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Minimax Pointwise Redundancy for Memoryless
Models Over Large Alphabets
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Abstract—We study the minimax pointwise redundancy of
universal coding for memoryless models over large alphabets and
present two main results. We first complete studies initiated in Or-
litsky and Santhanam deriving precise asymptotics of the minimax
pointwise redundancy for all ranges of the alphabet size relative to
the sequence length. Second, we consider the minimax pointwise
redundancy for a family of models in which some symbol proba-
bilities are fixed. The latter problem leads to a binomial sum for
functions with superpolynomial growth. Our findings can be used
to approximate numerically the minimax pointwise redundancy
for various ranges of the sequence length and the alphabet size.
These results are obtained by analytic techniques such as tree-like
generating functions and the saddle point method.

Index Terms—Binomial sums, large alphabet, memoryless
sources, minimax pointwise redundancy, saddle point methods,
tree generating functions.

I. INTRODUCTION

T HE classical universal source coding problem [4] is typi-
cally concerned with a known source alphabet whose size

is much smaller than the sequence length. In this setting, the
asymptotic analysis of universal schemes assumes a regime in
which the alphabet size remains fixed as the sequence length
grows. More recently, the case in which the alphabet size is very
large, often comparable to the length of the source sequences,
has been studied from two different perspectives. In one setup
(motivated by applications such as text compression over an al-
phabet composed of words), the alphabet is assumed unknown
or even infinite (see, e.g., [2], [9], [12], [16], and [18]). In an-
other setup (see, e.g., [15]), the alphabet is still known and finite
(as in applications such as speech and image coding), but the
asymptotic regime is such that both the size of the alphabet and
the length of the source sequence are very large. Notice that, in
this scenario, the optimality criteria and the corresponding op-
timal codes do not differ from the classical approach; rather, it
is the asymptotic analysis that is affected.
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In this paper, we follow the latter scenario, targeting a
classical figure of merit: the minimax (worst-case) pointwise
redundancy (regret) [19]. Specifically, we derive precise
asymptotic results for two memoryless model families. To
recall, the pointwise redundancy of a code arises in a deter-
ministic setting involving individual data sequences, where
probability distributions are mere tools for describing a choice
of coding strategies. In this framework, given an individual
sequence, the pointwise redundancy of a code is measured with
respect to a (probabilistic) model family (i.e., a collection of
probability distributions that reflects limited knowledge about
the data-generating mechanism). The pointwise redundancy
determines by how much the code length exceeds that of the
code corresponding to the best model in the family (see, e.g.,
[14] and [23] for an in-depth discussion of this framework). In
the minimax pointwise scenario, one designs the best code for
the worst-case sequence, as discussed next.
A fixed-to-variable code is an injective

mapping from the set of all sequences of length over the
finite alphabet of size to the set of all binary
sequences. We assume that satisfies the prefix condition and
denote the code length it assigns to a sequence

. A prefix code matched to a model (given
by a probability distribution over ) encodes with an
“ideal” code length , where will denote
the binary logarithm throughout this paper, and we ignore the
integer length constraint. Given a sequence , the pointwise
redundancy of with respect to a model family (such as the
family of memoryless models ) is, thus, given by

Finally, the minimax pointwise redundancy for the
family is given by

(1)

This quantity was studied by Shtarkov [19], who found that,
ignoring the integer length constraint also for (cf., [5])

(2)

and is achieved with a code that assigns to each sequence a code
length proportional to its maximum-likelihood probability over
. In particular, for , precise asymptotics of
have been derived in the regime in which the alphabet size is
treated as a constant [20] (cf., also [23]). Theminimax pointwise
redundancy was also studied when both and are large, by
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Orlitsky and Santhanam [15]. Formulating this scenario as a
sequence of problems in which varies with , leading term
asymptotics for and , as well as bounds for

, are established in [15].1 The goal of this formulation
is to estimate for given values of and , which fall
in one of the aforementioned cases.
In this paper, we first provide, in Theorem 1, precise asymp-

totics of for all ranges of relative to . Our findings
are obtained by analytic methods of analysis of algorithms
[8], [21]. Theorem 1 not only completes the study of [15] by
covering all ranges of (including ), but also
strengthens it by providing more precise asymptotics. Indeed,
it will be shown that the error incurred by neglecting lower
order terms may actually be quite significant, to the point that,
for , the first two terms of the asymptotic expansion
for constant given in [20] are a better approximation to

than the leading term established in [15].
In addition, Theorem 1 also enables a precise analysis of

the minimax pointwise redundancy in a more general scenario.
Specifically, we consider the alphabet , with and

, and a (memoryless) model family, denoted , in
which the probabilities of symbols in are fixed, while may
be large.2 Such constrained model families, which correspond
to partial knowledge of the data-generating mechanism, fill the
gap between two classical paradigms: one in which a code is de-
signed for a specific distribution in (Shannon-type coding),
and universal coding in . For example, consider a situation in
which data sequences from two different sources (over disjoint
alphabets) are randomly interleaved (e.g., by a router), as pro-
posed in [1], and assume that one of the sequences is (controlled)
simulation data, for which the generating mechanism is known.
If we further assume that the switching probabilities are also
known, this situation falls under the proposed setting, where
corresponds to the alphabet of the simulation data. Other

constrained model families have been studied in the literature as
means to reduce the number of free parameters in the probability
model (see [22] for an example motivated in image coding).
Given our knowledge of the distribution on , one would expect
to “pay” a smaller price for universality in terms of redun-
dancy. In a probabilistic setting and for treated as a constant,
Rissanen’s lower bound on the (average) redundancy [17] is
indeed proportional to the number of free parameters.
Moreover, it is easy to see that the leading term asymptotics
of the pointwise redundancy of a (sequential) code that uses a
fixed probability assignment for symbols in , and one based on
the Krichevskii--Trofimov scheme [13] for symbols in , are
indeed the same as those for . However, this intuition
notwithstanding, notice that the minimax scheme for the com-
bined alphabet does not encode the two alphabets separately.
Moreover, the analysis is more complex for unbounded ,
especially when we are interested in more precise asymptotics.

1We write if and only if for some
positive constant and sufficiently large . Also, if and
only if and , if and only
if , and if and only if

.
2Note that the model families and are defined over different alpha-

bets. In addition, the family is constrained in that the probabilities of sym-
bols in take fixed values.

In this paper, we formalize this intuition by providing precise
asymptotics of the minimax pointwise redundancy ,
again for all ranges of (relative to ). We first prove that

(3)

where . As it turns out, in order to estimate this
quantity asymptotically, we need a quite precise understanding
of the asymptotic behavior of for large and , as
provided by Theorem 1.
The study of the minimax pointwise redundancy over

expressed in (3) leads to an interesting problem for the so-called
binomial sums, defined in general as

(4)

where is a fixed probability and is a given func-
tion. In [6] and [11], asymptotics of were derived for the
polynomially growing function . This result ap-
plies to our case when is a constant, and leads to the conclu-
sion that the asymptotics of are the same as those of

, an intuitively appealing result since the length of the
subsequence over is with high probability. But when
also grows, we encounter subexponential, exponential, and su-
perexponential functions , depending on the relation between
and ; therefore, we need more precise information about
to extract precise asymptotics of . In our second main

result, Theorem 2, we use the asymptotics derived in Theorem
1 to deal with the binomial sum (3) and extract asymptotics of

for large and .
In the remainder of this paper, Section II reviews the ana-

lytic methods of analysis of algorithms that were used in [20]
for estimating in the constant case, as well as the
saddle point method, whereas Section III presents our main re-
sults. These results are proved in Section IV.

II. BACKGROUND

In the sequel, we will denote to emphasize
the dependence of on both and . We will also
denote which, by (2), implies

(5)

Clearly, takes the form

(6)
where is the number of times symbol occurs in a string
of length .
The asymptotics of the sequence of numbers (for

constant) are analyzed in [20] through its tree-like generating
function, defined as
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Here, we will follow the same methodology, which we review
next. The first step is to use (6) to define an appropriate recur-
rence on (involving both indices, and ), and to em-
ploy the convolution formula for generating functions (cf., [21])
to relate to the tree-like generating function of the se-
quence , namely

This function, in turn, can be shown to satisfy (cf., [21])

(7)

for , where is the well-known tree function,
which is a solution to the implicit equation

(8)

with .3 Specifically, the following relation is proved
in [20].

Lemma 1: The tree-like generating function of
satisfies, for ,

and, consequently

(9)

where denotes the coefficient of in .
Defining , , noticing that

, and applying Stirling’s formula, (9) yields

(10)

Thus, it suffices to extract asymptotics of the coefficient at
of , for which a standard tool is Cauchy’s coefficient
formula [8], [21], that is

(11)

where the integration is around a closed path containing
inside which is analytic.
Now, the constant case is solved in [20] by use of the Fla-

jolet and Odlyzko singularity analysis [8], [21], which applies
because has algebraic singularities. Indeed, using (7)
and (8), the singular expansion of around its singularity

takes the form [3]

The singularity analysis then yields [20]

(12)

3In terms of the standard Lambert- function, we have .

for large and constant , where is the Euler gamma
function.4

When also grows, which is the case of interest in this paper,
the singularity analysis does not apply. Instead, the growth of
the factor determines that the saddle point method [8],
[21], which we briefly review next, can be applied to (11). We
will restrict our attention to a special case of the method, where
the goal is to obtain an asymptotic approximation of the coeffi-
cient for some analytic function , namely

where , under the assumption that
has a real root .

The saddle point method is based on Taylor’s expansion of
around which, recalling that , yields

(13)

After choosing a path of integration that goes through ,
and under certain assumptions on the function , it can be
shown (cf., e.g., [21]) that the first term of (13) gives a factor

in , the second term—after integrating a Gaussian
integral—leads to a factor , and finally the third
term determines the error term in the expansion of . The
standard saddle point method described in [21, Table 8.4] then
yields the following lemma.

Lemma 2: Assume that the conditions required in [21, Table
8.4] hold and let denote a real root of . Then

(14)

for any constant , provided the error term is .5

In order to control the error term, the conditions stated in [21,
Table 8.4] include the requirement that, as grows,
. It turns out, however, that more is known for our particular
: indeed, it will be further shown that the growth of

is at least linear. This additional property allows us to extend
Lemma 2 to the case . The modified lemma will be the
main tool in our derivation.

III. MAIN RESULTS

In this section, we present and discuss our main results, de-
ferring their proof to Section IV.

A. Model Family

Theorem 1: For the memoryless model family over an
-ary alphabet, where as grows, the minimax point-

wise redundancy behaves asymptotically as follows.

4As mentioned, (2) ignores the integer length constraint of a code, and there-
fore, terms in (12) are arguably irrelevant. This issue is addressed in [5];
here, we focus on the probability assignment problem, which unlike coding does
not entail an integer length constraint.
5This expression for the error term in (14) is obtained with the choice

in [21, Table 8.4], provided certain conditions on are satis-
fied.
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i) For

(15)

ii) For , where is a positive constant and

(16)

where

(17)

(18)

and

(19)

iii) For

(20)

B. Discussion of Theorem 1

Significance and Related Work: The formulation of the sce-
nario in which both and are large, as a sequence of prob-
lems where varies with , follows Orlitsky and Santhanam
[15]. In a typical application of Theorem 1, for a given pair of
values and , which are deemed to fall in one of
the three itemized cases, the formulas are used to approximate
the minimax pointwise redundancy . The leading terms
of the asymptotic expansions for and
(i.e., (15) and (20)) were derived in [15]. The asymptotic expan-
sion in (15) reveals that the error incurred by neglecting lower
order terms may be significant. Consider the example in which

and (or, approximately, ). Then,
the leading term in (15) is only 5.5 times larger than the second
term, and 131 times larger than the third term. The error from ne-
glecting these two terms is thus 15.4% (assuming that all other
terms are negligible). Even for (and ), the
error is still over 8%. It is interesting to notice that (15) is a “di-
rect scaling” of (12): using Stirling’s approximation to replace

in (12) by its asymptotic value , and further
approximating with , indeed
yields exactly (15), up to the error terms. Thus, our results reveal
that the first two terms of the asymptotic expansion for fixed
given by (12) are in fact a better approximation to than the
leading term of (15).

Fig. 1. Value of the constant in the term of in case
.

For the case , the methodology of [15] allowed
only the extraction of the growth rate, i.e., ,
but not the constant in front of . The value of this constant,

, where is specified in (19) and (17), is plotted
against in Fig. 1. It is easy to see that when ,

, in agreement with (15). Similarly,
when , , in agreement with (20).
Finally, for the case , our results confirm that the

leading term is a good approximation to . The intuition be-
hind this term is that, for large , the value of the minimax
game is achieved when all the symbols in are roughly dif-
ferent (so that the maximum-likelihood probability of each oc-
curring symbol tends to ) and the code assigns bits
to each symbol, leading to a pointwise redundancy of, roughly,

.
Convergence: Observe that the second-order term in (15),

which is , dominates whenever
for some , . Hence, the leading term in the expansion
is rather than . In the nu-
merical example given for this case, the choice of a growth rate

is due to the fact that, otherwise, the error term
may not even vanish, and it may dominate the con-

stant, as well as the terms. For any given growth rate
, , an expansion in which the error term

vanishes can be derived; however, no expansion has this prop-
erty for every possible value of . The reason is that, as will be-
come apparent in the proof of the theorem, any expansion will
include an error term of the form for some posi-
tive integer . The same situation can be observed in (20), where
one of the error terms becomes if a more accurate
expansion is used.
A similar phenomenon is observed for the error term in (16),

which is guaranteed to vanish only if , and it can
otherwise dominate the constant term in the expansion. Again,
for any given growth rate , an expansion in which
the error term vanishes can be derived. Notice, however, that the
case is analyzed only for completeness since, as men-
tioned, a typical application of (16) would in general involve
approximating , for a given pair of values , which
are deemed to fall in Case (ii), by using (16) with
and .
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C. Model Family

In this section we consider the second main topic of this
paper, namely, theminimax pointwise redundancy rel-
ative to the family of constrained (i.e., some parameters are
fixed) memoryless models. Recall that the model family as-
sumes an alphabet , where and . The
probabilities of symbols in , denoted by , are al-
lowed to vary (unknown), while the probabilities of
the symbols in are fixed (known). Furthermore,

and . We assume that is fixed (inde-
pendent of the sequence length ). To simplify our notation, we
also write and . The output
sequence is denoted .
Our goal is to derive asymptotics of

for large and , where again we introduce notation that em-
phasizes the dependence on (the dependence on will be
shown to be indirect, via , and does not affect the analysis).
First, Lemma 3 relates to the minimax pointwise re-
dundancy relative to , studied in Theorem 1, and to
. The lemma is stated in terms of and

.

Lemma 3:

Proof: Let . By (2), we have

(21)

where is the maximum-likelihood (ML)

estimator of over . To simplify (21), consider
and assume that symbols are from and the re-

maining symbols are from . We denote by the
subsequence of consisting of symbols from . Similarly,

is the subsequence of over . For any such pair
, there are ways of interleaving the sub-sequences, all

leading to the same ML probability . Now, it is easy to
see that takes the form

where is the ML probability of (over the set of
memoryless sources over ), and is the probability of
over with (given) probabilities . In summary,
using (21), we obtain

(22)

The proof is complete by noticing that the inner summation in
(22) is precisely .

By Lemma 3, the robust asymptotic expression of
derived in Theorem 1 will be our starting point for esti-
mating .6 As mentioned, the generic form of the
sum in the lemma, given in (4), is known as the bino-
mial sum [6], [11]. If has a polynomial growth (i.e.,

when is a constant), then
we can use the asymptotic expansion derived in [6] and [11]
to conclude that . However, when varies
with as in our study, the aforementioned expansion does not
apply and we need to compute asymptotics anew. We state and
discuss our second main result in Theorem 2, whose proof is
presented in Section IV.

Theorem 2: Consider a family of memoryless models
over the -ary alphabet , with fixed probabilities

of the symbols in , such that is
bounded away from 0 and 1. Let . Then, the minimax
pointwise redundancy takes the following form.

If is constant, then

(23)
Let as grows, with .
If with , then

(24)

Otherwise

(25)

If , then

(26)

where , , and is
defined in Theorem 1(ii).
If , then

(27)

D. Discussion of Theorem 2

Asymptotics: By Lemma 3, depends on only
through , and it is given by the logarithm of a binomial sum,
which for a generic function takes the form (4) (in our case,

, where may grow with ). Intuitively, when
grows polynomially in , the maximum under the sum occurs
around , to find asymptotics we need to sum only within
the range around , and behaves roughly as

6Notice, however, that some extra care will be needed in the application of
Theorem 1 since, in the generic term in the sum, grows with , not
with .
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. This is indeed the case when is a constant. While, in
Case (i), the growth of is not polynomial, it is still subexpo-
nential, and it is possible to extend the aforementioned intuition
to obtain the asymptotic expansion.When , however,
the growth of is exponential, and we need all the
terms in the sum in order to extract the asymptotics. As a result,
even the (bounded) factor in front of the main asymptotic
term of in (26) may differ from that in , given
by , where . The precise behavior of this factor
remains an open question: the difficulty in its determination
stems from the fact that, in this case, , where

is not a constant. The dependence of on is due
to the fact that this case assumes a constant ratio between
and , and not between and . Finally, for , the
function grows superexponentially, and the asymptotics
of the binomial sum are determined by the last term, that is,

. In this case, the main asymptotic terms of and
coincide.

It is interesting to notice that the term in (25) is the
dominating error term only when for all
but . It is an open question whether this term
can be avoided using a different proof technique.
Alternative Model: As mentioned, a natural setup for the

asymptotic analysis of is one in which may growwith
. An alternative model (not motivated by any specific setting)
is one in which, in the analysis of the binomial sum for ,
the parameter grows with , which enables a more direct ap-
plication of Theorem 1. As will be discussed in Section IV, this
alternative model leads to a more precise expansion in Cases (ii)
and (iii).

IV. PROOFS OF MAIN THEOREMS

In this section, we prove Theorem 1 using analytic tools and
Theorem 2 using elementary analysis.

A. Proof of Theorem 1

The starting point is (10) which, as noted, follows from
Lemma 1 and Stirling’s formula, and Cauchy’s coefficient
formula (11), which takes the form

(28)

where

(29)

We will apply a modification of Lemma 2 in the evaluation of
(28), for which we need to check that the necessary conditions
are satisfied by the function of (29).
We first find an explicit real root of the saddle point equa-

tion , and show that it is unique in the interval .
Differentiating (29), we have

(30)

Differentiating (8) and using (7), it is easy to see that

(31)

Thus, (30) takes the form

(32)

By (7) and the definition of , the range of for
is . Since the quadratic equation (32) has a unique real
root in this range, we have

(33)

and the uniqueness of a real root in follows from the
fact that is increasing in this interval. Moreover, by (7),
(33) takes the form

Hence, by (8), we finally obtain the explicit expression

(34)

where, since

(35)

we have and also . We then see that,
by (29), (33), and (34), takes the form

(36)

In addition, differentiating (29) twice, we obtain

where

(37)

with the second equality in (37) easily seen to follow from fur-
ther differentiating (31). Thus, using (32)

which, again by (33) and (34), can be expressed in terms of
as

(38)

Finally, taking another derivative in (37) and further using (31)
and (32), after some additional computations, we obtain

(39)
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With these expressions on hand, we can now check the condi-
tions required in Lemma 2 for the evaluation of (28). The most
intricate condition to be checked is that of “tail eliminations”
(denoted (SP3) in [21, Table 8.4, (8.105)]). This condition is
actually shown in [7, Lemma 5] to hold in more general cases
than the function of (29). Also, proceeding along the lines
of the proof of [21, Theorem 8.17], it can be shown that (14) of
Lemma 2 holds with if grows at least linearly
and if . Thus, (10) and the modified
Lemma 2 yield

(40)

provided that the error term is and grows at least
linearly. Consequently, to complete the proof of Theorem 1, we
need to evaluate the right-hand side of (40). In view of (36) and
(38), which give and as functions of , the
solution depends on the possible growth rates of . We analyze
next all possible cases.

CASE:

Letting in (35), it is easy to see that

Substituting into (36) and (38), we obtain

and

(41)

From (39), and noticing that, in this case, (34) yields ,
we further obtain

(42)

Theorem 1(i) follows from substituting these equations into
(40), observing that (41) and (42) guarantee that the necessary
conditions for the modified Lemma 2 to hold for are
satisfied.7

CASE:

Since is given by (34) where, in this case,
and , we can view as a function of ,
which we expand around . The value of this function at is

7Taking more terms in the expansion of , an error term
for can be obtained, where is as large as desired. Thus, while no value
of guarantees a vanishing error for every , for each given , a
choice of exists that guarantees error.

where is given by (17). It is is then easy to see that

where and is given by
(18). With this value of , we can then compute, with a Taylor
expansion around

Substitution into (40) completes the proof of Theorem 1(ii),
after observing, again, that the necessary conditions for the
modified Lemma 2 hold.

CASE:

Letting in (35), it is easy to see that

Substituting into (36) and (38), we obtain

and

From (39), and noticing that, in this case, (34) yields
, we further obtain

Putting everything together, substituting into (40), and ob-
serving that the necessary conditions for the modified Lemma
2 hold, we prove Theorem 1(iii).8

B. Proof of Theorem 2

ByLemma 3, in order to prove Theorem 2we need to evaluate
the binomial sum

(43)

for that, for , grows faster than any
polynomial. We observe that

where denotes expectation with respect to a binomially dis-
tributed random variable . Since is nondecreasing in

8We can take more terms in the expansion of also in this case, leading
to an error term for .
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(notice that depends on , and not on ), the function is max-
imum at . Therefore

where the lower bound follows from taking only the last
term in the summation. Thus, Cases (ii) and (iii) follow from
taking logarithms and applying Theorem 1, Cases (ii) and (iii),
respectively.
For Cases and (i), we need a more accurate evaluation

technique, which will rely on the concentration of around its
mean . To this end, we break the summation (43) into three
parts. Let denote an arbitrary constant such that ,
and consider a function , to be specified later, such that

. We consider a first partial sum restricted to the
first terms, a second partial sum from to , and
a third partial sum given by the remaining terms, that is,

where

(44)

so that

(45)

Lemma 4:

Proof: Since ia a nondecreasing functions of , we
have

(46)

The lemma then follows from Hoeffding’s inequality [10],
which states that

To estimate , the key idea is to apply Taylor’s theorem
to (the extension of to the real line) around the mean

, and estimate at a point close to . First, we
notice that, in the relevant region, and, therefore, in
Case (i), is well approximated using the asymptotic expan-
sion (15) (this would not necessarily be the case for ).
Second, we notice that the behavior of the derivatives of
could, in principle, be dominated by the error terms in (12) (Case
) and (15) (Case (i)). To deal with this situation, we define a

new function, , which differs from in that it does not
include error terms, namely, in Case

where is a constant that depends on (see (12)), whereas
in Case (i), and further assuming

(47)

where we note that, in this subcase, the error term in (15) domi-
nates the term. Next, we approximate with

. To this end, we let denote the (vanishing) error
terms given by (12) in Case , and (15) in Case (i) (specifi-
cally, in Case and
in Case (i)).

Lemma 5:

Proof: Writing , we obtain

(48)

By the definition of , for , we have
which, since , implies that

. Thus, since is decreasing
for and sufficiently large

The lemma then follows from (48), observing that
.

Next, we estimate for , with ,
by applying Taylor’s theorem to around , which
yields

(49)

for some that lies between and . Noting that, for the
binomially distributed random variable , and
the variance is , and that, for and
sufficiently large, is positive and increasing, (49) implies

(50)
where

Proceeding as in the proof of Lemma 4, we obtain

and it is easy to see that
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To estimate , it is also easy to see that

(51)

In Case , we can simply choose so that the left-
hand side of (51) is . Since the third region collapses, di-
viding (45) by , Lemma 4 (where we notice that

, Lemma 5, and (50) yield, after taking logarithms

Theorem 2 then follows from (12) and the definitions of
and . A more precise asymptotic expansion can be found

using tools from [6] and [11].
The analysis is less straightforward in Case (i) (where we

recall that, so far, we are assuming ) because, since
and , does

not vanish unless . Here, denote
, where . Thus

(52)

and, choosing , the left-hand side of (52)
is . In addition, with this choice, the term
in (50) can be bounded again as in the proof of Lemma 4 and is
therefore , which is dominated by the

term. Consequently, (50) takes the form

(53)

Finally, we need to consider the third partial sum on the right-
hand side of (45) for . To this end, in addition to the
function , we choose a sequence of functions (to be spec-
ified later) such that , . Since
is nondecreasing, we can upper-bound by summing

over segments of the form to obtain

(54)

Letting , , we use again
Hoeffding’s inequality to obtain

In addition,

Thus, choosing , , where
are constants to be specified later, the first terms

in the summation on the right-hand side of (54) are
, , for some

positive constants and , whereas the last term is
, where again is a constant. It

can be readily verified that, choosing for and

otherwise, together with

the following relations hold:

Since, in addition, , all the exponents are of the
form for some positive constant , and we conclude that

is dominated by the error term.
To put all the pieces together, we divide (45) by , and

use Lemma 4 (where , Lemma 5, and (53),
to conclude, after taking logarithms, that

Theorem 2(i) for then follows from (15) and the defi-
nitions of and .
We need a different approach for the second and third partial

sums for the remaining cases, in which
for all . Letting (thus collapsing the third
region), by Lemmas 4 and 5, we need to estimate . Since
and are positive for sufficiently large , (50) implies that

. Therefore

(55)

where we recall the definition of from (44). We need to
find that maximizes the right-hand side of (55), which
satisfies

(56)

By (15)

(57)

Thus, (56) takes the form
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which yields

Applying Stirling’s formula, it can then be shown that

(58)

where the first error term is due to the factor in the for-
mula, and the second error term is due to the discrepancy be-
tween and . In addition

(59)

where again the error term is due to the discrepancy between
and and is easily seen to dominate other terms in (15).

Equations (55), (58), and (59), together with Lemmas 4 and 5,
imply (25) of Theorem 2 (i), where the growth rate of further
determines the dominating error terms.

Remark 1: Notice that one of the error terms generated by
the “sandwich argument” of (55), used in the proof of (25), is

, independent of the value of . Therefore, this method
is not suitable for the cases (addressed via a
Taylor expansion in the proof of (24)) as this error term would
dominate one of the other terms. Moreover, for fixed , the
method cannot even provide the main asymptotic term, which
is also .

Remark 2: Consider the alternative model mentioned in
Section III, where the value of in the binomial sum grows
with (rather than with ). To analyze this scenario, further
assumptions on the growth of with are needed
in Case (i) since, in the computation of the derivatives in
(51), as well as of the ratio in (57), we can no longer assume
to be a constant. Assuming that and its derivatives,

and , are continuous functions of , and that
, , and

,9 the same proof can be used, and (24)
and (25) remain valid with replaced with and the

error terms replaced with error terms which are
, where the additional factor in the

error terms is due to the effect of the variability of in (51)
and (57). In Case (ii), it is easy to see that (26) holds with

, a constant (in fact, more terms in the
asymptotic expansion can be obtained). Indeed, in this case, the
main term under the binomial sum is

9These assumptions hold if, e.g., monotonically decreases for suffi-
ciently large (which is natural since in this case) and under
natural convexity assumptions.

which leads to a closed-form expression for the summation,
namely (thus, we avoid the difficulty men-
tioned in the discussion in Section III regarding the variability
of the ratio when is assumed to grow with ). Finally, if

, we can also obtain a more precise estimate, under the
assumption that is a nondecreasing sequence (which is
also natural, since in this case): indeed, it is
easy to see that the main redundancy term is .
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