
Compression of Graphical Structures:
Fundamental Limits, Algorithms, and Experiments ∗

December 11, 2009

Yongwook Choi and Wojciech Szpankowski†

Department of Computer Science
Purdue University

W. Lafayette, IN 47907
U.S.A.

ywchoi@purdue.edu, spa@cs.purdue.edu

Abstract

Information theory traditionally deals with “conventional data,” be it textual data,
image, or video data. However, databases of various sorts have come into existence
in recent years for storing “unconventional data” including biological data, social data,
web data, topographical maps, and medical data. In compressing such data, one must
consider two types of information: the information conveyed by the structure itself, and
the information conveyed by the data labels implanted in the structure. In this paper, we
attempt to address the former problem by studying information of graphical structures
(i.e., unlabeled graphs). As the first step, we consider the Erdős-Rényi graphs G(n, p)
over n vertices in which edges are added randomly with probability p. We prove that the
structural entropy of G(n, p) is

(

n

2

)

h(p) − log n! + o(1) =

(

n

2

)

h(p) − n logn + O(n),

where h(p) = −p log p− (1−p) log(1−p) is the entropy rate of a conventional memoryless
binary source. Then, we propose a two-stage compression algorithm that asymptotically
achieves the structural entropy up to the first two leading terms. Our algorithm runs in
O(n+e) time on average where e is the number of edges. To the best of our knowledge, this
is the first provable (asymptotically) optimal graph compressor. We use combinatorial
and analytic techniques such as generating functions, Mellin transform, and poissonization
to establish these findings. Our experiments confirm theoretical results and show the
usefulness of our algorithm for real-world graphs such as the Internet, biological networks,
and social networks.

Index Terms: Graph automorphism, structural entropy, Erdős-Rényi graphs, arith-
metic encoder, graph compressor, digital trees, poissonization, Mellin transform, analytic
information theory.

∗A preliminary version of this work was presented at the 2009 ISIT, Seoul, S. Korea.
†This work was supported in part by the NSF Grants DMS-0800568 and CCF-0830140, NSA Grant H98230-

08-1-0092, and the AFOSR Grant FA8655-08-1-3018.

1

1 Introduction

In 1948 Shannon introduced a metric for information launching the field of information the-

ory. However, as observed by Brooks [5] and others [29, 39], there is no theory that gives

us a metric for information embodied in structure. Shannon himself in his 1953 little known

paper [35] argued for an extension of information theory to “non-conventional data” (i.e.,

lattices). Indeed, data is increasingly available in various forms (e.g., sequences, expressions,

interactions, structures) and in exponentially increasing amounts. For example, in biology

large amounts of data are now in public domain on gene regulation, protein interactions,

and metabolic pathways. Most of such data is multidimensional and context dependent.

Therefore, it necessitates novel theory and efficient algorithms for extracting meaningful in-

formation from non-conventional data structures. Typically, a data file of this new type (e.g.,

biological data, topographical maps, medical data, volumetric data) is a “data structure”

conveying a “shape” and consisting of labels implanted in the structure. In understanding

such data structures, one must take into account two types of information: the information

conveyed by the structure itself and the data labels implanted in the structure. In this paper,

we address the former problem in order to quantify the amount of information in networks

such as the Internet, social networks, biological networks, and economic networks.

Unconventional data contains more sophisticated structural relations. For example, a

graph can be represented by a binary matrix that further can be viewed as a binary sequence.

However, such a string does not exhibit internal symmetries that are conveyed by the so-called

graph automorphism (making certain sequences/matrices are “indistinguishable”). The main

challenge in dealing with such structural data is to identify and describe these structural

relations. In fact, these “regular properties” constitute “useful (extractable) information”

understood in the spirit of Rissanen “learnable information” [30] (cf. also [25, 26]).

As the first step in understanding structural information, we restrict our attention to

structures on graphs. More specifically, we study unlabeled graphs (or structures) generated by

a memoryless source known as the Erdős-Rényi model [4] in which edges are added randomly

with probability p. This model induces a probability distribution on structures so that one

can compute Shannon entropy giving us a fundamental limit on lossless unlabeled graph

compression. We prove that this structural entropy HS is
(

n

2

)

h(p) − log n! + o(1) =

(

n

2

)

h(p) − n log n + O(n),

where n is the number of vertices and h(p) = −p log p− (1− p) log(1− p) is the entropy rate

of a conventional memoryless binary source.1 In addition, we prove that, for almost every

structure S from this model, the probability of S is very close to 2−HS for large n, which is

a manifestation of AEP (asymptotic equipartition property) for the Erdős-Rényi graphs.

Then we design and analyze a graphical (structure) compression algorithm, called Szip,

that asymptotically achieves the compression rate
(

n

2

)

h(p) − n log n + O(n)

that matches the lower bound up to the first two leading terms with high probability. Our

algorithm consists of two stages. It first encodes a structure into two binary strings that

1All logarithms are to the base 2 throughout this paper.

2

are then compressed using an arithmetic encoder. Our algorithm runs in O(n + e) time on

average, where e is the number of edges. This is faster than O(n2)-time algorithms, discussed

in [7, 27], theoretically as well as in practice since most real-world graphs are very sparse.

Experimental results on both real-world networks and the Erdős-Rényi graphs confirm the

efficiency and utility of our algorithm.

There are other possible metrics of information content of a graph. For example, “topo-

logical entropy” discussed in [29, 39] attempts to characterize the distinctiveness of vertex

degrees by partitioning all vertices into subsets of the same long term connectivity. As a

by-product of our analysis, we prove in this paper that such topological entropy is equal to

log n+o(1) for the Erdős-Rényi random graph model. Furthermore, the most popular “graph

entropy” is due to Körner who generalized standard Shannon entropy to “undistinguished

symbols” [36]. Graph entropy is a function of the graph and a probability distribution on the

vertices. Roughly speaking it reflects the number of bits you need to transmit to describe

the vertex when you want to distinguish only between vertices that are connected (connected

vertices represent “distinguishable symbols”). For example, if the graph is complete, then

one must distinguish between any two vertices. In this case, the Körner entropy achieves

the highest value that coincides with the Shannon entropy. But a complete graph has the

simplest structure to describe, thus it should be clear that our structural entropy is quite

different than the Körner graph entropy.

Literature on graphical structure compression is scarce. In 1984, Turan [40] raised the

question of finding efficient coding method for general unlabeled graphs on n vertices, sug-

gesting a lower bound of
(n
2

)

− n log n + O(n) bits. In 1990, Naor [27] proposed such a

representation that is optimal up to the first two leading terms when all unlabeled graphs are

equally likely. Naor’s result is asymptotically a special case of ours when p = 1/2. Finally,

in a recent paper Kieffer et al. [22] presented a structural complexity of a binary tree, in a

spirit similar to ours. There also have been some heuristic methods for real-world graphs

compression including Adler and Mitzenmacher [1] (see also [6]), who proposed an encod-

ing technique for web graphs, and similar idea has been used in [37] for compressing sparse

graphs. Recently, attention has been paid to grammar compression for some data struc-

tures: Peshkin [28] proposed an algorithm for a graphical extension of the one-dimensional

SEQUITUR compression method. However, SEQUITUR is known not to be asymptotically

optimal [32]. Therefore, the Peshkin method already lacks asymptotic optimality in the 1D

case. To the best of our knowledge our algorithm is the first provable asymptotically optimal

compression scheme for graphical structures.

The paper is organized as follows. The structural entropy of a graph is defined in Section 2

and compared to the conventional graph entropy. Our algorithm is described in Section 3,

where we derive the structural entropy for G(n, p). We also present there our experimental

results. Our main results are proved in Sections 4 and 5, where we introduce random bi-

nary trees that resemble tries and digital search trees. We use analytic techniques such as

generating functions, Mellin transform, and poissonization to establish our results.

2 Structural Entropy

In this section, we formally define the structural entropy of a random (unlabeled) graph

model. Given n distinguishable vertices, a random graph is generated by adding edges ran-

domly. This random graph model G produces a probability distribution on graphs, and the

3

graph entropy HG is defined naturally as

HG = E[− log P (G)] = −
∑

G∈G
P (G) log P (G),

where P (G) is the probability of a graph G. We now introduce a random structure model S
for the unlabeled version of a random graph model G. In such a model, graphs are generated

in the same manner as in G, but they are thought of as unlabeled graphs. That is, the

vertices are indistinguishable, and the graphs having “the same structure” are considered to

be the same even if their labeled versions are different. Thus, we shall use the terms unlabeled

graphs and structures interchangeably. For a given structure S ∈ S, the probability of S can

be computed as

P (S) =
∑

G∼=S,G∈G
P (G).

Here G ∼= S means that G and S have the same structure, that is, S is isomorphic to G. If

all isomorphic labeled graphs have the same probability, then for any labeled graph G ∼= S,

P (S) = N(S) · P (G), (1)

where N(S) is the number of different labeled graphs that have the same structure as S.

The structural entropy HS of a random graph G can be defined as the entropy of a random

structure S,

HS = E[− log P (S)] = −
∑

S∈S
P (S) log P (S),

where the summation is over all distinct structures.

Example: In Figure 1(a), we draw different graphs built on three vertices. Let us assume

that they are equally probable in some random graph model, that is, P (Gi) = 1/8 for

1 ≤ i ≤ 8. Then the entropy of this random graph G is HG = −8 · 1
8 log 1

8 = 3. Let S be the

random structure that corresponds to G. In Figure 1(b), we present all different structures

that can be generated by S. Since N(S1) = N(S4) = 1 and N(S2) = N(S3) = 3, thus

P (S1) = P (S4) = 1/8 and P (S2) = P (S3) = 3/8. The entropy of random structure S is

HS = −2 · 1
8 log 1

8 − 2 · 3
8 log 3

8 ≈ 1.811.

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

G1 G2 G3 G4

G5 G6 G7 G8

S1 S2

S3 S4

(a) (b)

Figure 1: All different graphs and structures built on three vertices.

In order to compute the probability of a given structure S, one needs to estimate the

number of ways to construct a given structure S, denoted as N(S). For this, we need to

4

consider the automorphisms of a graph. An automorphism of a graph G is an adjacency

preserving permutation of vertices of G. The collection Aut(G) of all automorphisms of G is

called the automorphism group of G. In the sequel, Aut(S) of a structure S denotes Aut(G)

for some labeled graph G such that G ∼= S. In group theory, it is well known that [14, 15]

N(S) =
n!

|Aut(S)| . (2)

We also easily observe that 1 ≤ |Aut(S)| ≤ n!.

Example: In Figure 2(a), the graph G has exactly four automorphisms, that is, in the

usual cyclic permutation representation: (v1)(v2)(v3)(v4), (v1)(v4)(v2v3), (v1v4)(v2)(v3), and

(v1v4)(v2v3). For example, (v1)(v4)(v2v3) stands for a permutation π such that π(v1) = v1,

π(v4) = v4, π(v2) = v3, and π(v3) = v2. Thus, by (2), G has 4!/4 = 6 different labeling as

shown in Figure 2(b).

v3 v4

v1 v2 1 1 1 1 1 12

3 4

3

2 4

2

4 3

4

2 3

3

4 2

4

3 2

(a) (b)

Figure 2: The six different labeling of a graph.

With these preliminary definitions, we are now in the position to present a relationship

between HG and HS .

Lemma 1 If all isomorphic graphs have the same probability, then

HS = HG − log n! +
∑

S∈S
P (S) log |Aut(S)|,

for any random graph G and its corresponding random structure S, where Aut(S) is the

automorphism group of S.

Proof: Observe that for any G and S

HG = −
∑

G∈G
P (G) log P (G)

= −
∑

S∈S

∑

G∼=S,G∈G
P (G) log P (G)

= −
∑

S∈S

∑

G∼=S,G∈G

P (S)

N(S)
log

P (S)

N(S)
(by (1))

= −
∑

S∈S
N(S) · P (S)

N(S)
log

P (S)

N(S)

= HS +
∑

S∈S
P (S) log

n!

|Aut(S)| (by (2))

= HS + log n! −
∑

S∈S
P (S) log |Aut(S)|.

5

This proves the lemma.

The last term of the structural entropy
∑

S∈S P (S) log |Aut(S)| can vary from 0 to n log n

since 1 ≤ |Aut(S)| ≤ n!. However, as we shall see in most random graph models there is

not much symmetry, and hence
∑

S∈S P (S) log |Aut(S)| = o(1). In order to develop further

the idea of information in a random structure, hereafter we will focus on the Erdős-Rényi

random graph [4].

3 Main Results

In this section, we first compute the structural entropy for the Erdős-Rényi random graph.

As it is well known, such entropy constitutes a lower bound for lossless compression. Then we

describe our optimal compression algorithm that asymptotically achieves this lower bound

up to the second leading term with high probability. Finally, we present experimental results

to show the efficiency and utility of our algorithm.

3.1 Structural Entropy of the Erdős-Rényi Model

In the Erdős-Rényi random graph model G(n, p), graphs are generated randomly on n vertices

with edges chosen independently with probability 0 < p < 1. If a graph G in G(n, p) has k

edges, then

P (G) = pkq(
n

2)−k,

where q = 1−p. Let S(n, p) be the random structure model (unlabeled graphs) corresponding

to G(n, p). Then, by (1) if S ∈ S(n, p) has k edges,

P (S) = N(S) · pkq(
n

2)−k.

To compute the entropy of S(n, p) we need to estimate N(S). For this, we must study an

important property of S(n, p) (or equivalently, G(n, p)), namely asymmetry. A graph is said

to be asymmetric if its automorphism group does not contain any permutation other than

the identity (i.e., (v1)(v2) · · · (vn)); otherwise it is called symmetric. It is known that almost

every graph from G(n, p) is asymmetric [11, 23]. In the sequel, we write an ≪ bn to mean

an = o(bn) when n → ∞. For completeness, we present in Appendix A a slightly generalized

proof of Kim et al.’s result [23].

Lemma 2 (Kim, Sudakov, and Vu, 2002) For all p satisfying lnn
n ≪ p and 1− p ≫ ln n

n

(for connected graphs), a random graph G ∈ G(n, p) is symmetric with probability O (n−w)

for any positive constant w > 1.

Using this property, we next present the structural entropy of G(n, p) and establish the

asymptotic equipartition property (AEP), that is, typical probability of a structure S.

Theorem 1 For large n and all p satisfying ln n
n ≪ p and 1 − p ≫ lnn

n , the following holds:

(i) The structural entropy HS of G(n, p) is

HS =

(

n

2

)

h − log n! + O

(

log n

nα

)

, α > 0,

6

(ii) (AEP) For a structure S ∈ S(n, p) and ǫ > 0,

P

(∣

∣

∣

∣

∣

− 1
(n
2

) log P (S) − h +
log n!
(n
2

)

∣

∣

∣

∣

∣

< ǫ

)

> 1 − 2ǫ, (3)

where h := h(p) = −p log p − (1 − p) log (1 − p) is the entropy rate of a binary memoryless

source.

Proof: Let us first compute the entropy HG of G(n, p). In G(n, p), m =
(n
2

)

distinct edges

are independently selected with probability p, and thus there are 2m different labeled graphs.

That is, each graph instance can be considered as a binary sequence X of length m. Thus,

HG = −E[log P (Xm
1)] = −mE[log P (X1)] =

(

n

2

)

h.

By Lemma 1,

HS =

(

n

2

)

h − log n! + A

where

A =
∑

S∈S
P (S) log |Aut(S)|.

Now we show that A = o(1) to prove part (i).

A =
∑

S∈S(n,p) is symmetric

P (S) log |Aut(S)| +
∑

S∈S(n,p) is asymmetric

P (S) log |Aut(S)|

=
∑

S∈S(n,p) is symmetric

P (S) log |Aut(S)| (∵ |Aut(S)| = 1 for all asymmetric S)

≤
∑

S∈S(n,p) is symmetric

P (S) · n log n (∵ |Aut(S)| ≤ n! ≤ nn)

= O

(

log n

nw−1

)

for any positive constant w > 1 (by Lemma 2).

To prove part (ii), we define the typical set T n
ǫ as the set of structures S on n vertices

having the following two properties: (a) S is asymmetric; (b) for G ∼= S,

2−(n

2)(h+ǫ) ≤ P (G) ≤ 2−(n

2)(h−ǫ).

Let T1 and T2 be the sets of structures satisfying the properties (a) and (b), respectively.

Then, T n
ǫ = T1∩T2. By the asymmetry of G(n, p), we know that P (T1) > 1−ǫ for large n. As

explained above, a labeled graph G can be viewed as a binary sequence of length
(n
2

)

. Thus,

by the property (b) and the AEP for binary sequences, we also know that P (T2) > 1 − ǫ for

large n. Thus, P (T n
ǫ) = 1 − P (T1 ∪ T2) > 1 − 2ǫ. Now let us compute P (S) for S in T n

ǫ . By

the property (a), P (S) = n!P (G) for any G ∼= S. By this and the property (b), we can see

that any structure S in T n
ǫ satisfies the condition in (3). This completes the proof.

Remark 1. The structural entropy can be equivalently written as

HS =

(

n

2

)

h − n log n + n log e − 1

2
log n − 1

2
log (2π) + o(1) (4)

7

by Stirling’s approximation, n! ≈
√

2πn
(

n
e

)n
.

Remark 2. Roughly speaking, Theorem 1(ii) means that the probability of a typical graph

structure is P (S) ∼ 2−(n

2)h+log n!.

By Shannon’s source coding theorem, the structural entropy computed in Theorem 1 is a

fundamental lower bound on the lossless compression of structures from S(n, p). In the next

section, we design an asymptotically optimal compression algorithm matching the first two

leading terms as in (4) of the structural entropy with high probability.

As already observed in the introduction, there are other measures of information content

of a graph. For example, consider partitioning vertices of a graph G into subsets, Oi(G), such

vertices belonging to the same subset have the same long term connectivity. For example,

in Figure 2(a) we find that O1 = {v1, v4} and O2 = {v2, v3}. These subsets Oi’s turn out

to be the so-called orbits of the underlying graph automorphism [14]. Clearly, all graphs G

of the same structure S ∈ S have the same orbits. Assigning some probability measure on

the set of orbits, one can define another information metric that can be called the topological

entropy, HT [29, 39]. For a given structure S we define the probability on an orbit Oi(S) to

be |Oi(S)|/n. Then the topological entropy is defined as

HT = −
∑

S∈S
P (S)

∑

i

|Oi(S)|
n

log
|Oi(S)|

n
,

where the sum is over all structures S ∈ S and over all enumeration of orbits.

Let us again consider the Erdős-Rényi model for graph generation. By Lemma 2 we

conclude that all orbits are singletons with high probability. This leads to the following

corollary.

Corollary 1 Assume graphs are generated according to the Erdős-Rényi process G(n, p). For

all p satisfying lnn
n ≪ p and 1 − p ≫ ln n

n , the topological entropy is

HT = log n − Θ

(

log n

nα

)

for α > 0.

3.2 Compression Algorithm

Our algorithm is a compression scheme for unlabeled graphs. In other words, given a labeled

graph G, it compresses G into a code, from which one can construct a graph S that is

isomorphic to G. The algorithm consists of two stages. First it encodes G into two binary

sequences and then compresses them using an arithmetic encoder. It achieves the structural

entropy up to the first two leading terms shown in (4). In Section 4, we prove our main

findings that we summarize below.

Theorem 2 Let L(S) be the length of the code generated by our algorithm for all graphs G

from G(n, p) that are isomorphic to a structure S. The following holds:

(i) For large n,

E[L(S)] ≤
(

n

2

)

h − n log n + (c + Φ(log n))n + o(n),

8

where h := h(p), c is an explicitly computable constant, and Φ(log n) is a fluctuating function

with a small amplitude.

(ii) Furthermore, for any ǫ > 0,

P (L(S) − E[L(S)] ≤ ǫn log n) ≥ 1 − o(1).

(iii) Finally, our algorithm runs in O(n + e) on average, where e is the number of edges.

We next describe the algorithm in some details, starting with a general framework and

then proposing some useful data structures that allow us to reduce the time complexity to

O(n + e).

3.2.1 General Framework

First we need some definitions and notations. An ordered partition of a set X is a sequence of

nonempty subsets of X such that every element in X is in exactly one of these subsets. For

example, one ordered partition of {a, b, c, d, e} is {a, b}, {e}, {c, d} that is denoted by ab/e/cd.

It is equivalent to ba/e/dc, but distinct from e/ab/cd. Given an ordered partition P of a set

X, we also define an order of the elements of X as follows: a < b in P if the subset containing

a precedes the subset containing b in P . For example, a < c and e < c in P = ab/e/cd, but

e 6< a. An ordered partition P1 of a set X is called finer than an ordered partition P2 of X

if the following two conditions hold: (1) every element (i.e., subset of X) of P1 is a subset of

some element of P2, and (2) for all a, b ∈ X, a < b in P1 if a < b in P2. For example, both

a/b/e/cd and ab/e/d/c are finer than ab/e/cd. Finally, a subtraction of an element from an

ordered partition gives us another ordered partition (e.g., for P = ab/e/cd we find that P − c

and P − e are ab/e/d and ab/cd, respectively).

The first stage of our algorithm consists of n steps, updating in each step an ordered

partition P of a subset of V (G). Let Pi be the partition after the i-th step. At the beginning,

P0 = V (G). In the i-th step, any vertex v is selected to be removed from the first subset in

Pi−1. Then, for each subset U in Pi−1 − v (in its order), we encode the number of neighbors

of v in U using ⌈log(|U | + 1)⌉ bits. After that, Pi−1 − v becomes a finer partition Pi such

that for each subset U in Pi−1 − v, U is divided into two smaller subsets U1 and U2, and

U1 precedes U2 in Pi where U1 is the set of all neighbors of v in U and U2 is the set of all

non-neighbors of v in U . These steps are repeated until P becomes empty.

While the algorithm is running, the binary encodings of the number of neighbors are

concatenated in the order they are generated. During the course of the algorithm, we sepa-

rately maintain two types of encodings – those of length more than one bits (i.e., for subsets

|U | > 1) and those of length exactly one bit (i.e., for subsets |U | = 1). The former type of

encodings are appended to a binary sequence B1. Similarly, the latter type of encodings form

a binary sequence B2.

Example: Figure 3 shows the progress of our algorithm step by step. Here k denotes the step

number, and v denotes the chosen vertex in each step. All encodings whose length is larger

than one (denoted by italic font) are appended to B1. The other encodings (those of length

one) form B2. After ten steps, B1 and B2 are 0100110100001110101 and 1001011000000101,

respectively.

In the second stage, B1 and B2 are compressed to B̂1 and B̂2 by a binary arithmetic

encoder [8]. Finally, the encoding of G consists of n, B̂1, and B̂2.

9

i
j

b

c

f

h

g

d

a

e

k v Pk−1 − v encoding Pk

0 abcdefghij
1 i abcdefghj 0100 dfgj/abceh
2 f dgj/abceh 11, 010 dgj/bc/aeh
3 d gj/bc/aeh 00, 01, 11 gj/c/b/aeh
4 j g/c/b/aeh 1, 0, 0, 01 g/c/b/h/ae
5 g c/b/h/ae 1, 0, 1, 01 c/b/h/e/a
6 c b/h/e/a 1, 0, 0, 0 b/h/e/a
7 b h/e/a 0, 0, 0 h/e/a
8 h e/a 1, 0 e/a
9 e a 1 a
10 a

Figure 3: An example for our encoding algorithm, given the graph on the left.

We next describe our decoding algorithm constructing from n, B̂1, and B̂2 a graph iso-

morphic to the original graph. First we restore B1 and B2 by decompressing B̂1 and B̂2.

Then, we create a graph G having n vertices and no edges. The general framework of our

decoding algorithm is very similar to that of our encoding algorithm. Again, one ordered

partition P of a subset of V (G) is maintained. Let Pi be the ordered partition after the

i-th step. At the beginning, P0 = V (G). In the i-th step, we remove any vertex v from the

first subset in Pi−1. Then, for each subset U in Pi−1 − v (in its order), we extract the first

ℓ = ⌈log (|U | + 1)⌉ bits from either B1 (if |U | > 1) or B2 (if |U | = 1), and we select any ℓ

vertices in U and make an edge between v and each of those ℓ vertices. After that, Pi−1 − v

becomes a finer partition Pi in the same way as our encoding algorithm. These steps are

repeated until P becomes empty.

Example: Let us reconstruct a graph from the encoding in the previous example. After

decompressing we have n=10, B1=0100110100001110101, and B2=1001011000000101. We

start with a graph of 10 isolated vertices, and proceed as described above. Figure 4 shows

the details. Again, k denotes the step number, and v denotes the chosen vertex (here we

just select the first vertex.) The last column shows the edges created in the k-th step. The

extracted bits from B1 are denoted by italic font. On the right is shown the reconstructed

graph, which is isomorphic to the original graph.

k v Pk−1 − v extracted bits Pk created edges

0 abcdefghij
1 a bcdefghij 0100 bcde/fghij {a, b}, {a, c}, {a, d}, {a, e}
2 b cde/fghij 11, 010 cde/fg/hij {b, c}, {b, d}, {b, e}, {b, f}, {b, g}
3 c de/fg/hij 00, 01, 11 de/f/g/hij {c, f}, {c, h}, {c, i}, {c, j}
4 d e/f/g/hij 1, 0, 0, 01 e/f/g/h/ij {d, e}, {d, h}
5 e f/g/h/ij 1, 0, 1, 01 f/g/h/i/j {e, f}, {e, h}, {e, i}
6 f g/h/i/j 1, 0, 0, 0 g/h/i/j {f, g}
7 g h/i/j 0, 0, 0 h/i/j
8 h i/j 1, 0 i/j {h, i}
9 i j 1 j {i, j}
10 j

a
d

g

f

b

h

e

c

j

i

Figure 4: An example for our decoding algorithm, given n=10, B1=0100110100001110101 and
B2=1001011000000101 (the reconstructed graph is shown on the right.)

In a naive implementation of the general framework of our encoding algorithm, the time

complexity is O(n2) as follows. In each step of the first stage, we need to count the number

of neighbors in each disjoint subset in P and split it into two smaller subsets. This can be

done in O(n) time by scanning all remaining vertices in P . Thus the first stage takes O(n2)

10

time in total. In the second stage, a linear-time arithmetic encoder takes O(n2) time since

the length of B2 is Θ(n2), which will be proved in Section 4.

To reduce the time complexity to O(n+e), we shall use the following three novel techniques

described in details below. First, we use efficient data structures for maintaining the partition

P and encoding the number of neighbors in each subset. Second, in the arithmetic encoding,

we process the intermediate sequence B2 not in bitwise manner, but instead we process a run

of consecutive zeroes in one step. Third, when outputting the code in the arithmetic encoder,

we use a greedy outputting method proposed in [20].

3.2.2 Data structures

To describe our data structures, we define the position of a vertex v in a partition P as the

number of vertices on the right side of v in P . Similarly, we define the rank of a subset U

and all vertices v ∈ U as the number of vertices on the right side of U in P (i.e., the position

of the rightmost vertex in U).

The partition P of a subset of V (G) is maintained by the following five arrays, each of

which is of size n. Arrays pos[v] and rank[v] store the position and the rank of a vertex v in

P , respectively. An array vertex[i] stores the vertex at position i (i.e., pos[vertex[i]] = i). An

array size[r] stores the size of a subset whose rank is r. Lastly, for r such that size[r] > 1,

an array next[r] stores the largest rank r′ such that r > r′ and size[r′] > 1. We also have a

variable head containing the largest rank r such that size[r] > 1. These arrays are updated

while P becomes smaller and finer in each step. For instance, when P = P3 = gj/c/b/aeh in

our previous example, the arrays are as follows.

j i h g f e d c b a

pos 5 - 0 6 - 1 - 4 3 2

rank 5 - 0 5 - 0 - 4 3 0

9 8 7 6 5 4 3 2 1 0

vertex - - - g j c b a e h

size 0 0 0 0 2 1 1 0 0 3
next - - - - 0 - - - - -

We observe the following properties: (1) The vertices with the same rank are in the same

subset in P ; (2) The division of a subset U does not affect the ranks of vertices outside U

(in fact, it affects only the rank of vertices in U that are neighbors of the chosen vertex);

(3) Once the size of a subset becomes one, its rank is the same as its position and does not

change until the end; (4) Using head and next, one can traverse only the subsets whose size

is larger than one.

3.2.3 Algorithm

Now we describe our algorithm in more detail. The first stage consists of n steps. Let Pi

be the ordered partition after the i-th step, which is maintained implicitly by the arrays

described above. Here we assume that the input graph is given as an adjacency list and N(v)

denotes the list of neighbors of vertex v. We also have a temporary array B of size n, in

each element of which we have a stack. An array count is used for counting the number of

neighbors. In the i-th step, the algorithm works as follows:

1. Remove the leftmost vertex v from Pi−1 and update arrays accordingly.

2. While traversing N(v), for each neighbor u that is still in Pi−1 (let r = rank[u]),

2.1. If size[r] > 1, increase count[r] by one.

11

2.2. If size[r] = 1, mark its position by pushing the step number i to the stack in B[r].

3. While traversing subsets U such that |U | > 1 using head and next (let r be the rank

of U),

3.1. Encode the number of neighbors in U (stored in count[r]) using ⌈log(size[r] + 1)⌉
bits, and output to B1.

3.2. Mark the position of U (i.e., the positions of both ends of U) by pushing −i to

both stacks in B[r] and B[r + size[r] − 1].

3.3. Update size and next arrays accordingly reflecting the division of U .

4. While traversing N(v), for each neighbor u that is still in Pi−1,

4.1. Update the rank of u.

4.2. Move u to the correct position by updating pos and vertex (i.e., swap u and the

vertex at the position which u moves to.)

After repeating the above steps until P becomes empty, we extract B2 from B in a form of

run length codes, that is, a sequence of the lengths of the runs of zeroes between each two

consecutive ‘1’s (including both ends). For example, B2 = 1001011000000101 is encoded as

0, 2, 1, 0, 6, 1, 0. The time complexity of the construction of B2 is analyzed in the following

lemma, which will be used later to analyze the overall time complexity of our algorithm.

Lemma 3 The sequence B2 can be constructed by scanning B once, and it takes O(n + ℓ)

time, where ℓ is the total number of elements inserted in B.

Proof: In the i-th step, there are n − i vertices in P , and their positions are from 0 to

n− i−1. In procedure 3.2, the position of each subset of size larger than one in P is marked.

Thus, one can infer the number of subsets of size one (i.e., singleton sets) in P and the

positions of those subsets. In procedure 2.2, the position of each singleton set containing a

neighbor is marked. Each of these marked positions contributes a bit ‘1’ and each of the rest

contributes a bit ‘0’. Thus the concatenation ci of the bits in decreasing order of position is

the contribution to B2 in the i-th step. Therefore, B2 is nothing but c1c2 · · · cn−1. Clearly,

for each ci, the number of zeroes between each two consecutive ‘1’s can be computed in one

scan of B. This can be done for all i’s in parallel. After that, the concatenation of ci’s takes

O(n) time.

In the second stage, both B1 and B2 are compressed by a binary arithmetic encoder, but

B2 is compressed by a modified arithmetic encoder using the greedy outputting method as

described in [20]. We first briefly describe a general (non-adaptive) binary arithmetic encoder

and then describe our modified arithmetic encoder. Given a probability p for a bit ‘1’, the

encoder starts with an initial interval [0, N) where N is a large positive integer. For each

bit, it first calculates the new interval from the current interval. Then, it outputs code bits

from the newly calculated interval so that its length is greater than a predefined threshold.

If we use this encoder, the complexity would be O(n2) since the length of B2 is Θ(n2) in bits.

Thus, in the modified encoder, we process a run of zeroes in one step. When we extract B2

from B, we estimate the probability p of having ‘1’ in B2 and also precompute in a table the

probability of a run of k zeroes, which is (1 − p)k for k = 1, 2, · · · . We recall that B2 stores

lengths of runs of zeroes. When the encoder gets a number from B2, it calculates the new

12

Table 1: The average code length and running time for real-world networks.
Code length (bits) CPU time (secs)

Networks # of # of our adj. mat. adj. list arithmetic O(n+e) O(n2)
nodes edges algo.

`

n

2

´

e⌈log n⌉ coding algo. algo.

US Airports 332 2,126 8,108 54,946 19,134 12,947 <0.01 <0.01
Protein interaction(Yeast) 2,329 6,646 46,853 2,785,980 79,752 67,063 0.11 0.12
Collaboration(Geometry) 6,167 21,535 113,684 19,012,861 279,955 241,549 0.47 0.68
Collaboration(Erdős) 6,934 11,857 60,263 24,043,645 154,141 147,121 1.02 1.08
Genetic interaction(Human) 8,595 26,066 221,226 37,018,710 364,924 310,459 1.22 1.54
Internet(AS level) 25,881 52,407 301,463 334,900,140 786,105 737,851 12.97 13.81

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20

L
en

gt
h

(K
B

yt
e)

n (x 1000)

gain
nlog n

n

 0

 5

 10

 15

 20

 25

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

L
en

gt
h

(K
B

yt
e)

probability p

gain
nlog n

n

(a) gain in code length against arithmetic coding (p=0.01) (b) gain in code length against arithmetic coding (n=10000)

 0
 1
 2
 3
 4
 5
 6
 7

 0 5 10 15 20

C
PU

 ti
m

e
(s

ec
)

n (x 1000)

O(n2)
O(n+e)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

C
PU

 ti
m

e
(s

ec
)

probability p

O(n2)
O(n+e)

(c) running time (p=0.01) (d) running time (n=10000)

Figure 5: The average gain in code length and running time for the Erdős-Rényi random graphs.

interval for a run of zeroes in constant time by looking up this precomputed table. After this,

it outputs code bits in constant time using the greedy outputting method in [20], and then

it processes a bit ‘1’ in its usual way. Here we need one restriction on k since for very large k

the probability (1 − p)k becomes too small to represent the new interval precisely. Thus, we

set kmax = ⌈1/p⌉, and if k > kmax, then we process only the first kmax zeroes in every step

until all k zeroes are exhausted.

3.3 Experimental Results

To test our algorithm, we applied it to the Erdős-Rényi random graphs and real-world net-

works including biological, social, and technological networks. Table 1 summarizes the results

for the real-world networks. For comparison, we list the lengths of three other encodings of

graphs, namely, the usual implementations of adjacency matrix of
(n
2

)

bits, and adjacency list

of at least e⌈log n⌉ bits (normally, 2e⌈log n⌉ bits) where e is the number of edges. Finally, we

applied an arithmetic encoder to the adjacency matrix, which can achieve
(n
2

)

h(p) bits. For

many real-world networks, our algorithm achieves twice better compression than the standard

arithmetic encoder. For comparison, we also implemented O(n2)-time algorithm [7]. For all

of our real-world test data, our O(n + e)-time algorithm is faster than O(n2)-time algorithm.

We measured CPU time on a machine equipped with Pentium D 3.0GHz processor and 2GB

of RAM, running Linux. All the numbers are averages over 100 measurements.

13

Figure 5 shows the results for G(n, p) graphs. In (a) and (b), we plot the gain of our

encoding against arithmetic encoding, that is, the difference between two encodings. We

plot it for a fixed p in (a) and for a fixed n in (b). The plots confirm our analysis that the

gain is asymptotically close to n log n. In (c) and (d), we plot the CPU time consumed by

O(n + e)-time and O(n2)-time algorithms, and it shows that our O(n + e)-time algorithm is

faster unless the graph is too dense.

Let us make some final observations. Our results predict that for structures from S(n, p)

one can achieve compression up to
(

n

2

)

h(p) − n log n + O(n)

bits which should be compared to
(n
2

)

h(p) bits, if conventional algorithms are used (i.e.,

arithmetic encoder to the adjacency matrix). The redundancy, n log n of our compression

scheme is confirmed for randomly generated graphs from G(n, p). For many real-world graphs,

however, our algorithm achieves more than twice better compression when compared to

standard arithmetic encoder. While these graphs are not randomly generated according to

G(n, p) (rather by a power-law distribution), we believe their compression is a consequence

of small p.

Indeed, consider even in our G(n, p) model the behavior of the structural entropy HS
when p → 0 satisfying the conditions of Theorem 1. Let then p ∼ ω(n)(log n/n) for slowly

growing ω(n) → ∞ as n → ∞. In this case

h(p) ∼ ω(n)
log2 n

n
,

and therefore the structural entropy becomes

HS ∼ 1

2
(n − 1)ω(n) log2 n − n log n + O(n).

Clearly, the second leading term n log n plays a significant role in the compression of such

graphs. This may explain why our encoding is much better than arithmetic coding for real-

world networks that are usually sparse graphs.

4 Analysis

In this section, we analyze the compression performance and time complexity of our algorithm,

proving Theorem 2. To accomplish it we apply a variety of combinatorial and analytic

techniques such as generating functions, Mellin transform, poissonization, and combinatorics.

We start with a description of two binary trees that better capture the progress of our

algorithm. Given a graph G on n vertices, the binary tree Tn is built as follows. At the

beginning, the root node contains all n graph vertices, V (G), that one can also visualize as

n balls. Then a graph vertex (ball) v is removed from the root node. The other n − 1 graph

vertices move down to the left or right depending whether they are adjacent vertices in G

to v or not; adjacent vertices go to the left child node and the others go to the right child

node. We create a new child node in Tn if there is at least one graph vertex in that node. At

this point, the tree is of height 1 with n − 1 vertices in the nodes at level 1. By induction,

in the i-th step, we remove one graph vertex (ball) v from the (level-wise) leftmost node at

14

level i − 1. The other graph vertices at level i − 1 move down to the left or right depending

whether they are adjacent to v or not. We repeat these steps until all graph vertices are

removed (i.e., after n steps).

a

e

h

b

c

g

j

d

f

i

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

{a, b, c, d, e, f, g, h, j}

{a, b, c, e, h}{d, g, j}

{a, e, h}{b, c}{g, j}

{a, e, h}{b}{c}{g}

{a, e}{h}{b}{c}

{b} {h} {e} {a}

{h} {e} {a}

{e} {a}

{a}

Figure 6: A binary tree Tn with square-shaped nodes
containing exactly one ball.

For our example graph in Figure 3,

the construction of the tree Tn and the

progress of the algorithm are presented in

Figure 6. The removed graph vertices are

shown on the left. At each level, the sub-

sets of graph vertices (after removing a

vertex from the leftmost node) are shown

next to the nodes. We observe that the

subsets at each level (from left to right)

are the same as the subsets in each step

of our algorithm in Figure 3 since we re-

moved the same vertices.

Let Nx denote the number of graph

vertices that pass through node x in Tn

(excluding the graph vertex removed at x,

if any). In Figure 6, for example, Nx is

the number of graph vertices shown next

to the node x. Our algorithm needs to en-

code, for each node x in Tn, the number of neighbors (of the removed graph vertex) among Nx

vertices. This requires ⌈log(Nx + 1)⌉ bits. Let L(B1) and L(B2) be the lengths of sequences

B1 and B2, respectively. Then, by the construction

L(B1) =
∑

x∈Tn and Nx>1

⌈log(Nx + 1)⌉,

and L(B2) =
∑

x∈Tn and Nx=1

⌈log(Nx + 1)⌉ =
∑

x∈Tn and Nx=1

1.

In Figure 6, the summations for L(B1) and L(B2) are over all circle-shaped nodes and over

all square-shaped nodes, respectively. Here we can observe an important property of B2

presented next.

Lemma 4 Given a graph from G(n, p), the sequence B2 constructed by our algorithm is

probabilistically equivalent to a binary sequence generated by a memoryless source(p) with p

being the probability of generating a ‘1’.

Proof: Consider any one bit b ∈ B2. It represents the number of neighbors of a vertex u in

a subset, which contains only one vertex, say v. Then the probability that b =‘1’ is the same

as the probability that u and v are connected, which is p. Let us consider any two bits b1

and b2. Assume that bi corresponds to vertices ui and vi (i.e., bi corresponds to the potential

edge between ui and vi.) These two potential edges are chosen independently. This shows

the memoryless property.

To set up precise recurrence relations for our analysis, we need to define a random binary

tree Tn,d for integers n ≥ 0 and d ≥ 0, which is generated similarly to Tn as follows. If n = 0,

15

then it is just an empty tree. For n > 0, we create a root node, in which we put n balls. In

each step, all balls independently move down to the left (with probability p) or right (with

probability 1 − p). We create a new node if there is at least one ball in that node. Thus,

after the i-th step, the balls will be at level i. If the balls are at level d or greater, then we

remove one ball from the leftmost node before the balls move down to the next level. These

steps are repeated until all balls are removed (i.e., after n + d steps). We observe that, if Tn

is generated by a graph from G(n, p), Tn is nothing but the random binary tree Tn,0. Thus,

by analyzing Tn,0, we can compute both L(B1) and L(B2).

4.1 Proof of Theorem 2(i): Average Performance

In this section, we prove part (i) of our main result, that is, we derive the average length of

the compressed string representing graphical structure.

Let us first estimate L(B1). As before, Nx denotes the number of balls that pass through

node x (excluding the ball removed at x if any). Let

An,d =
∑

x∈Tn,d and Nx>1

⌈log(Nx + 1)⌉,

and an,d = E[An,d]. Then E[L(B1)] = an,0. Clearly, a0,d = a1,d = 0 and a2,0 = 0. For n ≥ 2

and d = 0, we observe that

an+1,0 = ⌈log (n + 1)⌉ +

n
∑

k=0

(

n

k

)

pkqn−k(ak,0 + an−k,k). (5)

This follows from the fact that starting with n + 1 balls in the root node, and removing one

ball we are left with n balls passing through the root node. This contributes ⌈log (n + 1)⌉.
Then, those n balls move down to the left or right subtrees. Let us assume k balls move

down to the left subtree (the other n− k balls must move down to the right subtree, and this

happens with probability
(n
k

)

pkqn−k.) At level one, one ball is removed from those k balls in

the root of the left subtree. This contributes ak,0. There will be no removal among n − k

balls in the right subtree until all k balls in the left subtree are removed. This contributes

an−k,k. Similarly, for d > 0, we can see that

an,d = ⌈log (n + 1)⌉ +

n
∑

k=0

(

n

k

)

pkqn−k(ak,d−1 + an−k,k+d−1). (6)

This recurrence is quite complex, but we only need a good upper bound that is presented in

the next lemma.

Lemma 5 For all integers n ≥ 0 and d ≥ 0,

an,d ≤ xn

such that xn satisfies x0 = x1 = 0 and for n ≥ 2

xn = ⌈log (n + 1)⌉ +
n
∑

k=0

(

n

k

)

pkqn−k(xk + xn−k). (7)

16

Proof: We use induction on both n and d. Clearly, an,d ≤ xn for n = 0 or 1 (d ≥ 0). For

n = 2 and d = 0, a2,0 ≤ x2 since a2,0 = 0 and x2 ≥ 2. For other cases (n = 2 and d > 0, or

n > 2), we assume that ai,j ≤ xi holds for i < n, and for i = n and j < d. Now we want to

show that an,d ≤ xn. We divide it into two cases.

(i) When d = 0. We observe that

an,0 ≤ an+1,0 = ⌈log (n + 1)⌉ +
n−1
∑

k=1

(

n

k

)

pkqn−k(ak,0 + an−k,k) + qnan,0 + pnan,0.

Thus,

(1 − pn − qn)an,0 ≤ ⌈log (n + 1)⌉ +

n−1
∑

k=1

(

n

k

)

pkqn−k(ak,0 + an−k,k). (8)

Similarly, from (7), we get

(1 − pn − qn)xn = ⌈log (n + 1)⌉ +

n−1
∑

k=1

(

n

k

)

pkqn−k(xk + xn−k). (9)

Therefore,

(1 − pn − qn)an,0 ≤ ⌈log (n + 1)⌉ +

n−1
∑

k=1

(

n

k

)

pkqn−k(ak,0 + an−k,k) (by (8))

≤ ⌈log (n + 1)⌉ +

n−1
∑

k=1

(

n

k

)

pkqn−k(xk + xn−k) (by induction hypothesis)

= (1 − pn − qn)xn. (by (9))

(ii) When d > 0. By (6) and induction hypothesis,

an,d ≤ ⌈log (n + 1)⌉ +

n
∑

k=0

(

n

k

)

pkqn−k(xk + xn−k) = xn.

This completes the proof.

The next step involves solving asymptotically recurrence (7). We do it in Section 5 proving

the following lemma.

Lemma 6 Consider the following recurrence for xn with x0 = x1 = 0 and for n ≥ 2

xn = an +

n
∑

k=0

(

n

k

)

pkqn−k(xk + xn−k),

where an = ⌈log (n + 1)⌉ for n ≥ 2 and a0 = a1 = 0. Then:

(i) If log p/ log q is irrational, then

xn =
n

h
A∗(−1) log e + o(n), (10)

17

where

A∗(−1) =
∑

b≥2

⌈log(b + 1)⌉
b(b − 1)

. (11)

(ii) If log p/ log q = r/d (rational) with gcd(r, d) = 1, then

xn =
n

h

(

A∗(−1) + Φ(logp n)
)

log e + O(n1−η) (12)

for some η > 0, where

Φ(x) =
∑

k 6=0

A∗(−1 + 2kπri/ log p) exp(2kπrxi) (13)

is a fluctuating function with a small amplitude.

Finally, the average length of L(B1) can be derived. We present it in the next theorem.

Theorem 3 For large n,

E[L(B1)] ≤
n

h
(β + Φ1(log n)) + o(n),

where h := h(p),

β = log e ·
∑

b≥2

⌈log (b + 1)⌉
b(b − 1)

= 3.760 · · · ,

and Φ1(log n) is a fluctuating function for log p/ log q rational with small amplitude and

asymptotically zero otherwise.

The next step is to estimate the average length of B2. Let Sn,d be the total number of

nodes x in Tn,d such that Nx = 1, that is,

Sn,d =
∑

x∈Tn,d and Nx=1

1 =
∑

x∈Tn,d and Nx=1

Nx =
∑

x∈Tn,d

Nx −
∑

x∈Tn,d and Nx>1

Nx.

Let Bn,d =
∑

x∈Tn,d,Nx>1 Nx. We observe that

L(B2) = Sn,0 =
∑

x∈Tn,0

Nx − Bn,0 =
n(n − 1)

2
− Bn,0. (14)

The last equality follows from the fact that the sum of Nx’s for all x at level ℓ in Tn,0 is equal

to n − 1 − ℓ.

Let bn,d = E[Bn,d]. For our analysis we only need bn,0. Clearly, b0,d = b1,d = 0 and

b2,0 = 0. For n ≥ 2, we can find the following recurrence (similarly to an,d):

bn+1,0 = n +

n
∑

k=0

(

n

k

)

pkqn−k(bk,0 + bn−k,k), (15)

and bn,d = n +

n
∑

k=0

(

n

k

)

pkqn−k(bk,d−1 + bn−k,k+d−1) for d > 0. (16)

To prove our main result, we only need a lower bound that is established in the next

lemma.

18

Lemma 7 For all n ≥ 0 and d ≥ 0,

bn,d ≥ yn − n

2

such that yn satisfies y0 = 0 and for n ≥ 0

yn+1 = n +
n
∑

k=0

(

n

k

)

pkqn−k(yk + yn−k). (17)

Proof: We prove it by induction on both n and d. Clearly, bn,d ≥ yn − n/2 for n = 0 or 1

(d > 0). For n = 2 and d = 0, b2,0 ≥ y2 − 2 since b2,0 = 0 and y2 = 1. For other cases (n = 2

and d > 0, or n > 2), we assume that bi,j ≥ yi − i
2 holds for i < n, and for i = n and j < d.

Now we want to show that bn,d ≥ yn − n
2 . We divide it into two cases.

(i) When d = 0. By (15) and induction hypothesis,

bn,0 ≥ (n − 1) +

n−1
∑

k=0

(

n − 1

k

)

pkqn−1−k(yk − k

2
+ yn−1−k −

n − 1 − k

2
)

= yn − n − 1

2
> yn − n

2
. (by (17))

(ii) When d > 0. By (16) and induction hypothesis,

bn,d ≥ n +

n
∑

k=0

(

n

k

)

pkqn−k(yk − k

2
+ yn−k −

n − k

2
)

= yn+1 −
n

2
≥ yn − n

2
.

This completes the proof.

It is easy to see that yn represents the expected path length in a digital search tree over

n strings as discussed in [17, 38]. The authors of [17] proved, among others, that

yn =
n

h

(

log n +
h2

h
+ γ − 1 − α + Φ2(log n)

)

+
1

h

(

log n +
h2

2h
− γ − log p − log q + α

)

+O(1),

(18)

where h2 = p log2 p + q log2 q, γ = 0.577 · · · is the Euler constant, and

α = −
∞
∑

k=1

pk+1 log p + qk+1 log q

1 − pk+1 − qk+1
.

In the above, Φ2(log n) is a fluctuating function for log p/ log q rational with small amplitude

and zero otherwise.

In summary, by (14), Lemma 7, and the above, we arrive at our next result.

Theorem 4 For large n,

E[L(B2)] ≤
n(n − 1)

2
− n

h
log n +

n

h

(

h

2
− h2

h
− γ + 1 + α − Φ2(log n)

)

− 1

h
log n + O(1),

with the notations as below (18).

19

Finally, we compute E[L(S)] = E[L(B̂1) + L(B̂2)] + O(log n), proving the part (i) of

Theorem 2. We observe that the arithmetic encoder can compress a binary sequence of

length m on average up to mh + 1
2 log m + O(1), where h is the entropy rate of the binary

source [9, 41]. Thus, by Theorem 3,

E[L(B̂1)] ≤
h′

h
(β + Φ1(log n))n + o(n),

where h, β, and Φ1(log n) are defined in Theorem 3, and h′ is the entropy rate of the binary

source that B1 is generated from. Similarly, we can compute E[L(B̂2)]. In this case, however,

we know that the entropy rate for B2 is h := h(p). Thus, by Theorem 4,

E[L(B̂2)] ≤
(

n

2

)

h − n log n + n

(

h

2
− h2

h
− γ + 1 + α − Φ2(log n)

)

+ O(log n),

where h, h2, γ, α, and Φ2(log n) are defined above. This completes the part (i) of Theorem 2.

4.2 Proof of Theorem 2(ii): Performance with High Probability

Now we prove part (ii) of Theorem 2, that is, we show that L(S) − E[L(S)] ≤ ǫn log n with

high probability. Since L(S) = L(B̂1) + L(B̂2), we need bounds for L(B̂1) and L(B̂2). We

start with L(B̂1). By Markov’s inequality,

P
(

L(B̂1) > ǫn log n
)

<
E[L(B̂1)]

ǫn log n
= O

(

1

log n

)

, ǫ > 0. (19)

Handling L(B̂2) is more complicated. In [41] it was proved that for a binary sequence X of

length ℓ, the code length generated by an arithmetic encoder is at most − log P (X)+ 1
2 log ℓ+3.

In our case, B2 = b1b2 · · · bL(B2) is memoryless, and then

L(B̂2) < − log P (B2)+
1

2
log L(B2)+3 = L(B2) ·



− 1

L(B2)

L(B2)
∑

i=1

log P (bi)



+
1

2
log L(B2)+3.

(20)

Thus we need good bounds for L(B2) and the sum of log P (bi). With respect to L(B2), recall

that L(B2) =
(

n
2

)

− Bn,0 where

Bn,0 =
∑

x∈Tn,0,Nx>1

Nx,

and Nx is the number of balls that pass through node x in tree Tn,0 (excluding the ball removed

at x if any). We shall show that Bn,0 is related to the path lengths in slightly modified trees

that we denote as T̂n and T̄n. The tree T̂n is constructed from Tn,0 by removing all nodes x

with Nx = 1 that are not direct children of nodes y with Ny > 1. Then, we put back balls

into the nodes of T̂n using the following rules: we put each ball back into the node where it

was removed; if such a node does not exist in T̂n, then we put the ball into the first node x

with Nx = 1 on its path in Tn,0. To construct T̄n we observe that there might be some nodes

with two balls in T̂n. In such a case, we add a child node and move one ball down to the

new node to eliminate all nodes with two balls. Figure 7(a,b) illustrates the construction of

20

i

f

d

bcj, g

h

e a

i

f

d

bcj

h

e a

g

i

f

d b

cj h

e

a

g

(a) T̂n (b) T̄n (c) Dn

Figure 7: An example of binary trees T̂n, T̄n, and Dn, given binary choices for 10 balls
{i,f ,d,j,g,a,b,c,e,h}.

T̂n and T̄n for the tree Tn (equivalently, Tn,0) from Figure 6. Notice that in this figure all

circle-shaped nodes and the square-shaped nodes – directly connected to these circle-shaped

nodes – are the same in both Tn and T̂n.

Let ℓ(T̂n) and ℓ(T̄n) be the path lengths to all balls in T̂n and T̄n, respectively. From the

construction it is clear that

Bn,0 = ℓ(T̂n).

Now let us compare ℓ(T̂n) and ℓ(T̄n). Whenever we have two balls in a node of T̂n, we move

one ball down in T̄n to a new node. This results in such a path in T̄n being longer by one

than the corresponding path in T̂n. However, this can happen at most n/2 times since there

are at most n/2 nodes with two balls. Thus we find2

ℓ(T̂n) + n/2 ≥st ℓ(T̄n).

To estimate the path length ℓ(T̄n), we introduce another binary tree Dn that is prob-

abilistically equivalent to the digital search tree built over n random binary strings. It is

constructed as follows. If n = 0, then it is just an empty tree. For n > 0, we create a root

node in which we put n balls. One ball remains in the root node, and rest of balls indepen-

dently move down to the left or right. We create a new child node if there is at least one ball

in that node. We recursively repeat it (i.e., we leave one ball in a node while moving others

down.) Figure 7(c) illustrates this construction.

We shall next show that

ℓ(T̄n) ≥st ℓ(Dn),

where ℓ(Dn) is the path length to all balls (nodes) in Dn. For this, we consider two actual

trees t̄n and dn given the same binary choices regarding the action left/right (1/0) for the

n balls. We also assume that the input to both trees is the same, that is, balls are inserted

in the same order and therefore we always identify the “smallest” ball in input. Whenever

a ball remains in a node during the construction of these trees, we assume that the smallest

2For two real-valued random variables X and Y , we write X ≥st Y if the value of X is always greater than
or equal to that of Y for every event, or equivalently if P (X > t) ≥ P (Y > t) for all t ∈ (−∞,∞) [31].

21

ball is left in the node. Then, in the next lemma we show that the path length in t̄n is at

least the path length in dn. Thus ℓ(T̄n) ≥st ℓ(Dn).

Lemma 8 Given binary choices for n balls, let t̄n and dn be two tree instances of T̄n and

Dn, respectively. Let ut ∈ t̄n and ud ∈ dn be two corresponding nodes in these trees (i.e.,

nodes that are reached by the same binary choices). We denote by B(u) the set of balls in

the subtree rooted at node u. Then, B(ut) ⊃ B(ud) for any ut ∈ t̄n and ud ∈ dn.

Proof: For the root nodes, it is trivial since both sets have the same n balls. Now it is

sufficient to show that the statement is true for children if it is true for their parent nodes.

Thus let us assume that B(ut) ⊃ B(ud) for ut ∈ t̄n and ud ∈ dn. Let st and sd be the

smallest ball (in the input ordering) in B(ut) and B(ud), respectively. Now we consider

two sets of balls St and Sd that will move down from ut and ud, respectively. Note that

Sd = B(ud) − sd. We shall show that St ⊃ Sd considering two cases: 1) if ut is not the

leftmost node, then St = B(ut) ⊃ B(ud) − sd = Sd; 2) if ut is the leftmost node, then

St = B(ut) − st ⊃ B(ud) − sd = Sd since either st is the same ball as sd or st is not in Sd.

Therefore each ball b ∈ Sd is also in St, and b moves down in the same direction for both ut

and ud. Therefore, the statement is true for both children nodes.

Now we are ready to prove a relation between Bn,0 and the path length in a digital search

tree shown in the following lemma.

Lemma 9 Let Yn := ℓ(Dn) be the path length in a digital search tree. Then,

Bn,0 +
n

2
≥st Yn.

Proof: Given binary choices for n balls, let us consider tree instances t̂n, t̄n, and dn. As

we observed, ℓ(t̂n)+ n
2 ≥ ℓ(t̄n) ≥ ℓ(dn). Therefore, ℓ(T̂n) + n

2 ≥st ℓ(Dn). We know that ℓ(T̂n)

and ℓ(Dn) are equivalent to Bn,0 and Yn, respectively. This completes the proof.

Finally, we establish the following two lemmas.

Lemma 10 For any ǫ > 0,

P

(

L(B2) ≤
(

n

2

)

− yn + ǫyn

)

≥ 1 − o(1),

where yn is defined in Lemma 7.

Proof: We observe that yn = E[Yn], where Yn is the path length in a digital search tree.

Let us compute the probability Pn = P
(

L(B2) >
(n
2

)

− yn + ǫyn

)

for large n. We shall prove

that Pn → 0. We have

Pn = P (Bn,0 < (1 − ǫ)yn) (by (14), that is, L(B2) =
(

n
2

)

− Bn,0)

≤ P
(

Yn − n

2
< (1 − ǫ)yn

)

(by Lemma 9)

= P

(

Yn − yn√
Var Yn

<
−ǫyn + n/2√

Var Yn

)

≤ P

(∣

∣

∣

∣

Yn − yn√
Var Yn

∣

∣

∣

∣

>

∣

∣

∣

∣

−ǫyn + n/2√
Var Yn

∣

∣

∣

∣

)

(∵ −ǫyn+n/2√
Var Yn

< 0 for large n)

< Aµk (by Theorem 1A of [17])

22

for positive constants A and µ < 1, where k =
∣

∣

∣

−ǫyn+n/2√
Var Yn

∣

∣

∣
= Θ(

√
n log n) as proved in

Theorem 1A of [17]. Thus, Pn becomes exponentially small as n → ∞.

In view of (20) and Lemma 10, we need to find a bound for
∑L(B2)

i=1 log P (bi) which we

present next.

Lemma 11 For any ǫ > 0,

P



− 1

L(B2)

L(B2)
∑

i=1

log P (bi) ≤ h + ǫ
log n

n



 ≥ 1 − o(1),

where h := h(p).

Proof: Let Fm(X1, · · · ,Xm) = − log P (X1, · · · ,Xm)−mh, where Xi’s are binary indepen-

dent random variables with p being the probability of ‘1’ and q = 1 − p. Denoting by X̂i an

independent copy of Xi (with the same distribution as Xi), we have

|Fm(X1, · · · ,Xi, · · · ,Xm) − Fm(X1, · · · , X̂i, · · · ,Xm)| ≤ | log P (Xi) − log P (X̂i)| ≤ c,

where c = max{log p/q, log q/p}. Thus, by Azuma’s inequality [38]

P (− log P (X1, · · · ,Xm) − mh ≥ ǫ′n log n) ≤ exp

(

−ǫ′2n2 log2 n

2mc2

)

= o(1)

provided that m = O(n2). Since L(B2) = O(n2), this completes the proof.

By the above two lemmas, after some algebra we conclude that, with probability 1−o(1),

L(B̂2) <

(

n

2

)

h − n log n + ǫn log n.

This and (19) complete the part (ii) of Theorem 2.

4.3 Proof of Theorem 2(iii): Time Complexity

In this section, we prove part (iii) of Theorem 2, that is, we show that the time complexity of

our algorithm in Section 3.2.3 is O(n+e) on average. Let us first analyze the first stage, which

consists of n steps. Clearly, the procedure 1 takes constant time in each step, and thus it

takes O(n) time in total. The procedures 2 and 4 take O(|N(v)|) time in each step since each

of operations inside the loop takes constant time. Thus, they take
∑

v∈V (G) O(|N(v)|) = O(e)

time in total. In the i-th step, the procedure 3 takes O(si) time, where si is the number of

subsets in Pi−1 − v whose size is larger than one. Thus, in total, it takes O(s) time where

s =
∑n

i=1 si, which is the total number of nodes x in Tn,0 with Nx > 1. In Figure 6, for

example, s is the number of circle-shaped nodes in Tn. By the same analysis as in Section 5

(in this case, an = 1 in (21)), we can prove that the expected value of s is at most O(n).

Finally, by Lemma 3, the construction of B2 from B takes O(n + ℓ) time where ℓ is the

number of elements inserted in B. We can see that ℓ = O(e + s) as follows. The number

23

of elements inserted in procedure 2.2 is bounded by e since every insertion corresponds to a

distinct edge. Clearly, the number of elements inserted in procedure 3.2 is bounded by O(s).

Therefore, the first stage takes O(n + e) time on average.

In the second stage, B1 and B2 are compressed by an arithmetic encoder. Clearly, B1

can be compressed in O(n) time since the length of B1 is O(n). The number of elements in

the run length form of B2 is at most e + 1. Thus, the time complexity of the compression

of B2 would be O(e) except that there could be long runs of zeroes, which are compressed

in multiple steps. Let n0 and n1 be the number of ‘0’s and ‘1’s in B2, respectively. Thus,

p = n1/(n0 +n1). The number of additional steps to process kmax = ⌈1/p⌉ zeroes is bounded

by
n0

⌈1/p⌉ ≤ n0

1/p
=

n0n1

n0 + n1
≤ n1 ≤ e.

Therefore, the second stage takes O(n + e) time. This completes the proof.

5 Proof of Lemma 6: Analysis of xn

In this section, we prove Lemma 6. We shall analyze asymptotically xn satisfying x0 = x1 = 0

and for n ≥ 2

xn = an +
n
∑

k=0

(

n

k

)

pkqn−k(xk + xn−k), (21)

where an = ⌈log(n + 1)⌉ for n ≥ 2 and a0 = a1 = 0.

Define the exponential generating function (EGF) of xn as

x(z) =

∞
∑

n=0

xn
zn

n!

for complex z. Then, from (21), for n ≥ 2 we have

xn

n!
zn =

an

n!
zn +

n
∑

k=0

1

k!
(zp)k 1

(n − k)!
(zq)n−k(xk + xn−k)

=
an

n!
zn +

n
∑

k=0

xk

k!
(zp)k 1

(n − k)!
(zq)n−k +

n
∑

k=0

1

k!
(zp)k

xn−k

(n − k)!
(zq)n−k.

Thus, using the fact that x0 = x1 = a0 = a1 = 0,

∞
∑

n=0

xn

n!
zn =

∞
∑

n=0

an

n!
zn +

∞
∑

n=0

(

n
∑

k=0

xk

k!
(zp)k 1

(n − k)!
(zq)n−k +

n
∑

k=0

1

k!
(zp)k

xn−k

(n − k)!
(zq)n−k

)

.

Finally, we arrive at

x(z) = a(z) + x(zp)ezq + x(zq)ezp,

where a(z) is the EGF of an. The Poisson transform [18, 38] defined as X̃(z) = x(z)e−z of

the above equation is

X̃(z) = Ã(z) + X̃(zp) + X̃(zq), (22)

where Ã(z) = a(z)e−z . By analytic depoissonization [18] we expect that xn ∼ X̃(n) as

n → ∞. We refer to Theorem 10.5 of [38] to conclude that this is the case. Thus it remains

to find asymptotics of X̃(z) as z → ∞ along the real axis.

24

In order to solve asymptotically the functional equation (22), we apply the Mellin trans-

form. The reader is referred to [13, 38] for in-depth discussion of the Mellin transform. In

brief, the Mellin transform of a real-valued function f(x) is defined as

M[f(x); s] := f∗(s) =

∫ ∞

0
f(x)xs−1dx.

It is defined in a strip −α < ℜ(s) < −β when f(x) = O(xα) for x → 0 and f(x) = O(xβ) for

x → ∞. Noting that

M[f(ax), s] = a−sf∗(s),

we transform the functional equation (22) into the following algebraic equation

X∗(s) = A∗(s) + p−sX∗(s) + q−sX∗(s),

where X∗(s) and A∗(s) are the Mellin transforms of X̃(z) and Ã(z), respectively. This leads

to

X∗(s) =
A∗(s)

1 − p−s − q−s

for −2 < ℜ(s) < −1, as easy to see under our assumption on x0 and x1. Observe also that

A∗(s) =

∫ ∞

0
Ã(z)zs−1dz =

∑

n≥2

an

n!

∫ ∞

0
zne−zzs−1dz =

∑

n≥2

an

n!
Γ(n + s), (23)

and for an = ⌈log(n + 1)⌉ the series converges for ℜ(s) < 0.

In order to find asymptotics of xn, we first find the inverse Mellin transform and then

depoissonize as in [18, 38]. For this we need to understand zeroes of 1−p−s−q−s = 0, that is,

we study Z = {s ∈ C : p−s + q−s = 1}. The following lemma is basically due to Schachinger

[33] and Jacquet [38] (cf. also [10]).

Lemma 12 Suppose that 0 < p < q < 1 with p + q = 1, and let

Z = {s ∈ C : p−s + q−s = 1}.

Then

(i) All s ∈ Z satisfy

−1 ≤ ℜ(s) ≤ σ0,

where σ0 is a real positive solution of 1 + q−s = p−s. Furthermore, for every integer k there

uniquely exists sk ∈ Z with

(2k − 1)π/ log(1/p) < ℑ(sk) < (2k + 1)π/ log(1/p)

and consequently Z = {sk : k ∈ Z}.
(ii) If log q/ log p is irrational, then s0 = −1 and ℜ(sk) > −1 for all k 6= 0.

(iii) If log q/ log p = r/d is rational, where gcd(r, d) = 1 for integers r, d > 0, then ℜ(sk) = −1

if and only if k ≡ 0 mod d. In particular ℜ(s1), . . . ,ℜ(sd−1) > −1 and

sk = sk mod d +
2(k − k mod d)πi

log p
,

that is, all s ∈ Z are uniquely determined by s0 = −1 and by s1, s2, . . . , sd−1, and their

imaginary parts constitute an arithmetic progression.

25

-

6

−2 −1 0 ℜ

ℑ
M + iA

M − iA
c − iA

c + iA

6
-

?�

Figure 8: The integration contour (the circles represent zeroes of p−s + q−s = 1.)

Using this lemma, now we find the asymptotics of X̃(z) as z → ∞ by the inverse Mellin

transform:

X̃(z) =
1

2πi

∫ c+i∞

c−i∞
X∗(s)z−sds,

where −2 < c < −1 is a constant. To compute this we apply the standard approach: consider

the rectangle R shown in Figure 8. The integral of X∗(s)z−s along R is divided into four

parts as follows:

lim
A→∞

∫

R
= lim

A→∞

(
∫ c+iA

c−iA
+

∫ M+iA

c+iA
+

∫ M−iA

M+iA
+

∫ c−iA

M−iA

)

.

We are interested in the first integral. We observe that X̃(z) is infinitely differentiable. Thus

the second and the fourth integrals contribute O(A−r) for some large r due to the smallness

property of Mellin transform (cf. [38]). The contribution of the third integral is computed as

follows:
∣

∣

∣

∣

∫ M−i∞

M+i∞
X∗(s)z−sds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ −∞

+∞
X∗(M + it)z−M−itdt

∣

∣

∣

∣

≤ |z−M |
∫ −∞

+∞
|X∗(M + it)|dt = O(z−M),

since the integral above exists. Now by the Cauchy residue theorem and Lemma 12, we

obtain
1

2πi

∫ c+i∞

c−i∞
X∗(s)z−sds + O(z−M) = −

∑

sk∈Z
Res[X∗(s)z−s, s = sk].

We observe that the residue at s0 = −1 (cf. also [12]). Using these observations and analytic

depoissonization [18, 38] we finally conclude the following, proving Lemma 6:

(i) If log p/ log q is irrational, then

xn =
n

h
A∗(−1) log e + o(n), (24)

26

where

A∗(−1) =
∑

b≥2

⌈log(b + 1)⌉
b(b − 1)

. (25)

(ii) If log p/ log q = r/d (rational) with gcd(r, d) = 1, then

xn =
n

h

(

A∗(−1) + Φ(logp n)
)

log e + O
(

n1−η
)

(26)

for some η > 0, where

Φ(x) =
∑

k 6=0

A∗(−1 + 2kπri/ log p) exp(2kπrxi) (27)

is a fluctuating function with a small amplitude. This proves Lemma 6.

Appendix

A Proof of Lemma 2

For completeness, we prove here Lemma 2. It was established in [23] that almost surely one

should alter (delete or add) (2 − o(1))np(1 − p) edges to obtain a symmetric graph from

G(n, p), which is a sufficient condition of our statement. We shall follow the footsteps of [23],

except that we derive explicitly the rate of convergence.

First we need some definitions. Let G = (V,E) be a graph and let π : V → V be a

permutation of the vertices of G. For a vertex v ∈ V we define a defect of v with respect to

π to be

Dπ(v) = |N(π(v)) ∆ π(N(v))|,
where N(v) is the set of neighbors of v and ∆ denotes the symmetric difference of two sets,

that is, A∆B = (A − B) ∪ (B − A) for two sets A and B. Similarly, we define a defect of G

with respect to π to be

Dπ(G) = max
v

Dπ(v).

Finally, we define a defect of a graph G to be

D(G) = min
π 6=identity

Dπ(G).

It is easy to see that a graph G is symmetric if and only if its defect equals zero. Thus we

only need to show that D(G) > 0 for G ∈ G(n, p) with high probability. But we shall next

prove that D(G) is at least (2 − o(1))np(1 − p) with high probability.

Set ǫ = ǫ(n, p) such that ǫ = o(1) and ǫ2np(1 − p) ≫ ln n. This is possible for all p’s

satisfying the conditions of the lemma (e.g., ǫ = Θ
(

4

√

lnn
np(1−p)

)

.) Fix an arbitrary 2 ≤ k ≤ n,

and let π be a permutation of vertices of G which fixes all but k vertices. Let U be the set

of vertices {u|π(u) 6= u} and

X =
∑

u∈U

Dπ(u).

27

By definition, Dπ(u) is a binomially distributed random variable with expectation either

2(n − 2)p(1 − p) or 2(n − 1)p(1 − p), depending on whether π(π(u)) = u or not. Therefore,

E[X] =
∑

u∈U

E[Dπ(u)] = (2 − o(1))knp(1 − p).

We prove next that X is strongly concentrated around its mean, which implies that for

some vertex u ∈ U , Dπ(u) is at least E[X]/k with high probability. Then we conclude that

Dπ(G) is at least E[X]/k with high probability by the definition. Finally, we shall prove

that, for every possible permutation π, the minimum of Dπ(G) is still at least E[X]/k with

high probability, which implies that D(G) is at least E[X]/k with high probability by the

definition.

We start with an observation that X depends only on the edges of the graph adjacent to

the vertices in U . Moreover, adding or deleting any such edge, say (u, v), can change only the

values of at most four terms Dπ(u), Dπ(v), Dπ(π−1(u)), and Dπ(π−1(v)) in the sum, each

by at most 1. Here X is a random variable on a probability space generated by a finite set of

mutually independent 0/1 choices, indexed by i. Let pi be the probability that choice i is 1,

and let c be a constant such that changing any choice i (keeping all other choices the same)

can change X by at most c. Set σ2 = c2
∑

i pi(1 − pi). In [3] it is shown that for all positive

t < 2σ/c,

P (|X − E[X]| > tσ) ≤ 2e−t2/4.

In this case, c = 4 and σ2 = 16(
(

n
2

)

−
(

n−k
2

)

)p(1 − p) = Θ(knp(1 − p)). Therefore, for some

positive constant α,

P (|X − E[X]| > ǫknp(1 − p)) ≤ e−αǫ2knp(1−p).

Thus, with probability at least 1 − e−αǫ2knp(1−p), there is a vertex in U with defect at least

1

k
(E[X] − ǫknp(1 − p)) = (2 − o(1))np(1 − p).

Therefore,

P (Dπ(G) ≤ (2 − ǫ)np(1 − p)) ≤ e−αǫ2knp(1−p) = Pk.

Now we see that the number of permutations which fixes n − k vertices is at most
(

n
k

)

k!.

Therefore, the probability that there exists a permutation such that the defect of G with

respect to it is less than (2 − ǫ)np(1 − p) is at most

n
∑

k=2

(

n

k

)

k!Pk ≤
n
∑

k=2

nke−αǫ2knp(1−p)

=

n
∑

k=2

(

e−αǫ2np(1−p)+lnn
)k

≤ β
(

e−αǫ2np(1−p)+lnn
)2

for some constant β (∵ ǫ2np(1 − p) ≫ ln n)

< β
(

e−γ ln n+lnn
)2

for any positive constant γ (∵ ǫ2np(1 − p) ≫ lnn)

= β
(

n1−γ
)2

= O
(

n−w
)

for any positive constant w.

The last equality is obtained by setting w = 2γ − 2 and choosing γ > 1. Therefore, the

probability that G is symmetric is at most O (n−w) for any positive constant w.

28

References

[1] M. Adler and M. Mitzenmacher, Towards compressing web graphs, In Proc. of the IEEE

Data Compression Conference, 203–212, 2001.

[2] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York,

1964.

[3] N. Alon, J.H. Kim, and J.H. Spencer, Nearly perfect matchings in regular simple hyper-

graphs, Israel J. Math, 100, 171–187, 1997.

[4] B. Bollobas, Random Graphs, Cambridge University Press, Cambridge, 2001.

[5] F.P. Brooks Jr, Three great challenges for half-century-old computer science, Journal of

the ACM, 50(1), 25–26, 2003.

[6] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Ragha-

van. On Compressing Social Networks, Proc. ACM KDD, 2009.

[7] Y. Choi and W. Szpankowski, Compression of graphical structures, IEEE International

Symposium on Information Theory, Seoul, 364–368, 2009.

[8] T.M. Cover and J.A. Thomas, Elements of Information Theory, John Wiley & Sons,

New York, 2006.

[9] M. Drmota, H.-K. Hwang, and W. Szpankowski, Precise average redundancy of an ide-

alized arithmetic coding, Proc. Data Compression Conference, 222-231, 2002.

[10] M. Drmota, Y. Reznik, and W. Szpankowski, Tunstall Code, Khodak Variations, and

Random Walks, preprint 2009.

[11] P. Erdős and A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hungar. 14, 295–315,

1963.

[12] G. Fayolle, P. Flajolet, and M. Hofri, On a Functional Equation Arising in the Analysis

of a Protocol for a Multi-Access Broadcast Channel, Advances in Applied Probability,

18(2), 441–472, 1986.

[13] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press,

Cambridge, 2008.

[14] F. Harary and E.M. Palmer, Graphical Enumeration, Academic Press, 1973.

[15] F. Harary, E.M. Palmer, and R.C. Read, The number of ways to label a structure,

Psychometrika, 32(2), 155–156, 1967.

[16] M. Hassani, Approximation of the dilogarithm function, J. Inequalities in Pure and

Applied Mathematics, 8, 1–7, 2007.

[17] P. Jacquet and W. Szpankowski, Asymptotic behavior of the Lempel-Ziv parsing scheme

and digital search trees, Theoretical Computer Science, 144(1&2), 161–197, 1995.

29

[18] P. Jacquet, and W. Szpankowski, Analytical depoissonization and its applications, The-

oretical Computer Science, 201, 1–62, 1998.

[19] P. Jacquet, and W. Szpankowski, Entropy computations via analytic depoissonization,

IEEE Trans. on Information Theory, 45, 1072–1081, 1999.

[20] Y. Jia, E.-H. Yang, D.-K. He, and S. Chan, A greedy renormalization method for

arithmetic coding, IEEE Transactions on Communications, 55(8):1494–1503, 2007.

[21] J.C. Kieffer, A survey of advances in hierarchical data compression, Technical Report,

Dept. of Electrical & Computer Engineering, University of Minnesota, 2000.

[22] J. Kieffer, E-H. Yang, and W. Szpankowski, Structural Complexity of Random Binary

Trees 2009 International Symposium on Information Theory, 635-639, Seoul, 2009.

[23] J.H. Kim, B. Sudakov, and V.H. Vu, On the asymmetry of random regular graphs and

random graphs, Random Structures and Algorithms, 21(3-4), 216–224, 2002.

[24] C. Knessl, Integral representations and asymptotic expansions for Shannon and Renyi

entropies, Appl. Math. Lett., 11, 69–74, 1998.

[25] B. MacArthur, Sanchez-Garcia R, and J. Anderson. Symmetry in complex networks.

Discrete Applied Mathematics, 156, 18, 3525-3531, 2008.

[26] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat. Systematic topology analysis and

generation using degree correlation. In SIGCOMM, Pisa, 2006.

[27] M. Naor, Succinct representation of general unlabeled graphs, Discrete Applied Mathe-

matics, 28(3), 303–307, 1990.

[28] L. Peshkin, Structure induction by lossless graph compression, In Proc. of the IEEE

Data Compression Conference, 53–62, 2007.

[29] N. Rashevsky. Life, information theory, and topology. Bull. Math. Biophysics, 17:229–

235, 1955.

[30] J. Rissanen, Complexity and Information Data, in Entropy, (eds. A. Graven, G. Keller

and G. Warnecke), Princeton University Press, 2003.

[31] S. Ross, Stochastic Processes, John Wiley & Sons, New York, 1983.

[32] S. A. Savari, Compression of words over a partially commutative alphabet, IEEE Trans-

actions on Information Theory, 50, 1425-1441, 2004.

[33] W. Schachinger, Limiting distributions for the costs of partial match retrievals in mul-

tidimensional tries. Random Structures and Algorithms, 17(3-4), 428–459, 2000.

[34] C.E. Shannon, A mathematical theory of communication, Bell System Technical Journal,

27, 379–423 and 623–656, 1948.

[35] C. Shannon. The lattice theory of information. IEEE Transaction on Information

Theory, 1:105–107, 1953.

30

[36] G. Simonyi, Graph Entropy: A Survey, DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, 2000.

[37] J. Sun, E.M. Bollt, and D. Ben-Avraham, Graph compression–save information by ex-

ploiting redundancy, Journal of Statistical Mechanics: Theory and Experiment, P06001,

2008.

[38] W. Szpankowski, Average Case Analysis of Algorithms on Sequences, John Wiley &

Sons, New York, 2001.

[39] E. Trucco. A note on the information content of graphs. Bull. Math. Biophysics, 18:129–

135, 1956.

[40] Gy. Turan, On the succinct representation of graphs, Discrete Applied Mathematics,

8(3), 289–294, 1984.

[41] F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens, The Context Tree Weighting

Method: Basic Properties, IEEE Transactions on Information Theory, 41, 653–664,

1995.

31

