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Abstract

We study structural properties of preferential attachment graphs (with parameter m ≥ 1
giving the number of attachment choices that each new vertex makes) which intervene in two
complementary algorithmic/statistical/information-theoretic problems involving the infor-
mation shared between a random graph’s labels and its structure: in structural compression,
we seek to compactly describe a graph’s structure by a bit string, throwing away its label
information; in the node arrival order recovery, we seek to recover node labels, given only a
graph structure.

In particular, we study the typical size of the automorphism group, as well as some shape
parameters (such as the number of linear extensions and height) of the directed version
of the graph, which in turn allows us to estimate the typical number of admissible labeled
representatives of a given graph structure. Our result on the automorphism group positively
settles a conjecture to the effect that, provided that m ≥ 3, preferential attachment graphs
are asymmetric with high probability, and completes the characterization of the number
of symmetries for a broad range of parameters of the model (i.e., for all fixed m). These
results allow us to give an algorithmically efficient, asymptotically optimal algorithm for
compression of unlabeled preferential attachment graphs. To show the optimality of our
scheme, we also derive new, precise estimates of the Shannon entropy of both the unlabeled
and labeled version of the model. Our results also imply inapproximability results for the
problem of node arrival order recovery. Finally, we give several new results on the degree
sequence of preferential attachment graphs, which may be of independent interest.

Index Terms: graph compression, symmetry, preferential attachment, random graphs
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1 Introduction

The purpose of this paper is to present mathematical results on structural parameters which are
fundamental to statistical and information-theoretic problems involving the information shared
between the labels and the structure of a random graph. We first describe two such problems,
which are in a sense complementary – compression of graph structures, wherein the goal is to
remove label information to produce a compact description of a graph structure, and recovery
of node arrival order in dynamic networks, wherein the goal is to recover label information by
examining a graph structure – and then explain the structural parameters involved in their
analysis, which form the focus of this work. In a nutshell, we study the question, how much
information about the labels of a (random) graph is contained in its structure?
Removing label information – structural compression: Formally, the labeled graph
compression problem is as follows: fix a distribution Gn on (multi)graphs on n vertices. We
would like to exhibit an efficiently computable source code [7] (Cn,Dn) for Gn, where Cn is a
function mapping graphs in the support of Gn to bit strings, in such a way as to minimize the
expected length of the output bit string when the input is a graph distributed according to
Gn, and Dn inverts Cn and is efficiently computable. A related problem, and one focus of our
paper, seeks to compress graph structures: here, the encoding function Cn is presented with a
multigraph G isomorphic to a sample from Gn, and Dn(Cn(G)) is only required to be a labeled
multigraph isomorphic to G (that is, the labels are “discarded”, leaving only the structural
information referred to in the title). We again insist on a source code with the minimum
possible expected code length (which is given by the Shannon entropy of the distribution on
unlabeled graphs induced by Gn, an often non-trivial quantity to estimate; we call this the
structural entropy of the model).

The structural compression problem is motivated by scenarios in which one only cares to
transmit or store information about the isomorphism type of a graph – e.g., its degree sequence,
number of occurrences of certain subgraphs, etc. In such scenarios, one does not care about
labeled graph information, such as the fact that, say, vertex 2 connects to vertex 7. Taking
advantage of this fact allows for a more compact description of the relevant information than
would result if we naively encoded the labeled graph. More philosophically, structural compres-
sion allows to quantify and encode the information contained in the shape of graph-structured
data.
Inferring label information – node arrival order recovery: A complementary problem,
node arrival order recovery in a dynamic graph, seeks to recover the labels of nodes of a graph
drawn from some distribution, given its structure. The motivation is as follows: many networks
in the real world, such as protein interaction and social networks, are constructed dynamically,
and it is potentially useful to be able to discover node and edge attributes which correlate with
time. Formally, the setting is as follows: a labeled graph G (where node j is thought of as the
jth node to be added to the graph) is drawn from a known (generally non-vertex-exchangeable)
distribution (such as preferential attachment or duplication-divergence), an unknown permuta-
tion π is drawn uniformly at random from Sn (the symmetric group on n letters), and we are
shown H = π(G). The task of an estimator is to infer (to the extent that it is possible) π−1

from H. For more details on the motivation and on lower bounds, see [11]. In that work, the
focus was on lower bounds on the probability of error and on the typical number of inversion
errors of any estimator, for a broad class of random graph models. These were phrased in terms
of structural parameters which we study in the present work.
Structural properties: A few structural quantities arise in both of the above problems: as
we will see, the structural entropy for a broad class of graph models involves the size of the
automorphism group of a sampled graph, as well as the typical number of positive-probability
labeled representatives of a given structure, and the number of positive-probability re-labelings
(i.e., permutations) of a sampled graph. The same quantities also give lower bounds on the
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probability of error and the expected number of inversion errors in the node arrival order
recovery problem.

We will focus on the analysis of these quantities for preferential attachment graphs1. Ad-
ditional structural properties will arise in the analysis of an asymptotically optimal structural
compression algorithm which we will give below.
Our contributions: Succinctly, our contributions in this work are threefold: (i) in the setting
of preferential attachment graphs, we analyze several structural parameters (explained more
precisely below) which arise in both of the motivating problems above and which may be of
independent interest; (ii) we use our structural results to precisely determine the entropies of
the preferential attachment distributions on both labeled graphs and their structures, giving the
fundamental limits of labeled and structural compression; (iii) we give an efficient, asymptot-
ically optimal structural compression algorithm whose analysis relies on our structural results
(an easy optimal labeled graph compression algorithm can be devised, using arithmetic coding).

The structural properties include the typical size of the automorphism group, as well as some
structural characteristics of the directed version of the graph (e.g., the number of admissible
labeled representatives of a given graph structure, which is related to the number of linear
extensions of the directed version, viewed as a partial order). Our result on the automorphism
group positively settles a conjecture in [13] to the effect that preferential attachment graphs
in which each node makes a sufficiently large number of choices are asymmetric with high
probability. This completes the characterization of the number of symmetries for a broad range
of parameters of the model: when the number of attachment choices m of each vertex is 1,
with high probability, there are many symmetries; when m = 2, the probability of symmetry is
asymptotically positive; and we show in this work that the only symmetry when m ≥ 3 is the
identity with high probability (see Theorem 2).

Regarding structural characteristics of the directed version of the graph (wherein edges
are directed from younger nodes to those older nodes that they choose), we analyze a natural
partitioning of the vertices into layers, which intervenes in the depth-first search process on
the directed graph and in the estimation of the number of admissible labeled representatives
of the graph (i.e., the number of isomorphic graphs which could have arisen by preferential
attachment): in particular, we show that the order of growth of the number of layers is Θ(log n)
with high probability (see Theorem 4), and almost all vertices occur within the first few layers
(Theorem 3). The result on the number of layers is important for our structural compression
algorithm (summarized in Theorem 8). The concentration result allows us to prove that the
number of admissible representatives is typically exp(n log n−O(n log log n)) (which should be
compared with n! = en logn−n+o(n)), which intervenes in our derivation of the structural entropy.

We use the above results to provide new, precise estimates of the Shannon entropy of both
the labeled and unlabeled models (Theorems 5 and 6).

Finally, in order to obtain our main results, we prove a number of results on the degrees of
nodes, as well as on the degree sequence, which may be of interest in other applications.

We provide details of proofs in the appendix. Full proofs can also be found in the journal
version [10] of this work. In this conference version, we also present new results on compression
algorithms and structural parameters relevant to their analyses.
Prior work: The general connection between structural compression and the automorphism
group of a random graph was pointed out in [5] in the case of unlabeled Erdős-Rényi graphs.
The relation between the node arrival order recovery problem, automorphisms, and feasible
labeled representatives was pointed out in [11] (but we connect the latter quantity to graph
compression in the present work).

1Preferential attachment models, though they have limitations, were initially devised to produce graphs with
power law degree distributions (frequently observed in the aforementioned applications) via a natural mechanism
[3] and continue to be well studied.

3



There has been significant work on compression of labeled graph and tree models in recent
years in both the information theory and computer science communities [16, 2, 1, 5, 8, 4]. In
the computer science community, the focus has been on algorithmic complexity, and no attempt
seems to have been made to compare with or derive fundamental information- theoretic limits.
Work in both communities has largely been restricted to labeled graphs or graphs with strong
edge independence assumptions. As we show, additional complications arise when the goal is
graph structure compression.

We also remark that there have been many extensions of the preferential attachment model
(as well as models which adopt completely different mechanisms) to provide better fits for
certain aspects of real networks: see, e.g., the web graph model [6]. It is likely that many of
our techniques and results adapt to certain parameter ranges of models extending preferential
attachment; we restrict to the plain preferential attachment model (which, in any case, continues
to be studied), since the analysis in even this case is quite involved, making it a natural first
step in the direction of a more comprehensive study of models with more parameters.

2 Main results

We now introduce the model that we consider and formulate the main results.
We say that a multigraph G on vertex set [n] = {1, 2, . . . , n} is m-left regular if the only

loop of G is at the vertex 1, and each vertex v, 2 ≤ v ≤ n, has precisely m neighbours in the
set [v− 1]. The preferential attachment model PA(m;n) is a dynamic model of network growth
which gives a probability measure on the set of all m-left regular graphs on n vertices, proposed
in [3]. More precisely, for an integer parameter m ≥ 1 we define the graph PA(m;n) with vertex
set [n] = {1, 2, . . . , n} using recursion on n in the following way: the graph G1 ∼ PA(m; 1) is a
single node with label 1 with m self-edges (these will be the only self-edges in the graph, and
we will only count each such edge once in the degree of vertex 1).

Inductively, to obtain a graph Gn+1 ∼ PA(m;n + 1) from Gn, we add vertex n + 1 and
make m random choices (with replacement) v1, ..., vm of neighbors in Gn as follows: for each
vertex w ≤ n (i.e., vertices in Gn),

Pr(vi = w|Gn, v1, ..., vi−1) =
degn(w)

2mn
,

where throughout the paper we denote by degn(w) the degree of vertex w ∈ [n] in the graph Gn

(in other words, the degree of w after vertex n has made all of its choices). Our proof techniques
adapt to tweaks of the model in which multiple edges are not allowed.

For any graph G, we denote by S(G) its unlabeled version (i.e., the equivalence class con-
sisting of all labeled graphs isomorphic to G). Our structural compression/entropy results will
be concerned with the unlabeled preferential attachment model, defined by first generating
G ∼ PA(m;n), then taking S(G).

2.1 Entropy estimates and structural results

Our first concern will be to derive the fundamental lower bound on the expected code length
for compression of unlabeled preferential attachment graphs, as described above. As usual, this
is given by the Shannon entropy of the distribution on unlabeled graphs induced by PA(m;n).
Recall that for a discrete random variable X with probability mass function p(·), its entropy
H(X) is given by H(X) = −EX [log p(X)]. We are thus interested in H(S(G)), where G ∼
PA(m;n).

By the chain rule for conditional entropy, H(G) = H(S(G))+H(G|S(G)). The second term,
H(G|S(G)), measures our uncertainty about the labeled graph if we are given its structure. We
will give a formula for H(G|S(G)) in terms of the automorphism group |Aut(G)| and another
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quantity, defined as follows: suppose that, after generating G, we relabel G by drawing a
permutation π uniformly at random from Sn, the symmetric group on n letters, and computing
π(G). Then conditioning on π(G) yields a probability distribution for possible values of π−1 = σ.
We can write H(G|S(G)) in terms of H(σ|σ−1(G)) = H(σ|σ(G)) (intuitively, the amount of
uncertainty about the value of the random permutation σ upon seeing the result of its application
to G) and E[log |Aut(G)|] using the chain rule for entropy, resulting in the following lemma
(which, in fact, is not specific to preferential attachment models).

Lemma 1 (Structural entropy for preferential attachment graphs). Let G ∼ PA(m;n) for fixed
m ≥ 1, and let σ be a uniformly random permutation from Sn. Then we have

H(G)−H(S(G)) = H(σ|σ(G)) − E[log |Aut(G)|]. (1)

To evaluate H(S(G)) and to analyze our compression algorithms, we are thus led to evaluate
E[log |Aut(G)|], H(σ|σ(G)), and H(G). The next few results give the structural properties that
we need for this. The term H(σ|σ(G)) has multiple interpretations: defining Γ(G) to be the
set of relabelings of G which produce positive-probability graphs under preferential attachment,
we have (at least asymptotically) H(σ|σ(G)) = E[log |Γ(G)|]. This, in turn, is related to the
number of linear extensions of the directed version of G, viewed as a partial order.
Structural results: The proof of Theorem 6 (our expansion of H(S(G))) below and the
analyses of our algorithms depend on the following structural results.

The next theorem (whose proof we sketch in Section 3 and which we fully prove in the
appendix) says that with high probability G has no symmetries, provided that m ≥ 3. As
mentioned in the introduction, this essentially completes the analysis of the precise behavior of
the number of symmetries of PA(m;n) for constant m. For most of this paper, we will focus
on the case m ≥ 3, since the behaviors for m = 1, 2 are qualitatively different (for m = 1, 2,
there are many symmetries with high probability and with asymptotically positive probability,
respectively).

Theorem 2 (Asymmetry for preferential attachment model). Let G ∼ PA(m;n) for fixed
m ≥ 3. Then, with high probability as n → ∞, |Aut(G)| = 1. More precisely, for m ≥ 3,
Pr(|Aut(G)| > 1) = O(n−δ), for some fixed δ > 0 and large n.

We will also state some results on the directed version of G (denoted by DAG(G)). This is
the directed multigraph defined on [n], with an edge from w to the older node v < w for each
edge between v and w in G. We can partition the vertices of DAG(G) into levels inductively
as follows: L1 consists of the vertices with in-degree 0 (i.e., with total degree m). Inductively,
Lj is the set of vertices incident on edges coming from vertices in Lj−1. Equivalently, a vertex
w is an element of some level ≥ j if and only if there exist vertices v1 < · · · < vj such with
v1 > w and the path vjvj−1 · · · v1w exists in G. The height of DAG(G) is then defined to be
the number of levels in this partition.

The next result (proven in Section 6.2) says that almost all of the vertices are concentrated
within the first few levels. This will be instrumental in the proof of Theorem 6.

Theorem 3. For any δ = δ(n) > 0, there exists ℓ = ℓ(δ) for which the number of vertices that
are not in the first ℓ layers of DAG(G) is at most δn, with high probability. In particular, we
can take ℓ ≥ 15m

2δ4
log(3/(2δ2)).

Next, we find the order of growth of the typical height of DAG(G), which will be useful in
the analysis of our structural compression algorithm. We give the proof in Section 4.

Theorem 4 (Height of DAG(G)). Consider Gn ∼ PA(m;n) for fixed m ≥ 1. Then, with
probability at least 1 − o(n−1), the height of DAG(Gn) is at most Cm log n, for some absolute
positive constant C.
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It is simple to show that with high probability the height is also lower bounded by Ω(log n).
Using these results, we will be able to connect H(σ|σ(G)) in (1) to a combinatorial parameter

of DAG(G) (the number of linear extensions of DAG(G), viewed as a partial order), which we
will be able to show is estimated by n log n + R(n), where C1n ≤ |R(n)| ≤ C2n log log n.

Entropy results: The final quantity to evaluate in (1) is H(G). Since, in many real appli-
cations, n is small enough that n log n is comparable to n, it is worthwhile (and theoretically
interesting) to provide a few terms in the asymptotic expansion of H(G). We give the proof of
the following theorem in the appendix.

Theorem 5 (Entropy of preferential attachment graphs). Consider G ∼ PA(m;n) for fixed
m ≥ 1. We have

H(G) = mn log n + m (log 2m− 1− logm!−A)n + o(n), (2)

where A = A(m) =
∑∞

d=m
log d

(d+1)(d+2) .

This entropy should be compared with the naive method of encoding these graphs, which
takes mn log(mn) = mn log n + mn logm space. As m→∞, compressing to the entropy saves
nm2 logm(1 + on,m(1)) bits over the naive encoding. For even moderate m (say, m = 5 and
n = 108), this is an appreciable difference. This is a more precise analysis than the one given
in [14], which only recovers the first term and the order of the second.

Using the above results, we finally have the following expression for H(S(G)).

Theorem 6 (Structural entropy of preferential attachment graphs). Let m ≥ 3 be fixed. Con-
sider G ∼ PA(m;n). We have

H(S(G)) = (m− 1)n log n + R(n), (3)

where R(n) satisfies Cn ≤ |R(n)| ≤ O(n log log n) for some nonzero constant C = C(m).

We sketch the proof of this in Section 5 and complete it in the appendix. Compared with
the naive encoding method which simply stores a labeled representative of the structure using
mn log(mn) bits, the structural entropy is smaller by n log n(1 + o(1)) bits.

2.2 Optimal compression algorithms

We established (via a variant of Shannon’s source coding theorem) in the previous section
that there exist source codes for unlabeled and labeled graph compression for PA(m;n) with
expected length within one bit of the entropies (3) and (2), respectively. In this section, we
give our results on efficient algorithms for compression and decompression of unlabeled/labeled
samples from PA(m;n) which asymptotically achieve these bounds.

First, we give an asymptotically optimal algorithm for compression of unlabeled graphs
(see Theorem 8 below): that is, given an arbitrary labeled representative G isomorphic to
G′ ∼ PA(m;n), we construct a code from which S(G′) can be efficiently recovered. We note
that the algorithm can be run on general undirected graphs; our optimality guarantee is under
the assumption that the input is generated by preferential attachment.

Structural compression algorithm. We first state our algorithm and analyze it in the case where
the model is preferential attachment with m self-loops on the oldest vertex. In the appendix
(Section 6.5), we explain the (simple) tweaks needed to generalize to the case where there are
no self-loops (and hence where one cannot necessarily uniquely identify the oldest vertex).

Our algorithm starts with finding a certain orientation of the edges of the input graph G to
produce a directed, acyclic graph D. In the case where G is isomorphic to a sample G′ from
PA(m;n) (say, G = π(G′)), we have D = π(DAG(G′)), and D is m-left regular.
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We accomplish this by a peeling procedure: at each step, consider the set Dmin of minimum-
degree nodes in the graph. We orient the edges incident on those nodes away from them, and
then recurse on the subgraph excluding the nodes in Dmin. This procedure terminates precisely
when there are no remaining vertices. For a general input graph G, which might not have arisen
by preferential attachment, there may be edges between vertices in Dmin. We orient edges from
nodes with larger labels to those with smaller ones. In general, this yields a directed, acyclic
graph (aside from self-loops).

That this yields the directed graph D = π(DAG(G′)) when the input is isomorphic to a
preferential attachment graph is spelled out in detail in Lemma 2 of [12]. Hence, we are free
to apply our structural results (such as Theorem 4) on DAG(G′). We remark that it is not too
hard to generalize our algorithm to tweaks of the model, since the only thing that is required is
that the height of the resulting directed graph be at most O(log n); such an orientation of the
edges of G exists with high probability, because of Theorem 4.

With this procedure in hand, the structural compression algorithm works as follows, on
input G:

1. Construct the directed version D = DAG(G) by the procedure just described.

2. Starting from the “bottom” vertex (i.e., the vertex with no out-edges except for self-
loops), we will do a depth-first search of D (following edges only from their destinations
to their sources). To the jth vertex in this traversal, for j = 1, ..., n, we will associate a
backtracking number Bj, which tells us how many steps to backtrack in the DFS process
after visiting the jth node; e.g., when there is at least one in-edge leading to an unvisited
node (so that we do not backtrack), Bj = 0.

Upon visiting vertex w from vertex v in the DFS, we do the following:

(a) Denote by k the maximum out-degree of D (which can be determined in a pre-
processing step, and which is equal to m if the input arises from preferential attach-
ment). Using ⌈log k⌉ bits, encode the out-degree dw of w (for preferential attachment,
dw = m, but we encode it for the sake of generality).

Encode the names of the dw − 1 vertex choices made by w, excluding one choice
to connect to vertex v. Here, the name of a vertex is the binary expansion of its
index in the DFS, which we can represent using exactly ⌈log n⌉ bits. These can be
determined in a preprocessing step, by doing an initial DFS to label the nodes with
their names.

(b) We need to know what happens after we visit vertex w: do we go forward in the
search, or is there nowhere left to go along the current route (i.e., do we need to
backtrack)? Suppose w is the jth vertex to be visited. Then we output an encoding
of Bj . We need to more precisely examine how we encode these numbers, since it
would be suboptimal to simply encode them in Θ(log n) bits. Lemma 7 below tells
us how to more efficiently perform this encoding.

3. For the purposes of decoding, we store (once, for the entire graph) the sequence of code
words for the code used for the backtracking numbers. This can be done in at most
O(n log log n) extra bits, at the beginning of the code. We also store k (the maximum
out-degree), which can be done with at most O(log n) bits.

Lemma 7. The backtracking numbers B1, ..., Bn can be encoded using a total of O(n log log n)
bits on average.

Proof. Consider a random variable X whose distribution is given by the empirical distribution
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of the collection B = {B1, ..., Bn}. That is,

PX(x) =
|{j : Bj = x}|

n
(4)

for each x. Note that this empirical distribution is itself a random variable. We will show that
E[n ·H(X)] = O(n log log n).

Denote by W the event that the number of levels in D is upper bounded by O(log n).
Under conditioning on this event, X can take on at most O(log n) values, which implies that
H(X) = O(log log n). Then we have

E[H(X)] ≤ E[H(X)|W ] + (1− Pr(W ))E[H(X)|¬W ]

≤ E[H(X)|W ] + (1− Pr(W )) log n = O(log log n),

where we have used Theorem 4 to upper bound 1− Pr(W ).
We can thus construct a prefix code (once, for the entire graph) for the observed values

of Bi, whose empirical average length is given by
∑

x : ∃j,Bj=x ℓxPX(x) ≤ H(X) + 1, where ℓx
denotes the length of the code word for x. Now, recalling the definition of PX(x) in (4), this
implies

E





∑

x : ∃j,Bj=x

ℓx|{j : Bj = x}|



 ≤ nE[H(X)] + n = O(n log log n).

This completes the proof.

The code for S(G) is uniquely decodable, as shown by the decompression algorithm sketched
in Section 6.5. Furthermore, its expected length is at most (m − 1)n log n + O(n log log n),
which recovers the first term of the structural entropy and bounds the second. Let us analyze
the running time. Construction of the Huffman code for the backtracking numbers takes time
O(n log n), and each step of the DFS takes time at most O(m log n). Thus, the running time is
O(mn log n).

We have thus proven the following:

Theorem 8 (Structural compression). There exists an algorithm (given above) which, on input
a graph G isomorphic to G′ ∼ PA(m;n), runs in time O(mn log n) and outputs a code of ex-
pected length (m−1)n log n+O(n log log n) from which we can recover S(G) in time O(mn log n).
If self-loops are removed from G′ and G (so that the first vertex is not easy to identify), then
the same code length can be achieved in time O(mn2 log n).

Note, from Theorem 6, that our algorithm is optimal at least up to the first term of the
lower bound, and we explicitly bound the second term.

We note that it is simple to devise an optimal labeled compression algorithm via arithmetic
coding. We omit the details.

3 Proof of Theorem 2

We only sketch the proof of the asymmetry result here. The full proof is in the appendix. Let
us define first two properties, A and B of PA(m;n) which are crucial for our argument. Here
and below we set, for convenience, k = k(n) = n∆ and k̃ = k̃(n) = n∆′

for some small enough
0 < ∆ < ∆′ to be chosen.
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(A) PA(m;n) has property A if no two vertices t1, t2, where k < t1 < t2, are adjacent to the
same m neighbors from the set [t1 − 1].

(B) PA(m;n) has property B if the degree of every vertex s ≤ k̃ is unique in PA(m;n), i.e.
for no other vertex s′ of PA(m;n) we have degn(s) = degn(s′).

It is easy to see that

Pr(|Aut(PA(m;n))| = 1) ≥ Pr(PA(m;n) ∈ A ∩B) , (5)

and so Pr(|Aut(PA(m;n))| > 1) ≤ Pr(PA(m;n) /∈ A) + Pr(PA(m;n) /∈ B) . Indeed, let us
suppose that PA(m;n) has both properties A and B, and σ ∈ Aut(PA(m;n)). Let us assume
also that σ is not the identity, and let t1 be the smallest vertex such that t2 = σ(t1) 6= t1. Note
that B implies that for all s ∈ [k] we have σ(s) = s, so that we must have k < t1 < t2. On
the other hand from A it follows that t1 and t2 = σ(t1) have different neigbourhoods in the
set [k] which consists of fixed point of σ. This contradiction shows that σ is the identity, i.e.
|Aut(PA(m;n))| = 1 which proves (5).

Thus, in order to prove Theorem 2 it is enough to show that both probabilities
Pr(PA(m;n) /∈ A) and Pr(PA(m;n) /∈ B) tend to 0 polynomially fast as n→∞.

Let us study first the property A. Our task is to estimate from above the probability that
there exist vertices t1 and t2 such that k < t1 < t2, which select the same m neighbours (which,
of course, belong to [t1 − 1]). Thus we conclude

Pr(PA(m;n) /∈ A) ≤
∑

k<t1<t2

Pr(t1, t2 choose the same neighbours in [t1 − 1])

≤
∑

k<t1<t2

∑

1≤r1≤r2...≤rm<t1

Pr(t1, t2 choose r1, ..., rm) . (6)

The event in the last expression is an intersection of dependent events but, conditioned on the
degrees degtℓ(rs) of the chosen vertices rs at times t1, t2, the choice events become independent.

Let us define D as an event that for some ℓ = 1, 2, and s = 1, 2, . . . ,m, degtℓ(rs) ≤
√

tℓ/rs(log tℓ)
3 . Then from Lemma 15 it follows that Pr(PA(m;n) /∈ D) ≤ t

−10m/∆
1 . Con-

ditioning on D and further manipulation shows that for k < t1 < t2 we get

Pr(t1, t2 choose r1, ..., rm) ≤ (log t2)
6m

2
∏

ℓ=1

m
∏

s=1

1√
tℓrs

+ n−10m

Thus, (6) becomes, again, after some work, Pr(PA(m;n) /∈ A) ≤ k2−m(log k)9m + n−1. Hence
Pr(PA(m;n) /∈ A) ≤ n∆(2.0001−m), which is polynomially decaying since m ≥ 3. We remark
that this holds for arbitrary ∆ > 0.

Next we show that, with probability close to 1, the k̃ = n∆′

oldest vertices of PA(m;n)
have unique degrees and so these are fixed points of every automorphism. The key ingredient
of our argument is Lemma 20.

To estimate the probability that PA(m;n) /∈ B, we reason as follows: from Lemma 20 we
know that with probability at least 1 − O(n−c), for some positive constant c, the degrees of
all vertices smaller than k̃′2 = n2∆′′

are pairwise different (provided that we choose ∆′′ small
enough to satisfy Lemma 20).

Furthermore, using Corollary 1, one can deduce that we can choose ∆′ > 0 small enough so
that, with probability at least 1−O(n−c) (for another positive constant c > 0) all vertices s < k̃
have degrees larger than those of all vertices t > k̃′2 (in particular using the left tail bound to
show that vertices < k̃ all have high degree and the right tail bound to show that vertices > k̃′2

have low degree whp). Consequently, with probability 1 − O(n−c) degrees of vertices from [k̃]
are unique, i.e. PA(m;n) /∈ B.

Finally, Theorem 2 follows directly from (11) and our estimates for Pr(PA(m;n) /∈ A) and
Pr(PA(m;n) /∈ B), provided that we choose ∆ < ∆′.
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4 Proof of Theorem 4

Let us start with the following, surprising at first sight, observation.

Fact 9. Let w < v. Then the degree degv(w) as well as the probability that v is adjacent to w
does not depend on the structure of the graph induced by the first w vertices.

Let pm(n, k) denote the probability that DAG(Gn) contains a path of length k. From Fact 9
and Corollary 2, it follows that

pm(n, k) ≤
∑

v0<v1<···<vk

k
∏

i=1

Pr(vi−1 → vi) ≤
∑

v0<v1<···<vk

k
∏

i=1

5m log(3vi/vi−1)
√
vi−1vi

≤
n−k
∑

v0=1

1√
v0

k
∏

i=1

n−k−i
∑

vi=vi−1+1

5m log(3vi/vi−1)

vi
. (7)

In order to estimate the above sum we split all the vertices v1, . . . , vk of the path P into
several classes. Namely we say that a vertex vi is of type t in P if t is the smallest natural
number such that vi/vi−1 ≤ (1 + a)t, where a is a small constant to be chosen later, i.e.
t = ⌈log(vi/vi−1)/ log(1 + a)⌉. Then, given vi−1, the contribution of terms related to vi can be
estimated from above by

vi−1(1+a)t
∑

vi=vi−1(1+a)t−1

5m log(3vi/vi−1)

vi
≤ 5m log[(1 + a)] log[3(1 + a)t] ≤ αt , (8)

where, to simplify notation, we put α = 5m log(1 + a) log(3(1 + a)). Let st denote the number
of vertices of type t in P . Note that

∏

t≥2

[

(1 + a)t−1
]st ≤ n and so

∑

t≥2

tst ≤ 2
∑

t≥2

(t− 1)st ≤
2 log n

log(1 + a)
. (9)

Let us set J = 2 log n/log(1 + a). Thus, we arrive at the following estimate for pm(n, k)

pm(n, k) ≤
n−k
∑

v0=1

1√
v0

(

k

s1

)

αs1
∑

∑
t stt≤J

(

k − s1
s2, s3, ..., sk

) k
∏

t≥2

(αt)st

≤ 3
√
n

(

k

s1

)

αs1
∑

∑
t stt≤J

(

k − s1
s2, s3, ..., sk

)

exp
(

∑

t≥2

st log(αt)
)

≤ 3
√
n

(

k

s1

)

αs122J max∑
t stt≤J

exp
(

∑

t≥2

st log
(eαt(k − s1)

st

))

.

In order to estimate the expression σ(J, S) = max∑
t stt≤J exp

(

∑

t≥2 st log
(

eαtS
st

))

where

S =
∑

t≥2 st, we split the set of all t’s into two parts. Thus, let T1 = {t : log(eαtS/st) ≤ t} and
T2 = {2, 3, . . . , k} \ T1 . Then, clearly,

max∑
t stt≤J

exp
(

∑

t∈T1

st log
(eαtS

st

))

≤ max∑
t stt≤J

exp
(

∑

t∈T1

stt
)

≤ exp(J) .

Observe that for every t ∈ T2 we have log(eSαt/st) ≥ t and so st ≤ eαte−tS. It is easy to check

that then st log
(

eαtS
st

)

≤ 6 · 2−tS , so

max∑
t stt≤J

exp
(

∑

t∈T2

st log
(eαtS

st

))

≤ max∑
t stt≤J

exp
(

6S
∑

t∈T2

2−t
)

≤ exp(3S) ≤ exp(3J) .

10



Thus, σ(J, S) ≤ exp(4J) , and, since s1 = k − S ≥ k − J ,

pm(n, k) ≤ 3
√
n

(

k

s1

)

αs122Jσ(J, k − s1) ≤ 3
√
n2kαk−J exp(6J)

≤ 3 exp(log n + k + (k − J) log α + 6J) .

Since for 0 < a < 1 we have a/2 < log(1 + a) < a, if we set a = 1/(310m), then α < 1/61 and
log α < −4. Now let us recall that J = 2 log n/log(1 + a) and k = 5000m log n > 4J . Thus,

pm(n, k) ≤ 3 exp(log n + k + (k − J) log α + 6J)

≤ 3 exp(log n + k − 3k + 3k/2) = exp(log n− k/2) = o(n−1) .

5 Proof of Theorem 6

We only sketch the derivation of the structural entropy here. The full proof is in the appendix.
We start from Lemma 1. Since Theorem 5 precisely gives H(G), and Theorem 2 implies

that E[log |Aut(G)|] = o(n), it remains to estimate H(σ|σ(G)) for a uniformly random σ ∈
Sn. To do this, we show that it can be written in terms of a combinatorial parameter of the
directed version of G. To describe it, we make a few (somewhat nontrivial) observations: (i)
the probability assigned to any graph g by PA(m;n) only depends on its unlabeled directed
graph structure; (ii) for any unlabeled graph generated by PA(m;n), there is precisely one
positive-probability orientation of the edges (i.e., one unlabeled directed graph structure). The
latter is a consequence of the fact that our model starts with a vertex having m self-edges; the
full proof does not rely on such small details of the model, and in fact replaces this observation
with the more general one that there are at most 2O(n) unlabeled directed graphs associated
with a given unlabeled, undirected graph.

From observation (ii), we find that H(G|S(G)) = H(DAG(G)|S(G)) + H(G|DAG(G)) =
H(G|DAG(G)), since DAG(G) is fully determined by S(G). Then observation (i) says that
H(G|DAG(G)) = E[log |Adm(G)|], where we define Adm(G) to be the set of labeled graphs
isomorphic to G which could have arisen by preferential attachment (we call these the admissible
representatives of S(G)). More formally, a labeled graph could have arisen by preferential
attachment if, for any t ≤ n, the subgraph induced by the vertices {1, ..., t} is such that the
degree of vertex t is m.

Now, |Adm(G)| can be written in terms of |Aut(G)| and another quantity: |Γ(G)|, which is
the set of permutations π ∈ Sn such that π(G) ∈ Adm(G); alternatively, viewing DAG(G) as a
partial order, this is the number of linear extensions of DAG(G). Precisely, we have

E[log |Adm(G)|] = E[log |Γ(G)|] − E[log |Aut(G)|],

which implies that H(σ|σ(G)) = E[log |Γ(G)|]. Thus, to estimate H(S(G)), it suffices to esti-
mate E[log |Γ(G)|]. A trivial upper bound is E[log |Γ(G)|] ≤ log n! = n log n − n + o(n). The
lower bound follows by noting that any product of permutations that only permute vertices
within levels is a member of Γ(G). That is, recalling that Lj denotes the jth level of DAG(G),
|Γ(G)| ≥ ∏j≥1 |Lj |!. It follows from Theorem 3 and some work that this lower bound, in turn,
is at least exp(n log n−O(n log log n)). Putting all of this together completes the proof.
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6 Appendix

6.1 Proof of Theorem 2

In this section we shall give a complete proof of Theorem 2. Let us define first two properties, A
and B of PA(m;n) which are crucial for our argument. Here and below we set, for convenience,
k = k(n) = n∆ and k̃ = k̃(n) = n∆′

for some small enough 0 < ∆ < ∆′ to be chosen.

(A) PA(m;n) has property A if no two vertices t1, t2, where k < t1 < t2, are adjacent to the
same m neighbors from the set [t1 − 1].

(B) PA(m;n) has property B if the degree of every vertex s ≤ k̃ is unique in PA(m;n), i.e.
for no other vertex s′ of PA(m;n) we have degn(s) = degn(s′).

It is easy to see that

Pr(|Aut(PA(m;n))| = 1) ≥ Pr(PA(m;n) ∈ A ∩B) , (10)

and so
Pr(|Aut(PA(m;n))| > 1) ≤ Pr(PA(m;n) /∈ A) + Pr(PA(m;n) /∈ B) . (11)

Indeed, let us suppose that PA(m;n) has both properties A and B, and σ ∈ Aut(PA(m;n)).
Let us assume also that σ is not the identity, and let t1 be the smallest vertex such that
t2 = σ(t1) 6= t1. Note that B implies that for all s ∈ [k] we have σ(s) = s, so that we must
have k < t1 < t2. On the other hand from A it follows that t1 and t2 = σ(t1) have different
neigbourhoods in the set [k] which consists of fixed point of σ. This contradiction shows that σ
is the identity, i.e. |Aut(PA(m;n))| = 1 which proves (10).

Thus, in order to prove Theorem 2 it is enough to show that both probabilities
Pr(PA(m;n) /∈ A) and Pr(PA(m;n) /∈ B) tend to 0 polynomially fast as n→∞.

Let us study first the property A. Our task is to estimate from above the probability that
there exist vertices t1 and t2 such that k < t1 < t2, which select the same m neighbours (which,
of course, belong to [t1 − 1]). Thus we conclude

Pr(PA(m;n) /∈ A) ≤
∑

k<t1<t2

Pr(t1, t2 choose the same neighbours in [t1 − 1])

≤
∑

k<t1<t2

∑

1≤r1≤r2...≤rm<t1

Pr(t1, t2 choose r1, ..., rm) . (12)

The event in the last expression is an intersection of dependent events but, if we condition on
the degrees degtℓ(rs) of the chosen vertices rs at times t1, t2, then the choice events become
independent.

Let us define D as an event that for some ℓ = 1, 2, and s = 1, 2, . . . ,m,

degtℓ(rs) ≤
√

tℓ/rs(log tℓ)
3 .

Then from Lemma 15 it follows that

Pr(PA(m;n) /∈ D) ≤ t
−10m/∆
1 .

Consequently, for k < t1 < t2 we get

Pr(t1, t2 choose r1, ..., rm) ≤ Pr(t1, t2 choose r1, ..., rm
∣

∣D) + Pr(¬D)

≤
2
∏

ℓ=1

m
∏

s=1

√

tℓ/rs log3 tℓ
2tℓ

+ t
−10m/∆
1

≤ (log t2)
6m

2
∏

ℓ=1

m
∏

s=1

1√
tℓrs

+ n−10m
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Thus, (12) becomes

Pr(PA(m;n) /∈ A) ≤
∑

k<t1<t2

(log t2)
6m

∑

1≤r1≤r2...≤rm<t1

2
∏

ℓ=1

m
∏

s=1

1√
tℓrs

+ n−1

≤
∑

k<t1<t2

(t1t2)
−m/2(log t2)

6m
∑

1≤r1≤r2...≤rm<t1

m
∏

s=1

1

rs
+ n−1

≤
∑

k<t1

t−m+1
1 (log t1)

9m + n−1

≤ k2−m(log k)9m + n−1

Hence
Pr(PA(m;n) /∈ A) ≤ n∆(2.0001−m) , (13)

which is polynomially decaying since m ≥ 3. We remark that this holds for arbitrary ∆ > 0.
In this section we show that, with probability close to 1, the k̃ = n∆′

oldest vertices of
PA(m;n) have unique degrees and so these are fixed points of every automorphism. The key
ingredient of our argument is Lemma 20.

To estimate the probability that PA(m;n) /∈ B, we reason as follows: from Lemma 20 we
know that with probability at least 1 − O(n−c), for some positive constant c, the degrees of
all vertices smaller than k̃′2 = n2∆′′

are pairwise different (provided that we choose ∆′′ small
enough to satisfy Lemma 20).

Furthermore, using Corollary 1, one can deduce that we can choose ∆′ > 0 small enough so
that, with probability at least 1−O(n−c) (for another positive constant c > 0) all vertices s < k̃
have degrees larger than those of all vertices t > k̃′2 (in particular using the left tail bound to
show that vertices < k̃ all have high degree and the right tail bound to show that vertices > k̃′2

have low degree whp). Consequently, with probability 1 − O(n−c) degrees of vertices from [k̃]
are unique, i.e. PA(m;n) /∈ B.

Finally, Theorem 2 follows directly from (11) and our estimates for Pr(PA(m;n) /∈ A) and
Pr(PA(m;n) /∈ B), provided that we choose ∆ < ∆′.

6.2 Proof of Theorem 3

We define X = X(ǫ, k) to be the number of vertices w > ǫn that are at level ≥ k in DAG(G).
In other words, w is counted in X if there exist vertices v1 < v2 < · · · < vk for which w < v1
and the path vk · · · v1w exists in DAG(G). We have the following lemma bounding E[X]:

Lemma 10. For any ǫ = ǫ(n) > 0, there exists k = k(ǫ) for which E[X(ǫ, k)] ≤ ǫn. In
particular, we can take any k satisfying k ≥ 15m

ǫ2
log(3/ǫ).

Proof. Suppose that w > ǫn. We want to upper bound the probability that there exist vertices
v1 < · · · < vk, with w < v1, such that there is a path vk · · · v1w in G. Applying Corollary 2,
this probability is upper bounded by

(

n

k

)

· ((5m/ǫ) log(3/ǫ))k

nk
≤ e ((5m/ǫ) log(3/ǫ))k

kk

Now, it is sufficient to show that we can choose k so that this is ≤ ǫ. In fact, we can choose
k ≥ 3 · 5mǫ2 log(3/ǫ). This completes the proof.

To complete the proof, we have to extend the above to remove the assumption that vertices
are > ǫn (i.e., we need to study Y = Y (k), the number of vertices w ≥ 1 that are at level ≥ k
in DAG(G)). This is a simple consequence of the above lemma, the fact that X ≤ Y ≤ X + ǫn
with probability 1, and Markov’s inequality. This completes the proof.
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6.3 Proof of Theorem 5

In this section we prove Theorem 5 on the entropy of labeled preferential attachment graphs.
We start by noting that, using the chain rule for entropy, we can write

H(Gn) =
n
∑

t=1

H(vt+1|Gt), (14)

where we denote by vt+1 the multiset of connection choices of vertex t + 1 (i.e., a value for
vt+1 takes the form of a multiset of m vertices < t + 1). This follows because Gn corresponds
precisely to exactly one n-tuple (v1, v2, ..., vn) of vertex choice multisets.

To calculate the remaining conditional entropy for each t, we first note that it would be
simpler if vt+1 were a sequence of vertex choices, rather than a multiset (i.e., an equivalence
class of sequences). First, let us denote by ṽt+1 the sequence of m choices made by vertex t+ 1.
I.e., ṽt+1,1 is the first choice that it makes, and so on. Then we have the following observation:

H(ṽt+1|Gt) = H(ṽt+1, vt+1|Gt) = H(vt+1|Gt) + H(ṽt+1|vt+1, Gt), (15)

where the first equality is because vt+1 is a deterministic function of ṽt+1, and the second is by
the chain rule for conditional entropy. We thus have

H(vt+1|Gt) = H(ṽt+1|Gt)−H(ṽt+1|vt+1, Gt). (16)

The second term on the right-hand side is at most a constant with respect to n, so its total
contribution to H(Gn) is at most O(n). We will estimate it precisely later, but will first compute
H(ṽt+1|Gt).

By definition of conditional entropy,

H(ṽt+1|Gt) =
∑

G on t vertices

Pr(Gt = G)H(ṽt+1|Gt = G).

Next, note that, conditioned on Gt = G, the m choices that vertex t+ 1 makes are independent
and identically distributed. So the remaining conditional entropy is just m times the conditional
entropy of a single vertex choice made by t + 1. Using the definition of entropy (as a sum over
all possible vertex choices, from 1 to t) and grouping together terms corresponding to vertices
of the same degree (which all have the same conditional probability), we get

H(ṽt+1|Gt) = m
∑

G

Pr(Gt = G)

t
∑

d=m

Nd(G)pt,d log(1/pt,d), (17)

where Nd(G) denotes the number of vertices of degree d in the fixed graph G, and we define
(using the notation of [14])

pt,d =
d

2mt
.

Note that the d sum starts from d = m, since m is the minimum possible degree in the graph.
Next, we bring the G sum inside the d sum, and we note that

∑

G

Pr(Gt = G)Nd(G) = E[Nd(G)],

which we denote by N̄t,d.

15



Thus, we can express H(ṽt+1|Gt) as

H(ṽt+1|Gt) = m

t
∑

d=m

N̄t,dpt,d log(1/pt,d), (18)

Plugging this into (14), we get

H(Gn) +

n
∑

t=1

H(ṽt+1|vt+1, Gt) = m

n
∑

t=1

t
∑

d=m

N̄t,dpt,d log(1/pt,d). (19)

Now, we split the inner sum into two parts:

H(Gn) +

n
∑

t=1

H(ṽt+1|vt+1, Gt) = m

n
∑

t=1

⌊t1/15⌋
∑

d=m

N̄t,dpt,d log(1/pt,d)

+ m
n
∑

t=1

t
∑

d=⌊t1/15⌋+1

N̄t,dpt,d log(1/pt,d). (20)

The first part provides the dominant contribution, of order Θ(n log n), and we will show that
the second part is o(n), due to the smallness of N̄t,d.

Estimating the small d terms: To estimate the contribution of the first sum, we apply
Lemma 18 to estimate N̄t,d and we use the definition of pt,d:

n
∑

t=1

⌊t1/15⌋
∑

d=m

N̄t,dpt,d log(1/pt,d)

= 2m(m + 1)
n
∑

t=1

t

⌊t1/15⌋
∑

d=m

d

d(d + 1)(d + 2) · 2mt
log

(

2mt

d

)

+
n
∑

t=1

⌊t1/15⌋
∑

d=m

Cd

2mt
log(2mt/d)

= 2m(m + 1)

n
∑

t=1

t

⌊t1/15⌋
∑

d=m

d

d(d + 1)(d + 2) · 2mt
log

(

2mt

d

)

+ o(n)

= (m + 1)

n
∑

t=1

⌊t1/15⌋
∑

d=m

(log t + log 2m− log d)

(d + 1)(d + 2)
+ o(n). (21)

Here, the second sum on the right-hand side of the first equality is the error in approximation
incurred by invoking Lemma 18. It is easily seen to be o(n). The final equality is simple algebra.

We can further simplify this expression using the following identity: for any α > m,

α
∑

d=m

1

(d + 1)(d + 2)
=

1

m + 1
−Oα→∞(1/α). (22)

This can be seen by expressing the dth term of the sum as its partial fraction decomposition,
and then noting cancellations in the resulting expression.

Applying this identity to (21) yields

n
∑

t=1

⌊t1/15⌋
∑

d=m

N̄t,dpt,d log(1/pt,d) = log n! + (log 2m−A)n + o(n),

where we define A as in the statement of Theorem 5. Here, the error term from (22) is captured
in the o(n) term.
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Upper bounding the large d terms: Our goal is now to show that the second sum of
(20), which we denote by E, is o(n).

We apply Lemma 19 to upper bound N̄t,d, which yields

E ≤ C

n
∑

t=1

t
∑

d=⌊t1/15⌋+1

t

d3
· d

2tm
log(2tm/d) ≤ C ′

n
∑

t=1

log t

t
∑

d=⌊t1/15⌋+1

d−2,

where we canceled factors in the numerator and denominator of each term, and we upper
bounded the expression inside the logarithm using the fact that d > ⌊t1/15⌋.

The inner sum is easily seen to be O(t−1/15), so that, finally,

E ≤ C ′
n
∑

t=1

t−1/15 log t = o(n),

as desired.
We thus end up with

n
∑

t=1

H(ṽt+1|Gt) = m log n! + m(log 2m−A)n + o(n). (23)

Estimating H(ṽt+1|vt+1, Gt): The final step is to estimate the contribution of
H(ṽt+1|vt+1, Gt). Let Ct denote the set of multisets of m elements coming from [t] having
no repeated elements. Then we can write

H(ṽt+1|vt+1, Gt) =
∑

G,v∈Ct

Pr(Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G)

+
∑

G,v/∈Ct

Pr(Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G). (24)

The first sum can be estimated as follows: we trivially upper bound

H(ṽt+1|vt+1 = v,Gt = G) ≤ logm!

and take it outside the sum. This gives
∑

G,v∈Ct

Pr(Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G) ≤ logm!
∑

G,v∈Ct

Pr(Gt = G, vt+1 = v)

= logm! Pr(vt+1 ∈ Ct).

Now we can upper bound the remaining probability in this expression by noting that with high
probability, the maximum degree in Gt is Õ(

√
t) [9]. Using this fact, we have, for arbitrarily

small fixed ǫ > 0,

Pr(vt+1 ∈ Ct) = Pr(vt+1 ∈ Ct,max. degree of Gt ≤ Ct1/2+ǫ)

+ Pr(vt+1 ∈ Ct,max. degree of Gt > Ct1/2+ǫ) (25)

The first term is at most

Pr(vt+1 ∈ Ct,max. degree of Gt ≤ Ct1/2+ǫ) ≤ 1−
(

1− Ct1/2+ǫ

2mt

)m−1

= 1−
(

1−Θ(t−1/2+ǫ/m)
)m−1

= Θ(t−1/2+ǫ).
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Now, the second term of (25) is at most

Pr(vt+1 ∈ Ct,max. degree of Gt > Ct1/2+ǫ) ≤ Pr(max. degree of Gt > Ct1/2+ǫ)

= O(e−tǫ)

and is thus negligible compared to the first term.
Thus, the first sum in (24) is at most

∑

G,v∈Ct

Pr(Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G) = O(t−1/2+ǫ). (26)

We will now show that the second sum in (24), over all multisets v of size m with no repeated
elements, is (1 + o(1)) log m!. This is trivial, since vertex t + 1 is equally likely to have chosen
the elements of v in any order. Thus,

H(ṽt+1|vt+1 = v,Gt = G) = logm!. (27)

This implies that

∑

G,v/∈Ct

Pr(Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G) = logm! · Pr(vt+1 /∈ Ct)

= logm!(1−O(t−1/2+ǫ)).

Thus,

H(ṽt+1|vt+1, Gt) = logm!(1 + O(t−1/2+ǫ)).

Summing over all t yields a total contribution of

−
n
∑

t=1

H(ṽt+1|vt+1, Gt) = −n logm! + o(n). (28)

Putting everything together: From (19), (23), and (28), we get

H(Gn) = mn log n + m(log 2m− 1−A− logm!)n + o(n), (29)

where A is as in the statement of Theorem 5.

6.4 Proof of Theorem 6

We now prove the claimed estimate of the structural entropy.
We first show that the contribution of E[log |Aut(G)|] is negligible (in particular, o(n)).

From Theorem 2, we immediately have

E[log |Aut(G)|] ≤ n log n · n−δ = o(n).

We now move on to estimate H(σ|σ(G)), which we will show to satisfy

n log n−O(n log log n) ≤ H(σ|σ(G)) ≤ n log n− n + O(log n). (30)

To go further, we need to define a few sets which will play a role in our derivation. We define
the admissible set Adm(S) of a given unlabeled graph S to be the set of all labeled graphs g
with S(g) = S such that g could have been generated according to the preferential attachment
model with given parameters. That is, denoting by gt the subgraph of g induced by the vertices
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1, ..., t for each t ∈ [n], we have that the degree of vertex t in gt is exactly m. We can similarly
define Adm(g) = Adm(S(g)). Then, for a graph g, we define Γ(g) to be the set of permutations
π such that π(g) ∈ Adm(g). We will also define, for an arbitrary set of graphs B,

AdmB(g) = Adm(g) ∩B, ΓB(g) = {π : π(g) ∈ AdmB(g)}.

For a given graph g, these sets are related by the following formula (the simple proof of this
fact is a tweak of that given in [11]):

|AdmB(g)| = |ΓB(g)|
|Aut(g)| . (31)

We next need to consider some directed graphs associated with G: we start with DAG(G),
which is defined on the same vertex set as G; there is an edge from u to v < u in DAG(G) if
and only if there is an edge between u and v in G (in other words, DAG(G) is simply the graph
G before we remove edge directions). Note that, if we ignore self-loops, DAG(G) is a directed,
acyclic graph.

We denote the unlabeled version of DAG(G) (i.e., the set of all labeled directed graphs with
the same structure as DAG(G)) by UDAG(G). We will also, at times, abuse notation and write
UDAG(G) as the set of all labeled, undirected graphs with the same structure as UDAG(G)
and with labeling consistent with UDAG(G) as a partial order.

We have the following observations regarding these directed graphs.

Lemma 11. For any two graphs g1, g2 satisfying UDAG(g1) = UDAG(g2), we have

Pr(G = g1) = Pr(G = g2).

Proof. This can be seen by deriving a formula for the probability assigned to a given graph g
by the model and noting that it only depends on the structure and admissibility (a graph is
said to be admissible if it is in Adm(S) for some unlabeled graph S). If g is not admissible,
then there exists some t ∈ [n] such that the degree of vertex t at time t is not equal to m. This
has probability 0, so Pr(G = g) = 0.

Now, if g is an admissible graph, then we can write Pr(G = g) as a product over possible
degrees of vertices at time n: let degg(v) denote the degree of vertex v in g. We consider the
immediate ancestors (i.e., the parents, the vertices that chose to connect to v) of v in DAG(g),
denoting the number of edges that they supply to v by d1(v), ..., dk(v)(v), where k(v) is the
number of parents of v. We also denote by Kg(v) the number of orders in which the parents of
v could have arrived in the graph (which is only a function of UDAG(g). Then we can write
Pr(G = g) as follows:

Pr(G = g) =

∏

d≥m

∏

v : degg(v)=d Kg(v)
∏kg(v)

j=1

(m
j

)

(m + d1(v) + · · · dj−1(v))dj (v)

∏n−1
i=1 (2mi)m

. (32)

Here, each factor of the v product corresponds to the sequence of d−m choices to connect to
vertex v, which can be ordered in a number of ways determined by the structure of DAG(g).
The innermost product gives the contribution of each such choice. Since this formula is only in
terms of the degree sequence of the graph and UDAG(g), two graphs that are admissible and
have the same unlabeled DAG must have the same probability, which completes the proof.

Lemma 12. Fix an unlabeled graph S on n nodes with Pr(S(G) = S) > 0 with some fixed
m ≥ 1. Then the number of distinct unlabeled directed graphs with undirected structure S is at
most eΘ(n).
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Proof. Observe that the number of edges in S is Θ(n), as it arises with positive probability
from PA(m;n) and m is fixed.

Then note that each of the Θ(n) edges may be given one of two orientations, resulting in at
most 2Θ(n) distinct directed graphs, which completes the proof.

The next lemma shows that H(σ|σ(G)) may be expressed in terms of the quantities just
defined.

Lemma 13. Fix m ≥ 1 and consider G ∼ PA(m;n). Let σ ∈ Sn be a uniformly random
permutation. Then

H(σ|σ(G)) = E[log |ΓUDAG(G)(G)|] + O(n). (33)

Proof. First, we give an alternative representation of H(σ|σ(G)). Recall that H(G|S(G)) =
H(σ|σ(G))−E[log |Aut(G)|]. The plan is to derive an alternative expression for H(G|S(G)) as
follows: by the chain rule for entropy, we have

H(G|S(G)) = H(G,UDAG(G)|S(G))

= H(UDAG(G)|S(G)) + H(G|UDAG(G))

= O(n) + H(G|UDAG(G)).

Here, the last equality is a result of Lemma 12. Now, by Lemma 11, we have

H(G|UDAG(G)) = E[log |AdmUDAG(G)(G)|] = E[log |ΓUDAG(G)|]− E[log |Aut(G)|] + O(n),

where the second equality is an application of (31). This completes the proof.

Remark 1. Note that Lemma 13 is robust to small variations in the model.

Now, to calculate H(σ|σ(G)), it thus remains to estimate E[log |ΓUDAG(G)(G)|].
We will lower bound |ΓUDAG(G)(G)| in terms of the sizes of the levels of DAG(G), defined

as follows: L1 consists of the vertices with in-degree 0 (i.e., with total degree m). Inductively,
Lj is the set of vertices incident on edges coming from vertices in Lj−1. Equivalently, a vertex
w is an element of some level ≥ j if and only if there exist vertices v1 < · · · < vj such with
v1 > w and the path vjvj−1 · · · v1w exists in G.

Then it is not too hard to see that any product of permutations that only permute vertices
within levels is a member of ΓUDAG(G)(G). Thus, we have, with probability 1,

|ΓUDAG(G)(G)| ≥
∏

j≥1

|Lj |!.

We now use Theorem 3 to finish our lower bound on E[log |ΓUDAG(G)(G)|]. Fix ǫ = 1
log2 n

,

so that δ =
√

2ǫ = Θ(1/ log n), and choose ℓ = 15m
2δ4 log(3/(2δ2)). Then, defining A to be the

event that the number of vertices in layers > ℓ is at most δn = Θ(n/ log n), we have

E[log |ΓUDAG(G)(G)|] ≥ E[log |ΓUDAG(G)(G)|
∣

∣ A](1 − δ).

Among the ℓ layers, there are at most ℓ− 1 that satisfy, say, |Li| < log log n, since
∑ℓ

i=1 |Li| ≥
(1− δ)n. So we have the following:

ℓ
∑

i=1

log(|Li|!) = O(ℓ log log n log log log n) +
∑

i∈B

(|Li| log |Li|+ O(|Li|)),
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where B = {i ≤ ℓ : |Li| ≥ log log n}, and we used Stirling’s formula to estimate the terms
i ∈ B.

The sum
∑

i∈B O(|Li|) = O((1− δ)n) = O(n), so it remains to estimate

∑

i∈B

|Li| log |Li|.

Let N =
∑

i∈B |Li|. Then, multiplying and dividing each instance of |Li| by N in the above
expression, it becomes

∑

i∈B

|Li| log |Li| = N
∑

i∈B

|Li|
N

log
|Li|
N

+ N
∑

i∈B

|Li|
N

logN.

The first sum is simply −NH(X), where X is a random variable distributed according to
the empirical distribution of the vertices on the levels i ∈ B. Since |B| ≤ ℓ, we have that
|−NH(X)| ≤ N log ℓ. Thus, the first term in the above expression is O(N log ℓ) = O(n log log n).

Meanwhile, the second term is N logN
∑

i∈B
|Li|
N = N logN = n log n − O(n log log n). Thus,

in total, we have shown

E[log |ΓUDAG(G)(G)|] ≥ n log n−O(n log log n). (34)

Compare this with the trivial upper bound on E[log |ΓUDAG(G)(G)|]:

E[log |ΓUDAG(G)(G)|] ≤ log n! = n log n− n + O(log n). (35)

This implies that we have recovered the first term, but there is a gap in our lower and upper
bounds on the second term.

6.5 More Details of the Structural Compression Algorithm

Decompression: We next sketch the decompression algorithm. Given a string S = s1...sN
from the compression algorithm, we produce a labeled graph as follows:

1. Read the prefix of S to recover k, n, and the prefix code for the backtracking numbers.
Create a node called 1, with m self-edges. Initialize a stack U ← 1.

2. For j = 2 to n,

(a) Set x← the top number on U . Push j onto the stack. Read the next ⌈log k⌉ bits to
recover the out-degree dj of vertex j. Read the next (dj − 1)⌈log n⌉ bits to recover a
list of dj − 1 choices made by vertex j, and append x to this list to produce a list ℓ
of dj vertices. Output j → ℓ.

(b) Read the codeword for the next backtracking number B, and pop U B times.

The worst-case running time is O(mn log n): the first step takes time at most O(n log n) (as the
backtracking numbers have length at most log n), the total number of pops of the stack from
the backtracking steps is n, and it takes time Θ(m log n) to reconstruct the m choices made by
each vertex in the loop. Thus, the total time taken in the loop is O(mn log n), as claimed. Since
this algorithm produces precisely the adjacency list encoded by the compression algorithm, the
output is a graph isomorphic to the original, with the isomorphism being given by the mapping
from each vertex to its DFS number.
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Case where there are no self-loops: In the model where the self-loops on the first
vertex are removed from G′ ∼ PA(m;n), the algorithm can be adapted to yield the same
optimality guarantee, at the expense of some additional running time. Essentially, the idea
is to, for each vertex v in the input graph, treat v as the first vertex by adding m self-edges
to v, and run the above algorithm, noting the resulting code length. In the end, we take the
code with minimum length. By the above analysis, when the input arises from preferential
attachment, with high enough probability there exists some v for which the resulting code has
length (m− 1)n log n + O(n log log n).

6.6 Results on the Degree Sequence

In this section, we present results on the degree sequence of preferential attachment graphs
which we will use in the proofs of our main results in subsequent sections.

First, recall that degt(s) is the degree of a vertex s < t after time t (i.e., after vertex t has
made its choices). We also define dgt(s) = degt(s)−m.

Our first lemma gives a bound on the in-degree of each vertex at any given time. This will
give a corollary (Corollary 2) that bounds the probability that two given vertices are adjacent
at a given time.

Lemma 14. For any v,w,

Pr(dgv(w) = d) ≤
(

m + d− 1

m− 1

)(

1−
√

w

v
+ O

(

d√
vw

))d

In particular,

Pr(degv(w) = d) ≤ (2m + d)m exp

(

−
√

w

v
d + O

(

d2√
vw

))

.

Proof. We estimate this probability as follows. Below we set td+1 = mv + 1.

Pr(dgv(w) = d) ≤
∑

mw<t1<t2<···<td≤mv

d
∏

i=1

m + i− 1

2ti

ti+1−1
∏

j=ti+1

(

1− m + i

2j

)

≤
∑

mw<t1<t2<···<td≤mv

(m + d− 1)!

(m− 1)!

d
∏

i=1

1 + O(d/ti)

2ti
exp

(

−
ti+1−1
∑

j=ti

i

2j

)

=
∑

mw<t1<t2<···<td≤mv

(m + d− 1)!

(m− 1)!

d
∏

i=1

1 + O(d/ti)

2ti
exp

(

−
mv
∑

j=ti

1

2j

)

≤
(

d + m− 1

m− 1

)( mv
∑

i=mw+1

1 + O(d/ti)

2ti
exp

(

−
mv
∑

j=t

1

2j

)

)d

.

Note that
mv
∑

i=mw+1

1 + O(d/ti)

2ti
exp

(

−
mv
∑

j=ti

1

2j

)

≤
mv
∑

i=mw+1

1 + O(d/ti)

2ti
exp

(

− 1

2
log

mv

ti
+ O

( 1

ti

)

)

≤
mv
∑

i=mw+1

1 + O(d/ti)

2
√
mvti

≤ 1−
√

w/v + O(d/
√
vw) .

Thus, the assertion follows.
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Recall that for t > s, the expectation of degt(s) is O(
√

t/s). We first state a simple tail
bound to the right of this expectation, which may be found in [9] (it also is a corollary of
Lemma 14):

Lemma 15 (Right tail bound for a vertex degree at a specific time). Let r < t. Then

P [degt(r) ≥ Aem(t/r)1/2(log t)2] = O(t−A)

for any constant A > 0 and any t.

We can prove a similar left tail bound for the random variable degt(s) whenever s ≪ t, as
captured in the following lemma.

Lemma 16 (Degree left tail bound). Let v = O(T 1−ǫ) as T →∞, for some fixed ǫ ∈ (0, 1/2).
Then there exist some C,D > 0 such that

Pr

[

degT (v) < C

(

T

v

)(1−ǫ)2/(2±0.0001)
]

≤ e−Dǫ3 log(T ) = T−Dǫ3 . (36)

To prove this, we need the following coarser lemma.

Lemma 17. Let v < T 1−ǫ, for some fixed ǫ > 0. Then there exist constants C,D > 0 indepen-
dent of ǫ such that

Pr(degvT ǫ(v) < Cǫ log T ) ≤ T−Dǫ (37)

for T sufficiently large.

Proof. We observe the graph at exponentially increasing time steps: for some β > 0, let t0 = v,
tj = (1 + β)jt0, tk = (1 + β)kt0 = vT ǫ (so k = ǫ log T

log(1+β)). Note that degt0(v) = degv(v) = m.
Let us upper bound the probability pj+1 that no connection to vertex v is made by any

vertex in the subinterval (tj, tj+1]:

pj+1 ≤
(

1− m

2mtj+1

)m(tj+1−tj)

=

(

1− 1

2tj+1

)mβtj

, (38)

which is at most some positive constant ρ = ρ(mβ), uniform in j, satisfying ρ < 1. This follows
from the inequality 1− x ≤ e−x for all x ∈ R. Thus, the total number of connections to vertex
v in all subintervals can be stochastically lower bounded by a binomial random variable with
parameters k = Θ(ǫ log T ) and success probability ρ(mβ): for any d ≥ 0,

Pr(degtk(v)−m ≥ d) ≥ Pr(Binomial(k, ρ) ≥ d). (39)

In particular, as T →∞, this implies (using the Chernoff bound) that with probability 1−T−Dǫ,
the number of subintervals which contribute at least one new edge to v is at least Cǫ log T , for
some C, so that degvT ǫ(v) ≥ Cǫ log T , which completes the proof.

With the previous lemma in hand, we are now ready to prove our left tail bound.

Proof of Lemma 16. Similar to the proof of Lemma 17, we observe the graph at exponentially
increasing times: fix a small α > 0, and let t0 = vT ǫ, tj = (1 + α)t0, tk = (1 + α)kt0 = T , so

that k = log(T/t0)
log(1+α) . Denote by dj = degtj (v) and ∆j+1 = dj+1 − dj , for each j.

In the interval (tj , tj+1], conditioned on the graph up to time tj, ∆j+1 is stochastically lower
bounded by a binomially distributed random variable with parameters tj+1 − tj = αtj and

23



pj+1 =
mdj

2mtj+1
=

dj
2tj+1

. The former parameter is simply the interval length (in terms of number

of vertices). The latter parameter comes from the fact that the degree of v at any point in the
interval is at least dj , and the total degree of the graph is at most tj+1. I.e.,

∆j+1

∣

∣Gtj �st Binomial

(

αtj ,
dj

2tj+1

)

, (40)

where �st denotes stochastic domination.
This suggests that we define the bad event Bj = [∆j < αtj−1pj(1− ǫ)], for arbitrary ǫ > 0,

and for j ∈ [1, k]. We further define B0 = [d0 < Cǫ log T ], for some constant C > 0.
Conditioning on all of the Bj (for j ∈ {0, ..., k}) failing to hold, we have

Pr





⋂

j<k

[

dj+1 ≥ dj

(

1 +
(1− ǫ)α

2(1 + α)

)]

∣

∣

k
⋂

j=0

¬Bj



 = 1, (41)

recalling that dj+1 = dj + ∆j by definition. This in particular implies that (still under the same
conditioning)

dk ≥ d0 ·
(

1 +
(1− ǫ)α

2(1 + α)

)k

= d0 exp



log(T/t)
log(1 + (1−ǫ)α

2(1+α))

log(1 + α)



 . (42)

Taking α close enough to 0, this becomes

dk ≥ d0 exp

(

1− ǫ

2
log(T/t)

)

= d0(T/t)
1−ǫ

2±0.0001 , (43)

as in the statement of the lemma.
Now, it remains to lower bound the probability Pr(

⋂k
j=0¬Bj). We may write it as

Pr(
k
⋂

j=0

¬Bj) = Pr(¬B0)
k
∏

j=1

Pr(¬Bj |¬B0, ...,¬Bj−1) ≥ (1− T−Dǫ)
k
∏

j=1

Pr(¬Bj|¬B0, ...,¬Bj−1),

where the inequality is by Lemma 17.
Now, by the stochastic domination (40), the conditioning, and the Chernoff bound, the jth

factor of the product is lower bounded as follows:

Pr(¬Bj|¬B0, ...,¬Bj−1) ≥ Pr(Binomial(αtj−1, pj) ≥ αtj−1pj(1− ǫ)|¬B0, ...,¬Bj−1) (44)

≥ 1− exp

(

− ǫ2αdj
2(1 + α)

)

. (45)

Under the conditioning, dj is further lower bounded by
(

1 + (1−ǫ)α
2(1+α)

)j
Cǫ log T ≥

(

1 + α
4(1+α)

)j
Cǫ log T (using the fact that ǫ < 1/2), resulting in

Pr(¬Bj|¬B0, ...,¬Bj−1) ≥ 1− exp

(

−C ǫ3α

2(1 + α)
·
(

1 +
α

4(1 + α)

)j

log(T )

)

. (46)

This implies

Pr(

k
⋂

j=0

¬Bj) ≥ Pr(¬B0) ·
k
∏

j=1

(1− exp

(

−C ǫ3α

2(1 + α)
·
(

1 +
α

4(1 + α)

)j

log(T )

)

). (47)
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For convenience, set C ′ = C α
2(1+α) and D′ = 1 + α

4(1+α) . Note that D′ > 1. So the product in

(47) can be written (after some simple asymptotic analysis) as

k
∏

j=1

(

1− exp
(

−ǫ3C ′ ·D′j log(T )
))

= 1−Θ(T−ǫ3C′D′

).

This implies, after combination with the lower bound on Pr(¬B0), that we can write

Pr(

k
⋂

j=0

¬Bj) ≥ (1− T−Dǫ)(1−Θ(−T−ǫ3C′D′

)) ≥ 1− T−D′′ǫ3 , (48)

for some D′′ > 0, as claimed.

Using Lemma 16, we can prove a corollary roughly lower bounding the typical minimum
degree of the collection of vertices before a given time.

Corollary 1. Let ∆ > 0 be fixed. There exists some small enough δ > 0 and positive constant
D such that

Pr





⋃

w<T δ

degT (w) < C
(

T 1−∆
)1/2



 ≤ T−D (49)

as T →∞.

Proof. This follows immediately from the fact that the probability bound in Lemma 16 is
monotone in ǫ and constant with respect to v. We omit the simple details.

Next, we give a lemma on the expected number of vertices of degree d at time t. We
denote this quantity by N̄t,d and the random variable itself by Nt,d. We start by recalling an
approximation result on this quantity [15].

Lemma 18 (Expected value of Nt,d). We have, for t ≥ 1 and 1 ≤ d ≤ t and for any fixed
m ≥ 1,

∣

∣

∣

∣

N̄t,d −
2m(m + 1)t

d(d + 1)(d + 2)

∣

∣

∣

∣

≤ C,

for some fixed C = C(m) > 0.

This approximation is useful whenever d = o(t1/3). For larger d, the error term C dominates.
For our proofs, we need to extend this result for larger d as t → ∞. We have the following
result along these lines.

Lemma 19 (Upper bound on N̄t,d). We have, for t→∞, d ≥ t1/15, and fixed m ≥ 1,

N̄t,d = O

(

t

d(d + 1)(d + 2)

)

= O

(

t

d3

)

. (50)

Proof. We will prove the claimed upper bound by induction on the number of edge connection
choices made so far in the graph (e.g., after vertex t has made all of its choices, this number is
mt).

Let us define M̄τ,d to be the expected number of vertices with degree d in the graph after τ
vertex choices have been made in the graph. Note that M̄τ,d = N̄τ/m,d whenever τ is divisible
by m. Thus, to prove our desired result, it is sufficient to prove that

M̄τ,d = O

( {τ}m
d(d + 1)(d + 2)

)

(51)
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for τ →∞ and d ≥ (τ/m)1/15 (for convenience, we denote by {τ}m the largest integer ≤ τ that
is divisible by m). The base case is provided by Lemma 18.

Next, note that M̄τ,d satisfies the following recurrence:

M̄τ,d ≤ M̄τ−1,d

(

1− d−m

2{τ}m

)

+ M̄τ−1,d−1
d− 1

2{τ}m
− M̄τ−1,d

d−m

2{τ}m

= M̄τ−1,d

(

1− d−m

{τ}m

)

+ M̄τ−1,d−1
d− 1

2{τ}m
. (52)

This is because an m-tuple that has degree d after choice τ either had degree d after choice τ−1
and wasn’t chosen by the τth choice, or had degree d−1 and was chosen by choice τ . Moreover,
any m-tuple with degree d at time τ − 1 that was chosen by choice τ no longer has degree d.
The upper bound is a result of the specific details of our model but may be generalized.

Next, we apply the inductive hypothesis, resulting in

M̄τ,d ≤
C{τ − 1}m

d(d + 1)(d + 2)

(

1− d−m

{τ}m

)

+
C{τ}m

(d− 1)d(d + 1)

d− 1

2{τ}m
(53)

≤ C{τ − 1}m
d(d + 1)(d + 2)

(

1− d−m

{τ}m

)

+
C

2d(d + 1)
, (54)

for some positive constant C(m) = C. This can be rearranged to yield

M̄τ,d ≤
C{τ − 1}m

d(d + 1)(d + 2)
+

C

2d(d + 1)
− C{τ − 1}m(d−m)

d(d + 1)(d + 2){τ}m
. (55)

To continue, we split into two cases: either {τ − 1}m = {τ}m or {τ − 1}m = τ −m = {τ}m−m.
In the first case, (55) becomes

M̄τ,d ≤
C{τ}m

d(d + 1)(d + 2)
+

C

2d(d + 1)
− C

(d + 1)(d + 2)
+

Cm

d(d + 1)(d + 2)
.

Now, provided that τ is large enough, and since d is Ω(τ1/15), the sum of the last three factors
is negative, so that

M̄τ,d ≤
C{τ}m

d(d + 1)(d + 2)
,

as desired.
Now we handle the second case (where τ − 1m = {τ}m −m):

M̄τ,d ≤
C{τ}m − Cm

d(d + 1)(d + 2)
+

C

2d(d + 1)
− C({τ}m −m)(d−m)

d(d + 1)(d + 2){τ}m

=
C{τ}m

d(d + 1)(d + 2)
+

C

2d(d + 1)
− Cd

d(d + 1)(d + 2)
+

Cm(d−m)

d(d + 1)(d + 2){τ}m

≤ C{τ}m
d(d + 1)(d + 2)

+
C

2d(d + 1)
− Cd

d(d + 1)(d + 2)
+

Cmd

d(d + 1)(d + 2){τ}m
.

We then proceed exactly as in the previous case, which completes the proof.

The next result, a corollary of Lemma 14, gives an upper bound on the probability that two
given vertices are adjacent.

Corollary 2. Let w < v. Then the probability that v is adjacent to w is bounded above by
5m
√

1/(vw) log(3v/w). In particular, each two vertices v,w ≥ ǫn are adjacent with probability
smaller than (5m/ǫ) log(3/ǫ)/n.
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Proof. The probability that v and w are adjacent is bounded from above by

∑

d≥0

md

2mv
Pr(dgv(w) = d−m) .

When d ≤ d0 = 8m
√

v/w log(3v/w) the above sum is clearly smaller d0/2 =
4m
√

1/vw log(3v/w). If d ≥ d0 one can use Lemma 14 to estimate this sum by
m
√

1/vw log(3v/w).

The next result gives a bound on the probability that two early vertices have the same
degree.

Lemma 20. There exist positive constants ∆ < 1 and c such that the probability that for some
s < s′ < k2 = n2∆ we have degn(s) = degn(s′) is O(n−c).

Proof. Let s < s′ < k2 = n2∆, for some ∆ > 0 to be chosen. We first estimate the probability
that degn(s) = degn(s′). In order to do so we set n′ = n0.6 and define

deg(s) = degn−n′(s) and deg(s) = degn(s)− deg(s) .

Note that

Pr(degn(s) = degn(s′)) =
∑

d,d′,d′

Pr(degn(s) = degn(s′)|deg(s) = d,deg(s′) = d′,deg(s′) = d′)

× Pr(deg(s) = d,deg(s′) = d′,deg(s′) = d′)

=
∑

d,d′,d′

Pr(deg(s) = d′ + d′ − d|deg(s) = d,deg(s′) = d′,deg(s′) = d′)

× Pr(deg(s) = d,deg(s′) = d′,deg(s′) = d′) . (56)

Observe that due to Lemma 16 (alternatively, Corollary 1) and Lemma 15, with probability
1−O(n−c), for some appropriate c > 0 and small enough k = n∆, a vertex s ∈ [k2] has degree
between n0.488 and n0.51 at any time in the interval [n − n′, n]. Importantly, note that if this
holds with probability 1 − O(n−c) for a given choice of ∆, then the same holds for all smaller
choices of ∆, with the same value for c (this is a consequence of the fact that the probability
bound in Lemma 16 is a function of ǫ and not of v).

Furthermore, one can estimate the random variable deg(s) conditioned on deg(s) = d from

above and below by binomial distributed random variables and use Chernoff bound to show
that with probability at least 1−O(n−c) we have

∣

∣

∣

dn′

2mn
− deg(s)

∣

∣

∣
=
∣

∣

∣
0.5mdn−0.4 − deg(s)

∣

∣

∣
≤
( dn′

2mn

)0.6
≤ n0.08 . (57)

Thus, in order to estimate Pr(degn(s) = degn(s′)), it is enough to bound

ρ(d′, d′, d) = Pr(deg(s) = d′ + d′ − d|deg(s) = d,deg(s′) = d′,deg(s′) = d′)

for n0.488 ≤ d, d′ ≤ n0.51 and

|0.5dn−0.4/m− (d′ + d′ − d)| ≤ n0.08 .

In order to simplify the notation set ℓ = d′ + d′ − d. Let us estimate the probability that
deg(s) = ℓ conditioned on deg(s) = d and deg(s′) = d′. The probability that some vertex

v > n− n′ is connected to s by more than one edge is bounded from above by

Cn′
(m degn(s)

n− n′

)2
≤ n0.6O(n−0.98) = O(n−0.38)
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so we can omit this case in further analysis. The probability that we connect a given vertex
v > n− n′ with s is given by

m degv−1(s)

2m(v − 1)
=

d + O(dn−0.4)

2(n −O(n′))
=

d

2n

(

1 + O(n−0.4)
)

. (58)

Consequently, the probability that deg(s) = ℓ conditioned on deg(s) = d and deg(s′) = d′ is

given by
(

n′

ℓ

)

ρℓ(1− ρ)n
′−ℓ
(

1 + O(n−0.4)
)ℓ(

1 + O(n−0.4d/n)
)n′−ℓ

,

where ρ = d/2n.
If we additionally condition on the fact that deg(s′) = d′ (so that we now have conditioned

on deg(s) = d,deg(s′) = d′, and deg(s′) = d′), it will result in an extra factor of the order
(

1 + O(d/2n)
)d′

since it means that some d′ vertices already made their choice (and selected

s′ as their neighbour). Note however that, since ℓ, d′ = O(dn′/n) = O(n0.11) we have

(

1 + O(n−0.4)
)ℓ

= 1 + O(n−0.29)

(

1 + O(n−0.4d/n)
)n′−ℓ

= 1 + O(n−0.29)

(

1 + O(d/2n)
)d′

= 1 + O(n−0.48) .

Hence, the probability that deg(s) = ℓ conditioned on deg(s) = d, deg(s′) = d′, and deg(s′) = d′

is given by
(

n′

ℓ

)

ρℓ(1− ρ)n
′−ℓ
(

1 + O(n−0.29)) ,

and so it is well approximated by the binomial distribution. On the other hand, the probability
that the random variable with binomial distribution with parameters n′ and ρ takes a particular
value is bounded from above by O(1/

√
n′ρ). Thus, for a given pair of vertices s < s′ < k2 = n2∆

we have
Pr(degn(s) = degn(s′)) = O(

√

n/n′d) + O(n−c) = O(n−c) .

Hence, the probability that such a pair of vertices, s < s′ < k2 = n2∆ exists is bounded from
above by O(k4n−c), and, as remarked at the beginning of the proof, k = n∆ may be chosen
small enough so that this yields a bound of the form O(n−c′), for c′ > 0.
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