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Abstract

Tries are among the most versatile and widely used data

structures on words. They are pertinent to the (internal)

structure of (stored) words and several splitting procedures

used in diverse contexts ranging from document taxonomy

to IP addresses lookup, from data compression (i.e., Lempel-

Ziv’77 scheme) to dynamic hashing, from partial-match

queries to speech recognition, from leader election algorithms

to distributed hashing tables and graph compression. While

the performance of tries under a realistic probabilistic model

is of significant importance, its analysis, even for simplest

memoryless sources, has proved difficult. Rigorous findings

about inherently complex parameters were rarely analyzed

(with a few notable exceptions) under more realistic models

of string generations. In this paper we meet these challenges:

By a novel use of the contraction method combined with

analytic techniques we prove a central limit theorem for

the external path length of a trie under a general Markov

source. In particular, our results apply to the Lempel-Ziv’77

code. We envision that the methods described here will

have further applications to other trie parameters and data

structures.

1 Introduction

We study the external path length of a trie built
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over n binary strings generated by a Markov source.
More precisely, we assume that the input is a sequence
of n independent and identically distributed random
strings, each being composed of an infinite sequence
of symbols such that the next symbol depends on the
previous one and this dependence is governed by a given
transition matrix (i.e., Markov model).

Digital trees, in particular, tries have been inten-
sively studied for the last thirty years [2, 5, 6, 7, 8,
9, 15, 16, 18, 20, 22, 23, 24, 26, 27, 40], mostly under
Bernoulli (memoryless) model assumption. The typical
depth under Markovian model was analyzed in [16, 20].
Size, external path length and height under more gen-
eral dynamical sources were studied in the seminal paper
of Clément, Flajolet, and Vallée [2], where in particular
asymptotic expressions for expectations are identified
as well as the asymptotic distributional behavior of the
height, see also [3]. For further analysis of tries for prob-
abilistic models beyond Bernoulli (memoryless) sources
see Devroye [6, 7].

With respect to Markovian models, to the best
of our knowledge, no asymptotic distributions for the
external path length have been derived so far. It is
well known [40] that the external path length is more
challenging due to stronger dependency. In fact, this is
already observed for tries under Bernoulli model [40].
In this paper we establish the central limit theorem for
the external path length in a trie built over a Markov
model using a novel use of the contraction method.

Let us first briefly review the contraction method.
It was introduced in 1991 by Uwe Rösler [34] for the dis-
tributional analysis of the complexity of the Quicksort
algorithm. Over the last 20 years this approach, which
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is based on exploiting an underlying contracting map
on a space of probability distributions, has been devel-
oped as a fairly universal tool for the analysis of recur-
sive algorithms and data structures. Here, randomness
may come from a stochastic model for the input or from
randomization within the algorithms itself (randomized
algorithms). General developments of this method were
presented in [35, 32, 36, 29, 30, 11, 10, 21, 31] with nu-
merous applications in Theoretical Computer Science.

The contraction method has been used in the anal-
ysis of tries and other digital trees only under the sym-
metric Bernoulli model (unbiased memoryless source)
[29, Section 5.3.2], where limit laws for the size and the
external path length of tries were re-derived. The ap-
plication of the method there was heavily based on the
fact that precise expansions of the expectations were
available, in particular smoothness properties of peri-
odic functions appearing in the linear terms as well as
bounds on error terms which were O(1) for the size and
O(log n) for the path lengths. Let us observe that even
in the asymmetric Bernoulli model such error terms
seem to be out of reach for classical analytic methods;
see the discussion in Flajolet, Roux, and Vallée [12].
Hence, for the more general Markov source model con-
sidered in the present paper we develop a novel use of
the contraction method.

Furthermore, the contraction method applied to
Markov sources hits another snag, namely, the Markov
model is not preserved when decomposing the trie into
its left and right subtree of the root. The initial
distribution of the Markov source is changed when
looking at these subtrees. To overcome these problems
a couple of new ideas are used for setting up the
contraction method: First of all, we will use a system of
distributional recursive equations, one for each subtree.
We then apply the contraction method to this system of
recurrences capturing the subtree processes and prove
normality for the path lengths conditioned on the initial
distribution. In fact, our approach avoids dealing with
multivariate recurrences and instead we reduce the
whole analysis to a system of one-dimensional equations.
A comparison of a multivariate approach and our new
version with systems of recurrences is drawn in Section
7.

We also need asymptotic expansions of the mean
and the variance for applying the contraction method.
However, in contrast to very precise information on
periodicities of linear terms for the symmetric Bernoulli
model mentioned above our convergence proof does only
require the leading order term together with a Lipschitz
continuity property for the error term.

In this extended abstract we develop the use of
systems of recursive distributional equations in the

context of the contraction method for the external path
length of tries under a general Markov source model.
In particular, we prove the central limit theorem for the
external path length, a result that had been wanting
since Lempel-Ziv’77 code was devised in 1977. The
methodology used is general enough to cover related
quantities and structures as well. We are confident
that our approach also applies with minor adjustments
at least to the size of tries, the path lengths of digital
search trees and PATRICIA tries under the Markov
source model as well as other more complex data
structures on words such as suffix trees.

Notations: Throughout this paper we use the
Bachmann-Landau symbols, in particular the big O no-
tation. We declare x log x := 0 for x = 0, where log x
denotes the natural logarithm. By B(n, p) with n ∈ N
and p ∈ [0, 1] the binomial distribution is denoted, by
B(p) the Bernoulli distribution with success probability
p, by N (0, σ2) the centered normal distribution with
variance σ2 > 0. We use C as a generic constant that
may change from one occurrence to another.

2 Tries and the Markov source model

The Markov source: We assume binary data strings
over the alphabet Σ = {0, 1} generated by a homoge-
neous Markov chain. In general, a homogeneous Markov
chain is given by its initial distribution µ = µ0δ0 +µ1δ1
on Σ and the transition matrix (pij)i,j∈Σ. Here, δx de-
notes the Dirac measure in x ∈ R. Hence, the initial
state is 0 with probability µ0 and 1 with probability
µ1. We have µ0, µ1 ∈ [0, 1] and µ0 + µ1 = 1. A tran-
sition from state i to j happens with probability pij ,
i, j ∈ Σ. Now, a data string is generated as the sequence
of states visited by the Markov chain. In the Markov
source model assumed subsequently all data strings are
independent and identically distributed according to the
given Markov chain.

We always assume that pij > 0 for all i, j ∈ Σ.
Hence, the Markov chain is ergodic and has a stationary
distribution, denoted by π = π0δ0 + π1δ1. We have

π0 =
p10

p01 + p10
, π1 =

p01

p01 + p10
.(2.1)

Note however, that our Markov source model does not
require the Markov chain to start in its stationary
distribution.

The case pij = 1/2 for all i, j ∈ Σ is essentially
the symmetric Bernoulli model (only the first bit may
have a different (initial) distribution). The symmetric
Bernoulli model has already been studied thoroughly
also with respect to the external path length of tries,
see [14, 23, 29]. It behaves differently compared to



the asymmetric Bernoulli model and the other Markov
source models, as the variance of the external path
length is linear with a periodic prefactor in the sym-
metric Bernoulli model. In our cases we will find a
larger variance of the order n log n in Theorem 5.1 be-
low. We exclude the symmetric Bernoulli model case
subsequently. For later reference, we summarize our
conditions as:

(2.2)
pij ∈ (0, 1) for all i, j ∈ Σ,

pij 6=
1

2
for some (i, j) ∈ Σ2.

The entropy rate of the Markov chain plays an impor-
tant role in the asymptotic behavior of tries. In particu-
lar, it determines leading order constants of parameters
of tries that are related to depths of leaves and its ex-
ternal path length. The entropy rate for our Markov
chain is given by

H := −
∑
i,j∈Σ

πi pij log pij =
∑
i∈Σ

πiHi,(2.3)

where Hi := −
∑
j∈Σ pij log pij is the entropy of a

transition from state i to the next state. Thus, H
is obtained as weighted average of the entropies of
all possible transitions with weights according to the
stationary distribution π.

Tries: For a given set of data strings over the alphabet
Σ = {0, 1} with each data string a unique infinite
path in the infinite complete rooted binary tree is
associated by identifying left branches with bit 0 and
right branches with bit 1. Each string is stored in the
unique node on its infinite path that is closest to the root
and does not belong to any other data path, cf. Figure 1.
It is the minimal prefix of a string that distinguishes this
string from all others; for details see the monographs of
Knuth [26], Mahmoud [27] or Szpankowski [40].

3 Recursive Distributional Equations

For the Markov source model a challenge is to set the
right framework under which data structures to analyze.
We formulate in this section a system of distributional
recurrences to capture the distribution of the external
path length of tries. Our subsequent analysis is entirely
based on these equations.

We denote by Lµn the external path length of a trie
under the Markov source model with initial distribution
µ holding n data. We have Lµ0 = Lµ1 = 0 for all
initial distributions µ. The transition matrix is given in
advance and suppressed in the notation. We abbreviate
Lin := Lδin for i ∈ Σ. Hence, Lin refers to n independent
strings all starting with bit i and then following the
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Figure 1: The infinite rooted binary tree contains the
infinite paths of six strings (left). The corresponding
trie is obtained by cutting each path at the closest node
to the root that does not belong to any other path.

Markov chain. We will study L0
n and L1

n. From the
asymptotic behavior of these two sequences we can
then directly obtain corresponding results for Lµn for
an arbitrary initial distribution µ = µ0δ0 + µ1δ1 as
follows: We denote by Kn the number of data among
our n strings which start with bit 0. Then Kn has the
binomial B(n, µ0) distribution. The contributions of the
two subtrees of the trie to its external path length can
be represented by the following stochastic recurrence

Lµn
d
= L0

Kn + L1
n−Kn , n ≥ 2,(3.4)

where
d
= denotes that left and right hand side have

identical distributions and we have that (L0
0, . . . , L

0
n),

(L1
0, . . . , L

1
n) and Kn are independent. We will see later

that we can directly transfer asymptotic results for L0
n

and L1
n to general Lµn via (3.4), see, e.g., the proof of

Theorem 6.1.
For a recursive decomposition of L0

n note that we
have initial distribution δ0, thus all data strings start
with bit 0 and are inserted into the left subtree of
the root. We denote the root of this left subtree by
w. At node w the data strings are split according
to their second bit. We denote by In the number
of data strings having 0 as their second bit, i.e., the
number of strings being inserted into the left subtree
of w. The Markov source model implies that In is
binomial B(n, p00) distributed. The right subtree of
node w then holds the remaining n − In data strings.
Consider the left subtree of w together with its root w.
Conditioned on its number In of data strings inserted
it is generated by the same Markov source model as the
original trie. However, the right subtree of w together
with its root w conditioned on its number n−In of data
strings is generated by a Markov source model with the
same transition matrix but another initial distribution,
namely δ1. Moreover, by the independence of data



strings within the Markov source model, these two
subtrees are independent conditionally on In. Phrased
in a recursive distributional equation we have

L0
n
d
= L0

In + L1
n−In + n, n ≥ 2,(3.5)

with (L0
0, . . . , L

0
n), (L1

0, . . . , L
1
n) and In independent. A

similar arguments yields a recurrence for L1
n. Denoting

by Jn a binomial B(n, p11) distributed random variable,
we have

L1
n
d
= L0

n−Jn + L1
Jn + n, n ≥ 2,(3.6)

with (L0
0, . . . , L

0
n), (L1

0, . . . , L
1
n) and Jn independent.

Our asymptotic analysis of Lµn is based on the distri-
butional recurrence system (3.5)–(3.6) as well as (3.4).

4 Analysis of the Mean

First we study the asymptotic behavior of the expec-
tation of the external path length with a precise error
term needed to derive a limit law in Section 6. The lead-
ing order term in Theorem 4.1 below has already been
derived (even for more general models) in Clément, Fla-
jolet and Vallée [2].

Theorem 4.1. For the external path length Lµn of a bi-
nary trie under the Markov source model with conditions
(2.2) we have

E[Lµn] =
1

H
n log n+ O(n), (n→∞),

with the entropy rate H of the Markov chain given in
(2.3). The O(n) error term is uniform in the initial
distribution µ.

Our proof of Theorem 4.1 as well as the corresponding
limit law in Theorem 6.1 depend on refined properties of
the O(n) error term that are first obtained for the initial
distributions µ = δ0 and µ = δ1 and then generalized to
arbitrary initial distribution via (3.4). For µ = δ0 and
µ = δ1 we denote this error term for all n ∈ N0 and
i ∈ Σ by

fi(n) := E[Lin]− 1

H
n log n.(4.7)

The following Lipschitz continuity of f0 and f1 is crucial
for our further analysis:

Proposition 4.2. There exists a constant C > 0 such
that for both i ∈ Σ and all m,n ∈ N0

|fi(m)− fi(n)| ≤ C|m− n|.

The proof of Proposition 4.2 is based on a refined
analysis of transfers from growth of toll functions in
systems of recursive equations to the growth of the
quantities itself. The heart of the proof of Proposition
4.2 and hence Theorem 4.1 is the following transfer
result. The proof is technical and provided in the full
paper version of this extended abstract.

Lemma 4.3. Let (ai(n))n≥0 and (ηi(n))n≥0 be real se-
quences and (Xi,n)n≥2 sequences of binomial B(n, pi)
distributed random with pi ∈ (0, 1) for i ∈ Σ. Assume
that for constants c0, c1, d0, d1 ∈ (0, 1) with c0 + d1 =
c1 + d0 = 1 we have for all n ≥ 2 and i ∈ Σ

ai(n) = ciE[ai(Xi,n)] + diE[a1−i(n−Xi,n)](4.8)

+ ηi(n).

If furthermore ηi(n) = O(n−α) for an α > 0 and both
i ∈ Σ, then, as n→∞,

ai(n) = O(1), i ∈ Σ.

5 Analysis of the Variance

To formulate an asymptotic expansion of the variance of
the external path length we denote by λ(s) the largest
eigenvalue of the matrix P (s) := (p−sij )i,j∈Σ. Note that
λ as a function of s is smooth. We denote its first and
second derivative by λ̇ and λ̈ respectively. Then we
have:

Theorem 5.1. For the external path length Lµn of a bi-
nary trie under the Markov source model with conditions
(2.2) we have, as n→∞,

Var(Lµn) = σ2n log n+ o(n log n),(5.9)

where σ2 > 0 is independent of the initial distribution µ
and given by

(5.10) σ2 =
λ̈(−1)− λ̇2(−1)

λ̇3(−1)
.

With H0 and H1 defined in (2.3) we have

σ2 =
π0p00p01

H3

(
log

(
p00

p01

)
+
H1 −H0

p01 + p10

)2

+
π1p10p11

H3

(
log

(
p10

p11

)
+
H1 −H0

p01 + p10

)2

.

We start with the analysis of the Poisson variance
of the external path length, i.e. ṽi(λ) := Var(LiNλ),
i ∈ Σ, where Nλ has the Poisson(λ) distribution and
is independent of (Lin)n≥0. In the second part we
use depoissonization techniques of [19] to obtain the
asymptotic behavior of Var(Lin).



The reason why we consider a Poisson number of
strings is that for Nλ i.i.d. strings with initial distribu-
tion δi the number Nλpi0 of strings whose second bit
equals 0 and the number Mλpi1 of strings whose second
bit equals 1 are independent and remain Poisson dis-
tributed. Hence, in the Poisson case we obtain similarly
to (3.5) and (3.6) that for i ∈ Σ

LiNλ
d
= L0

Nλpi0
+ L1

Mλpi1
(5.11)

+Nλpi0 +Mλpi1 − 1{Nλpi0+Mλpi1
=1}

where (L0
n)n≥0, (L1

n)n≥0, Nλpi0 and Mλpi1 are in-
dependent, Nλpi0 has Poisson(λpi0) distribution and
Mλpi1 has Poisson(λpi1) distribution. Note that
1{Nλpi0+Mλpi1

=1} is necessary in order that (5.11) holds
when {Nλ = 1}.

We denote by ν̃i(λ) := E[LiNλ ], i ∈ Σ, the Poisson
expectation of the external path length which is

ν̃i(λ) =

∞∑
n=0

e−λ
λn

n!
E[Lin].

Note that (5.11) implies

ν̃i(λ) = ν̃0(λpi0) + ν̃1(λpi1) + λ(1− e−λ).(5.12)

We need precise information about the mean (second
order term) to derive the leading term of the variance.
We shall use analytic techniques, namely the Mellin
transform as surveyed in [40] that we discuss next. A
Mellin transform f∗(s) of a real function f(x) is defined
as

f∗(s) =

∫ ∞
0

f(x)xs−1dx.

Let ν∗i (s) be the Mellin transform of ν̃i(λ). Then, by
known properties of the Mellin transform [40], the func-
tional equation (5.12) becomes an algebraic equation for
i ∈ Σ

ν∗i (s) = Γ(s+ 1) + p−si0 ν
∗
0 (s) + p−si1 ν

∗
1 (s).

Define the column vector ν∗(s) := (ν∗0 (s), ν∗1 (s)) and
the column vector γ(s) := (Γ(s),Γ(s)). Then we
can write the latter equations as the matrix equation
ν∗(s) = γ(s+ 1) + P (s)ν∗(s) that we write as

(5.13) ν∗(s) = (I − P (s))−1γ(s+ 1).

Then the Mellin transform ν∗(s) of the mean external
path length E[LµNλ ] under the Poisson model satisfies

(5.14) ν∗(s) = Γ(s+ 1) + µ(s)ν∗(s)

where µ(s) := (µ−s0 , µ−s1 ).

To recover the mean external path length under the
Poisson model we need to apply the singularity analysis
to (5.14). For matrix P (s), we define the principal left
eigenvector π(s), the principal right eigenvector ψ(s)
associated with the largest eigenvalue λ(s) such that
〈π(s),ψ(s)〉 = 1 where we write 〈x,y〉 for the inner
product of vectors x and y. Then by the spectral
representation [40] of P (s) we find

ν∗(s) =
Γ(s)ψ(s)

1− λ(s)
+ o(1/(1− λ(s)))

that leads to the following asymptotic expansion around
s = −1

ν∗(s) =
−1

λ̇(−1)

1

(s+ 1)2
+

1

s+ 1

(
γ

λ̇(−1)
+

λ̈(−1)

2λ̇(−1)

)(5.15)

+
1

s+ 1

(
−〈µ̇(−1)ψ̇(−1)〉

λ̇(−1)
+ 1

)
+ O(1)

where ẋ(t) and ẍ(t) denote the first and second deriva-
tives of the vector x(t) at t.

Using (5.15), inverse Mellin transform, and the
residue theorem of Cauchy, as well as analytic depois-
sonization of Jacquet and Szpankowski [19] we finally
obtain

E[Lµn] =
1

H
n log n+ n

(
γ

λ̇(−1)
+

λ̈(−1)

2λ̇(−1)

)(5.16)

+ n

(
−〈µ̇(−1)ψ̇(−1)〉

λ̇(−1)
+ 1 + Φ(log n)

)
+ o(n)

where Φ(x) is a periodic function of small amplitude
under certain rationality condition (and zero otherwise);
see [20] for details.

The asymptotic analysis of the variance follows the
same pattern, however, it is more involved. Our analysis
of the Poisson variance ṽi(λ) = Var(LiNλ) is based on
the following decomposition:

Lemma 5.2. For any λ > 0 and i ∈ Σ we have

ṽi(λ) = ṽ0(λpi0) + ṽ1(λpi1) + 2λpi0ν̃
′
0(λpi0)

(5.17)

+ 2λpi1ν̃
′
1(λpi1) + 2λe−λ(ν̃0(λpi0) + ν̃1(λpi1))

+ λ(1− e−λ) + λ2e−λ(2− e−λ)

where ν̃′i, i ∈ Σ, denotes the derivative of νi, i.e. for
z > 0

ν̃′i(z) =

∞∑
n=1

e−z
zn−1

(n− 1)!
E[Lin]− ν̃i(z).



The Mellin transform v∗i (s) of ṽi(λ) is

v∗i (s) = p−si0 v
∗
0(s) + p−si1 v

∗
1(s)− 2sp−si0 ν

∗
0 (s)

− 2sp−si1 ν
∗
1 (s)− Γ(s+ 1) + F ∗i (s)

with F ∗i (s) the Mellin transform of e−λ(ν̃′0(λpi0) +
2λpi1ν̃

′
1(λpi1) + λ2(2− e−λ)). Thus, the column vector

v∗(s) := (v∗0(s), v∗1(s)) satisfies the following algebraic
equation

v∗(s) =P (s)v∗(s)− 2sP (s− 1)ν∗(s)

− γ(s+ 1) + F∗(s)

where F∗(s) := (F ∗0 (s), F ∗1 (s)). Then, as we did before
for the mean analysis, we obtain

v(s) = −2sΓ(s+ 1)〈π(s), P (s− 1)ψ(s)〉ψ(s)

(1− λ(s))2

+ O(1/(1− λ(s)).

After further computations we find that the Poisson
variance ṽ(λ) = Var(LµNλ) is

ṽ(λ) =
1

λ̇2(−1)
λ log2 λ+

(
λ̈(−1)

2λ̇3(−1)
+

A

λ̇2(−1)

)
λ log λ

+ O(λ)

for some explicitly computable constant A. Finally,
with depoissonization, cf. [40], we obtain

Var(Lµn) = ṽ(n)− n[ν̃′(n)]2

=
λ̈(−1)− λ̇2(−1)

λ̇3(−1)
n log n+ O(n)

proving Theorem 5.1.

6 Asymptotic Normality

Our main result is the asymptotic normality of the
external path length:

Theorem 6.1. For the external path length Lµn of a bi-
nary trie under the Markov source model with conditions
(2.2) we have

Lµn − E[Lµn]√
n log n

d−→ N (0, σ2), (n→∞),(6.18)

where σ2 > 0 is independent of the initial distribution µ
and given by (5.10).

As in the analysis of the mean, we first derive limit
laws for L0

n and L1
n and then transfer these to a limit law

for Lµn via (3.4). We abbreviate for i ∈ Σ and n ∈ N0

νi(n) := E[Lin], σi(n) :=
√

Var(Lin).

Note that we have νi(0) = νi(1) = σi(0) = σi(1) = 0
and σi(n) > 0 for all n ≥ 2. We define the standardized
variables by

Y in :=
Lin − E[Lin]

σi(n)
, i ∈ Σ, n ≥ 2,(6.19)

and Y i0 := Y i1 := 0. Then we have:

Proposition 6.2. For both sequences (Y in)n≥0, i ∈ Σ,
we have convergence in distribution:

Y in
d−→ N (0, 1) (n→∞).(6.20)

We now present a brief streamlined road map of the
proof.

Step 1. Normalization. From the system (3.5)–(3.6),
where we denote there I0

n := In and I1
n := Jn, and the

normalization (6.19) we obtain for all n ≥ 2,

Y in
d
=
σi(I

i
n)

σi(n)
Y iIin +

σ1−i(n− Iin)

σi(n)
Y 1−i
n−Iin

+ bi(n),(6.21)

where

bi(n) =
1

σi(n)

(
n+ νi(I

i
n) + ν1−i(n− Iin)− νi(n)

)
,

and in (6.21) we have that (Y 0
0 , . . . , Y

0
n ), (Y 1

0 , . . . , Y
1
n )

and (I0
n, I

1
n) are independent. It can be shown by

our expansions of the means νi(n) and the Lipschitz
property from Proposition 4.2 that we have bi(n) → 0
as n → ∞ for both i ∈ Σ, e.g., in the L3-norm which
below will be technically sufficient. Furthermore, the
asymptotic of the variance from Theorem 5.1 implies
together with the strong law of large numbers that the
coefficients in (6.21) converge:

σi(I
i
n)

σi(n)
→ √pii,

σ1−i(n− Iin)

σi(n)
→
√

1− pii,

where we recall that σi(I
i
n) is the standard deviation of

LiIin
conditioned on Iin, hence, in particular a random

variable.

Step 2. System of limit equations. The conver-
gence of the coefficients in (6.21) suggests, by passing
formally with n→∞, that limits Y 0 and Y 1 of Y 0

n and
Y 1
n , if they exist, should satisfy the system of recursive

distributional equations

Y 0 d
=
√
p00Y

0 +
√

1− p00Y
1,(6.22)

Y 1 d
=
√

1− p11Y
0 +
√
p11Y

1,(6.23)

where Y 0 and Y 1 are being independent on the right
hand sides. Clearly, centered normally distributed



Y 0 and Y 1 with identical variances solve the system
(6.22)–(6.23). The task now is to show that Y 0

n and
Y 1
n converge in distribution towards these solutions Y 0

and Y 1 respectively.

Step 3. The operator of distributions. Our ap-
proach is based on the system (6.22)–(6.23) of limit
equations together with an associated contracting oper-
ator (map) on the space of probability distributions as
follows: We denote by Ms(0, 1) the space of all prob-
ability distributions on the real line with mean 0, vari-
ance 1 and finite absolute moment of order s. Later
2 < s ≤ 3 will be an appropriate choice for us. With
the abbreviation M2 :=Ms(0, 1)×Ms(0, 1) we define
the map

T :M2 →M2

(τ0, τ1) 7→
(
L
(√

p00W
0 +

√
1− p00W

1
)
,

L
(√

1− p11W
0 +
√
p11W

1
))

,

where W 0, W 1 are independent with distributions
L(W i) = τi for both i ∈ Σ.

This allows a measure theoretic reformulation of
solutions of (6.22)–(6.23) that is convenient subse-
quently: Random variables (Y 0, Y 1) solve the system
(6.22)–(6.23) if and only if their pair of distributions
(L(Y 0),L(Y 1)) is a fixed point of T . Hence the
identification of fixed-points and domains of attraction
of such fixed-points plays an important role in the
asymptotic behavior of our sequences (Y 0

n )n≥0 and
(Y 1
n )n≥0 and is a core part of our proof.

Step 4. The Zolotarev metric. In accordance
with the general idea of the contraction method we will
endow the spaceM2 with a complete metric such that T
becomes a contraction with respect to this metric. The
issue of fixed-points is then reduced to the application
of Banach’s fixed-point theorem.

As building block we use the Zolotarev metric on
Ms(0, 1). It has been studied in the context of the
contraction method systematically in [29]. We only
need the following properties, see Zolotarev [41, 42]: For
distributions L(X), L(Y ) on R the Zolotarev distance
ζs, s > 0, is defined by

ζs(X,Y ) := ζs(L(X),L(Y ))(6.24)

:= sup
f∈Fs

|E[f(X)− f(Y )]|

where s = m+ α with 0 < α ≤ 1, m ∈ N0, and

Fs := {f ∈ Cm : ‖f (m)(x)− f (m)(y)‖ ≤ ‖x− y‖α},

the space of m times continuously differentiable func-
tions from R to R such that them-th derivative is Hölder
continuous of order α with Hölder-constant 1. We have
that ζs(X,Y ) < ∞, if all moments of orders 1, . . . ,m
of X and Y are equal and if the s-th absolute moments
of X and Y are finite. Since later on only the case
2 < s ≤ 3 is used, for finiteness of ζs(X,Y ) it is thus
sufficient for these s that mean and variance of X and
Y coincide and both have a finite absolute moment of
order s. Convergence in ζs implies weak convergence on
R. Furthermore, ζs is (s,+) ideal, i.e., we have

ζs(X + Z, Y + Z) ≤ ζs(X,Y ),

ζs(cX, cY ) = csζs(X,Y )

for all Z being independent of (X,Y ) and all c > 0.
Now, to measure distances on the product space

M2 we define for (τ0, τ1), (%0, %1) ∈M2 the distance

ζ∨s ((τ0, τ1), (%0, %1)) := ζs(τ0, %0) ∨ ζs(τ1, %1).

Here and later on, we use the symbols ∨ and ∧ for max
and min respectivly.
Step 5. The contraction property. We directly
obtain that T is a contraction in ζ∨s from the property
that ζs is (s,+) ideal: Denoting the components of T
by T0 and T1 we have

ζs(T0(τ0, τ1), T0(%0, %1))

≤ ps/200 ζs(τ0, %0) + (1− p00)s/2ζs(τ1, %1)

≤
(
p
s/2
00 + (1− p00)s/2

)
ζ∨s ((τ0, τ1), (%0, %1)),

and similary

ζs(T1(τ0, τ1), T1(%0, %1))

≤ (1− p11)s/2ζs(τ0, %0) + p
s/2
11 ζs(τ1, %1)

≤
(

(1− p11)s/2 + p
s/2
11

)
ζ∨s ((τ0, τ1), (%0, %1)).

Hence together with ξ := maxi∈Σ(p
s/2
ii +(1−pii)s/2) we

obtain that

ζ∨s (T (τ0, τ1), T (%0, %1)) ≤ ξζ∨s ((τ0, τ1), (%0, %1)).(6.25)

Since pii ∈ (0, 1) by assumption (2.2) we have ξ < 1 for
all s > 2. On the other hand, it is known that one only
obtains finiteness of ζs on Ms(0, 1) for s ≤ 3, hence
(6.25) is only meaningful for s ≤ 3. Thus, altogether,
our choice of s is 2 < s ≤ 3. For these s we obtain that
T is a contraction in ζ∨s .

Step 6. Convergence of the Yi
n. An intuition

why contraction properties of the map T lead to con-
vergence of the Y in towards the unique fixed-point



(N (0, 1),N (0, 1)) of T in M2 is as follows: The map
T serves as a limit version of our recurrence system
(6.21). Since in this recurrence system we could replace
the Y iIin

and Y 1−i
n−Iin

on the right hand side by the re-

currence (6.21) itself, iterating these replacements leads
approximatively to an iteration of the map T . How-
ever, by Banach’s fixed-point theorem, the iteration of
T applied to any starting point inM2 converges to the
unique fixed-point of T in the metric ζ∨s .

Hence, the problem of proving the convergence of
the Y in to the standard normal distribution (the fixed-
point) is reduced to the following technical task: Verify
that not only the iterations of T itself convergence in the
metric ζ∨s to the fixed-point, but also that the iterations
of the approximations of T that make the recurrence of
the Y in convergence within ζ∨s .

Once this is settled, we use that convergence in
ζs is strong enough to imply weak convergence and
(N (0, 1),N (0, 1)) is the unique fixed point of T . This
finally yields Proposition 6.2. A detailed proof is given
in the full paper version of this extended abstract.

Step 7. Transfer to arbitrary initial distribu-
tions. Finally, we prove Theorem 6.1. For this, we
have to transfer the convergence of the Y in from Propo-
sition 6.2 to the convergence of the normalization of Lµn
via (3.4). Recall that in (3.4), the Kn is a binomial
B(n, µ0) distributed random variable. We write

Lµn − E[Lµn]√
n log n

=
Lµn − ν0(Kn)− ν1(n−Kn)√

n log n

+
ν0(Kn) + ν1(n−Kn)− E[Lµn]√

n log n
.

By the Lemma of Slutsky, see, e.g. [1, Theorem 3.1], it
is sufficient to show, as n→∞,

Lµn − ν0(Kn)− ν1(n−Kn)√
n log n

d−→ N (0, σ2)(6.26)

ν0(Kn) + ν1(n−Kn)− E[Lµn]√
n log n

P−→ 0.(6.27)

For showing (6.26) note that by Proposition 6.2 (Lin −
E[Lin])/

√
n log n → N (0, σ2) in distribution for both

i ∈ Σ. We set An := [µ0n − n2/3, µ0n + n2/3] ∩ N0

and Acn := {0, . . . , n} \ An. Then by Chernoff’s bound
(or the central limit theorem) we have P(Kn ∈ An)→ 1.

For all x ∈ R we have with κnj := P(Kn = j)

P
(
Lµn − ν0(Kn)− ν1(n−Kn)√

n log n
≤ x

)
= P

(
L0
Kn
− ν0(Kn)
√
n log n

+
L1
n−Kn − ν1(n−Kn)

√
n log n

≤ x
)

=
∑
j∈An

κnjP

(
L0
j − ν0(j)
√
n log n

+
L1
n−j − ν1(n− j)
√
n log n

≤ x

)
+ o(1).

For j ∈ An we have
√
j log j/

√
n log n → √

µ0 and√
(n− j) log(n− j)/

√
n log n →

√
1− µ0. Hence, we

have (L0
j − ν0(j))/

√
n log n→ N (0, µ0σ

2) and (L1
n−j −

ν1(n− j))/
√
n log n→ N (0, (1− µ0)σ2) in distribution

and the two summands are independent. Together,
denoting by N0,σ2 an N (0, σ2) distributed random
variable we obtain

P
(
Lµn − ν0(Kn)− ν1(n−Kn)√

n log n
≤ x

)
= o(1) +

∑
j∈An

κnj(P
(
N0,σ2 ≤ x

)
+ o(1))

→ P
(
N0,σ2 ≤ x

)
,

where the latter convergence is justified by dominated
convergence. This shows (6.26).

To establish the convergence in probability in (6.27)
note that (3.4) implies

E[Lµn] = E[ν0(Kn)] + E[ν1(n−Kn)].

Hence, with the notation (4.7) and g(x) := x log x for
x ∈ [0, 1] and ‖ · ‖1 denoting the L1-norm we have

1√
n log n

‖ν0(Kn) + ν1(n−Kn)− E[Lµn]‖1

=
1√

n log n
‖ν0(Kn)− E[ν0(Kn)]

+ ν1(n−Kn)− E[ν1(n−Kn)]‖1

≤ 1

H
√
n log n

‖g(Kn)− E[g(Kn)]

+ g(n−Kn)− E[g(n−Kn)]‖1

+
1√

n log n
‖f0(Kn)− E[f0(Kn)]‖1

+
1√

n log n
‖f1(n−Kn)− E[f1(n−Kn)]‖1.



With the concentration of the binomial distribution we
obtain

‖g(Kn)− E[g(Kn)] + g(n−Kn)− E[g(n−Kn)]‖1

= n

∥∥∥∥g(Kn

n

)
− E

[
g

(
Kn

n

)]
+g

(
n−Kn

n

)
− E

[
g

(
n−Kn

n

)]∥∥∥∥
1

= O
(
n

1/2
)
.

The terms ‖f0(Kn) − E[f0(Kn)]‖1 and ‖f1(n − Kn) −
E[f1(n−Kn)]‖1 are also of the order O(n1/2) by a self-
centering argument. Altogether we have

‖ν0(Kn) + ν1(n−Kn)− E[Lµn]‖1√
n log n

= O

(
1√

log n

)
,

which, by Markov’s inequality, implies (6.27) as follows:
For any ε > 0 we have

P
(∣∣∣∣ν0(Kn) + ν1(n−Kn)− E[Lµn]√

n log n

∣∣∣∣ > ε

)
≤ 1

ε
E
[∣∣∣∣ν0(Kn) + ν1(n−Kn)− E[Lµn]√

n log n

∣∣∣∣]
=

1

ε
√
n log n

‖ν0(Kn) + ν1(n−Kn)− E[Lµn]‖1

→ 0.

7 Comparison with a multivariate approach

We propose the use of systems of univariate recurrences
in this extended abstract. Note however, that known
limit theorems from the contraction method for mul-
tivariate recurrences can as well be applied to the bi-
variate random variable Yn := (Y 0

n , Y
1
n ). (Technically

easiest is to keep the components Y 0
n and Y 1

n indepen-
dent by working with independent I0

n and I1
n.) Apply-

ing such an approach as developed in [29], the system
(6.22)–(6.23) is now replaced by the bivariate recursive
distributional equation

Y
d
= A1Y +A2Ŷ ,(7.28)

where Y and Ŷ are independent and identically dis-
tributed bivariate random variables and the matrices
A1, A2 are give by

A1 :=

[ √
p00 0
0

√
p11

]
,

A2 :=

[
0

√
1− p00√

1− p11 0

]
.

Any centered bivariate normal distribution solves the
latter fixed-point equation (7.28). In particular Theo-
rem 4.1 in [29] covers the arising bivariate recurrence,

cf. also condition (38) in [29], which is satisfied for A1,
A2 in (7.28)

However, for applying the contraction method in
such a multivariate form, an underlying contraction is
only implied for, see condition (25) in [29],

‖A1‖3op + ‖A2‖3op < 1,

where ‖ · ‖op, here, is identical to the spectral radius of
the matrix. This imposes the additional condition

(p00 ∨ p11)3/2 + (1− p00 ∧ p11)3/2 < 1(7.29)

to come up with a result similar to our Theorem 6.1.
Our new approach based on systems of univariate

recursive equations given above does not require any
further condition such as (7.29).
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