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Abstract

A digital search tree (DST) – one of the most fundamental data structure on words –
is a digital tree in which keys (strings, words) are stored directly in (internal) nodes. Such
trees find myriad of applications from the popular Lempel-Ziv’78 data compression scheme
to distributed hash tables. The profile of a DST measures the number of nodes at the same
distance from the root; it is a function of the number of stored strings and the distance
from the root. Most parameters of DST (e.g., height, fill-up) can be expressed in terms of
the profile. However, from the inception of DST, the analysis of the profile has been elusive
and it has become a prominent open problem in the area of analysis of algorithms. We
make here the first, but decisive step, towards solving this problem. We present a precise
analysis of the average profile when stored strings are generated by a biased memoryless
source. The main technical difficulty of analyzing the profile lies in solving a sophisticated
recurrence equation. We present such a solution for the Poissonized version of the problem
(i.e., when the number of stored strings is generated by a Poisson distribution) in the Mellin
transform domain. To accomplish it, we introduce a novel functional operator that allows
us to express the solution in an explicit form, and then using analytic algorithmics tools to
extract asymptotic behavior of the profile. This analysis is surprisingly demanding but once
it is carried out it reveals unusually intriguing and interesting behavior. The average profile
undergoes several phase transitions when moving from the root to the longest path. At
first, it resembles a full tree until it abruptly starts growing polynomially. Furthermore, the
expected profile is oscillating in a range where profile grows polynomially. Such a behavior
is quite unexpected for most shape parameters of random trees, except recently analyzed
profiles of tries which are another incarnations of digital trees. Our results are derived
by methods of analytic algorithmics such as generating functions, Mellin transform, Pois-
sonization and de-Poissonization, the saddle-point method, singularity analysis and uniform
asymptotic analysis.

Index Terms: Digital search trees, trees profile, analytic combinatorics, analysis of algorithms,
generating functions, Mellin transform.
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1 Introduction

Digital trees are fundamental data structures on words [6, 15, 17]. Among them tries and
digital search trees stand out due to a myriad of applications ranging from data compres-
sion to distributed hash tables [9, 17]. In a digital search trees, the subject of this paper,
strings are directly stored in nodes. More precisely, the root contains the first string, and
the next string occupies the right or the left child of the root depending on whether its first
symbol is “0” or “1”. The remaining strings are stored in available nodes which are directly
attached to nodes already existing in the tree. The search for an available node follows the
prefix structure of a new string [15]. In this paper, we are concerned with probabilistic prop-
erties of the profile defined as the sequence of numbers each counting the number of nodes
with the same distance from the root. Throughout the paper, we write Xn,k for the num-
ber of nodes at level k when n strings are stored (cf. Figure 1). We study the profile built
over n binary strings generated by a memoryless source, that is, we assume each string is
a binary i.i.d. sequence with p being the probability of a “1” (0 < p < 1); we also use
q := 1 − p > p. This simple model may seem too idealized for practical purposes, how-
ever, the typical behaviors under such a model often hold under more general models such
as Markovian or dynamical sources, although the technicalities are usually more involved.
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Figure 1: A digital search tree built on
eight strings s1, . . . , s8 (i.e., s1 = 0 . . .,
s2 = 1 . . ., s3 = 01 . . ., s4 = 11 . . ., etc.)
and its profile.

The motivation of studying the profiles is mul-
tifold. First, digital search trees are used in var-
ious applications ranging from data compression
(e.g., Lempel-Ziv’78 data compression scheme∗ [4]),
to telecommunication (e.g., conflict resolution algo-
rithms [17]), to partial matching of multidimensional
data [15], to distributed hash tables [9]. Second,
the profile is a fine shape measure closely connected
to many other cost measures, as discussed in some
depth below. Third, not only the analytic problems
are mathematically challenging, but the diverse new
phenomena they exhibit are highly interesting and
unusual. Fourth, our findings imply several new re-
sults on other shape parameters.

As we mentioned above, almost all DST param-
eters can be expressed in terms of the profile Xn,k:

(i) height : the length of the longest path from the root becomes Hn = max{j : Xn,j > 0}; (ii)
fill-up (or saturation) level : the largest full level, or Fn = max{j : Xn,j = 2j}; (iii) depth: the
distance from the root to a randomly selected node; its distribution is given by the expected
profile divided by n, [8]; (iv) total path length: the sum of distances between nodes and the
root, or equivalently, Ln =

∑

j jXn,j .
The major difference between most previous study and the current paper is that we are deal-

ing with asymptotics of a bivariate recurrence, in contrast to univariate recurrences addressed
in the literature. The main novel mathematical result concerns an explicit and asymptotic
solution of the following recurrence, never studied in the past,

xn+1,k+1 =
∑

0≤j≤n

(

n

j

)

pj(1 − p)n−j (xj,k−1 + xn−j,k−1)

∗In particular, Xn,k represents the number of phrases of length k in the Lempel-Ziv’78 built over n phrases.
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with suitable initial conditions. The Poisson generating function ∆k(z) := e−z
∑

n xn,kz
n/n!,

satisfies the following functional equation

∆′
k+1(z) + ∆k+1(z) = ∆k(pz) + ∆k(qz),

with a suitable ∆0(z). This equation is still not ready for analytical handling, therefore, one
applies first the Mellin transform, and some additional transformations leading to the following
functional-recurrence equation

Fk+1(s) − Fk+1(s − 1) = (p−s + q−s)Fk(s)

for complex s. We are able to obtain an explicit solution of this complicated equation by
introducing a proper functional operator. Next we find the inverse of the Mellin transform
which leads to infinite number of saddle points, a rather unexpected situation (cf. also [12]).
The final step is to invert asymptotics of the Poisson function ∆k(z) through the so called
analytic depoissonization to recover asymptotically xn,k. The reader is referred to [3, 17] for a
detailed discussion of the above mentioned tools that belong to analytic algorithmics.

Digital trees have been intensively studied for the last thirty years [6, 17], but not the profile.
The closest related quantity is the typical depth Dn that measures the path length from the root
to a randomly selected node; it is equal to ratio of the average profile to the number of nodes.
Unfortunately, all estimations of the depth [6, 7, 8, 16, 14] deal only with the typical depth
around most likely value, namely k = 1/h log n+O(1) where h = −p log p−q log q is the entropy
rate. External and internal profiles of tries have been studied by Park et. al [10, 11, 12], while
the profile of the digital search trees for unbiased source (i.e., p = q = 1/2) has been recently
obtained in [5] (cf. Section 6.3 of Knuth [6] for preliminary studies). The profile of digital
search trees for a biased memoryless sources was left untouched for the last thirty years, and
seems to be the most challenging problem in this area.

In this paper, we analyze precisely the expected profile of the biased digital search tress for
k ≤ (log 1

q )−1 log n and reveal unusually intriguing and interesting behavior. The average profile
undergoes several phase transitions when moving from the root to the longest path. At first it
resembles a full tree until it abruptly starts growing polynomially. Furthermore, the expected
profile is oscillating in a range where profile grows polynomially. These oscillations are due to
infinite number of saddle points. Knowing the expected profile for all values of depth k, we
easily obtain (known and unknown) results for the typical depth and width. For example, we
shall show an unusual Local Limit Theorem for the typical depth. Furthermore, our results are
in accordance with known results on height, and fill up level. In particular, our result shows
that (biased) digital search trees behave almost the same as (biased) tries.

The paper is organized as follows. In the next section we present our main results. Then
we describe a streamlined analysis with details delayed till the last two sections.

2 Main Results

Let Xn,k denote the (random) number of nodes at level k in a digital search tree, when n strings
are generated by a memoryless source with parameters p < q = 1− p. It is easy to see that the
probability generating function E uXn,k satisfies the following recurrence relation

E uXn+1,k+1 =

n
∑

ℓ=0

(

n

ℓ

)

pℓqn−ℓ
E uXn,ℓE uXn,n−ℓ , (1)
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while the corresponding exponential generating function

Gk(z, u) =
∑

n≥0

E uXn,k
zn

n!

satisfies the following functional recurrence

∂

∂z
Gk+1(z, u) = Gk(pz, u)Gk(qz, u) (2)

with initial conditions G0(z, u) = 1 + u(ez − 1) and Gk(0, u) = 1. We are interested in the
expected profile µn,k = E Xn,k. By taking derivatives with respect to u and setting u = 1 we
obtain for the exponential generating function

Ek(z) =
∑

n≥0

µn,k
zn

n!
=

∑

n≥0

E Xn,k
zn

n!
.

the following functional recurrence

E′
k+1(z) = eqzEk(pz) + epzEk(qz) (3)

with initial condition E0(z) = ez − 1 and Ek(0) = 0.
It is known that this kind of recurrence is rather difficult to solve. In what follows we present

a method to solve equations of that kind based on a three step procedure. We first apply the
Poisson transform, then the Mellin transform and finally another power series representation.
Each of these steps has to be properly inverted with help of analytic techniques; we will describe
the road map of this procedure in the next section.

In order to state our main result we need the following notations. For a real number α with
(log 1

p)−1 < α < (log 1
q )−1, let ρ = ρ(α) be defined by the equation

α =
p−ρ + q−ρ

p−ρ log 1
p + q−ρ log 1

q

.

Furthermore, we set

β(ρ) =
p−ρq−ρ log(p/q)2

(p−ρ + q−ρ)2
, α0 =

2

log 1
p + log 1

q

.

In this paper, we prove the following main findings.

Theorem 1. Let E Xn,k denote the expected profile in (asymmetric) digital search trees with
underlying probabilities 0 < p < q = 1 − p. Let k and n be positive integers such that k/ log n
satisfies (log 1

p)−1 < k/ log n < (log 1
q )−1. Then:

(i) If 1
log 1

p

+ ε ≤ k
log n ≤ α0 − ε (for some ε > 0), then we have uniformly

E Xn,k = 2k − G
(

ρn,k, logp/q pkn
) (p−ρn,k + q−ρn,k)kn−ρn,k

√

2πβ(ρn,k)k

(

1 + O

(

1

log n

))

,

where G(ρ, x) is a non-zero periodic function with period 1 and small amplitude (cf. Figure 2).
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(ii) If k = α0

(

log n + ξ
√

α0β(0) log n
)

, where ξ = o((log n)
1

6 ), then

E Xn,k = 2kΦ(−ξ)

(

1 + O

(

1 + |ξ|3√
log n

))

,

where Φ(x) denotes the normal distribution function.

(iii) If α0 + ε ≤ k
log n ≤ 1

log 1

q

− ε (for some ε > 0), then uniformly

E Xn,k = G
(

ρn,k, logp/q pkn
) (p−ρn,k + q−ρn,k)kn−ρn,k

√

2πβ(ρn,k)k

(

1 + O

(

1

log n

))

with G(ρ, x) as above in (i).

Note that if we set α = k/ log n then we can rewrite (p−ρ + q−ρ)kn−ρ = nα log(p−ρ+q−ρ)−ρ.
Thus, the behavior of E Xn,k is governed by a power of n depending on the ratio α = k/ log n: Up
to level k = α0 log n, the digital search tree is almost full (i.e., has almost 2k nodes) with some
fluctuation contributing to the second order term. A phase transition occurs around α = α0 +
O(1/

√
log), and for α > α0 the profile grows polynomially oscillating around nα log(p−ρ+q−ρ)−ρ.
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Figure 2: The fluctuating part of the periodic function G1(−1;x) for p = 0.55, 0.65, . . . , 0.95
and for x in the unit interval; its amplitude tends to zero when p → 0.5+.

More interestingly, the average profile allows us to deriving several new and old results in a
uniform manner. Let us start with the typical depth Dn which is given by P (Dn = k) = µn,k/n.
Using Theorem 1(ii) around k = 1/h log n+ cx

√
log n we obtain the following surprising variant

of the Local Limit Theorem for the depth.
For k = (1/h) log n + x

√
c log n we have

P (Dn = k) = G1

(

−1; logp/q pkn
) e−x2/2

√
2πc log n

(

1 + O

(

1 + |x|3√
log n

))

,

where

c =
β(−1)

h
=

pq log(p/q)2

p log 1
p + q log 1

q

.

As a further corollary to the above finding we observe that the width Wn (defined as
maxk Xn,k) satisfies

E Wn ≥ max
k

E Xn,k = Ω

(

n

log n

)

.

In order to obtain a corresponding upper bound (one expects that the order of magnitude of
the lower bound is the correct one) we would need some information on the second moment
E X2

n,k, compare with [2].
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3 Road Map of the Proof

As already mentioned, the proof of Theorem 1 consists of three steps:
(i) The starting point is the recurrence

E Xn+1,k+1 =

n
∑

ℓ=0

(

n

ℓ

)

pℓqn−ℓ(E Xℓ,k + E Xn−ℓ,k) (n, k ≥ 0) (4)

for the expected values µn,k = E Xn,k. We recall the initial conditions

E Xn,0 =

{

0 for n = 0,
1 for n ≥ 1.

(ii) The first step is to consider the Poisson transform

∆k(z) =
∑

n≥0

E Xn,k e−z zn

n!
= Ek(z)e−z (k ≥ 0)

that can be considered as the expected number of nodes at level k if the number n of total
nodes follows a Poisson distribution with parameter z. It is clear that the above recurrence
translates to

∆k+1(z) + ∆′
k+1(z) = ∆k(pz) + ∆k(qz) (k ≥ 0). (5)

with initial conditions ∆0(z) = 1 − e−z. It is easy to prove by induction that ∆k(z) can be

represented as a finite linear combination of function of the form e−pℓ1qℓ2z with ℓ1, ℓ2 ≥ 0 and
ℓ1 + ℓ2 ≤ k. We will use this observation in the sequel.
(iii) The second step is to use the Mellin transform

Mk(s) = M(∆k(z)) =

∫ ∞

0
∆k(z)zs−1 dz.

Since E Xn,k ≤ 2k it is clear that Mk(s) can only exist for s with ℜ(s) < 0. Furthermore,
Xn,k = 0 for n ≤ k. Thus, Ek(z) = O(zk+1) for z → 0 which ensures that Mk(s) exists for s
with ℜ(x) > −k − 1. Consequently Mk(s) exists for −k − 1 < ℜ(s) < 0. Since ∆k(z) can be

represented as a finite linear combination of function of the form e−pℓ1qℓ2z with ℓ1, ℓ2 ≥ 0 and
ℓ1 + ℓ2 ≤ k we can rewrite Mk(s) as

Mk(s) = −Γ(s)Fk(s),

where Γ(s) is the Euler gamma function. Observe that Fk(s) is now a finite linear combination
of functions of the form p−ℓ1sq−ℓ2s with ℓ1, ℓ2 ≥ 0 and ℓ1+ℓ2 ≤ k. Thus, Fk(s) can be considered
as an entire function. Further, the relation (5) now translates to

Fk+1(s) − Fk+1(s − 1) = (p−s + q−s)Fk(s) (k ≥ 0) (6)

with initial condition F0(s) = 1. Note that the relation (6) holds not only for −k−1 < ℜ(s) < 0
where the Mellin transform exists. Since Fk(s) analytically continues to an entire function (6)
holds for all s.
(iv) The third step is to consider the power series

f(x, s) =
∑

k≥0

Fk(s)x
s.
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It turns out that f(x, s) can we rewritten (see Lemma 1) as

f(x, s) =
g(x, s)

g(x,−1)
,

where g(x, s) satisfies the following relation

g(x, s) = 1 + x
∑

j≥0

g(x, s − j)(p−s+j + q−s+j). (7)

Granted the above, an asymptotic analysis follows. We start with a singularity analysis of
g(x, s), in particular we will show (see Lemma 3) that g(x, s) has (usually) a polar singularity at
x = 1/(p−s + q−s). Thus it will be possible to get proper asymptotics for Fk(s). In fact we get
Fk(s) ∼ f(s)(p−s +q−s)k (for s in the interesting range). This resembles an exact expression for
tries of the form (p−s + q−s)k as discussed in [12]. This is the reason why the overall behaviour
of the profile of biased tries and biased digital search trees is almost of the same form. Only
the periodic functions are slightly different.

Thus, the final two steps (inverting the Mellin transform and depoissonization) are almost
identical to the methods presented in [12]. First one has to invert the Mellin transform with
help of the analytic formula (through an application of the saddle point method)

∆k(z) = − 1

2πi

∫ ρ+i∞

ρ−i∞
Γ(s)Fk(s)z

−s ds, (8)

where −k − 1 < ρ < 0 and where we assume that z in cone around the real axis. Finally, one
has to apply analytic depoissonization to ∆k(z) which gives E Xn,k ∼ ∆k(n) Thus, for our final
result we have to set z = n.

4 Singularity Analysis

Before we study the generating function f(x, s) =
∑

k≥0 Fk(s)xk, we will collect some basic
properties of Fk(s). We recall that Fk(s) can be considered as entire functions.

Let A be an functional operator that is defined by

A[f ](s) =
∑

j≥0

f(s − j)T (s − j), (9)

where
T (s) = p−s + q−s. (10)

In the next lemma, proved in Appendix A, we find an explicit representation of Fk(z)
through the operator A.

Lemma 1. The functions Fk(s) are recursively given by

Fk+1(s) = A[Fk](s) − A[Fk](−1) (k ≥ 0). (11)

Furthermore if we set Rk(s) = Ak[1](x), then we have the formal identity

∑

k≥0

Fk(s)xk =

∑

ℓ≥0 Rℓ(s)x
ℓ

∑

ℓ≥0 Rℓ(−1)xℓ
(12)

with initial function F0(s) = 1. Finally for k ≥ 1 we have Fk(−ℓ) = 0 for ℓ = 1, 2, . . . , k.
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Remark 1. Note that if f is a finite linear combination of functions of the form p−ℓ1sq−ℓ2s

then A[f ](s) = 0 implies f(s) = 0. This follows from the observation that

A[p−ℓ1sq−ℓ2s] =
p−(ℓ1+1)sq−ℓ2s

1 − pℓ1+1qℓ2
+

p−ℓ1sq−(ℓ2+1)s

1 − pℓ1qℓ2+1
. (13)

Thus, the largest non-zero term of f (for s → ∞) will be mapped into two non-zero term that
contains the largest one of A[f ].

Remark 2. Observe further that the proof of (11) (and consequently that of (12)) makes use of
the fact that Fk(−1) = 0 for k ≥ 1. However, we also have Fk(−r) = 0 for k ≥ r. In particular,
if we set s = −r in (12) we get

r−1
∑

k=0

Fk(−r)xr =

∑

ℓ≥0 Rk(−r)xk

∑

ℓ≥0 Rk(−1)xk

and consequently
∑

k≥0

Fk(s)x
k =

∑

ℓ≥0 Rk(s)x
k

∑

ℓ≥0 Rk(−r)xk

r−1
∑

k=0

Fk(−r)xr. (14)

Furthermore, since Fk(0) = 2k we similarly we find

∑

k≥0

Fk(s)x
k =

∑

ℓ≥0 Rk(s)x
k

∑

ℓ≥0 Rk(0)xk

1

1 − 2x
. (15)

Our next goal is to study the function g(x, s) =
∑

ℓ≥0 Rℓ(s)x
ℓ, where we now consider x as

a complex variable, too. Note that g(x, s) satisfies the (at the moment formal) identity

g(x, s) = 1 + xA[g(x, ·)](s) = 1 +
∑

j≥1

g(x, s − j)T (s − j). (16)

In the next lemma, proved in Appendix B, we establish a crucial property of g(x, s).

Lemma 2. There exists a function h(x, s) that is analytic for all x and s for which

xT (s − m) 6= 1 for all m ≥ 1.

such that

g(x, s) =
h(x, s)

1 − xT (s)
. (17)

Thus, g(x, s) has a meromorphic continuation where x0 = 1/T (s) is a polar singularity.

Finally, we are in position to derive an asymptotic representation for Fk(s).

Lemma 3. For every real interval [a, b] there exist k0, η > 0 and ε > 0 such that

Fk(s) = f(s)T (s)k
(

1 + O
(

e−ηk)
))

(18)

uniformly for all s with ℜ(s) ∈ [a, b], |ℑ(s) − 2ℓπ log(q/p)| ≤ ε for some integer ℓ and k ≥ k0,
where f(s) is an analytic function that satisfies f(−r) = 0 for r = 1, 2, . . ..

Furthermore, if |ℑ(s) − 2ℓπ log(q/p)| > ε for for all integers ℓ then we have

Fk(s) = O
(

T (σ)k e−ηk)
)

. (19)

uniformly for ℜ(s) ∈ [a, b].
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Proof. Suppose first that s is a real number with −r− 1 < s < −r for some integer r ≥ 0. Here
we use the representation

f(x, s) =
r

∑

k=0

Fk(−r − 1)xk g(s, x)

g(−r − 1, x)
=

r
∑

k=0

Fk(−r − 1)xk h(s, x)

h(−r − 1, x)

1 − xT (−r − 1)

1 − xT (s)
.

By Lemma 2 there exist η > 0 such that h(s, x) is analytic for |x| ≤ eη/T (s). Since T (−r−1) <
T (s) it also follows that h(−r − 1, x) is analytic in that region. Furthermore, since h(−r− 1, x)
is non-zero for positive real x < 1/T (−r − 2) (compare with (26)) we obtain that the radius of
convergence of the series

∑

k≥0 Fk(s)x
k equals x0 = 1/T (s).

With help of this observation we can also deduce that the function f(x, s) has no other
singularities on the circle |x| = 1/T (s). Suppose that h(−r − 1, x) has a zero x1 with |x1| <
1/T (s). If

∑r
k=0 Fk(−r−1)xk

1 6= 0 then x1 has to be a zero of h(x, s), too: h(x1, s) = 0. However,
if we slightly decrease s, then certainly h(x1, s− η) 6= 0. In this case the function f(x, s) would
be singular for x = x1 although its radius of convergence is 1/T (s − η) > 1/T (s) > |x1|. This
is, of course, a contradiction and, thus,

∑r
k=0 Fk(−r − 1)xk

1 = 0, too. Actually, it also follows
that the order of the zeroes are the same. Furthermore, by a slight variation of the above
argument, we also deduce that f(x, s) has no singularities on the circle |x| = 1/T (s) other than
x0 = 1/T (s), as proposed.

Hence, by using a contour integration on the circle |x| = eη/T (s) and the residue theorem
[3, 17] it follows that

Fk(s) = f(s)T (s)k + O
(

|T (s)e−η|k
)

,

where

f(s) =

r
∑

k=0

Fk(−r − 1)T (s)−k h(s, 1/T (s))

h(−r − 1, 1/T (s))

(

1 − T (−r − 1)

T (s)

)

These estimates are uniform for s ∈ [a, b], where −r − 1 < a < b < r. Furthermore, we get the
same result if s is sufficiently close to the real axis. Thus, if a ≤ ℜ(s) ≤ b and |ℑ(s)| ≤ ε for
some sufficiently small ε > 0 then we obtain (18), too.

Next, suppose that s is real (or sufficiently close to the real axis) and close to a negative
integer −r, say −r − η ≤ s ≤ −r + η (for some η > 0). Here we use the representation

∑

k≥0

Fk(s)x
k =

r−1
∑

k=0

Fk(−r)xk g(s, x)

g(−r, x)
=

r−1
∑

k=0

Fk(−r)xk h(s, x)

h(−r, x)

1 − xT (−r)

1 − xT (s)

=

r−1
∑

k=0

Fk(−r)xk h(s, x) − h(−r, x)

h(−r, x)

1 − xT (−r)

1 − xT (s)

+

r−1
∑

k=0

Fk(−r)xk +

r−1
∑

k=0

Fk(−r)xk+1 T (s) − T (−r)

1 − xT (s)

Now if we substract the finite sum
∑r−1

k=0 Fk(−r), then we can safely multiply by Γ(s) (that is
singular at s = −r) and obtain a function of the form

r−1
∑

k=0

Fk(−r)xk Γ(s)(h(s, x) − h(−r, x))

h(−r, x)

1 − xT (−r)

1 − xT (s)
+

r−1
∑

k=0

Fk(−r)xk+1Γ(s)(T (s) − T (−r))

1 − xT (s)

which we can now handle in the same way as above. Thus, we actually prove (18) for k ≥ r
with f(−r) = 0.
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If s is close to 0 then we argue similarly. Here we can use the representation (15) to obtain

∑

k≥0

Fk(s)x
k =

h(s, x)

h(0, x)

1

1 − xT (s)
(20)

and (18) follows, too.
Finally, if ℜ(s) is positive (and ℑ(s) sufficiently close to 2ℓπ/ log(q/p) for some integer ℓ),

then we can also use (20) and obtain the proposed result. (Note that h(0, x) is analytic for
|x| < 1/T (−1) < eη|1/T (s)|.)

Next suppose that s = σ + it, where t is not necessarily small. Then

T (s) = eit log p
(

p−σ + q−σeit log(q/p)
)

.

Consequently |T (s)| = T (ρ) if and only if t = 2kπ/ log(q/p) for some integer k. Hence, if
|t− 2kπ/ log(q/p)| ≤ ε for some integer k we can do the same contour integration as above and
get again (18).

Finally, if |t − 2ℓπ/ log(q/p)| > ε for some integer ℓ, then we estimate Fk(s) trivially by

|Fk(s)| ≤ ρ−k · max
|x|=ρ

|g(x, s)|,

where R is chosen in a way that g(x, s) is analytic for |x| ≤ R. Since there is η > 0 with

|T (s − m)| = |p−σ+m + eit log(q/pq−σ+m| ≤ e−2ηT (σ − m)

it follows that h(x, s) exists for |x| ≤ eη/T (σ). Hence, we can actually set R = eη/T (σ)
and obtain (19). In order to complete the proof note that Mk(s) = −Γ(s)Fk(s) exists for
−k − 1 < ℜ(s) < 0 and that Fk(−r) = 0 for r = 1, 2, . . . and k ≥ r. Thus, f(−r) = 0, too.

5 Saddle Point Method for the Inverse Mellin Transform

By the above discussion, we know that Fk(s) behaves asymptotically as T (s)k. Therefore, the
saddle point analysis as well as the depoissonization, is similar to those given in [12]. Thus,
we will only give a very short outline of the proof. We also make a simplification that we only
consider the case z = n.

First, for inverting the Mellin transform with (8) at z = n it is natural to choose ρ = ρn,k

as the saddle point of the function

T (s)kn−s = ek log T (s)−s log n

that is given by the relation

k

log n
=

p−ρ + q−ρ

p−ρ log 1
p + q−ρ log 1

q

.

Note also that on the line ℜ(s) = ρ there will be infinitely many saddle points

sk = ρ +
2πik

log p
q

9



since T (sk) = e−2πik(log p)/(log p/q)T (ρ) and consequently the behavior of T (s)kz−s around s = sk

is almost the same as that of T (s)kz−s around s = ρ. This phenomenon gives a periodic leading
factor in the asymptotics of µn,k = E Xn,k.

We now set α = αn,k = k/ log n. Recall that our goal is to derive asymptotics of E Xn,k for

1

log 1
p

< α <
1

log 1
q

.

In particular we distinguish between several ranges:

Range 1: 1
log 1

p

< α < 2
log 1

p
+log 1

q

.

In order to cover this range we have to shift the line of integration in (8) to the saddle point
ρ > 0. By doing this we get a contribution of 2k from the polar singularity of Fk(s)Γ(s) (note
that Fk(0) = 2k) which is in fact the leading term. The remaining part comes from a saddle
point method that evaluates (8) asymptotically. Note that the digital search tree is almost a
complete tree in this range since the term 2k dominates.

Range 2: α = 2
log 1

p
+log 1

q

.

Here a phase transition occurs. Technically, a polar singularity (of Γ(s)) and the saddle point
Fk(s)n

−s coalesce at s = 0.

Range 3: 2
log 1

p
+log 1

q

< α < 1
log 1

q

.

This is the most significant range. Almost all nodes are concentrated around the level α = 1/h,
where h = p log 1

p + q log 1
q denotes the entropy of the source. This range corresponds to saddle

points ρ < 0. Here we have to be a little bit more careful due to the polar singularities of Γ(s)
for negative integers s. But Lemma 3 has already taken care of that problem.

We already mentioned that the two levels α = (log 1
p)−1 and α = (log 1

q )−1 correspond
to the fill-up-level resp. to the height of the digital search tree. The precise analysis of these
parameters are subtle since there is usual a log log-term involved, too. We will not discuss the
details of these ranges. Technically we would have to study Fk(s) for s → ∞ and s → −∞.

For example, if we apply the above mentioned procedure we obtain for ∆k(n) (in the Range
3) the asymptotic representation

∆k(n) = G
(

ρn,k, logp/q pkn
) (p−ρn,k + q−ρn,k)kn−ρn,k

√

2πβ(ρn,k)k

(

1 + O

(

1

log n

))

,

where G(ρ, x) is a periodic function and collects all contributions from the (infinitely many)
saddle points.

Finally, we need to depoissonize our results. Using the depoissonzaition lemma of Jacquet-
Szpankowski [3, 17] we find EXn,k ∼ ∆k(n), which completes the proof.
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Appendix A: Proof of Lemma 1

Proof. Set F̃k(s) = 1 and recursively

F̃k+1(s) = A[F̃k](s) − A[F̃k](−1) (k ≥ 0).

It is easy to see that F̃k(s) are well defined entire functions. In particular it follows that F̃k(s) is
(as it is for Fk(s)) a finite linear combination of function of the form p−ℓ1sq−ℓ2s with ℓ1, ℓ2 ≥ 0
and ℓ1 + ℓ2 ≤ k. Further (by definition) these functions satisfy F̃k(−1) = 0 (for k ≥ 1) and
fulfill the relation

F̃k+1(s) − F̃k+1(s − 1) = T (s)F̃k(s)

for k ≥ 0 and all s.
Now we can proceed by induction to show that Fk(s) = F̃k(s). By definition we have

F0(s) = F̃0(s). Now suppose that Fk(s) = F̃k(s) holds for some k ≥ 0. Then with help of the
above considerations it follows that Fk+1(s) = F̃k+1(s) + G(s), where G(s) satisfies

G(−1) = 0 and G(s) − G(s − 1) = 0 (−k − 1 < ℜ(s) < 0). (21)

By the above observations G(s) has to be a finite linear combination of function of the form
p−ℓ1sq−ℓ2s. However, the only periodic function of this form that meets conditions (21) is the
zero function. Hence, Fk+1(s) = F̃k+1(s).

Now we prove (12). First, (12) is equivalent to

k
∑

ℓ=0

Fℓ(s)Rk−ℓ(−1) = Rk(s) (k ≥ 0)

resp. to

Fk(s) = Rk(s) −
k−1
∑

ℓ=0

Fℓ(s)Rk−ℓ(−1) (k ≥ 0).

We will prove this relation by induction. Of course, it is satisfied for k = 0. Now suppose that
is holds for some k ≥ 0. Then from (11) we find

Fk+1(s) = A[Fk](s) − A[Fk](−1)

= A[Rk](s) − A[Rk](−1) −
k−1
∑

ℓ=0

(A[Fℓ](s) − A[Fℓ](−1))Rk−ℓ(−1)

= Rk+1(s) − Rk+1(−1) −
k−1
∑

ℓ=0

Fℓ+1(s)Rk−ℓ(−1)

= Rk+1(s) −
k

∑

ℓ=0

Fℓ(s)Rk+1−ℓ(−1).

This completes the induction proof.
Finally, since Fk(s) = −Mk(s)/Γ(s) is analytic for s with −k−1 < ℜ(s) < 0 and 1/Γ(−ℓ) = 0

it also follows that Fk(−ℓ) = 0 for ℓ = 1, 2, . . . , k.
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Appendix B: Proof of Lemma 2

Proof. We recall that Rk(s) = Ak[1](s). In particular the first few functions Rk(s) are given by

R0(s) = 1,

R1(s) =
p−s

1 − p
+

q−s

1 − q
,

R2(s) =
p−2s

(1 − p)(1 − p2)
+

p−sq−s

(1 − p)(1 − pq)
+

p−sq−s

(1 − q)(1 − pq)
+

q−2s

(1 − q)(1 − q2)
.

With help of (13) we derive corresponding representations for general k. Recall, too, that we
have assumed that p < q. Hence, it follows that

|Rk(s)| ≤
1

∏

j≥1(1 − qj)
(p−ℜ(s) + q−ℜ(s))k.

Thus, if |x| < T (ℜ(s))−1, then the series

g(x, s) =
∑

ℓ≥0

Rℓ(s)x
ℓ =





∑

ℓ≥0

xℓAℓ



 [1](s) (22)

converges absolutely and represents an analytic function. We can rewrite (22) as

g(x, s) = (I − xA)−1[1](s)

or as
(I − xA)[g(x, ·)](s) = g(x, s) − x

∑

j≥0

g(x, s − j)T (s − j) = 1, (23)

which is the same as (16).
By substituting g(x, s) by

g(s, x) =
h(x, s)

1 − xT (s)

in (23) we get a relation for h(x, s) of the form

h(x, s) = 1 +
∑

j≥1

h(x, s − j)
xT (s − j)

1 − xT (s − j)
. (24)

Recall that we already know that h(x, s) exists for |x| < T (ℜ(s))−1. We will now use (24) to
show that h(x, s) can be analytically continued to the range |x| < T (ℜ(s) − 1)−1 (and even to
the range where xT (s − m) 6= 1) so that we also get a meromorphic continuation as proposed.

For this purpose we introduce another operator B by

B[f ](s) =
∑

j≥1

f(x, s − j)
xT (s − j)

1 − xT (s − j)
. (25)

For convenience set U(x, s) = xT (s)/(1 − xT (s)). By induction it follows that

Bk[1](s) =
∑

i1≥1

∑

i2≥1

· · ·
∑

ik≥1

U(x, s − i1)U(x, s − i1 − i1) · · ·U(x, s − i1 − i2 − · · · − ik)

=
∑

mk≥k

mk−1
∑

mk−1=k−1

mk−1−1
∑

mk−2=k−2

· · ·
m2−1
∑

m1=1

U(x, s − m1)U(x, s − m2) · · ·U(x, s − mk).
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Hence, we get the upper bound

|Bk[1](s)| ≤
∑

mk≥k

∑

mk−1≥k−1

· · ·
∑

m1≥1

|U(x, s − m1)U(x, s − m2) · · ·U(x, s − mk)|

=
∑

m1≥1

|U(x, s − m1)| ·
∑

m2≥2

|U(x, s − m2)| · · ·
∑

mk≥k

|U(x, s − mk)|.

It is clear that the series

S :=
∑

m≥1

|U(x, s − m)| =
∑

m≥1

|xT (s − m)|
|1 − xT (s − m)|

converges if xT (s−m) 6= 1 for all m ≥ 1. Note that T (s−m) = O(qm). Thus for any choice of
x and s there are only finitely many exceptions where xT (s−m) = 1. Let k0 be any value with

∑

m≥k0

|U(x, s − m)| ≤ 1

2
.

Then we have for all k ≥ k0

|Bk[1](s)| ≤ Sk02−(k−k0) = (2S)k02−k.

Hence, we can set

h(x, s) =
∑

k≥0

Bk[1](s) (26)

which obviously satisfies (24). Furthermore we have the upper bound |h(x, s)| ≤ 2(2S)k0 .

14


