie the search time is O(log log n)
with the constant in front of log log n being C1 = 1/ log(1−h/ log(1/pmin))−1 [4]. For α-LC
tries this constant decreases to C2 = 1/ log(1 − h/ log(1/

√
pq))−1 (cf. Figure 2). While it

is hardly a “dramatic improvement”, the fact that we deal with a slowly growing leading
term log log n, may indeed lead to experimentally observed significant changes in the search
time.

3 Poissonization

In this section we consider a Poissonized version of the problem, where there are Po(λ)
strings inserted in the trie. We let F̃λ(α) denote the α-fillup level of this trie.

Theorem 4. Let α and p be fixed with 0 < α < 1 and 0 < p < 1, and let F̃λ(α) be the
α-fillup level for the trie formed by Po(λ) random strings as above. Then, for each λ > 0
there is an integer

kλ = log 1√
pq

λ − | ln(p/q)|
2 ln3/2(1/

√
pq)

Φ−1(α)
√

ln λ + O(1) (5)
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such that whp (as λ → ∞) F̃λ(α) = kλ or kλ + 1.

We shall prove Theorem 4 through a series of lemmas. Observe first that a node at level
k can be labeled by a binary string of length k, and that the node is filled if and only if
at least two of the inserted strings begin with this label. For r ∈ {0, 1}k , let N1(r) be the
number of ones in r, and let P (r) = pN1(r)qk−N1(r) be the probability that a random string
begins with r. Then, in the Poissonized version, the number of inserted strings beginning
with r ∈ {0, 1}k has a Poisson distribution Po(λP (r)), and these numbers are independent
for different strings r of the same length. The independence is a consequence of the Poisson
assumption; in particular, the fact that splitting a Poisson process leads to independent
Poisson processes (cf. [6]). Thus,

Xk =
∑

r∈{0,1}k

Ir (6)

where Ir are independent indicators with

P(Ir = 1) = P(Po(λP (r)) ≥ 2) = 1 − (1 + λP (r))e−λP (r). (7)

Hence,

Var (Xk) =
∑

r∈{0,1}k

P (Ir = 1)
(
1 − P (Ir = 1)

)
< 2k

so Var (Xk) < 2−k and, by Chebyshev’s inequality,

P(|Xk − EXk| > 2−k/3) → 0. (8)

Consequently, Xk is sharply concentrated, and it is enough to study its expectation. (It is
straightforward to calculate Var (Xk) more precisely, and to obtain a normal limit theorem
for Xk, but we do not need that.)

Assume first p > 1/2.

Lemma 1. If p > 1/2 and

k = log 1√
pq

λ − ln(p/q)
2 ln3/2(1/

√
pq)

Φ−1(α)
√

ln λ + O(1), (9)

then EXk = α + O(k−1/2).

Proof. Let ρ = p/q > 1 and define γ by λpγqk−γ = 1, i.e.,

ργ =
(

p

q

)γ

= λ−1q−k,

which leads to
γ =

k ln(1/q) − ln λ

ln(p/q)
. (10)

Let µj = λpjqk−j = ρj−γ . Thus, µj is the average number of strings beginning with a
given string with j ones and k − j zeros. By (6) and (7),

EXk = 2−k
k∑

j=0

(
k

j

)
P(Po(µj) ≥ 2). (11)
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If j < γ, then µj < 1 and
P(Po(µj) ≥ 2) < µ2

j < µj.

If j ≥ γ, then µj ≥ 1 and

1 − P(Po(µj) ≥ 2) = (1 + µj)e−µj ≤ 2µje
−µj < 4µ−1

j .

Hence (11) yields, using
(
k
j

) ≤ (
k

bk/2c
)

= O(2kk−1/2),

EXk = 2−k
∑
j<γ

(
k

j

)
O(µj) + 2−k

∑
j≥γ

(
k

j

)
(1 − O(µ−1

j ))

= 2−k
∑
j≥γ

(
k

j

)
+ 2−k

k∑
j=0

(
k

j

)
O(ρ−|j−γ|)

= P

(
Bi(k, 1/2) ≥ γ

)
+ O(k−1/2).

(12)

By the Berry–Esseen theorem [6, Theorem XVI.5.1],

P(Bi(k, 1/2) ≥ γ) = 1 − Φ
(γ − k/2√

k/4

)
+ O(k−1/2). (13)

By (10) and the assumption (9),

γ − k

2
=

1
ln(p/q)

(
k ln

1
q
− ln λ − k

2
ln

p

q

)

=
1

ln(p/q)

(
k ln

1√
pq

− ln λ

)

=
ln(1/

√
pq)

ln(p/q)

(
k − log1/

√
pq λ

)
(14)

= −1
2(ln(1/

√
pq))−1/2Φ−1(α)

√
ln λ + O(1)

= −1
2Φ−1(α)k1/2 + O(1).

This finally implies

1 − Φ
(γ − k/2√

k/4

)
= 1 − Φ(−Φ−1(α)) + O(k−1/2) = α + O(k−1/2),

and the lemma follows by (12) and (13).

Lemma 2. Fix p > 1/2. For every A > 0, there exists c > 0 such that if |k − log1/
√

pq λ| ≤
Ak1/2, then EXk − EXk+1 > ck−1/2.

Proof. A string r ∈ {0, 1}k has two extensions r0 and r1 in {0, 1}k+1. Clearly, Ir0, Ir1 ≤ Ir,
and if there are exactly 2 (or 3) of the inserted strings beginning with r, then Ir0 + Ir1 ≤
1 < 2Ir. Hence

E (2Xk − Xk+1) =
∑

r∈{0,1}k

E (2Ir − Ir0 − Ir1) ≥
∑

r∈{0,1}k

P

(
Po(λP (r)) = 2

)
. (15)
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Let ρ and γ be as in the proof of Lemma 1, and let j = dγe. Then µj = ρj−γ ∈ [1, ρ] and
thus P(Po(µj) = 2) ≥ 1

2e−ρ. Moreover, by (14) and the assumption,

|j − k/2| ≤ ln(1/
√

pq)
ln(p/q)

Ak1/2 + 1 = O(k1/2).

Thus, if k is large enough, we have by the standard normal approximation of the binomial
probabilities (which follows easily from Stirling’s formula, as found already by de Moivre
[5])

2−k

(
k

j

)
=

1 + o(1)√
2πk/4

e−2(j−k/2)2/k ≥ c1k
−1/2

for some c1 > 0. Hence, by (15),

EXk − EXk+1 = 2−k−1E (2Xk − Xk+1) ≥ 2−k−1

(
k

j

)
P(Po(µj) = 2) ≥ c1e

−ρ

4
k−1/2

as needed.

Now assume p > 1/2. Starting with any k as in (9), we can by Lemmas 1 and 2
shift k up or down O(1) steps and find kλ as in (5) such that, for a suitable c > 0,
EXkλ

≥ α + 1
2ck

−1/2
λ > EXkλ+1 and EXkλ+2 ≤ EXkλ+1 − ck

−1/2
λ < α − 1

2ck
−1/2
λ . It

follows by (8) that whp Xkλ
≥ α and Xkλ+2 < α, and hence F̃λ(α) = kλ or kλ + 1.

This proves Theorem 4 in the case p > 1/2. The case p < 1/2 follows by symmetry,
interchanging p and q.

In the remaining case p = 1/2, all P (r) = 2−k are equal. Thus, by (6) and (7),

EXk = P(Po(λ2−k) ≥ 2). (16)

Given α ∈ (0, 1), there is a µ > 0 such that P(Po(µ) ≥ 2) = α. We take kλ = blog(λ/µ) −
1/2c. Then, λ2−kλ ≥ 21/2µ and thus EXkλ

≥ α+ for some α+ > α. Similarly, EXkλ+2 ≤
α− for some α− < α, and the result follows in this case too.

4 Depoissonization

To complete the proof of Theorem 1 we must depoissonize the results obtained in Theorem 4,
which we do in this section.

Proof of Theorem 1. Given an integer n, let kn be as in the proof of Theorem 4 with λ = n,
and let λ± = n ± n2/3. Then P(Po(λ−) ≤ n)) → 1 and P(Po(λ+) ≥ n)) → 1 as n → ∞. By
monotonicity, we thus have whp F̃λ−(α) ≤ Fn(α) ≤ F̃λ+(α), and by Theorem 4 it remains
only to show that we can take kλ− = kλ+ = kn.

Let us now use the notation Xk(λ) and Xk(λ), since we are working with several λ.

Lemma 3. Assume p 6= 1/2. Then, for every k,

d

dλ
EXk(λ) = O(λ−1k−1/2).
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Proof. We have
d

dµ
P(Po(µ) ≥ 2) =

d

dµ
((1 − (1 + µ)e−µ) = µe−µ

and thus, by (11) and the argument in (12),

d

dλ
EXk(λ) = 2−k

k∑
j=0

(
k

j

)
µje

−µj
dµj

dλ

= λ−12−k
k∑

j=0

(
k

j

)
µ2

je
−µj = O

(
λ−1

k∑
j=0

2−k

(
k

j

)
min(µj, µ

−1
j )

)

= O(λ−1k−1/2)

which completes the proof.

By Lemma 3, |EXk(λ±) − EXk(n)| = O(n−1/3k−1/2) = o(k−1/2). Hence, by the proof
of Theorem 4, for large n, EXkn(λ±) ≥ α + 1

3ck
−1/2
n and EXkn+2(λ±) < α− 1

3ck
−1/2
n , and

thus whp F̃λ±(α) = kn or kn + 1. Moreover, the estimate EXkn = α + O(1/
√

log n) follows
easily from the similar estimate for the Poisson version in Lemma 1; we omit the details.
This completes the proof of Theorem 1 for p > 1/2. The case p < 1/2 is again the same by
symmetry. The proof when p = 1/2 is similar, now using (16).

5 Proof of Theorem 3

First, let us explain heuristically our estimate for Dn(α). By the Asymptotic Equipartition
Property (cf. [25]) at level kn there are about n2−hkn strings with the same prefix of length
kn as a randomly chosen one, where h is the entropy. That is, in the corresponding branch
of the α-LC trie, we have about n2−hkn ≈ n1−κ strings (or external nodes), where for
simplicity κ = h/ log(1/

√
pq). In the next level, we shall have about n(1−κ)2 external nodes,

and so on. In particular, at level Dn(α) we have approximately

n(1−κ)Dn(α)

external nodes. Setting this = Θ(1) leads to our estimate (4) of Theorem 3.
We now make this argument rigorous. We construct an α-LC trie from n random

strings ξ1, . . . , ξn and look at the depth Dn(α) of a designated one of them. In principle,
the designated string should be chosen at random, but by symmetry, we can assume that
it is the first string ξ1.

To construct the α-LC trie, we scan the strings ξ1, . . . , ξn in parallel one bit at a time,
and build a trie level by level. As soon as the last level is filled less than α, we stop; we are
now at level Fn(α)+1, just past the α-fillup level. The trie above this level, i.e., up to level
Fn(α), is compressed into one node, and we continue recursively with the strings attached
to each node at level Fn(α) + 1 in the uncompressed trie, i.e., the sets of strings that begin
with the same prefixes of length Fn(α) + 1.

To find the depth Dn(α) of the designated string ξ1 in the compressed trie, we may
ignore all branches not containing ξ1; thus we let Yn be the number of the n strings that
agree with ξ1 for the first Fn(α) + 1 bits. Note that we have not yet inspected any later
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bits. Hence, conditioned on Fn(α) and Yn, the remaining parts of these Yn strings are again
i.i.d. random strings from the same memoryless source, so we may argue by recursion. The
depth Dn(α) equals the number of recursions needed to reduce the number of strings to 1.

We begin by analysing a single step in the recursion. Let, for notational convenience,
κ := h/ log(1/

√
pq). Note that 0 < κ < 1.

Lemma 4. Let ε > 0. Then, with probability 1 − O
(
n−Θ(1)

)
,

1 − κ − ε <
ln Yn

ln n
< 1 − κ + ε. (17)

We postpone the proof of Lemma 4, and first use it to complete the proof of Theorem 3.
We assume below that n is large enough when needed, and that 0 < ε < min(κ, 1 − κ)/2.

We iterate, and let Zj be the number of strings remaining after j iterations; this is the
number of strings that share the first j levels with ξ1 in the compressed trie. We have
Z0 = n and Z1 = Yn. We stop the iteration when there are less than ln n strings remaining;
we thus let τ be the smallest integer such that Zτ < ln n. In each iteration before τ , (17)
holds with error probability O

(
(ln n)−Θ(1)

)
= O

(
(ln ln n)−2

)
. Hence, for any constant B,

we have whp for every j ≤ min(τ,B ln ln n), with κ± = κ ± ε ∈ (0, 1),

1 − κ+ <
ln Zj

ln Zj−1
< 1 − κ−,

or equivalently
ln(1 − κ+) < ln lnZj − ln ln Zj−1 < ln(1 − κ−). (18)

If τ > τ+ := dln ln n/ ln(1 − κ−)−1e, we find whp from (18)

ln ln Zτ+ ≤ ln lnZ0 + τ+ ln(1 − κ−) ≤ 0,

so Zτ+ ≤ e < ln n, which violates τ > τ+. Hence, τ ≤ τ+ whp.
On the other hand, if τ < τ− := b(1 − ε) ln ln n/ ln(1 − κ+)−1c, then whp by (18)

ln lnZτ ≥ ln ln Z0 + τ− ln(1 − κ+) ≥ ε ln ln n,

which contradicts ln ln Zτ < ln ln ln n.
Consequently, whp τ− ≤ τ ≤ τ+; in other words, we need ln ln n

− ln(1−κ)

(
1 + O(ε)

)
iterations

to reduce the number of strings to less than ln n.
Iterating this result once, we see that whp at most O(ln ln ln n) further iterations are

needed to reduce the number to less than ln ln n. Finally, the remaining depth then whp is
O(ln ln ln n) even without compression. Hence we see that whp

Dn(α) =
ln ln n

− ln(1 − κ)
(
1 + O(ε)

)
+ O(ln ln ln n).

Since ε is arbitrary, Theorem 3 follows.
It remains to prove Lemma 4. Let Wk be the number of the strings ξ1, . . . , ξn that are

equal to ξ1 for at least their first k bits. The Yn = WFn(α)+1, and thus, for any A > 0,

P

(| log Yn − (1 − κ) log n| ≥ 2ε log n
) ≤ P

(|Fn(α) − log1/
√

pq n| ≥ A
√

ln n
)

+
∑

|k−1−log1/
√

pq n|<A
√

ln n

P

(| log Wk − log n + h log1/
√

pq n| ≥ 2ε log n
)
.
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Lemma 4 thus follows from the following two lemmas, using the observation that 0 <
1/ log(1/

√
pq) < 1/h.

The first lemma is a large deviation estimate corresponding to Corollary 2.

Lemma 5. For each α ∈ (0, 1), there exists a constant A such that

P

(|Fn(α) − log1/
√

pq n| ≥ A
√

ln n
)

= O(1/n).

Proof. We begin with the poissonized version, with Po(λ) strings as in Section 3. Let
k± = k±(λ) := blog1/

√
pq λ±A

√
ln λc, and let δ be fixed with 0 < δ < min(α, 1−α). Then,

by Lemma 1, if A is large enough, EXk− > α + δ and EXk+ < α − δ for all large λ. By a
Chernoff bound, (8) can be sharpened to

P

(|Xk − EXk| > δ
)

= O
(
e−Θ(2k)

)
and thus

P

(
F̃λ(α) < k−

) ≤ P

(
Xk− < α

) ≤ P

(
Xk− − EXk− < −δ

)
= O

(
e−Θ(2k− )

)
= O

(
e−Θ(λO(1))

)
= O(λ−1).

Similarly, P(F̃λ(α) > k+) = O(λ−1).
To depoissonize, let λ± = n ± n2/3 as in Section 4 and note that, again by a Chernoff

estimate, P

(
Po(λ−) ≤ n

)
= O(n−1) and P

(
Po(λ+) ≥ n

)
= O(n−1). Thus, with probability

1 − O(1/n),
k−(λ−) ≤ F̃λ−(α) ≤ Fn(α) ≤ F̃λ+(α) ≤ k+(λ+),

and the result follows (if we increase A).

Lemma 6. Lat 0 < a < b < 1/h and ε > 0. Then, uniformly for all k with a log n ≤ k ≤
b log n,

P

(| log Wk − log n + kh| > ε log n
)

= O
(
n−Θ(1)

)
. (19)

Proof. Let N1 be the number of 1’s in the first k bits of ξ1. Given N1, the distribution of
Wk − 1 is Bi(n − 1, pN1qk−N1).

Since ppqq = 2−h, there exists δ > 0 such that if |N1/k − p| ≤ δ, then 2−h−ε ≤
pN1/kq1−N1/k ≤ 2−h+ε, and thus

2−hk−εk ≤ pN1qk−N1 ≤ 2−hk+εk, when |N1/k − p| ≤ δ. (20)

Noting that hk ≤ bh log n and bh < 1, we see that, provided ε is small enough, n2−hk−εk ≥
nη for some η > 0, and then (20) and a Chernoff estimate yields, when |N1/k − p| ≤ δ,

P

(
1
2n2−hk−εk ≤ Wk ≤ 2n2−hk−εk | N1

)
= 1 − O

(
e−Θ(nη)

)
= 1 − O

(
n−1

)
,

and thus

P

(| log Wk − log n + hk| > εk + 1 | N1

)
= O

(
n−1

)
, when |N1/k − p| ≤ δ. (21)

Moreover, N1 ∼ Bi(k, p), so by another Chernoff estimate,

P

(|N1/k − p| > δ
)

= O
(
e−Θ(k)

)
= O

(
n−Θ(1)

)
.

The result follows (possibly changing ε) from this and (21).
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