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Data-derived weak universal consistency:1

the case of universal compression2
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Abstract4

Many current applications in data science need rich model classes to adequately represent the5

statistics that may be driving the observations. But rich model classes may be too complex to admit6

estimators that converge to the truth with convergence rates that can be uniformly bounded over7

the entire collection of probability distributions comprising the model class, i.e. it may be impossible8

to guarantee uniform consistency of such estimators as the sample size increases. In such cases, it is9

conventional to settle for estimators with guarantees on convergence rate where the performance can10

be bounded in a model-dependent way, i.e. pointwise consistent estimators. But this viewpoint has the11

serious drawback that estimator performance is a function of the unknown model within the model12

class that is being estimated, and is therefore unknown. Even if an estimator is consistent, how well it13

is doing at any given time may not be clear, no matter what the sample size of the observations.14

Departing from the classical uniform/pointwise consistency dichotomy that leads to this impasse,15

a new analysis framework is explored by studying rich model classes that may only admit pointwise16

consistency guarantees, yet all the information about the unknown model driving the observations that17

is needed to gauge estimator accuracy can be inferred from the sample at hand. We expect that this18

data-derived estimation framework will be broadly applicable to a wide range of estimation problems by19

providing a methodology to deal with much richer model classes. In this paper we analyze the lossless20

compression problem in detail in this novel data-derived framework.21

I. Introduction and Motivation22

Many of the most challenging problems in the data sciences stem from one or more of the following23

characteristics associated with data: extreme scale (typically requiring that the data reside on multiple24

storage nodes); high dimensionality and sparsity; patterns in the data that manifest at multiple scales;25

dynamic, temporal, and heterogeneous structure; complex dependencies between different parts of the26

data; and noise/ missing data. Tasks such as image recognition, classification, control and many others,27

which are built on such data sources, depend on estimating the relevant underlying structure in the data.28

Rich model classes, i.e. rich collections of probabilistic models, such as the collection of all probability29

distributions over a large or countably infinite support, or the set of long memory, slowly mixing Markov30

processes are often required to adequately model the complex characteristics of these data sources. A31

comprehensive approach to address these key challenges is critically needed.32
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Indeed, in bringing rigorous theory to bear on data science, the first question we face is related to33

model selection. There is often a tension between the need for rich model classes to better represent34

data and our ability to handle these collections from a mathematical point of view. Many applications,35

particularly in the big data regime, force us to consider model collections that are too complex to admit36

estimators with traditional model-agnostic uniformly consistent guarantees. These new collections often37

only admit pointwise convergent estimators [1] – i.e. convergence is only guaranteed individually for38

each model in the model class – which often are difficult to use predictively as their convergence cannot39

be verified. In this paper we depart from this dichotomy, and we propose a new analysis framework40

by characterizing rich model classes that may only admit pointwise guarantees, yet all the information41

about the unknown model needed to gauge estimator accuracy can be inferred from the observations.42

More precisely, we introduce here data-derived consistency, a new framework to analyze these rich model43

collections. To retain focus, in this document we concentrate on universal compression to bring out the44

salient features of this framework. We also make connections to a related prediction problem that was45

analyzed by us earlier in [2], and is now seen to fit into this broader framework.46

The richness of a model class is often quantified by metrics such as its VC-dimension [3], Rademacher47

complexity [4], [5], [6], or – what is most relevant in the context of universal compression – its asymptotic48

per-symbol redundancy [7], [8], [9], [10], [11], [12]. Ideally, one would want an estimation algorithm with49

a model-agnostic guarantee on its perfomance, depending only on the sample size – this is the uniform50

consistency dogma that underlies most formulations of engineering applications today. But requiring51

such uniform consistency restricts the richness of the model classes we can deal with. Generally speaking,52

the more complex a model is, the less one could expect to be able to provide such uniform consistency53

guarantees.54

When the model classes we are interested in are too complex to admit uniformly consistent estimators,55

the common belief is that the best we can do is to have estimators with convergence guarantees56

dependent on not just the sample size but on the underlying model in the model class that governs57

the statistics of the observations. These are called pointwise consistent estimators. It is well-understood58

that this viewpoint may not always be particularly useful, the problem now being that our gauge of59

the performance of the estimation scheme is dependent on the unknown underlying model – the very60

ambiguity we are addressing! Even if we have a pointwise consistent estimator, which is eventually61

almost surely accurate under the underlying model, for any fixed sample size we may never know how62

well the estimator is doing no matter how large the sample size is.63

We illustrate this issue with a simple example below. Before doing so, we first introduce some of the64

notational conventions that will be used throughout this document. The symbol :=, and occasionally65

=:, is used to denote equality by definition. We write log for logarithms to base 2 and ln for logarithms66

to the natural base. The set of natural numbers, denoted N, is the set {1, 2, . . .}, thought of as endowed67

with its usual σ-algebra comprised of all subsets of N. For n ≥ 1, we use Nn to denote the set of strings68

of length n of natural numbers, with the product σ-algebra. The set of infinite sequences of natural69

numbers is denoted N∞, and is thought of as endowed with the corresponding product σ-algebra. We70

will adopt the convention of thinking of a probability measure on N as defined by a distribution, which71

assigns a probability to each natural number. A string of integers (x1, . . . , xn) ∈ Nn will be denoted72

by x, or by xn when it seems important to emphasize the specific length of the string. For a string73

of integers x := (x1, . . . , xn) ∈ Nn, its empirical distribution or type is the sequence of unnormalized74
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fractions on N assigning the fraction m
n to x ∈ N if x shows up m times in the string x. It is conventional75

to think of the type as a probability distribution on N and we will do so when convenient, but it is76

important at some places in the document to think of it as comprised of unnormalized fractions. N∗77

denotes the set of strings of naturals of finite length, including the empty string. For the purposes of78

this paper it suffices to think of N∗ as a set with no additional structure.79

Example 1. (Hiding entropy)80

For ε > 0 and M ∈ N, let pε,M be the probability distribution that assigns probability 1 − ε to the81

natural number 1 and assigns probability ε/M to the natural numbers 2 through M + 1. Denote the82

probability distribution that assigns probability 1 to the natural number 1 by p0. Let W be the set83

comprised of the probability distributions pε,M for ε > 0 and M ∈ N, as well as p0.84

Our task is to estimate the Shannon entropy of a probability distribution in W using i.i.d. samples85

from it. However, we do not know which probability distribution in W is governing the law of the86

observed samples. The natural plug-in estimator assigns to a sample X1, . . . ,Xn the entropy of its em-87

pirical distribution. Since every probability distribution in W has finite support, the plug-in estimate is88

consistent almost surely, no matter which underlying distribution fromW is generating the observations.89

But at what point do we know that the plug-in estimate is close to the correct answer? Indeed, can we,90

at any point, get an upper bound for the true entropy using the plug-in estimate with, say, a confidence91

probability 3/4, regardless of what the true probability distribution in W is?92

It turns out that it is impossible to provide such guarantees for W. To see why, suppose we see a93

sequence of n successive 1s. This could have come from p0, or, with high probability, from any probability94

distribution pε,M with 0 < ε � 1
n . What is worse, for any upper bound ĥ we may provide, however95

large, even if 0 < ε � 1
n , the entropy of pε,M where M ≥ 2ĥ/ε is h(ε) + ε logM ≥ ĥ. Every such pε,M96

gives the sample of n successive 1s a probability of at least > 3/4 if ε is sufficiently small, so our upper97

bound fails.98

This argument applies whether we obtained ĥ from the plug-in estimator or any other estimator of99

the entropy. No upper bound that we propose on the entropy based on any finite sequence of 1s can100

hold with confidence probability 3/4 under all probability distributions in W. To make matters worse,101

the sequence of all 1s occurs with probability 1 when the underlying model in force is p0. Therefore,102

even when we could estimate the entropy consistently, we could never obtain even a trivial upper bound103

on the entropy with a confidence probability ≥ 3/4. 2104

We therefore challenge the dichotomy of uniform and pointwise consistency in the analysis of statis-105

tical estimators. This paper considers a new paradigm positioned in between these two extremes. We106

modify the definition of pointwise consistent estimators, keeping as far as possible the richness of the107

model class but ensuring that all the information needed about the unknown model to evaluate estimator108

accuracy can be gleaned from the observations. We call this modified notion of pointwise consistency109

data-derived consistency. The crux of the data-derived framework is to provide a mechanism that allows110

us to gauge from the observations how well we are doing.111

We bring out the salient features of the data-derived framework in this document in the framework of112

universal compression. In the context of providing efficient compressed representations of samples from113

a data source, the goal of universal compression is to be able to work with a rich class of models for the114

source being compressed. Universal compression posits that we have a model class of source probability115
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measures, while we are required to come up with a universal probability measure that attempts to116

compress any source in the model class as well as possible without prior knowledge of the source. Since117

the universal probability measure is not exactly matched to any single source probability measure in118

the model class it incurs a redundancy, measured using the Kullback-Leibler (KL) divergence, against119

any source in the model class when compressing a sequence of observed samples whose statistics are120

governed by this source. The uniform consistency setup in this case corresponds to what is commonly121

known as the strong compression formulation, where we find universal probability measures whose122

per-symbol redundancy incurred against any source in the model class can be uniformly bounded123

over the entire model class and, in addition, diminishes to 0 as the sample size grows to infinity.124

The pointwise consistency setup in this case corresponds to what is commonly known as the weak125

compression formulation and is one where the universal probability measure incurs asymptotically zero126

per-symbol redundancy against each source in the model class, but the convergence to zero is not127

necessarily uniform over the entire model class.128

We propose and study the data-derived weak compression formulation (d.w.c.) which identifies when,129

in the weak compression setup, we can also estimate the redundancy of the universal probability measure130

relative to the underlying source model generating the data. Broadly speaking, we aim to find a universal131

estimator/encoding with a given accuracy as well as a corresponding stopping rule that allows us to132

find out at what point the KL divergence from the true source becomes (and remains) small, for a133

predetermined sequence length. To characterize the classes of probability distributions on N that are134

data-derived weakly compressible, we shall introduce the notion of what it means for a probability135

distribution in the class to be deceptive relative to the class. At a high level, a source probability136

distribution, viewed as a member of a collection of probability distributions, is deceptive if the asymptotic137

per-symbol redundancy of neighborhoods of the source within the model class is bounded away from 0,138

in the limit as the neighborhood shrinks to 0. Then, in our main finding, Theorem 17, we show that a139

collection of probability measures is data-derived weakly compressible iff no source in the model class is140

deceptive.141

As we delve deeper into this formulation, we will see that data-derived consistency changes how we142

think of model classes. It shifts the focus away from the global complexity of the model class to some143

form of local complexity of each model within the model class, viewed as a member of the model class.144

Our notion of data-derived consistency is closely related to other formulations in compression and145

learning theory – in particular hierarchical universal compression [13] and data-dependent structural risk146

minimization [14], as well as its subsequent development via the luckiness framework [15]. Fundamental147

to all these approaches is to balance the sample complexity of learning with the desire for richer model148

collections (or hypothesis collections as the case may be).149

The paper is organized as follows. In the next section we develop our data-derived approach. Section III150

recalls some of the central prior results on universal compression that we build on in our work. Section IV151

discusses our main result (Theorem 17), which completely characterizes d.w.c. model classes of i.i.d.152

probability distributions on a countable set. We then illustrate several nuances in our formulation and153

results using several examples in Section V. Sections VI and VII are devoted to proving the main154

result. The main thread of the discussion is supported by several appendices. Appendix I reconciles155

the traditional definitions of strong and weak compressibility with those we work with in this paper.156

Appendix II gathers several basic results on entropy, redundancy and the Jensen-Shannon divergence157
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that we draw upon throughout the paper. Appendix III contains the details of the proof for the claims158

made regarding one of the examples in Section V. Appendix IV proves a lemma needed for the proof the159

sufficiency part of the main theorem. The last bit of the proof of the necessity part of the main theorem160

is in Appendix V and that of the sufficiency part in Appendix VI. Finally, Appendix VII corrects an161

erroneous claim made in passing in the concluding remarks in [2] (which does not in any way affect the162

rest of that paper).163

II. Formulation of the problem164

Let P be a collection of probability distribution over N. Given P, we let P∞ denote the collection165

of probability measures on N∞ induced by i.i.d. sampling from the individual probability distributions166

in P. We will use the term source to denote either p ∈ P or p∞ ∈ P∞ as appropriate. For notational167

simplicity and following the convention in literature, we will also often drop the superscript in p∞168

and use p both for the probability distribution on N and the corresponding i.i.d. probability measure169

induced on N∞. Further, for n ≥ 1 and a string of natural numbers x := (x1, . . . , xn) =: xn ∈ Nn, we170

will write p(x) or p(xn) for
∏n
i=1 p(xi). Here p can be thought of as a simplified notation for the product171

probability measure pn on Nn corresponding to the probability distribution p on N.172

We consider here the lossless compression problem for collections of large alphabet i.i.d. sources. The173

main contribution of this work is to propose and develop the data-derived framework for estimation prob-174

lems. The large alphabet i.i.d. compression problem is the vehicle we have used to do this, but the reader175

can no doubt easily come up with her or his favorite estimation problem where this framework might176

lead to interesting developments. In Example 8 we consider the problem of estimation of percentiles of177

the probability distribution defining the source – this has been studied in depth in [2], so here all we178

show is that this estimation task lies in the data-derived framework proposed in this document. Another179

example, which we have not studied in depth, but which seems to us to be particularly interesting, is180

that of entropy estimation, see Example 9.181

Before embarking on the discussion, we introduce some additional notational conventions. For 1 ≤182

m ≤ n and strings y ∈ Nm and x ∈ Nn, we write y � x to denote that y is a prefix of x. We can also183

use this notation when y ∈ Nm and x ∈ N∞. The length of a finite string x ∈ Nn is denoted by |x|.184

For a probability measure q on N∞, given n ≥ 1 and a string x ∈ Nn, we write q(x) for the probability185

under q of the set of strings in N∞ whose prefix of length n is x. In effect, we are treating x as also186

denoting an event in N∞. Note that, for p ∈ P, n ≥ 1, and x ∈ Nn, this notational convention is187

consistent with the earlier conventions of writing p for both p∞ ∈ P∞ and for the product probability188

measure on Nn corresponding to p.189

It is a standard fact that a probability measure q on N∞ is completely specified by q(x) for all x ∈ Nn190

for all n ≥ 1, subject to the consistency conditions q(x) =
∑

y∈Nm : x�y q(y) for all 1 ≤ n ≤ m and191

x ∈ Nn.192

{0, 1}∗ denotes the set of binary strings of finite length. The notation {0, 1}∗\∅ is used for the set of193

binary strings of finite length, excluding the empty string. For b ∈ {0, 1}∗\∅, the length of b is denoted194

by l(b).195

We write 1(A) to denote the indicator of an event A.196

It is convenient to state some of the supporting results in this document at a level of generality where197

the underlying set is a countable set, in which case we denote such a set by X . Also, we will state some198
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results that apply to arbitrary collections of probability measures on N∞, i.e. not necessarily of the form199

P∞ for some collection of probability distributions P on N. In such cases, we denote such a collection200

of probability measures on N∞ by Λ.201

If q and r are arbitrary probability measures on N∞, then202

Dn(q||r) := Eq log
q(Xn)

r(Xn)
,

denotes the KL divergence over length n strings of q with respect to r. If p and p̃ are probability203

distributions on N, then D(p||p̃) denotes the KL divergence of p with respect to p̃, which is Ep log p(X)
p̃(X) .204

Note that, with our conventions, the expression Dn(p||p̃) is also well-defined, and can be viewed as a205

shorthand notation for Dn(p∞||p̃∞). We thus have Dn(p||p̃) = nD(p||p̃) for all n ∈ N, since p∞ and p̃∞206

are i.i.d. probability measures on N∞. KL divergence is also called relative entropy.207

For probability distributions p and p̃ on N, their `1 distance is208

|p− p̃|1 :=
∑
i∈N
|p(i)− p̃(i)|.

II-A. Strong compressibility and weak compressibility209

In the lossless data compression problem for the collection of probability measures P∞ on N∞210

corresponding to a collection of probability distributions P on N, our estimator is a probability measure211

q on N∞. 1 The problem formulation can be understood by thinking of the loss L(p, q,x) incurred by the212

estimator q against a source p, given the length n observation x ∈ Nn, as being the excess codelength,213

L(p, q,x) := log
p(x)

q(x)
.

The terminology is justified by thinking of log 1
p(x) as an indication of the length of the binary string214

one would want to use to represent x in an ideal prefix-free scheme for compressing strings of length n215

from the source p if one knew what p was, and thinking of log 1
q(x) as the length of the binary string one216

would be led to use for representing x in the prefix-free compression scheme suggested by the estimator217

q. For more on this, see the discussion in Appendix I on how strong and weak compressibility is typically218

defined in the literature.219

With this loss function in mind, we now make the following definitions.220

Definition 2. Let P be a collection of probability distributions on N, and P∞ the corresponding221

collection of probability measures on N∞ induced by i.i.d. sampling from the individual probability222

distributions in P. Then P∞, or equivalently P, is called strongly compressible if there is a probability223

measure q on N∞ satisfying224

lim sup
n→∞

sup
p∈P∞

1

n
Ep log

p(Xn)

q(Xn)
= 0. (1)

2225

The preceding definition may seem unusal relative to the definition of strong compressibility that is226

traditionally encountered in the literature on data compression [8], [1]. In Appendix I we establish that227

it is identical to the traditional definition.228

1It is not required that the probability measure q be generated by i.i.d. sampling.
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Discussions of data compression in the literature are often framed in the language of redundancy. We229

formalize this notion in the following definition.230

Definition 3. Let Λ be any collection of probability measures on N∞. The length-n redundancy of231

Λ is defined to be232

Rn(Λ) := inf
q

sup
r∈Λ

Er log
r(Xn)

q(Xn)
, (2)

where the outer infimum is taken over all probability measures on N∞, or equivalently over all probability233

measures on Nn. The redundancy in the special case n = 1 is called the single letter redundancy of Λ,234

and Rn(Λ)/n is called the per-symbol length-n redundancy of Λ. The asymptotic per-symbol redundancy235

of Λ is lim supn→∞Rn(Λ)/n.236

More generally, given a probability measure q̂n on Nn one can define the length-n redundancy of Λ237

with respect to q̂n to be supr∈ΛEr log r(Xn)
q̂n(Xn) and similarly for the per-symbol length-n redundancy of238

Λ with respect to q̂n. Given a probability measure q on N∞, one can define the asymptotic-per-symbol239

redundancy of Λ with respect to q to be lim supn→∞
1
n supr∈ΛEr log r(Xn)

q(Xn) .240

Even more generally, given a probability measure q̂n on Nn one can define the length-n redundancy of241

r ∈ Λ with respect to q̂n to be Er log r(Xn)
q̂n(Xn) and define the per-symbol length-n redundancy of r ∈ Λ with242

respect to q̂n similarly. Given a probability measure q on N∞, one can define the asymptotic-per-symbol243

redundancy of r ∈ Λ with respect to q to be lim supn→∞
1
nEr log r(Xn)

q(Xn) .244

When P is a collection of probability distributions on N, and P∞ the corresponding collection of245

probability measures on N∞ induced by i.i.d. sampling from the individual probability distributions in246

P, we will talk about each of the redundancy quantities as properties of P when in fact they are defined247

for P∞. Similarly, given a probability measure q̂n on Nn or a probability measure q on N∞ we will talk248

about each of the redundancy quantities for a given p ∈ P with respect to q̂n or q (as appropriate) when249

we mean the corresponding quantities for the p∞ ∈ P∞ corresponding to p. 2250

It is worth noting that a collection of probability distributions on N is strongly compressible iff its251

asymptotic per-symbol redundancy is zero. For completeness, we give a proof of this claim in Lemma 31252

in Appendix I. We also observe that the asymptotic per-symbol redundancy of a collection of probability253

measures Λ on N∞ can also be written as254

lim sup
n→∞

Rn(Λ)/n = lim sup
n→∞

1

n
inf
q

sup
r∈Λ

Er log
r(Xn)

q(Xn)
= inf

q
lim sup
n→∞

1

n
sup
r∈Λ

Er log
r(Xn)

q(Xn)
,

where the infimum on both sides of the equality is over probability measures q on N∞. Namely, the255

lim supn→∞ can be interchanged with the infq. A proof of this is given in Lemma 36 in Appendix II.256

We can allow for much richer collections of probability distributions if we work with a weaker notion257

of compressibility.258

Definition 4. Let P be a collection of probability distributions on N, and P∞ the collection of259

probability measures on N∞ induced by i.i.d. sampling from the individual probability distributions in260

P. Then P∞, or equivalently P, is called weakly compressible if there exists a probability measure q261

over N∞ such that, for all p ∈ P∞ with finite entropy rate, we have262

lim sup
n→∞

1

n
Ep log

p(Xn)

q(Xn)
= 0. (3)

2263



8

One artifact of the above definition is that any collection of probability distributions on N where264

every source has infinite entropy is vacuously weakly compressible. In Appendix I we establish that265

this definition of weak compressibility is identical to the definition of weak compressibility commonly266

encountered in the literature on data compression, see e.g. Kieffer [16]. Also, in Lemma 32 of Appendix I267

we formally establish the essentially tautological fact that a collection of probability distributions P on268

N is weakly compressible iff there exists a probability measure q on N∞ such that every p ∈ P with269

finite entropy has vanishing asymptotic per-symbol redundancy with respect to q.270

II-B. Compression in the data-derived sense271

Working with collections of probability distributions on N that are weakly compressible gives us a272

richer class of models than working with those that are strongly compressible. Weak compressiblity of a273

collection P of probability distributions on N ensures that there is a probability measure q on N∞ such274

that q is essentially as good an encoder as the underlying p for long enough strings of natural numbers275

drawn i.i.d. from p, where goodness is measured in terms of the number of bits used per symbol encoded.276

This is what it means to say that the asymptotic per-symbol redundancy of every p∞ ∈ P∞ with respect277

to q is 0,278

But observe that what one means by “long enough” depends on the unknown p, since convergence279

to the limit in (3) need not be uniform over p ∈ P. The main contribution of our work is to come to280

grips with this issue without having to back off all the way to being able to deal only with strongly281

compressible collections of probability distributions.282

Our ideas are built around the notion of a universal stopping rule, which we introduce next. Recall283

that a stopping rule is a function of observed strings where the decision to stop or not at any given time284

is based only on what has been observed thus far. We formalize a stopping rule by a function τ from285

N∗, the set of all finite strings of naturals, to the set {0, 1},286

τ : N∗ → {0, 1}.

When τ assigns value 0 on a finite string xn, possibly the empty string, it indicates that the stopping287

rule is still waiting after having observed xn. A string xn, possibly the empty string, is assigned 1 if288

the stopping rule has stopped on any prefix of xn. From a notational point of view, since τ quantifies a289

stopping rule, we will have for all strings xn with prefix xm that τ(xn) ≥ τ(xm).290

The stopping rule τ is required to be universal for P. In other words, the stopping rule cannot291

change depending on the unknown probabilistic model p ∈ P that is generating the observations. In the292

formulation that we will develop in this paper, for a given a threshold δ > 0, a stopping rule, call it τ293

for now, will be based on some fixed probability measure q on N∞, and will signify when the length is294

“long enough” that the normalized KL divergence between the underlying source distribution and the295

probability measure q has fallen below δ and will remain below δ henceforth. We will insist that τ stops296

at a finite time for all p ∈ P, i.e.,297

p( lim
n→∞

τ(Xn) = 1) = 1, for all p ∈ P. (4)

We will include the condition in (4) in the concept of what we mean by a universal stopping rule.298

To understand this requirement better, fix a probability measure q on N∞, and for p ∈ P let299

Np,δ;q := {n :
1

n
Ep log

p(Xn)

q(Xn)
> δ}.
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Thus Np,δ;q is the set of all lengths n ≥ 1 such that the length-n KL divergence of the i.i.d. probability300

measure p∞ corresponding to p with respect to the probability measure q is worse than the accuracy301

required. Now consider the set302

Nδ;q := ∪p∈PNp,δ;q.

In the trivial case where Nδ;q is a finite set, let N denote the largest element in Nδ;q. Then, for all303

n ≥ N , we have304

sup
p∈P

1

n
Ep log

p(Xn)

q(Xn)
≤ δ.

Clearly we can choose the stopping rule to be 0 for all sequences with length n ≤ N and 1 for all305

sequences with length > N , and this is universal.306

It is more interesting when Nδ;q defined above is not a finite set. Even in this case, the stopping307

rule τ has to stop at a finite time almost surely no matter which source is governing the observations.308

Naturally, no matter when τ stops waiting, the sequence length may not be long enough for some sources309

in P, so τ fails on such sequences. More formally, for δ > 0, τ fails with respect to q or is δ-premature310

with respect to q for a source p ∈ P and at time i if there is some string xi such that311

τ(xi1) = 1 and
1

i
Ep log

p(Xi)

q(Xi)
> δ. (5)

For p ∈ P, consider the subset of N∞ defined as312 x ∈ N∞ : ∃ i such that τ(xi) = 1 and
1

i

∑
yi∈Ni

p(yi) log
p(yi)

q(yi)
> δ

. (6)

For p ∈ P, the above set is the set of strings on which τ is δ−premature with respect to q. While this313

set depends on which p ∈ P is driving the observations, this set is an event in the product σ-algebra314

on N∞ whatever the underlying p ∈ P. To see this, note that it is a countable union of sets of the form315 {
x ∈ N∞ : τ(xi) = 1

}
, i ≥ 1 (which of the components sets lie in the union is determined, for the fixed316

probability measure q on N∞, by the underlying source probability distribution p).317

While the set in (6) may not be an empty set, we can at least try to ensure that its probability under318

p is small. This thought process leads to what we mean by a collection of probability distributions on319

N being weakly compressible in the data-derived sense, formalized below. This is the central concept320

investigated in this paper.321

Definition 5. Let P be a collection of probability distributions on N and P∞ the associated collection322

of probability measures on N∞ got by i.i.d. sampling from the individual distributions in P. We say323

that P∞, or equivalently P, is weakly compressible in the data-derived sense or data-derived weakly324

compressible ( d.w.c.) if there is a probability measure q on N∞ such that, for any accuracy δ > 0 and325

confidence probability 0 < 1− η < 1, there is a universal stopping rule τδ,η with the property that, no326

matter what p∞ ∈ P∞ is in force, we have327

p(τδ,η is δ−premature with respect to q for p) (7)

:= p(∃ i such that τδ,η(X
i) = 1 and

1

i

∑
yi∈Ni

p(yi) log
p(yi)

q(yi)
> δ) < η.

2328
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Claim 6. (Strongly compressible implies d.w.c.) Suppose P is a collection of probability329

distributions on N that is strongly compressible, namely there exists a probability measure q on N∞330

that satisfies (1). It follows then that, for all δ > 0, the sets331

Nδ;q := {n : sup
p∈P∞

1

n
Ep log

p(Xn)

q(Xn)
> δ}

are finite. For any η > 0, suppose we set τδ,η(x
i) = 1 if i > maxNδ;q and 0 else, we obtain for all332

p ∈ P∞ that p(τδ,η is δ−premature with respect to q) = 0. Thus every strongly compressible collection333

of probability distributions on N is d.w.c.. 2334

Claim 7. (d.w.c. implies weakly compressible) Suppose P is a collection of probability distri-335

butions on N that is d.w.c., as in Definition 5. Let q be a probability measure on N∞ such that, for336

every accuracy δ > 0 and confidence probability 0 < 1 − η < 1 there is a universal stopping time τδ,η337

satisfying (7) for every p ∈ P. Fix p ∈ P. From (7) we conclude that, for all i ≥ 1, we have338

p(τδ,η(X
i) = 1)1

1

i

∑
yi∈Ni

p(yi) log
p(yi)

q(yi)
> δ

 < η.

However, since the stopping time τδ,η is universal, it must satisfy (4), i.e. it stops eventually. Hence we339

have340

lim
i→∞

p(τδ,η(X
i) = 1) = 1.

From this, it follows that341

lim sup
i→∞

1

i

∑
yi∈Ni

p(yi) log
p(yi)

q(yi)
≤ δ,

(in fact, for this to hold, it suffices to have the condition in (7) hold for some 0 < 1 − η < 1 and not342

necessarily for all η > 0, for the given δ > 0). Letting δ → 0, we see that the condition in (3) holds,343

for the given probability measure q on N∞, for all p ∈ P. This means, by definition, that P is weakly344

compressible. 2345

Claims 6 and 7 imply that346

Strongly compressible ⊆ d.w.c. ⊆ weakly compressible.

In Section V-A we will see examples of model classes demonstrating that each of these inclusions is347

strict.348

As can be seen from the preceding discussion, our formulation of d.w.c. model classes is aimed at349

addressing the most interesting case from a statistical modeling viewpoint, which is the case where350

P∞ is weakly compressible, but not strongly compressible. Typically, we need global constraints on the351

collection of sources that comprise a model class to render the model class strongly compressible – for352

example, that the square root of the Fisher information be integrable over the model class for a class to353

be strongly compressible [10]. By contrast, as we will see, data-derived weak compressibility does not354

depend on controlling the entire class P∞, but requires only that local neighborhoods of each p ∈ P,355

viewed as a member of P, be simple. Indeed, one of the main contributions of this paper is to obtain a356

condition that is both necessary and sufficient for an i.i.d. collection P∞ to be d.w.c..357
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The operational interpretation for our formulation of d.w.c. model classes comprised of i.i.d. sources358

can be articulated as follows. Given such a model class, let q be any measure on N∞ that verifies the359

definition, i.e. such that for every δ > 0 and η > 0 there is some universal stopping rule τδ,η : N∗ 7→ {0, 1}360

for which the probability under every p in the model class that τδ,η is δ-premature with respect to q for361

p is less than η.362

As we observe the realization of the i.i.d. data samples from the (unknown) source p in the model class,363

we will eventually see a string of some (random) length n = n(δ, η, p) (say xn) such that τδ,η(x
n) = 1.364

Now, even though we do not know p, we get the guarantee (with confidence probability ≥ 1 − η) that365

using q to compress any subsequent length-n or longer sequence of symbols in the usual way (i.e.,366

− log q(xk) bits for a sequence xk) incurs an expected per-symbol redundancy ≤ δ.367

II-C. Other examples of data-derived problem formulations368

To clarify that the ideas in our framework have the potential to apply much more broadly to estimation369

problems other than the lossless compression problem that we have focused on in this document, we370

highlight in this section data-derived formulations for two other estimation problems. The first is a371

prediction task from [2], which we call the insurance problem, while the second is an entropy estimation372

task. In later sections, we will also make some comparisons between the insurance problem and the373

universal lossless compression problem studied here.374

Example 8. (Insurability) Suppose we have a collection P∞ of i.i.d. measures over N∞. Given a375

finite sample (X1, . . . , Xn) with i.i.d. marginals from an unknown p ∈ P we want to estimate a finite376

upper bound on the next symbol Xn+1 in a data-derived sense. If there are p ∈ P with unbounded377

support then for any finite upper bound we propose there is a probability under such p that it may378

not be valid. In our data-derived formulation, we therefore want to provide an estimated upper bound379

Φ(Xn
1 ), and a universal stopping rule τ that tells us from what point we should believe that our estimates380

Φ(Xn
1 ) are at least as big as Xn+1, while allowing for some probability of being wrong.381

Formally, given a confidence probability 0 < 1−η < 1, we seek to come up with a mapping Φ : N∗ → R382

and a stopping rule τ such that, for all p ∈ P, we have383

p
(
∃i ∈ N such that Φ(Xi) < Xi+1 and τ(Xi) = 1

)
< η.

If this is possible, we say that the model class P∞ is insurable. In prior work, in [2], the collections P∞384

that are insurable were completely characterized. See Corollary 19 and Corollary 20 for more details385

and connections with the results developed in this document. 2386

Example 9. (Entropy estimation) Let P be a collection of probability distributions on N. Given387

a finite sample (X1, . . . , Xn) sampled i.i.d. from an unknown p ∈ P, we want to provide a data-derived388

finite upper bound Ĥ on the entropy of p. Formally, given a confidence probability 0 < 1 − η < 1, we389

would like to come up with a mapping Ĥ : N∗ → R and a universal stopping rule τ such that, for all390

p ∈ P, we have391

p
(
∃i ∈ N such that Ĥ < H(p) and τ(Xi) = 1

)
< η. 2

We do not know the answer to this question, in the sense that we do not know a simple intuitive392

necessary and sufficient condition that will characterize which collections P of probability distributions393

on N admit data-derived estimates of entropy and which do not.394
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III. Background395

This section highlights some interesting prior results on universal compression that will be used in396

this paper. Readers can skip the proofs in this section if they are willing to take the results here at face397

value when they are referred to. We have collected in this section the more interesting prior results we398

use. Other, more basic, prior results that we also use are collected in Appendix II.399

III-A. Weak compression400

Let P be a collection of probability distribution on N and P∞ the collection of probability measures401

on N∞ induced by i.i.d. sampling from the individual probability distributions in P. In Appendix I we402

have demonstrated that the notion of weak compressibility of P∞ in the sense of Kieffer [16] is identical403

to the definition of weak compressibility of P∞ that we have made in Definition 4.404

The following lemma gives a useful characterization of weak compressibility.405

Lemma 10. Let P be a collection of probability distributions on N and P∞ the associated set of406

i.i.d. probability measures on N∞. Then P∞ is weakly compressible iff there exists a distribution q on407

N such that for all p ∈ P with finite entropy we have408 ∑
x∈N

p(x) log
1

q(x)
<∞. (8)

Proof From [16, Theorem 1] we know that P∞ is weakly compressible iff there is a countable set409

Q := {q1, q2, . . .} of probability distributions on N such that for all p ∈ P with finite entropy there is410

some qi ∈ Q satisfying411 ∑
x∈N

p(x) log
1

qi(x)
<∞.

Therefore, if there is a probability distribution q on N satisfying (8) for all p ∈ P, we can immediately412

conclude that P∞ is weakly compressible. It remains to show the converse.413

To do this, suppose that P∞ is weakly compressible and let Q be a choice of the countable set of414

probability distributions on N guaranteed by [16, Theorem 1]. Fix some enumeration of Q as Q =415

{q1, q2, . . .}.416

Consider the probability distribution q on N given by417

q(n) :=

∑|Q|
i=1

qi(n)
i(i+1)∑|Q|

j=1
1

j(j+1)

, n ∈ N,

where the upper limit of the summation is understood to be ∞ if Q is countably infinite. Observe that,418

for all i and for all n, we have419

q(n) ≥ qi(n)

i(i+ 1)
.

Therefore, for all p ∈ P with finite entropy and all qi ∈ Q, we have420 ∑
x∈N

p(x) log
1

q(x)
≤
∑
x∈N

p(x) log
i(i+ 1)

qi(x)
.

Since the right hand side of the preceding equation is finite for at least one qi ∈ Q, this completes the421

proof. 2422
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III-B. Finite redundancy implies tightness423

Let us recall the definition of tightness of a collection of probability distributions on N.424

Definition 11. A collection P of probability distributions on N is said to be tight if for every γ > 0425

there is a natural number Mγ such that426

sup
p∈P

p(X > Mγ) < γ.

2427

We now show that tightness of a collection of probability distributions on N is implied by finiteness428

of the single letter redundancy of the collection. The result we present is a well-known folk theorem, see429

for example [17, Lemma 4]. Here we give an elementary proof of this result.430

Lemma 12. Let P be a collection of probability distributions on N. If the single letter redundancy431

of P is finite, then P is tight.432

Proof We reproduce the proof from [18, Lemma 1]. Since P has finite single letter redundancy, there433

is a probability distribution q on N such that434

Ṙ := sup
p∈P

D(p||q) <∞.

Proposition 33 in Appendix II implies that for all p ∈ P we have435

Ep| log
p(X)

q(X)
| ≤ Ṙ+ 2(log e)/e.

Hence, for all p ∈ P and all integers m ≥ 1, we have436

p(

∣∣∣∣log
p(X)

q(X)

∣∣∣∣ > m) ≤ (Ṙ+ (2 log e)/e)/m. (9)

To complete the argument, we need to define the linearly interpolated cumulative distribution function437

of a probability distribution on N.438

Definition 13. For a probability distribution q on N, the linearly interpolated cumulative distribution439

Ḟq(n) for n ∈ N ∪ {0} follows the standard definition of the cumulative distribution function, i.e.440

Ḟq(n) := Fq(n) = P(X ≤ n) (10)

whereX is a random variable distributed according to q. For n ∈ N∪{0} and a real number n ≤ x ≤ n+1,441

however, we define442

Ḟq(x) := (n+ 1− x)Ḟq(n) + (x− n)Ḟq(n+ 1).

Note that Ḟq is a nondecreasing function with domain the nonnegative real numbers and range either443

[0, 1] or [0, 1). For t ∈ [0, 1), we define Ḟ−1
q (t) to be the right continuous inverse of Ḟq, i.e.444

Ḟ−1
q (t) := sup{x ≥ 0 : Ḟq(x) ≤ t}.

2445
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Given γ > 0, pick m so large that (Ṙ+ (log e)/e)/m < γ/2. For all p ∈ P, we then have446

p(X > Ḟ−1
q (1− γ/2m+1)) = p(log

p(X)

q(X)
> m,X > Ḟ−1

q (1− γ/2m+1)) + p(log
p(X)

q(X)
≤ m,X > Ḟ−1

q (1− γ/2m+1))

≤ p(| log
p(X)

q(X)
| > m) + 2mq(X > Ḟ−1

q (1− γ/2m+1))

< (Ṙ+ (log e)/e)/m+ γ/2

< γ.

This establishes that P is tight. 2447

III-C. Bounds on redundancy448

The following technical lemma is used in Example 23 and in Example 27. Its roots go back to [13].449

Lemma 14. Let X be a countable set, and P be a collection of probability distributions on X . For450

i ranging over the finite set of indices {1, . . . ,M} or over all indices i ≥ 1, let Si ⊂ X be a subset of X ,451

and assume that these sets are pairwise disjoint. Suppose that for each i there exists pi ∈ P such that452

pi(Si) ≥ δ.

Then, for all probability distributions q on X , we have453

sup
p∈P

D(p||q) ≥ δ log(M)− 1,

if the number of subsets in the collection is finite, equal to M , and454

sup
p∈P

D(p||q) =∞,

if the number of subsets in the collection is infinite.455

Proof This is a simplified formulation of the distinguishability concept in [13]. To prove the claim,456

note that for any m at most equal to the number of subsets in the collection, we must have q(Si) ≤ 1/m457

for some i. For such a choice of i we can write458

D(pi||q) =
∑
x∈Si

pi(x) log
pi(x)

q(x)
+
∑
x∈Sci

pi(x) log
pi(x)

q(x)

(a)

≥ pi(Si) log
pi(Si)

q(Si)
+ pi(S

c
i ) log

pi(S
c
i )

q(Sci )

≥ pi(Si) log
1

q(Si)
+ pi(S

c
i ) log

1

q(Sci )
− 1

≥ δ logm− 1,

where step (a) is from the log sum inequality. This completes the proof. 2459
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IV. Characterization of d.w.c. model classes460

In this section we state our primary result, which is a necessary and sufficient condition for a model461

class comprised of a collection of probability distributions P on N to be data-derived weak compressible.462

We will see that what decides whether a model class P is d.w.c. or not is a local property of463

the probability distributions in P, viewed as members of P. Namely, the characterization of data-464

derived weak compressibility is based on considering a property of local neighborhoods, as defined in465

Section IV-A, of the individual probability distributions in the model class. Distributions having bad466

local neighborhoods are what we call deceptive distributions, defined and studied in detail in Section IV-467

B. The notion of deceptive distributions lies at the heart of our characterization, in Theorem 17, of which468

model classes are d.w.c..469

IV-A. Local neighborhoods470

We will see in this section that what makes the local neighborhoods of a probability distribution p ∈ P471

bad and kills d.w.c. is that when a stopping rule is forced by p∞ ∈ P∞ into certifying the accuracy472

of the estimate at some time (which will have to be the case, since the stopping rule has to stop with473

probability 1 under p), it will nevertheless be the case that there are other probability distributions in474

P, potentially arbitrarily close to p, which induce inadequate performance on the estimator. We now475

proceed to make this vague description of the underlying ideas precise.476

For probability distributions p and p̃ on N, we define477

J (p, p̃) := D

(
p||p+ p̃

2

)
+D

(
p̃||p+ p̃

2

)
, (11)

which, up to a scaling factor, is a Jensen-Shannon divergence between p and p̃ [19]. The primary reason478

we use the Jensen-Shannon divergence in place of the KL divergence is that J satisfies a pseudo-479

triangle inequality, as shown in Lemma 37 in Appendix II, while still retaining much of the statistical480

interpretation that a KL divergence has. Lemma 37, reproduced from [2], also shows that J is intimately481

connected with the `1−distance between probability distributions on N. Indeed, J generates the same482

topology on the set of probability distributions on N that the `1−distance does.483

More generally, for probability measures q and r on N∞, we use the notation484

J (q, r) := D1

(
q||q + r

2

)
+D1

(
r||q + r

2

)
,

where, in the above, the KL divergences are taken between the single letter marginals of q and r on the485

first sample. Note that in this case it is no longer necessary that q should equal r when J (q, r) = 0.486

Also note that this notation is consistent with our convention of using the notation p to represent both487

a probability distribution on N and the corresponding p∞ ∈ P∞.488

Definition 15. An ε−neighborhood of p ∈ P is the set B(p, ε;P) of all p′ ∈ P such that J (p, p′) < ε.489

2490

For technical reasons, we will also make use of `1−neighborhoods in the paper in addition to the491

ε−neighborhoods defined above (which we will refer to simply as neighborhoods). The `1−neighborhood492

of radius ε > 0 around p ∈ P is comprised of all p′ ∈ P such that |p− p′|1 < ε.493
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IV-B. Deceptive distributions494

Definition 16. p∞ ∈ P∞ is said to be deceptive if the asymptotic per-symbol redundancy of495

neighborhoods of p is bounded away from 0 in the limit as the neighborhood shrinks to 0. More precisely,496

we define p∞ ∈ P∞, or equivalently p ∈ P, to be deceptive if497

lim
ε→0

inf
q

lim sup
n→∞

sup
p′∈B(p,ε;P)

1

n
Dn(p′||q) > 0. (12)

In the above, the infimum is over all q that are probability measures on N∞ (not necessarily obtained498

by i.i.d. sampling). The verbal description of this condition in terms of the asymptotic per-symbol499

redundancy of the neighborhoods of p is justified by Lemma 36, which is proved in Appendix II. 2500

Our main result is the following Theorem 17. The necessity part of this theorem is proved in Section VI501

and the sufficiency part in Section VII.502

Theorem 17. Let P be a collection of probability distributions on N and P∞ the associated collection503

of probability measures on N∞ got by i.i.d. sampling. Then P∞ is d.w.c. iff no p ∈ P is deceptive. 2504

In the rest of this section we explore the concept of deceptive distributions to flesh out a few properties505

of such distributions and their neighborhoods. This will help to better understand Definition (12) and506

will set the stage for understanding the proof of Theorem 17.507

IV-B.1) A simpler characterization of deceptive distributions508

In determining whether a source p ∈ P is deceptive, (12) allows us to choose q depending on ε. We509

now show that this degree of freedom is unnecessary.510

Lemma 18. If p ∈ P is not deceptive, then there is a single probability measure q∗ on N∞ such that511

lim
ε→0

lim sup
n→∞

sup
p′∈B(p,ε;P)

1

n
Dn(p′||q∗) = 0.

Hence, we have that p is deceptive iff for all probability measures q on N∞ we have512

lim
ε→0

lim sup
n→∞

sup
p′∈B(p,ε;P)

1

n
Dn(p′||q) > 0.

Proof Because p is not deceptive, there exists a sequence (δm > 0,m ≥ 1), with limm→∞ δm → 0,513

and a sequence of probability measures (qm,m ≥ 1) on N∞ such that, for all sufficiently large m ≥ 1,514

we have515

lim sup
n→∞

sup
p′∈B(p,1/m;P)

1

n
Dn(p′||qm) ≤ δm.

Define the probability measure q∗ on N∞ that, for each n ≥ 1 and x ∈ Nn, assigns to the string x the516

probability517

q∗(x) :=
∑
m≥1

qm(x)

m(m+ 1)
.

For all m ≥ 1, n ≥ 1 and p′ ∈ B(p, 1/m;P), we have518

1

n
Dn(p′||q∗) ≤ 1

n
Dn(p′||qm) +

log(m(m+ 1)

n
.
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This implies that519

lim sup
n→∞

sup
p′∈B(p,1/m;P)

1

n
Dn(p′||q∗) ≤ δm + lim

n→∞

log (m(m+ 1))

n
= δm,

and so520

lim
ε→0

lim sup
n→∞

sup
p′∈B(p,ε;P)

1

n
Dn(p′||q∗) = lim

m→∞
lim sup
n→∞

sup
p′∈B(p,1/m;P)

1

n
Dn(p′||q∗) ≤ lim

m→∞
δm = 0.

This concludes the proof. 2521

IV-B.2) Neighborhoods of non-deceptive distributions are tight522

Recall the definition of tightness of a collection of probability distributions on N from Definition 11.523

The following corollary is immediate.524

Corollary 19. If p ∈ P is not deceptive, then some neighborhood of p is tight.525

Proof If p ∈ P is not deceptive then, for some ε > 0, there exists n ≥ 1 and a probability measure q526

on N∞ such that527

sup
p′∈B(p,ε)

Dn(p′||q) <∞.

From Proposition 34 in Appendix II, it follows that the single letter redundancy of the neighborhood528

B(p, ε) is finite, which implies that B(p, ε) is tight, from Lemma 12. 2529

The above corollary helps to make a connection between two data-derived formulations – d.w.c., which530

is considered in this document, and insurability, from Example 8. We showed in [2] that a collection of531

i.i.d. probability measures P∞ on N∞ is insurable iff some neighborhood, exactly as defined here, of532

every p ∈ P is tight. We therefore obtain533

Corollary 20. Let P be a collection of probability distributions on N and let P∞ denote the534

associated collection of i.i.d. probability measures on N∞. If P∞ is d.w.c., then P∞ is insurable. 2535

In both cases, note that the condition relies on some neighborhood within the model class of every536

model being simple. We expect this kind of locality to appear as a feature of the characterization of537

which model classes admit data-derived estimators in most data-derived formulations.538

V. Examples539

We now discuss a series of examples that highlight various aspects of our formulation. These examples540

also help flesh out the notion of what it means for a probability distribution to be deceptive.541

V-A. Strongly compressible ( d.w.c. ( weakly compressible542

We first give examples showing that weakly compressible collections of probability distribution on N543

are a strictly richer class of models than d.w.c. collections. We also show that there are collections of544

probability distributions on N that are d.w.c. but are not strongly compressible.545

Weakly compressible but not d.w.c.546

We consider two examples in this category.547
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U∞

F∞h
I∞M∞

h

Insurable

Weakly Compressible

N∞,M∞

B∞
d.w.c.

Fig. 1. Summary of examples: M∞h is strongly compressible (hence d.w.c., insurable and weakly compressible), U∞ and

F∞h are d.w.c. (hence insurable and weakly compressible), B∞ is weakly compressible and insurable but not d.w.c., N∞ and

M∞ are weakly compressible, but not insurable nor d.w.c., while I∞ is insurable but not weakly compressible. Note that

Corollary 20 shows that all d.w.c. collections are insurable, while Claim 6 and Claim 7 show that strong compressibility

implies d.w.c. and that d.w.c. implies weak compressiblity respectively.

A monotone probability distribution p on N is one that satisfies p(y) ≥ p(y + 1) for all y ∈ N. Let548

M denote the collection of all monotone probability distributions on N and M∞ be the corresponding549

collection of i.i.d. probability measures on N∞.550

Example 21. (M∞ is weakly compressible but not d.w.c..)551

To see that M∞ is weakly compressible [20] note that, for all p ∈M and all n ∈ N, we have552

p(n) ≤ 1

n
.

It follows that every p ∈M with finite entropy must satisfy553 ∑
n≥1

p(n) log n ≤
∑
n≥1

p(n) log
1

p(n)
<∞. (13)

Now consider the probability distribution q on N assigning probability q(n) = 6
π2n2 to n ∈ N. From (13)554

we see that, for all p ∈M with finite entropy, we have555 ∑
n≥1

p(n) log
1

q(n)
<∞.

From Lemma 10 we conclude that M∞ is weakly compressible.556

It turns out that all the probability distributions p ∈ M are deceptive. To conclude this, we show557

that no neighborhood around any p ∈ M is tight and then appeal to Corollary 19. This would then558

imply, by Theorem 17, that M∞ is not d.w.c.. In fact, it would have been enough to show that there559

exists some p ∈M such that that no neighborhood of p is tight.560
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Let U denote the collection of all uniform distributions over finite supports of form {m,m+ 1, . . . ,M}561

where m and M are positive integers with m ≤M . For p ∈M and ε > 0, consider the collection562

M(p, ε) := {p′ : p′ = (1− α)p+ αq for q ∈ U ∩M and 0 ≤ α < ε}. (14)

In (14) q can be any monotone uniform distribution, namely a uniform distribution with support563

{1, . . . ,M} for someM > 0. ClearlyM(p, ε) ⊂M. Note also thatM(p, ε) is a subset of an `1−neighborhood564

of p corresponding to `1−distance 2ε. We will show that M(p, ε) is not tight for all p and all ε > 0. By565

Lemma 37 and the definition of neighborhoods in Definition 15, it follows that no neighborhood of any566

p ∈M is tight.567

For 0 < α < ε, let 0 < δ < α and n ≥ 1. Observe that if the support {1, . . . ,M} of a uniform568

distribution q′ ∈ U ∩M satisfies M ≥ n
1− δ

α

, then we have569

q′{j : j > n} = 1− n

M
≥ δ

α
.

Thus, given any p ∈M, we have a distribution p′ = (1−α)p+αq′ ∈M(p, ε) that satisfies p′{j : j > n} ≥570

δ. Therefore, M(p, ε) is not tight. This completes the argument. 2571

For our second example, we consider the setN∞1 of all i.i.d. probability measures on N∞ corresponding572

to the set of all probability distributions p on N such that EpX <∞, denoted N1.573

Example 22. (N∞1 is weakly compressible but not d.w.c..)574

Note that every p ∈ N1 has finite entropy. Also, by definition, all p ∈ N1 satisfy
∑

i≥1 ipi < ∞.575

Therefore the simplified version of Kieffer’s condition for weak compressibility, as stated in Lemma 10,576

is satisfied by the distribution q(i) := 1/2i (i ≥ 1). Thus we conclude that N1 is weakly compressible.577

We can show that every p ∈ N1 is deceptive by showing that no neighborhood of any p ∈ N1 is578

tight. The approach is similar to that in Example 21. Given ε > 0, consider distributions of the form579

p′ = (1−α)p+αq, where q ∈ U is a uniform distribution over a support of the form {m,m+ 1, . . . ,M},580

and 0 < α < ε. Since q has finite support, we have p′ ∈ N1.581

As in Example 21 we observe that (i) the `1 distance between p′ and q is strictly less than 2ε; (ii)582

for all 0 < δ < α and n ≥ 1, we can pick q′ ∈ U , with U defined as in Example 21, whose support583

satisfies M ≥ n
1− δ

α

, which then implies that the (1− δ)−percentile of p′ := (1− α)p+ αq′ can be made584

to lie above n. Since the above construction works for arbitrary n ≥ 1 and in view of Lemma 37 and585

the way in which neighborhoods are defined in Definition 15, no neighborhood of any p ∈ N1 is tight,586

which shows that every p ∈ N1 is deceptive and hence, by Theorem 17, that N1 cannot be d.w.c.. As in587

Example 21, to apply Theorem 17 it would have been enough to show that there is at least one p ∈ N1588

which is deceptive. 2589

d.w.c. but not strongly compressible590

The example we consider in this category is U , which is defined in Example 21. Let U∞ denote the591

collection of all i.i.d. probability measures on N∞ corresponding to U .592

Example 23. (U∞ is not strongly compressible but is d.w.c..)593

We first show that U has infinite single letter redundancy. To see this, we partition N into disjoint594

subsets (Ti, i ≥ 0), where Ti := {2i, . . . ,2i+1 − 1}. For each Ti there is an associated distribution pi ∈ U595
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such that pi(Ti) = 1. Since the number of these disjoint sets Ti is infinite, we conclude from Lemma 14596

that the single redundancy of U is ∞.597

From the second part of Proposition 34 we can now conclude that the length-n redundancy of U is598

∞ for all n ≥ 1, so its asymptotic per-symbol redundancy is also ∞, which means, by Lemma 31, that599

U is not strongly compressible.600

To see that U is d.w.c., note that around each probability distribution p ∈ U there is an `1-601

neighborhood that contains no other probability distribution in U . Such a neighborhood has length-n602

redundancy equal to 0 for all n because the only possible distribution in the neighborhood is p. Hence603

the asymptotic per-symbol redundancy of all sufficient small neighborhoods of each p ∈ U is zero, which604

means, by definition, that each p ∈ U is not deceptive, see Definition 16. 2605

Strongly compressible and d.w.c.606

For completeness we next give an example of a collection of probability distributions on N which is607

strongly compressible, hence automatically d.w.c..608

For h > 0, we consider the set Mh ⊂ M of all monotone probability distributions on N where the609

second moment of the self information satisfies the bound610

Ep

(
log

1

p(X)

)2

≤ h.

Let M∞h denote the set of all i.i.d. probability measures on N∞ corresponding to Mh.611

Example 24. (M∞h is strongly compressible, hence d.w.c..)612

Note that for any monotone probability distribution p on N and all i ≥ 1 we have p(i) ≤ 1/i. Therefore613

for any p ∈ Mh, if X is a random variable taking values in N with the probability distribution p, we614

have615

Ep log2(X) ≤ Ep log2 1

p(X)
≤ h.

Therefore, for all p ∈ Mh, we have by the Cauchy-Schwarz inequality that Ep logX ≤
√
h. Now, for616

the probability distribution q on N given by q(i) = 1
i(i+1) , i ≥ 1, we have617

sup
p∈Mh

Ep

(
dlog

1

q(X)
e
)2

≤ sup
p∈Mh

Ep
(
log(X2 +X) + 1

)2 ≤ sup
p∈Mh

Ep(2 logX + 2)2 ≤ 4(
√
h+ 1)2,

where the last inequality follows because, for all p ∈Mh, we have618

Ep(2 log(X) + 2)2 = 4Ep
(
log2(X) + 2 logX + 1

)
≤ 4(h+ 2

√
h+ 1) = 4(

√
h+ 1)2.

Therefore (see Appendix III for a proof), we can construct a probability measure q∗ on N∞ such that619

sup
p∈M∞h

1

n
Dn(p||q∗) ≤ 2h

1

4 (
√
h+ 1)√

lnn
+ π

√
2

3n
log e.

From this it follows that the collectionM∞h is strongly compressible, and therefore d.w.c. trivially from620

Claim 6. 2621

Comparing Examples 21 and 24, we observe, that countable unions of d.w.c. model classes need not622

be d.w.c.. In fact, as we will see in Example 27, even finite unions of d.w.c. model classes need not be623

d.w.c..624
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V-B. d.w.c. collections625

Thus far, we have seen two d.w.c. class – U∞ and M∞h . But neither is completely satisfying. In the626

collection U above, there was a neighborhood around each probability measure p ∈ U with no other627

element of U . Thus U trivially satisfied the local condition characterizing d.w.c. in Theorem 17. TheMh628

case falls into another extreme – the entire model collectionMh is strongly compressible, and therefore629

the condition characterizing d.w.c. in Theorem 17 was again satisfied in a trivial way.630

We now therefore construct two additional examples of d.w.c. model classes that are much more631

interesting. Our first example is of d.w.c. model classes Fh, where neither of the two extreme situations632

mentioned above holds. Our second example is of a d.w.c. model class H with a source none of whose633

neighborhoods are strongly compressible, but where the asymptotic per-symbol redundancy diminishes634

to 0 as the neighborhood shrinks to the defining probability distribution.635

More interesting d.w.c. model classes636

For a probability distribution p on N and a number M > 0, define the probability measure637

p(M)(n) :=

{
p(n−M) n ≥M + 1

0 else.

Namely, p(M) shifts p to the right by M . Furthermore, let the span of any probability distribution p638

on N having finite support be defined to be the largest natural number which has non-zero probability639

under p.640

For h > 0, we consider the model classes641

Fh :=
{

(1− ε)p1 + εp
(span(p1)+1)
2 : p1 ∈ U , p2 ∈Mh and 0 < ε < 1

}
.

As usual, let F∞h denote the set of i.i.d. probability measures on N∞ associated to Fh. Note that the642

initial uniform component of any p ∈ Fh is uniquely determined.643

Example 25. (F∞h is d.w.c..)644

Proof Let the base of any probability distribution over the naturals be the smallest natural number645

which has non-zero probability. Consider any probability distribution p = (1− ε)p1 + εp
(span(p1)+1)
2 ∈ Fh646

with p1 ∈ U , p2 ∈ Mh, and 0 < ε < 1. Let m denote base(p) (which clearly equals base(p1)), and let647

m+M − 1 denote the span(p1), where M ≥ 1. Thus |support(p1)| = M .648

Consider any probability distribution u ∈ Fh, written as u = (1− ε′)u1 + ε′u
(span(q1)+1)
2 , where u1 ∈ U ,649

u2 ∈Mh, and 0 < ε′ < 1. Suppose that u is within `1 distance (1−ε)2
M(M+1) from p. We show that650

|span(u1)| ≤ m+

⌈
M

1− ε

⌉
.

To see this, suppose to the contrary that we have651

|span(u1)| ≥ m+

⌈
M

1− ε

⌉
+ 1.

If base(u1)≤ m, all elements in the support of p1 are assigned probability ≤ 1
M

1−ε+1
from u. If base(u1)>652

m, then u(base(p1))=0. Thus, in either case, we have u(base(p1)) ≤ 1
M

1−ε+1
.653
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We can now lower bound the `1 distance between p and u by654

(1− ε)
M

− 1
M

1−ε + 1
=

(1− ε)2

M(M + 1− ε)
>

(1− ε)2

M(M + 1)
.

This contradiction proves the claim.655

Now, for fixed numbers m′ and M ′, consider the collection Pm′,M ′ ⊆ Fh of all probability distributions656

with base m′, and whose support of the initial uniform component is M ′. Recall that Mh was shown657

to be strongly compressible in Example 24. Observe that the redundancy of Pm′,M ′ will be at most the658

redundancy of Mh plus 1. Therefore we must also have that Pm′,M ′ is strongly compressible.659

The set of all probability distributions in the `1−neighborhood of p ∈ Fh with radius (1−ε)2
M(M+1) can be660

decomposed into the finite union661 ⋃
m′,M ′

m′+M ′≤dm+ M

1−εe

Pm′,M ′ .

Each component of the finite union is strongly compressible. Therefore it follows that this neighborhood662

of p ∈ Fh is strongly compressible. Thus no p ∈ Fh is deceptive and the collection is d.w.c.. 2663

We construct a d.w.c. collection H where one of the probability distributions in H has no non-zero664

neighborhood that is also strongly compressible.665

We again partition N into (Ti, i ≥ 0) as before, where Ti = {2i, . . . ,2i+1 − 1} for i ≥ 0. Let H contain666

the probability distribution p0 that assigns probability 1
(i+1)(i+2) to 2i for all i ≥ 0. We will construct667

H in such a way that while p0 is not going to be deceptive in H, no neighborhood of p0 in H will be668

strongly compressible.669

We construct H in several steps. We first fix a sequence (εm,m ≥ 2) such that 0 < εm < 1
2 and670

lim
m→∞

εm = 0.

Next, for m ≥ 2, k ≥ m, and j ∈
{

2k + 1, , . . . ,2k + 2dkεme
}

, we define the probability distribution671

p
m,k,j

(r) :=


p0(r), if 1 ≤ r ≤ 2m−1 − 1,
1
m −

1
k+1 , if r = 2m−1 + 1,

1
k+1 , if r = j,

0, else.

Now, for m ≥ 2 and k ≥ m, let672

Hm,k :=
{
p
m,k,j

: 2k + 1 ≤ j ≤ 2k + 2dkεme
}
,

let673

Hm := ∪k≥mHm,k,

and, finally, let674

H := {p0} ∪ (∪m≥2Hm) .
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A few observations about our construction. For all m ≥ 2, all the probability distributions in Hm675

assign probabilities exactly as p0 does to every element in ∪m−2
i=0 Ti, and the rest of their support is676

disjoint from that of p0. It follows that, for all m ≥ 2. for all p ∈ Hm, we have677

||p− p0||1 =
2

m
.

Hence, for all m ≥ 2, the set of probability distributions in H within `1 distance ≤ 2
m from p0 is678

precisely {p0} ∪ (∪r≥mHr). Around any probability distribution in H other than p0, there is a non-zero679

neighborhood containing no other probability distribution that belongs to H. Therefore, none of the680

probability distributions in H other than p0 can possibly be deceptive. Hence, to show that H is d.w.c.,681

we have to prove that p0 is not deceptive.682

Example 26. ( None of the neighborhoods of p0 ∈ H is strongly compressible.)683

We show that for all m ≥ 2 the collection of probability distributions Hm is not strongly compressible,684

i.e., its asymptotic per-symbol redundancy is bounded away from zero.685

To see this, for 2k + 1 ≤ j ≤ 2k + 2dkεme, let Sj ⊂ Nk+1 be the set of all length-(k + 1) sequences all686

of whose symbols but one are from ∪m−1
i=0 Ti, and there is exactly one occurrence of the number j in the687

sequence. Clearly, for distinct j, Sj are disjoint. Observe that688

p
m,k,j

(Sj) =

(
1− 1

k + 1

)k
≥ 1

e
.

Therefore, from Lemma 14, we have that the length-(k + 1) redundancy of Hm,k, which we denote by689

Rk+1(Hm,k), satisfies690

Rk+1(Hm,k)
k + 1

≥ 1

k + 1

(
log |Hk,m|

e
− 1

)
=

1

k + 1

(
dkεme
e
− 1

)
.

Since for all k ≥ m ≥ 2 we have Hm,k ⊂ Hm, it follows that for m ≥ 2 the length-n redundancy of Hm,691

for n ≥ m+ 1, which we denote by Rn(Hm), satisfies692

Rn(Hm)

n
≥ Rn(Hm,n−1)

n
≥ 1

n

(
d(n− 1)εme

e
− 1

)
.

Hence, the asymptotic per-symbol redundancy of Hm satisfies693

lim sup
n→∞

Rn(Hm)

n
≥ εm

e
. (15)

Thus Hm is not strongly compressible and, in particular, neither is any `1 neighborhood of p0.694

Nevertheless, we can show that p0 is not deceptive. We will verify that, as m → ∞, the asymptotic695

per-symbol redundancy of an `1 neighborhood of radius 2(m+1)
m2 around p0 goes to 0. 2

696

To do so, observe from Proposition 35 that the asymptotic per-symbol redundancy of any collection697

of probability distributions on N is upper bounded by the single-letter redundancy of the collection.698

Recall that for m ≥ 2 the `1 neighborhood of radius 2(m+1)
m2 around p0 is the collection {p0}∪ (∪l≥mHl).699

We will verify that the single-letter redundancy of {p0} ∪ (∪l≥mHl) diminishes to 0 as m → ∞, which700

will then imply that p0 is not deceptive, using Proposition 35.701

2The choice of radius 2(m+1)

m2 is made since it satisfies 2
m
< 2(m+1)

m2 < 2
m−1

for m ≥ 2, and we defined `1 neighborhoods

to be open sets.
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For m ≥ 2, let qm be the probability distribution on N defined by702

qm(r) :=


p0(r), if 1 ≤ r ≤ 2m−1 − 1,
1
m −

1
m+1 , if r = 2m−1 + 1,

1
(k+1)(k+2)

1
2dkεme , if r ∈

{
2k + 1, , . . . ,2dkεme

}
, k ≥ m,

0, else.

Let l ≥ m ≥ 2. Then, for every k ≥ l and j ∈
{

2k + 1, , . . . ,2k + 2dkεle
}

, note that p
l,k,j
∈ Hl,k and ql

assign the same probabilities as those assigned by p0 to every number ≤ 2l−1 − 1. It follows that

D(p
l,k,j
||ql) = p

l,k,j
(2l−1 + 1) log

p
l,k,j

(2l−1 + 1)

ql(2l−1 + 1)
+ p

l,k,j
(j) log

p
l,k,j

(j)

ql(j)

≤ 1

l
log(l + 1) +

1

k + 1
log(k + 2) +

1

k + 1
log 2dkεle

≤ εl +
2

l
log(l + 1) +

1

l + 1
. (16)

Now, for m ≥ 2, consider the mixture probability distribution q̄m on N given by703

q̄m(r) :=
∑
l≥m

m

l(l + 1)
ql(r).

Fixm ≥ 2. We have seen that any probability distribution inH in the `1 neighborhood of radius 2(m+1)
m2704

around p0 must belong to {p0} ∪ (∪l≥mHl). For every k ≥ l ≥ m, and j ∈
{

2k + 1, , . . . ,2k + 2dkεle
}

, we705

observe that p
l,k,j
∈ Hl,k and q̄m assign the same probabilities as those assigned by p0 to every number706

≤ 2m−1 − 1. Also, p0 and q̄m assign the same probabilities as those assigned by p0 to every number707

≤ 2m−1 − 1. We will now use this observation to find upper bounds for D(p
m,k,j
||q̄m) for k ≥ m and708

j ∈
{

2k + 1, , . . . ,2k + 2dkεme
}

, then for D(p
l,k,j
||q̄m) for k ≥ l ≥ m+1 and j ∈

{
2k + 1, , . . . ,2k + 2dkεle

}
,709

and finally for D(p0||q̄m).710

For k ≥ m and j ∈
{

2k + 1, , . . . ,2k + 2dkεme
}

, we write

D(p
m,k,j
||q̄m) = p

m,k,j
(2m−1 + 1) log

p
m,k,j

(2m−1 + 1)

q̄m(2m−1 + 1)
+ p

m,k,j
(j) log

p
m,k,j

(j)

qm(j)

≤ p
m,k,j

(2m−1 + 1) log
(m+ 1)p

m,k,j
(2m−1 + 1)

qm(2m−1 + 1)
+ p

m,k,j
(j) log

(m+ 1)p
m,k,j

(j)

qm(j)

≤ εm +
4

m
log(m+ 1) +

1

m+ 1
, (17)

where the last step uses (16) for the choice l = m.711
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For k ≥ l ≥ m+ 1 and j ∈
{

2k + 1, , . . . ,2k + 2dkεle
}

, we write

D(p
l,k,j
||q̄m) =

l−2∑
n=m−1

p
l,k,j

(2n) log
p
l,k,j

(2n)

q̄m(2n)
+

∞∑
r=2l−1

p
l,k,j

(r) log
p
l,k,j

(r)

q̄m(r)

≤
l−2∑

n=m−1

p
l,k,j

(2n) log
p
l,k,j

(2n)
mqn+2(2n)

(n+2)(n+3)

+

∞∑
r=2l−1

p
l,k,j

(r) log
p
l,k,j

(n)l(l + 1)

mql(n)

≤
l−2∑

n=m−1

p
l,k,j

(2n) log
p
l,k,j

(2n)
qn+2(2n)

(n+2)(n+3)

+

∞∑
r=2l−1

p
l,k,j

(r) log
p
l,k,j

(r)

ql(r)
+

log( l(l+1)
m )

l

=

l−2∑
n=m−1

log ((n+ 2)(n+ 3))

(n+ 1)(n+ 2)
+

∞∑
r=2l−1

p
l,k,j

(r) log
p
l,k,j

(r)

ql(r)
+

log( l(l+1)
m )

l

(a)

≤
l−2∑

n=m−1

log ((n+ 2)(n+ 3))

(n+ 1)(n+ 2)
+ εl + 4

log(l + 1)

l
+

1

l + 1

≤
∞∑

n=m−1

log ((n+ 2)(n+ 3))

(n+ 1)(n+ 2)
+ εm +

4 log(m+ 1)

m
+

1

m+ 1
, (18)

where (a) uses the bound log(l(l + 1)/m) ≤ 2 log(l + 1), observes that qn+2(2n) = p0(2n) = p
l,k,j

(2n),712

and uses (16).713

To bound D(p0||q̄m) from above, note that q̄m(2n) = m
n+2p0(2n) for n ≥ m− 1. Therefore we have

D(p0||q̄m) =

∞∑
n=m−1

p0(2n) log
p0(2n)

q̄m(2n)

≤
∞∑

n=m−1

log(n+ 1)

(n+ 1)(n+ 2)
. (19)

From (17), (18), and (19), the single letter redundancy of all sources around p0 within `1 distance 2(m+1)
m2714

of p0 satisfies the upper bound715

sup
p∈{p0}∪(∪l≥mHl)

D(p||q̄m) ≤
∞∑

n=m−1

log ((n+ 2)(n+ 3))

(n+ 1)(n+ 2)
+ εm +

4 log(m+ 2)

m+ 1
+

1

m+ 1
. (20)

Note that716 ∞∑
n=1

log ((n+ 2)(n+ 3))

(n+ 1)(n+ 2)
<∞.

Hence, as m → ∞, each of the terms on the right side of (20) converges to 0. Since the single letter717

redundancy of {p0} ∪ (∪l≥mHl) diminishes to 0 as m → ∞, from Proposition 35, the asymptotic per-718

symbol redundancy of {p0}∪(∪l≥mHl) also diminishes to zero as m→∞. Therefore p0 is not deceptive.719

In conclusion, none of the neighborhoods of p0 is strongly compressible, from (15), since the asymptotic720

per-symbol redundancy of a 2(m+1)
m2 size `1 neighborhood of p0 is lower bounded by εm/e > 0. Yet, as we721

showed above, p0 is not deceptive. As noted above, no other probability distribution in H can possibly722

be deceptive since it has a neighborhood of nonzero radius around it containing no other probability723

distribution from H. Therefore, H is d.w.c..724
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2725

V-C. Non-d.w.c. collections726

We now construct two examples of non-d.w.c. model classes to illustrate some additional points.727

In Example 27 we define a model class B where exactly one source in the model class is deceptive. This728

would mean that B is not d.w.c.. However, even though B is not d.w.c., removing the single deceptive729

source renders the rest of the model class d.w.c.. Put another way, adding a single source to a d.w.c.730

model class may make the resulting bigger model class not d.w.c.. Since a model class with one source731

is trivially d.w.c., it follows that even finite unions of d.w.c. classes may not be d.w.c..732

The second example we give here is of an insurable model class I that is not d.w.c.. See Example 8733

for the definition of insurability of a model class.734

Partition N into (Ti, i ≥ 0), where Ti := {2i, . . . ,2i+1 − 1}, i ≥ 0. For 0 < ε < 1, let nε = d1
ε e. Note735

that ε lies in the range [ 1
nε
, 1
nε−1). For 1 ≤ j ≤ 2nε , let pε,j be the probability distribution on N that736

assigns probability 1 − ε to the natural number 1 (or equivalently, to the set T0), and ε to the natural737

number 2nε + j − 1. Finally, let p0 be a singleton probability distribution assigning probability 1 to the738

natural number 1.739

Now, let B (mnemonic for binary, since every probability distribution in B has support of cardinality740

at most 2) be the collection of probability distributions on N defined by741

B := {pε,j : 0 < ε < 1, 1 ≤ j ≤ 2nε} ∪ {po}.

As usual, B∞ denotes the set of i.i.d. probability measures on N∞ corresponding to B.742

Example 27. (p0 is the unique probability distribution in B that is deceptive.)743

An `1 neighborhood of radius δ around p0 is comprised of p0 and the pε,j for all 0 < ε < δ/2, and all744

1 ≤ j ≤ 2nε . For all n ≥ 1 and j ∈ Tn, let Sn,j denote the set of all length n strings of natural numbers745

with exactly one appearance of j and the remaining n− 1 elements of the string being 1. Then, we have746

p 1

n
,j(Sn,j) =

(
1− 1

n

)n−1

≥ 1

e
.

For each n ≥ 1, the sets Sn,j are disjoint as j ranges over Tn. Further, they are subsets of Nn. Therefore,747

Lemma 14 implies that the length-n redundancy of the collection {p 1

n
,j : j ∈ Tn} is lower bounded by748

n

e
− 1.

Therefore, for all n > 2
δ , the length-n redundancy of the `1 neighborhood of radius δ is bounded below749

by n
e − 1. This implies that the asymptotic per-symbol redundancy of the `1 neighborhood of size δ is750

bounded below by 1
e . From the second part of Lemma 18, we conclude that p0 is deceptive.751

On the other hand, for 0 < ε < 1, around every other probability distribution pε,j ∈ B, there is an752

`1-neighborhood of radius 1
nε

that contains only probability distributions in B that have support equal753

to {1, 2nε + j − 1}. For n ≥ 1, let r̂n denote the probability measure on Nn giving probability 1
(n+1)(nk)

to754

each of the strings in Nn comprised of k occurrences of 2nε +j−1 and n−k occurrences of 1, 0 ≤ k ≤ n.755
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Let rn be the probability measure corresponding to r̂n, as in Lemma 29. Then, for all p ∈ B in this756

`1-neighborhood of pε,j ∈ B, we have for all n757

Dn(p||rn) ≤ log(n+ 1).

Noting that the measure r on N∞ that assigns probability758

r(x) =
∑
m≥1

rm(x)

m(m+ 1)

satisfies759

lim sup
n→∞

sup
p:|p−pε,j |< 1

nε

1

n
Dn(p||q) ≤ lim

n→∞

log n

n
= 0,

we conclude that for every pε,j ∈ B there is an `1-neighborhood of pε,j that has zero asymptotic per-760

symbol redundancy. Hence, by Lemma 37, there is a neighborhood of pε,j that has zero asymptotic761

per-symbol redundancy. We conclude that, while p0 is deceptive, no other probability distribution in B762

is deceptive.763

Indeed, this is quite intuitive when we think about what is involved operationally in compressing764

strings of integers whose statistics are i.i.d. and governed by a probability distribution in B. If at any765

point we see two distinct symbols in such a string, there is no ambiguity about what the underlying766

distribution is from that point on, and very little ambiguity in the probabilities of the two distinct767

symbols seen, of which one must be the symbol 1. But if we see a string of all 1s we can never be sure768

(no matter what the length of the string) what the underlying source is. One possibility is that the769

source is p0.770

But having seen a string of 1s of length m, there is also a reasonable chance that the underlying771

source could be pε,j for some ε � 1
m and any j ∈ Tnε . There are 2nε such possible values j can take in772

Tnε , so any description of j requires an additional nε bits or � m bits.773

However, if we remove p0 from the collection, we have no such trouble. We have no obligation to stop774

on any finite length string of all 1s, no matter how long it is, since the sequence of all 1s has probability775

0 under every source in B other than p0. 2776

The last example is a collection I of probability measures over N that is insurable but not d.w.c.. In777

fact I is not even weakly compressible.778

Partition N into the sets (Ti, i ≥ 0) as before, where Ti := {2i, . . . ,2i+1 − 1}. For each i ≥ 1, pick779

exactly one element of Ti and assign it probability 1/(i(i + 1)). We define I to be the collection of all780

probability distributions on N that can be formed in this way. I∞ denotes the set of i.i.d. probability781

measures on N∞ corresponding to I.782

Example 28. (I is insurable but not weakly compressible, hence not d.w.c.)783

For all p ∈ I and all k ≥ 1, we have784 ∑
n≥2k

p(n) =
1

k
.

This means that the entire set I is tight. By [2, Theorem 1], we can therefore conclude that I is785

insurable.786
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On the other hand, for every probability distribution q on N, for all i ≥ 1 there is xi ∈ Ti such that787

q(xi) ≤
1

2i
.

By the definition of I, there is a probability distribution p ∈ I that has support {xi : i ≥ 1}. Note that788

D(p||q) =∞. Since every probability distribution in I has finite entropy (in fact they all have the same789

entropy), from Lemma 10 we conclude that I is not weakly compressible. In particular, I is not d.w.c..790

2791

VI. Necessity part of Theorem 17792

In this section we prove the necessity part of Theorem 17. Namely, we prove that the existence of793

deceptive distributions kills d.w.c.. More precisely, we prove that if P is a collection of probability794

distributions on N and P∞ the associated collection of i.i.d. probability measures on N∞, then P∞ is795

d.w.c. only if no p ∈ P∞ is deceptive.796

To prove this, suppose p ∈ P is deceptive. Then, by the second part of Lemma 18, for every probability797

measure q on N∞ we can find δ > 0 such that798

lim
ε′→0

lim sup
n→∞

sup
p′∈B(p,ε′;P)

1

n
Dn(p′||q) > δ.

Pick any 0 < η < 1, and let τ be a stopping rule. We will demonstrate that there is some p̃ ∈ P such799

that800

p̃(τ is δ−premature with respect to q for p̃) > η,

where we refer to the discussion around (5) to recall what it means for a stopping time to be δ−premature801

for the probability distribution p̃ ∈ P, with respect to the probability measure q on N∞.802

In order to do this, for all n ≥ 1 let803

An := {xn ∈ Nn : τ(xn) = 1}

denote the set of sequences of length n on which τ has entered. Note that p(An) is increasing with n804

and limn→∞ p(An) = 1. We can therefore pick n ≥ 4/(1− η) large enough such that p(An) ≥ (1 + η)/2.805

Let 3 ε := log e
16n8 . Applying Lemma 39 in Appendix II to i.i.d. probability measures over length-n806

strings, we see that for all p̃ ∈ P such that J (p, p̃) ≤ ε, we have807

p̃(An) > (1 + η)/2− 2

n
≥ η.

Since lim supn→∞ supp′∈B(p,ε′;P)
1
nDn(p′||q) is nondecreasing in ε′, we can choose p̃ ∈ B(p, ε;P) such808

that for some n ≥ 1 we have809

p̃(An) > η and
1

n
Dn(p̃||q) > δ.

This in turn means, for the choice of η and δ above, that p̃(τ is δ−premature with respect to q for p̃) >810

η. This completes the proof of the necessity part of Theorem 17.811

As a caveat regarding the structure of this proof, we remark that the presence of a deceptive distri-812

bution p ∈ P does not automatically imply that any other probability distribution in any neighborhood813

of the deceptive distribution p is also deceptive. For example, the class B in Example 27 has only p0814

deceptive, while no other distribution in its neighborhood is.815

3Please note that in the interest of simplicity, we have not attempted to provide the best scaling for ε or the tightest

possible bounds.
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VII. Sufficiency part of Theorem 17816

In this section we prove the sufficiency part of Theorem 17. Namely, we prove that if a collection P817

of probability distributions on N does not contain any deceptive distributions, then P is d.w.c.. We do818

this by explicitly constructing a probability measure q∗ on N∞ such that, given any desired confidence819

probability 0 < 1 − η < 1 and accuracy δ > 0, there is a stopping rule τ such that, for every p ∈ P,820

under p, τ is δ−premature with respect to q∗ for p, as defined in (5), with probability at most η. Note821

that it suffices to prove this for all δ of the form 1
m for m ≥ 1, so will restrict attention to this case, and822

denote the corresponding stopping rule we construct by τη,m.823

Suppose p ∈ P is not deceptive. From Lemma 18, there is a probability measure qp on N∞ such that824

for all m ≥ 1 we can pick εp,m > 0 satisfying825

lim sup
n→∞

sup
p′∈B(p,εp,m;P)

1

n
Dn(p′||qp) <

1

m
. (21)

We fix such an εp,m > 0 for each p ∈ P and m ≥ 1, satisfying the additional technical requirement that826

εp,m < 16 log e.827

For δ ≥ 1, let m = 1 and for 0 < δ < 1 let m = d1/δe. Therefore m is the natural number such that828

1
m ≤ δ < 1

m−1 . For any δ > 0, we call εp,d1/δe the δ−reach of p. In particular, εp,m > 0 is the 1
m−reach829

of p.830

The intuitive meaning of the reach εp,δ of a probability distribution p ∈ P is that, even if the statistics831

of the observations are being determined by some probability distribution in P within the reach of p that832

is not necessarily p, we have control, by waiting long enough, over the amount of harm, as determined833

by δ, that will be done if we decide instead that the statistics of the observations are being determined834

by p. This rough heuristic will be made more precise in what follows. Note that, for any m ≥ 1, we do835

not require any regularity over p ∈ P of εp,m. The reason this does not matter will also soon become836

apparent, and is basically because, for each m ≥ 1, it will suffice to focus on only a countable collection837

of p ∈ P.838

Given m ≥ 1, the zone Qp,m of a probability distribution p ∈ P is defined to be the set of probability839

distributions u on N given by840

Qp,m
def
=

{
u : |p− u|1 <

εp,m
2(ln 2)2

16

}
, (22)

where, εp,m is the 1
m -reach of p. Note that the probability distributions in Qp,m are not necessarily in841

P.842

Note that for all p ∈ P, because we have assumed that εp,m < 16 log e, Lemma 37 in Appendix II843

implies that the zone Qp,m satisfies Qp,m ∩ P ⊆ B(p, εp,m;P). Trivially p ∈ Qp,m ∩ P. Therefore we844

have we have845

P = ∪p∈P(Qp,m ∩ P).

Further, since Qp,m is open in the `1 topology, each of the intersections Qp,m ∩ P is relatively open in846

the `1 topology on P. Since P is Lindelöf under the `1 topology (see [2, Sec. 6.1] for a proof), there is a847

countable set P̃m ⊆ P, such that P is covered by the collection of relatively open sets (Qp̃,m∩P, p̃ ∈ P̃m),848

i.e. we have849

P = ∪p̃∈P̃m(Qp̃,m ∩ P). (23)
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For any fixed m ≥ 1, we will make a choice of such a P̃m and refer to it as the quantization of P and850

to elements of P̃m as the centroids of the quantization, borrowing from commonly used literature in851

classification. We index the countable set of centroids, P̃m by ιm : P̃m → N.852

We now construct a probability measure q∗ on N∞ and, for each 0 < η < 1 and m ≥ 1, a stopping rule853

τη,m, such that the pair q∗ and τη,m will together satisfy the required guarantee that for every p ∈ P,854

the probability that the stopping time τη,m is 1
m−premature with respect to q∗ for p is at most η.855

a) Construction of the probability measure q∗ on N∞: For each p̃ ∈ P̃m there is a probability856

measure qp̃ on N∞ satisfying (21) for p̃, with εp̃,m denoting the 1
m−reach of p̃. Let857

Q̃m := {qp̃ : p̃ ∈ P̃m}

denote the collection of these probability measures as p̃ ranges over P̃m. Note that Q̃m is countable and858

is a collection of not necessarily i.i.d. probability measures on N∞. For q̃ ∈ Q̃m, set the index ιm(q̃) to859

be equal the index assigned to the corresponding centroid p̃ in the enumeration of P̃m. Then define a860

probability measure qm on N∞ by setting, for each n ≥ 1 and each x ∈ Nn, the probability861

qm(x) :=
∑
q̃∈Q̃m

q̃(x)

ιm(q̃)(ιm(q̃) + 1)
.

Finally, let q∗ be the probability measure on N∞ defined by letting862

q∗(x) :=
∑
m≥1

qm(x)

m(m+ 1)
,

for each n ≥ 1 and x ∈ N∗,863

Now, for all p̃ ∈ P̃m, we have

lim sup
n→∞

sup
p′∈B(p̃,εp̃, 1

m
;P)

1

n
Dn(p′||q∗) = lim sup

n→∞
sup

p′∈B(p̃,εp̃, 1
m

;P)

1

n
Dn(p′||qm)

= lim sup
n→∞

sup
p′∈B(p̃,εp̃, 1

m
;P)

1

n
Dn(p′||qp̃)

<
1

m
. (24)

We turn next to construct a stopping rule τη,m having the property that, for all p ∈ P, we have864

p
(
τη,m is 1

m−premature with respect to q∗ for p
)
< η.

b) Description of the stopping rule τη,m: Fix 0 < η < 1 and m ≥ 1. Let p ∈ P be the probability865

distribution in force, which is unknown. The idea is that we want sequences generated by the (unknown)866

p ∈ P to be captured by one of the centroids of the quantization P̃m that have p in their 1
m−reach.867

Consider a length-n sequence xn on which we have not yet decided the value of τη,m(xm) for any868

1 ≤ m ≤ n. Let xn have type (i.e., empirical distribution) t, which we now insist on thinking of as a869

sequence of unnormalized fractions on N, in order to ensure that t determines the length of the sequence870

xn that defines it. The set of centroids in P̃m that can potentially capture t is defined to be871

P̃m,t := {p̃ ∈ P̃m : t ∈ Qp̃,m}.
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Since ∪p̃∈P̃m(Qp̃,m ∩ P) is an open set containing P, the probability under p of the set of all sequences872

of length n whose type is captured by some centroid in P̃m approaches 1 as n→∞.873

Not every centroid in P̃m,t is necessarily benign, since some of these centroids may not have the874

generating probability measure p within their 1
m -reach. Given that the number of centroids is countably875

infinite, there is no easy union bound based approach that could be invoked to resolve the issue.876

Therefore, when P̃m,t 6= ∅, we refine P̃m,t further to P̂m,t ⊂ P̃m,t in a way that will allow us to use877

Lemma 40 to bound the probability of wrong capture.878

To do so, for every p̃ ∈ P̃m, with 1
m−reach εp̃,m, let879

D
p̃,m

:=
εp̃,m

4(ln 2)4

256
.

The quantity above plays the role of γ when using Lemma 40.880

To understand the core of our sufficiency proof, consider what happens when the underlying p happens881

to be outside the 1
m−reach of p′ ∈ P̃m,t. Since p is far from p′ (out of its 1

m−reach), but p′ is close to882

the empirical distribution, t, of the observed sequence, our pseudo-triangle inequality from Lemma 37883

will use the quantity D
p′,m to lower bound the distance of t from the underlying p, which allows us to884

conclude that sequences with type t have a small probability under p.885

The centroids in P̃m,t that get placed into P̂m,t are those that satisfy (26) and (27) below. In what886

follows, the quantity logC(p′,m) of a centroid p′ ∈ P̃m,t plays the role of the “effective size” of the887

support size of p′, corresponding to the number k of Lemma 40. Given p̃ ∈ P̃m, we define C(p̃,m) via888

C(p̃,m) := 2
3
(

supr∈B(p̃,εp̃,m;P)Ḟ
−1
r (1−

√
D
p̃,m

/6)
)
, (25)

and we note that C(p̃,m) is finite from the tightness result in Lemma 12. This is because we have889

lim sup
n→∞

sup
r∈B(p̃,εp̃,m;P)

1

n
Dn(r||q∗) < 1

m
,

from (24), which implies that for sufficiently large n the single letter redundancy of the family of n-fold890

product measures on Nn corresponding to the probability distributions in B(p̃, εp̃,m;P) is finite, which,891

by Lemma 12, implies that this family of n-fold product measures on Nn is tight, which implies that892

the family of product distributions B(p̃, εp̃,m;P) is tight.893

With C(p′,m) for p′ ∈ P̃m,t defined as in (25), the conditions we require on p′ ∈ P̃m,t in order to894

place it in P̂m,t are895

exp
(
−nD

p′,m/18
)
≤ η

2C(p′,m)ι(p′)2n(n+ 1)
, (26)

and896

2Ḟ−1
t (1−

√
D
p′,m/6) ≤ logC(p′,m). (27)

Note that given p̃ ∈ P̃m and a type t (which we recall determines the length n of the sequence defining897

it), one could ask if the conditions analogous to (26) and 27 hold or not for the pair (p̃, t); this observation898

will become important in Appendix V. It is also worth remarking that the proof of sufficiency of the899

necessary and sufficient condition for the insurability of a model class in [2, Thm. 1] also uses a similar900

criterion to bound the probability of wrong capture.901
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We are now in a position to specify the stopping rule τη,m. Consider a sequence of natural numbers,902

xn, having type t, which we recall determines the length n of the sequence, and assume that we have903

not yet specified τη,m for any prefix xl of the sequence xn for 1 ≤ l ≤ n.904

If P̂m,t = ∅ there is no way to assign any element of P̂m,t to this sequence and its suffixes and so we905

move on to all the possible single letter extensions of the sequence xn, without for the moment deciding906

what τη,m(xn) is, although we it will eventually turn out to be 0.907

If P̂m,t 6= ∅, let p̂ denote the probability distribution in P̂m,t with the smallest index. All suffixes of908

xn are then said to be trapped by p̂, which means that they are assigned to p̂ ∈ P̂m,t. From (24), we909

have910

lim sup
n→∞

sup
r∈B(p̂,εp̂,m;P)

1

n
Dn(r||q∗) < 1

m
.

This means that the set911

N
p̂

:= {n : sup
r∈B(p̂,εp̂,m;P)

1

n
Dn(r||q∗) ≥ 1

m
} (28)

is finite. For any suffix xN of xn, when N > maxN
p∗ , we set τη,m(xN ) = 1, 0 else.912

Finally for each finite string xn for which the value of τη,m(xn) has not yet been decided, we set this913

value to be 0. It can be checked that τη,m so defined is a stopping time. This is because if τη,m(xn) = 0914

for any sequence xn ∈ Nn, then we also have τη,m(xm) = 0 for 1 ≤ m ≤ n, i.e. for all its prefixes.915

c) τη,m enters with probability 1: This is proved in Appendix V, using an argument similar to that916

used in the sufficiency proof in [2].917

d) Probability under any p ∈ P that τη,m is 1
m−premature with respect to q∗ for p is strictly less918

than η: Consider any p ∈ P. Among sequences of natural numbers on which τη,m has entered, we will919

distinguish between those that are in good traps and those in bad traps. If a sequence xn is trapped920

by p̂ ∈ P̃m such that p ∈ B(p̂, εp̂,m;P), we call p̂ is a good trap for that sequence. Conversely, if921

p /∈ B(p̂, εp̂,m;P), p̂ is called a bad trap for that sequence.922

(Good traps) Suppose a length-n sequence xn is in a good trap. Namely, it is trapped by a probability923

distribution p̂ ∈ P̃m such that p ∈ B(p̂, εp̂,m;P). Then, if τη,m(xn) = 1 it must be the case that924

1
nD(p||q∗) < 1

m . Thus such sequences cannot contribute to the probability under p of τη,m being925

1
m−premature with respect to q∗ for p.926

(Bad traps) We can show that the probability with which sequences generated by p fall into bad927

traps is strictly less than η using an argument, which is essentially identical to the one used in [2], based928

on the pseudo-triangle inequality from Lemma 37. This argument is reproduced in Appendix VI for the929

sake of completeness. Pessimistically, we assume that τη,m is 1
m−premature with respect to q∗ for p on930

every sequence that falls into a bad trap.931

This completes the proof of the sufficiency part of Theorem 17.932
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Appendix I990

Alternate definitions of strong and weak compressibility991

We first establish the following elementary result.992

Lemma 29. For n ≥ 1, let q̂n be a probability measure on Nn. Then there is a probability measure993

qn on N∞ such that, for all x ∈ Nn, we have qn(x) = q̂n(x).994

Proof We define qn by specifying qn(y) for all y ∈ Nm for all m ≥ 1. If 1 ≤ m ≤ n and y ∈ Nm, let995

qn(y) :=
∑

x′∈Nn:y�x′
q̂n(x′).

For m ≥ n and y ∈ Nm, if y is x followed by a string of 1s, for some x ∈ Nn, let996

qn(y) := q̂n(x),

else let qn(y) := 0. It can be checked that qn, defined in this way, satisfies the consistency conditions997

qn(z) =
∑

y∈Nm : z�y qn(y) for all 1 ≤ l ≤ m and z ∈ Nl. Hence qn defines a probability measure on998

N∞. It can also be checked that qn satisfies the requirement in the statement of the lemma. 2999

Using Lemma 29, we now get the following result, which will help establish the equivalence of our1000

definitions of strong and weak compressibility with those common in literature.1001

Lemma 30. Let Λ be any collection of probability measures on N∞ (not necessarily i.i.d.). Suppose1002

there exists a sequence of probability measures q̂n on Nn such that1003

lim sup
n→∞

sup
r∈Λ

1

n
Er log

r(Xn)

q̂n(Xn)
= 0.

Then there is a probability measure q on N∞ such that1004

lim sup
n→∞

sup
r∈Λ

1

n
Er log

r(Xn)

q(Xn)
= 0.

Proof For each n ≥ 1, let the probability measure qn on N∞ be constructed to match the probability1005

measure q̂n on Nn, as in Lemma 29. Define the probability measure q on N∞ that, for each n ≥ 1 and1006

x ∈ Nn, assigns to x the probability1007

q(x) :=

∞∑
i=1

qi(x)

i(i+ 1)
.

For all n ≥ 1 we therefore have1008

sup
r∈Λ

1

n
Er log

r(Xn)

q(Xn)
≤ sup

r∈Λ

1

n
Er log

r(Xn)

qn(Xn)
+

log(n(n+ 1))

n

= sup
r∈Λ

1

n
Er log

r(Xn)

q̂n(Xn)
+

log(n(n+ 1))

n
.

Hence1009

lim sup
n→∞

sup
r∈Λ

1

n
Er log

r(Xn)

q(Xn)
= 0.
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21010

Let P be a collection of probability distributions on N and P∞ the collection of probability measures1011

on N∞ induced by i.i.d. sampling from the individual probability distributions in P. In most prior1012

work [8], [1], [16] the collection P is called strongly compressible if there is a sequence of probability1013

measures q̂n on Nn such that1014

lim sup
n→∞

sup
p∈P∞

1

n
Ep log

p(Xn)

q̂n(Xn)
= 0.

Lemma 30 immediately establishes that this definition is equivalent to the definition of strong com-1015

pressibility that we have made in Definition 2.1016

The most commonly used definition of weak compressibility in prior work is due to Kieffer [16],1017

and is framed in the language of length functions of compression schemes. Let Λ be any collection1018

of stationary ergodic probability measures on N∞ (not necessarily i.i.d.). A compression scheme is a1019

sequence of mappings φn : Nn → {0, 1}∗\∅ whose image satisfies the prefix condition, i.e. for any two1020

distinct elements in the domain the image of the first is not a prefix of the image of the second. The1021

collection Λ is called weakly compressible if there is a compression scheme (φn, n ≥ 1) such that, for all1022

r ∈ Λ, we have1023

lim
n→∞

1

n
Erl(φn(Xn)) = H(r),

where H(r) denotes the entropy rate of r.1024

Let P be a collection of probability distributions on N and P∞ the corresponding collection of i.i.d.1025

probability measures on N∞ Note that P∞ is a collection of stationary ergodic probability measures.1026

We now show that the definition of weak compressibility of P∞ in the sense of Kieffer [16] is identical1027

to the definition of weak compressibility of P∞ that we have made in Definition 4.1028

Suppose first that P∞ is weakly compressible in the sense of Definition 4. If every probability1029

distribution in P has infinite entropy, consider an arbitrary compression scheme (φn, n ≥ 1), for instance1030

by defining φn(xn) by concatenating symbol by symbol the representation of i ∈ N by a bit string of1031

length dlog 1
(i+1)(i+2)e coming from a prefix code for N corresponding to the probability distribution1032

assigning probability 1
(i+1)(i+2) to i ∈ N. Then we have1033

1

n
Epl(φn(Xn))

(a)

≥ 1

n
Ep log

1

p(Xn)
=∞, (29)

and so1034

lim
n→∞

1

n
Epl(φn(Xn)) = H(p),

for all p ∈ P. Here (a) in (29) can be seen by picking a probability measure qn on Nn that satisfies1035

l(φn(Xn)) ≥ log 1
qn(xn)) and observing that Ep log p(Xn)

qn(Xn) ≥ 0. If there are probability distributions in1036

P with finite entropy, let q be a probability measure on N∞ verifying the requirements in Definition 4.1037

For n ≥ 1, let q̂n denote the probability measure on Nn resulting from restricting q to Nn. We can then1038

define a compression scheme (φn, n ≥ 1) such that l(φn(x)) = dlog 1
q̂n(x)e for all x ∈ Nn for all n ≥ 1.1039

Hence, for every p ∈ P, we have1040

1

n
Epl(φn(Xn)) =

1

n
Epdlog

1

q̂n(Xn)
e =

1

n
Epdlog

1

q(Xn)
e.
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Suppose H(p) =∞. By the same argument as that used in (29) we conclude that 1
nEpl(φn(Xn)) =∞1041

for all n ≥ 1 and so, for all such p, we have1042

lim
n→∞

1

n
Epl(φn(Xn)) = H(p).

On the other hand, if H(p) <∞ we have1043

1

n
Epl(φn(Xn)) ≤ 1

n
Ep log

1

q(Xn)
+

1

n

=
1

n
Ep log

p(Xn)

q(Xn)
+H(p) +

1

n
,

and so, letting n→∞, we see that1044

lim
n→∞

1

n
Epl(φn(Xn)) = H(p)

also holds for such p. We have established that P∞ is also weakly compressible in the sense of Kieffer [16],1045

irrespective of whether P is comprised entirely of probability distributions with infinite entropy or also1046

contains probability distributions with finite entropy.1047

For the converse, suppose that P∞ is weakly compressible in the sense of Kieffer [16]. For each n ≥ 11048

we can find a probability measure q̂n on Nn such that q̂n(x) ≥ 2−l(φn(x)) for all x ∈ Nn, where (φn, n ≥ 1)1049

is a compression scheme verifying the weak compressibility of P∞ in the sense of Kieffer [16]. For each1050

n ≥ 1 we define the probability measure qn on N∞ in terms of q̂n as in Lemma 29, and we define the1051

probability measure q on N∞ which, for each n ≥ 1 and x ∈ Nn, assigns to x the probability1052

q(x) :=

∞∑
i=1

qi(x)

i(i+ 1)
.

For each p ∈ P with finite entropy, we have1053

1

n
Ep log

p(Xn)

q(Xn)
≤ 1

n
Ep log

p(Xn)

qn(Xn)
+

log n(n+ 1)

n

=
1

n
Ep log

p(Xn)

q̂n(Xn)
+

log n(n+ 1)

n

≤ −H(p) +
1

n
Epl(φn(Xn)) +

log n(n+ 1)

n
,

and so, from limn→∞
1
nEpl(φn(Xn)) = H(p), we conclude that lim supn→∞

1
nEp log p(Xn)

q(Xn) = 0. This1054

proves that P∞ is weakly compressible in the sense of Definition 4.1055

To close this section, we give proofs of two statements that allow us to think about strong compress-1056

ibility and weak compressibility respectively in terms of vanishing asymptotic per-symbol redundancy.1057

Lemma 31. Let P be a collection of probability distribution on N and P∞ the collection of probability1058

measures on N∞ induced by i.i.d. sampling from the individual probability distributions in P. Then1059

P∞ is strongly compressible iff it has zero asymptotic per-symbol redundancy.1060

Proof1061

If P∞ is strongly compressible, then taking the probability measure q on N∞ which verifies the strong1062

compressibility condition in (1) from Definition 2 as the q in (2) from Definition 3 for each n ≥ 11063

immediately implies that P∞ has zero asymptotic per-symbol redundancy.1064
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Conversely, suppose P∞ has zero asymptotic per-symbol redundancy. Given ε > 0, for each n ≥ 1 let1065

qn be a probability measure on N∞ for which supp∈P∞ Ep log p(Xn)
qn(Xn) ≤ Rn+ε, and define the probability1066

measure q on N∞ by1067

q(x) :=

∞∑
i=1

qi(x)

i(i+ 1)
.

Then we have1068

1

n
sup
p∈P∞

Ep log
p(Xn)

q(Xn)
≤ 1

n
sup
p∈P∞

Ep log
r(Xn)

qn(Xn)
+

log(n(n+ 1))

n
,

and so1069

lim sup
n→∞

1

n
sup
p∈P∞

Ep log
p(Xn)

q(Xn)
≤ ε.

Letting ε→ 0 shows that P∞ is strongly compressible. 21070

Lemma 32. Let P be a collection of probability distribution on N and P∞ the collection of probability1071

measures on N∞ induced by i.i.d. sampling from the individual probability distributions in P. Then1072

P∞ is weakly compressible iff there is a probability measure q on N∞ such that for every p ∈ P with1073

finite entropy the corresponding p∞ ∈ P∞ has zero asymptotic per-symbol redundancy with respect to1074

q.1075

Proof1076

The claim is vacuously true if all the probability distributions in P have infinite entropy. If there1077

are distributions in P with finite entropy and P∞ is weakly compressible, then consider the probability1078

measure q on N∞ which verifies the weak compressibility condition in (3) from Definition 4. By definition,1079

with respect to this q, every p ∈ P with finite entropy is such that the corresponding p∞ ∈ P∞ has zero1080

asymptotic per-symbol redundancy with respect to q. Conversely, if there are distributions in P with1081

finite entropy and there is a probability measure q on N∞ such that for every p ∈ P the corresponding1082

p∞ ∈ P∞ has zero asymptotic per-symbol redundancy with respect to q then, by definition, this q1083

satisfies the condition in (3) from Definition 4 for all p ∈ P with finite entropy. This establishes that1084

P∞ is weakly compressible. 21085

Appendix II1086

Basic properties of relative entropy and redundancy1087

In this appendix we gather some basic results on the KL divergence and redundacy, which are used1088

at various points in the document.1089

Proposition 33. Let p and q be two probability distributions on a countable set X . Then1090 ∑
x∈X

p(x)

∣∣∣∣log
p(x)

q(x)

∣∣∣∣ ≤ D(p||q) + 2
log e

e
.

Proof Let S ⊂ X be the set of all elements x ∈ X such that p(x) ≤ q(x). Note that q(S) > 0. We1091
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have1092

D(p||q)−
∑
x∈X

p(x)

∣∣∣∣log
p(x)

q(x)

∣∣∣∣ = 2
∑
x∈S

p(x) log
p(x)

q(x)

(a)

≥ 2p(S) log
p(S)

q(S)

≥ 2p(S) log p(S)

≥ −2
log e

e
,

where step (a) is from the log sum inequality. The proposition follows. 21093

Proposition 34. For all probability measures r and q on N∞ and all 1 ≤ m ≤ n, we have1094

Dm(r||q) ≤ Dn(r||q).

In particular, for any collection of probability distributions P on N, if P∞ denotes the associated1095

collection of i.i.d. probability measures on N∞, we will have1096

Rm(P) := inf
q

sup
p∈P

Ep log
p(Xm)

q(Xm)
≤ inf

q
sup
p∈P

Ep log
p(Xn)

q(Xn)
= Rn(P),

where the outer infimum on both sides is taken over all probability measures q on N∞ and so Rm(P)1097

and Rn(P) are the length-m redundancy and the length-n redundancy of P, respectively.1098

Proof The first part of the claim follows from convexity, because, for all ym ∈ Nm, we have1099

r(ym) =
∑

xn : ym�xn
r(xn) and q(ym) =

∑
xn : ym�xn

q(xn).

For the second part of the claim, for any ε > 0 pick a probability measure q′ on N∞ such that1100

sup
p∈P

Ep log
p(Xn)

q′(Xn)
< Rn(P) + ε.

It then follows from the first part of the claim that1101

Rm(P) ≤ sup
p∈P

Ep log
p(Xm)

q′(Xm)
< Rn(P) + ε.

We let ε→ 0 to complete the proof. 21102

Proposition 35. Let P be a collection of probability distributions on N and P∞ the corresponding1103

collection of probability measures on N∞ got by i.i.d. sampling from the individual probability distri-1104

butions in P. For n ≥ 1, let Rn denote the length-n redundancy of P∞, as defined in (2). Then, for all1105

n ≥ 1, the per-symbol length-n redundancy of P∞ satisfies Rn/n ≤ R1.1106

Proof Let ε > 0. Let p̃ be a probability distribution on N such that the single letter redundancy of1107

P∞ with respect to p̃ is strictly less than R1 + ε. With the usual abuse of notation, let p̃ also denote1108

the i.i.d. probability measure on N∞ corresponding to p̃. Then, for all p ∈ P, we have1109

1

n
Ep log

p(Xn)

p̃(Xn)
= Ep log

p(X)

p̃(X)
< (R1 + ε).

By letting ε→ 0, the proposition follows. 21110
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Lemma 36. Let Λ be a collection of probability measures on N∞. Then we have1111

lim sup
n→∞

1

n
inf
q

sup
r∈Λ

Er log
r(Xn)

q(Xn)
= inf

q
lim sup
n→∞

1

n
sup
r∈Λ

Er log
r(Xn)

q(Xn)
, (30)

where the infimum is taken over all probability measures q on N∞. Namely, the lim supn→∞ can be1112

interchanged with the infq in the definition of the asymptotic per-symbol redundancy of Λ.1113

Proof Fix ε > 0. For n ≥ 1, let qn be a probability measure on N∞ such that1114

1

n
sup
r∈Λ

Er log
r(Xn)

qn(Xn)
<

1

n
Rn + ε.

Define the probability measure q̄ on N∞ that, for each n ≥ 1 and x ∈ Nn, assigns to x the probability1115

q̄(x) :=

∞∑
i=1

qi(x)

i(i+ 1)
,

where, as usual, qi(x) is the probability under qi of the event in N∞ comprised of the sequences having1116

the prefix x. We then have1117

1

n
sup
r∈Λ

Er log
r(Xn)

q̄(Xn)
≤ 1

n
sup
r∈Λ

Er log
r(Xn)

qn(Xn)
+

log(n(n+ 1)

n
<

1

n
Rn + ε+

log(n(n+ 1)

n
.

Thus1118

inf
q

lim sup
n→∞

1

n
sup
r∈Λ

Er log
r(Xn)

q(Xn)
≤ lim sup

n→∞

1

n
sup
r∈Λ

Er log
r(Xn)

q̄(Xn)
≤ lim sup

n→∞

1

n
Rn + ε.

Letting ε→ 0, we see that the term on the right hand side of (30) is no bigger than the term on its left1119

hand side. Showing the inequality in the other direction is straightforward, since1120

1

n
inf
q

sup
r∈Λ

Er log
r(Xn)

q(Xn)
≤ 1

n
sup
r∈Λ

Er log
r(Xn)

q(Xn)
,

for each probability measure q on N∞. This completes the proof. 21121

For the following lemma, recall the definition of J (p, p̃) for probability distributions p and p̃ on N,1122

made in (11).1123

Lemma 37. Let p and p̃ be probability distributions on N. Then1124

log e

4
|p− p̃|21 ≤ J (p, p̃) ≤ |p− p̃|1 log e .

If, in addition, p′ is a probability distribution on N, then1125

J (p, p̃) + J (p̃, p′) ≥ J 2(p, p′)
1

8 log e
.

Proof The lower bound in the first statement follows from Pinsker’s inequality for the KL divergence,1126

see [21] for example, from which we get1127

D

(
p||p+ p̃

2

)
≥ log e

8
|p− p̃|21,
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and similarly for D
(
p̃||p+p̃2

)
. For the upper bound in the first statement, since log(1 + z) ≤ z log e for

all z ≥ 0, we may write

1

log e
J (p, p̃) ≤

∑
x:p(x)≥p̃(x)

p(x)

(
p(x)− p̃(x)

p(x) + p̃(x)

)
+

∑
x:p̃(x)≥p(x)

p̃(x)

(
p̃(x)− p(x)

p(x) + p̃(x)

)
≤ |p− p̃|1.

To prove the triangle-like inequality, note that

J (p, p̃) + J (p̃, p′) ≥ log e

4

(
|p− p̃|21 + |p̃− p′|21

)
≥ log e

8

(
|p− p̃|1 + |p̃− p′|1

)2
≥ log e

8

(
|p− p′|1

)2
≥ 1

8 log e
J (p, p′)2,

where the last inequality follows from the upper bound on J (p, p′) already proved in the first part of1128

the statement. 21129

Using Lemma 37, we can prove the following result, which is identical to [2, Lemma 6]. We reproduce1130

the proof from [2] for completeness.1131

Lemma 38. Let ε0 > 0. If1132

|p0 − q|1 ≤
ε20(ln 2)2

16
,

then for all p ∈ P with J (p, p0) ≥ ε0, we have1133

J (p, q) ≥ ε20 ln 2

16
. 2

Proof Since1134

|p0 − q|1 ≤
ε20(ln 2)2

16
,

Lemma 37 implies that1135

J (p0, q) ≤
ε20 ln 2

16
.

Further, Lemma 37 then implies that1136

J (p, q) +
ε20 ln 2

16
≥ J (p, q) + J (p0, q) ≥

J 2(p, p0) ln 2

8
≥ ε20 ln 2

8
,

where the last inequality follows since J (p, p0) ≥ ε0. This completes the proof. 21137

The following result from [2] will be needed to prove the necessity part of Theorem 17.1138

Lemma 39. Fix ε > 0. Let p and q be probability distributions on N with J (p, q) ≤ ε. Fix n ∈ N.1139

Consider the probability measures on Nn obtained by i.i.d. sampling from p and q respectively, which1140

we continue to denote by p and q respectively, following our convention.1141
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Suppose An ⊂ Nn is subset for which p(An) ≥ 1− α, for some α > 0. Then we have1142

q(An) > 1− α− 2n3

√
4ε

log e
− 1

n
. 2

Proof Let1143

B1 :=

{
i ∈ N : q(i) ≤ p(i)

(
1− 1

n2

)}
, and B2 :=

{
i ∈ N : p(i) ≤ q(i)

(
1− 1

n2

)}
.

Since we have assumed that J (p, q) ≤ ε we have, from Lemma 37, that1144

|p− q|1

√
log e

4
≤
√
J (p, q) ≤

√
ε.

Further, we have1145

|p− q|1 ≥
∑
x∈B1

(p(x)− q(x)) ≥ p(B1)

n2
≥ q(B1)

n2
,

and similarly1146

|p− q|1 ≥
∑
x∈B2

(q(x)− p(x)) ≥ q(B2)

n2
≥ p(B2)

n2
.

From the preceding inequalities, it follows that1147

p(B1 ∪ B2) ≤ 2n2

√
4ε

log e
and q(B1 ∪ B2) ≤ 2n2

√
4ε

log e
. (31)

Let S := N− (B1 ∪ B2). For all x ∈ S we have1148

q(x) ≥ p(x)

(
1− 1

n2

)
. (32)

In addition, from (31) we have1149

p(S) ≥ 1− 2n2

√
4ε

log e
.

Let Sn ⊂ Nn denote the set of all length-n strings of symbols from S. Clearly1150

p(Sn) ≥ (1− 2n2

√
4ε

log e
)n > 1− 2n3

√
4ε

log e
.

Thus we have1151

p(An ∩ Sn) > 1− 2n3

√
4ε

log e
− α.

From (32), for all xn ∈ Sn, we have1152

q(xn) ≥ p(xn)

(
1− 1

n2

)n
> p(xn)

(
1− 1

n

)
.

Therefore,1153

q(An) ≥ q(An ∩ Sn) > (1− 2n3

√
4ε

log e
− α)

(
1− 1

n

)
> 1− α− 2n3

√
4ε

log e
− 1

n
. 2
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Appendix III1154

Length-n per-symbol redundancy of Mh1155

We construct a probability measure q∗ on N∞ such that for Mh we have1156

sup
p∈Mn

h

1

n
Dn(p||q) ≤ 2h

1

4 (
√
h+ 1)√

lnn
+ π

√
2

3n
log e.

This implies that the per-symbol length-n redundancy of Mh diminishes to 0 as n→∞. Hence Mh is1157

strongly compressible.1158

Consider the probability distribution q on N defined by q(i) = 1/i(i + 1), i ≥ 1. As observed in1159

Example 24, we have1160

sup
p∈Mh

Ep

(
dlog

1

q(X)
e
)2

< 4(
√
h+ 1)2. (33)

We consider a scheme that encodes patterns [22] of symbols (i.e. natural numbers in our case) first,1161

followed by an encoding using dlog 1
q(x)e bits to describe every symbol x that appeared in the string,1162

in the order in which they arrived. To clarify, recall that the pattern of a sequence of symbols from N1163

replaces each symbol by k ∈ N if the symbol was the k-th new symbol to appear in the sequence. For1164

example, the pattern of the sequence of natural numbers (2, 3, 17, 4, 3, 3, 1, 2, 4) is (1, 2, 3, 4, 2, 2, 5, 1, 4).1165

If in addition to the pattern of a finite sequence of natural numbers, in which there are l distinct symbols,1166

one knows which symbol was the k-th symbol to appear for each 1 ≤ k ≤ l, one learns the sequence of1167

symbols.1168

The expected (not normalized by n) additional number of bits to encode the pattern of a sequence1169

of symbols of length n from any p ∈ Mh is at most π
√

2
3n log e, using the results in [22], while the1170

expected number of bits to describe the symbols of length-n strings using a prefix code based on the1171

probability distribution q on N is at most1172 ∑
i∈N

(1− (1− p(i))n)dlog
1

q(i)
e.

Note that the distinct symbols appearing the the string will need to be specified in the order in which

they arrived. Let Mn denote the number of distinct symbols that appear in a sequence of length n.

Then the expected number of extra bits the scheme uses for length-n strings is (without normalizing by
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n) at most π
√

2
3n log e plus at most∑

i∈N
(1− (1− p(i))n)dlog

1

q(i)
e

(a)

≤

√√√√∑
i∈N

(1− (1− pi)n)
∑
j∈N

(1− (1− pj)n)

(
dlog

1

q(j)
e
)2

≤

√√√√∑
i∈N

(1− (1− pi)n)
∑
j∈N

(npj)

(
dlog

1

q(j)
e
)2

(b)

≤
√

4(EMn)n(
√
h+ 1)2

(c)

≤ 2nh1/4(
√
h+ 1)√

lnn
.

Here (a) follows from the Cauchy-Schwarz inequality, while (b) follows from (33) and the definition of

Mn. As for (c), a result similar to (c) can be found in [23], but we justify (c) below for completeness.

We observe that for all i ∈ N we have

1− (1− pi)n = pi

n−1∑
j=0

(1− pi)j

≤ pi

n−1∑
j=0

(1− pi)j
∑n

k=1
1
k

lnn

(a)

≤ npi
lnn

n−1∑
j=0

(1− pi)j

j

≤
npi log 1

pi

lnn
.

Combining the above with the fact that the entropy of any p ∈ Mh is at most
√
h, which was shown1173

in Example 24, proves (c) in the previous set of equations. In the above set of equations, inequality1174

(a) follows from Minkowski’s inequality which says that if xi and yi (0 ≤ i ≤ n − 1) are both1175

decreasing positive sequences, then n
∑
xiyi ≥

∑
xj
∑
yk. Minkowski’s inequality is easily proved by1176

noting
∑
xj
∑
yk =

∑
m

∑
xiy(i+m) mod n. and that

∑
xiyi ≥

∑
xiy(i+m) mod n for all 0 ≤ m ≤ n− 1.1177

The claim about the per-symbol length-n redundancy of Mh follows after normalization by n.1178

Appendix IV1179

Typicality of empirical distributions that are not too spread out1180

In this section we prove a useful result quantifying how close the empirical distribution of a sample1181

drawn i.i.d. from a probability distribution p on N is to p, when the alphabet of symbols showing up in1182

the sample is not too spread out. There is a lemma that looks somewhat similar in [24]. The difference1183

of the result in Lemma 40 from that in [24] is that the right side of the inequality in (34) does not1184

depend on p. The result of Lemma 40 will be used in the sufficiency proof in Appendix VI and this1185

property is crucial for its use.1186
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Lemma 40. Let p be any probability distribution on N. Let γ > 0 and let k ≥ 2 be an integer. Let1187

Xn
1 be a sequence generated i.i.d. with marginals p and let t(Xn) be the empirical distribution of Xn

1 .1188

Then1189

p
(
|t(Xn)− p|1 > γ and 2Ḟ−1

t (1− γ/6) ≤ k
)
≤ (2k − 2) exp

(
−nγ

2

18

)
. (34)

Proof From [25, Proposition 1] we know that for any probability distribution p′ on N with finite1190

support of size L we have1191

p′(|t(Xn)− p′|1 ≥ α) ≤ (2L − 2) exp

(
−nα

2

2

)
, (35)

where t(Xn) is the type of Xn generated i.i.d. with marginal distribution p′.1192

Consider the probability distributions p′ and t′ on A obtained from p and t respectively via the1193

mapping from N to A := {1, . . . ,k − 1}∪{−1} that maps i to i for 0 ≤ i ≤ k− 1 and maps all the other1194

natural numbers to −1. Thus, we have1195

p′(i) =

{
p(i), if 1 ≤ i ≤ k − 1,∑∞

j=k p(j), if i = −1.

Further, sequences of natural numbers generated i.i.d. with marginal distribution p and with empirical1196

distribution t are mapped to sequences from A that are i.i.d. with probability distribution p′ and have1197

empirical distribution t′.1198

Applying (35) to p′, we have1199

p′(|p′ − t′|1 > γ/3) ≤ (2k − 2) exp

(
−nγ

2

18

)
. (36)

We first argue that all sequences generated by p with empirical distributions t satisfying1200

|p− t|1 > γ and 2Ḟ−1
t (1− γ/6) ≤ k

are mapped into sequences generated by p′ with empirical t′ satisfying1201

|p′ − t′|1 > γ/3 and t′(−1) ≤ γ/3.

This follows from writing

|p− t|1 −
k−1∑
i=1

|p(i)− t(i)|

≤
∞∑
j=k

(p(j)− t(j)) + 2

∞∑
j=k

t(j)

≤ |p′(−1)− t′(−1)|+ γ/3,

where the last inequality above follows from the fact that 2Ḟ−1
t (1−γ/6) ≤ k implies Ft(k−1) ≥ 1−γ/6,1202

i.e.
∑∞

j=k t(j) ≤ γ/6. Hence we have1203

|p′ − t′|1 =

k−1∑
i=1

|p(i)− t(i)|+ |p′(−1)− t′(−1)| ≥ |p− t|1 − γ/3 > γ/3,
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because |p− t|1 > γ.1204

Thus, from (36), we will have

p(|t(Xn)− p|1 > γ and 2Ḟ−1
t (1− γ/6) ≤ k)

≤ p′(|t′ − p′|1 > γ/3 and t′(−1) ≤ γ/3)

≤ (2k − 2) exp

(
−nγ

2

18

)
.

This completes the proof of the lemma. 21205

Appendix V1206

τ enters with probability 11207

We reproduce the argument from [2] here for completeness.1208

Every probability distribution p ∈ P is contained in at least one of the elements of the cover (Qp,m ∩1209

P, p̃ ∈ P̃m), where Qp,m denotes the zone of p̃ ∈ P̃m. Recall the enumeration of P̃m. Let p′ be be centroid1210

with the smallest index among all centroids in P̃m whose zones contain p. With probability 1, sequences1211

generated by p will eventually have their type (empirical distribution) entirely within Qp′,m. (see [26]1212

for a proof).1213

Next note that for all n sufficiently large the analog of (26), (which makes sense for all p′ ∈ P̃m) will1214

hold. This follows since the right hand side of (26) diminishes to zero polynomially with n while the1215

left hand side diminishes to zero exponentially fast in n.1216

Next, (27) will also hold eventually with probability 1, since, if t denotes the empirical probability of1217

a sequence generated by p, then1218

Ḟ−1
t (1−

√
D
p′/6)→ Ḟ−1

p (1−
√
D
p′/6) (37)

with probability 1 as n→∞, where we note that the quantity on the left hand side of (37) is actually

a random variable and t determines n. Furthermore, we also have

2Ḟ−1
p (1−

√
D
p′,m/6) < 3

(
sup

r∈B(p′,εp′,m;P)
Ḟ−1
r (1−

√
D
p′,m/6)

)
= logC(p′,m),

where the first inequality follows since p is in the 1
m−reach of p′.1219

Therefore, both (26) and (27) will eventually hold with probability 1. Furthermore, long enough1220

sequences generated by p fall into the zone of p′ with probability 1. This implies in turn that τη,m enters1221

with probability 1. Note that it is entirely possible that some other probability measure traps strings1222

before they can be trapped by p′, but that does not take away from the fact that τη,m will enter with1223

probability 1.1224

Appendix VI1225

Probability of falling into bad traps1226

Let t be any length-n empirical distribution trapped by p̂, which we recall has 1
m -reach εp̂,m, such1227

that p /∈ B(p̂, εp̂,m;P). Then we have1228

J (p̂, p) ≥ εp̂,m,
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because p /∈ B(p̂, εp̂,m;P), and we have1229

|p̂− t|1 <
εp̂,m

2(ln 2)2

16
,

because t has to be in the zone Qp̂,m in order to be captured by p̂. From Lemma 38, which is a1230

consequence of the pseudo-triangle inequality in Lemma 37, we get1231

J (p, t) ≥
ε2p̂,m ln 2

16
.

Hence, for all types t that are trapped by p̂, by the first part of Lemma 37 we get1232

|p− t|21 ≥ J 2(p, t)(ln 2)2 ≥
ε4p̂,m(ln 2)4

256
= D2

p̂,m
.

This means that for every p ∈ P, the probability that length-n sequences with empirical distribution t

are trapped by a bad p̂ can be bounded from above as

≤ p
(
|t− p|21 ≥ Dp̂,m

and 2Ḟ−1
t (1−

√
D
p̂,m

6
) ≤ logC(p̂,m)

)
= p

(
|t− p|1 ≥

√
D
p̂,m

and 2Ḟ−1
t (1−

√
D
p̂,m
/6) ≤ logC(p̂,m)

)
(a)

≤ (C(p̂,m)− 2) exp

(
−
nD

p̂,m

18

)
(b)

≤ η(C(p̂,m)− 2)

2C(p̂,m)ι(p̂)2n(n+ 1)

≤ η

2ι(p̂)2n(n+ 1)
,

where the inequality (a) follows from Lemma 40 and (b) from (26). Therefore, the probability of1233

sequences falling into bad traps is bounded above by1234

≤
∑
n≥1

∑
p̃∈P̃

η

2ι(p̃)2n(n+ 1)
≤ π2

12
η < η,

since
∑

p̃∈P̃
1

ι(p̂)2 = π2

6 and
∑

n≥1
1

n(n+1) = 1.1235

Appendix VII1236

A fake proof1237

In this section we give a fake proof of the following mistaken claim: if P1 and P2 are d.w.c., then1238

P1 ∪P2 is also d.w.c.. We then explain why it is wrong. In the concluding remarks in [2] it was stated,1239

in passing, that if P1 and P2 are insurable then P1 ∪ P2 is also insurable. This statement if false, for1240

the reasons explained in this section. This does not affect any of the results in [2].1241

The argument proceeds as follows. Since Pi is d.w.c. for each i = 1, 2, there is a probability measure1242

qi on N∞ for each i = 1, 2 such that for every m ≥ 1, 0 < 1 − η < 1 and i = 1, 2 there is a universal1243

stopping time τ
(i)
η,m such that, for all p ∈ Pi, we have1244

p

(
∃n such that

1

n
Dn(p||qi) >

1

m
and τ (i)

η,m(Xn) = 1

)
< η.
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Let q := (q1 + q2)/2 and, for accuracy 1
m > 0 and confidence 0 < 1− η < 1, define1245

τη,m(x) := 1(τ
(1)
η,2m(x) = 1)1(τ

(2)
η,2m(x) = 1)1(|x| > 2m). (38)

Now, suppose p ∈ P1 ∪ P2. Without loss of generality, assume that p ∈ P1. Now, if n > 2m and we1246

have1247

1

n
Dn

(
p||q1 + q2

2

)
>

1

m
,

then we have1248
1

n
Dn(p||q1) >

1

m
− 1

n
>

1

2m

Further, from (38), if τη,m(x) = 1, then we have τ
(1)
η,2m(x) = 1 as well. Therefore

p

(
∃n such that

1

n
Dn

(
p||q1 + q2

2

)
>

1

m
and τη,m(Xn) = 1

)
≤ p
(
∃n such that n > 2m,

1

n
Dn(p||q1) >

1

2m
and τ

(1)
η,2m(Xn

1 ) = 1

)
< η,

where we have used (38) to see that the event whose probability is being evaluated on the left hand side1249

of the preceding equation cannot occur unless n > 2m. Since the above holds for all p ∈ P1 and we can1250

use a similar argument for all p ∈ P2, we are “done”.1251

The flaw in the above “proof” is that τη,m, as defined in (38), does not necessarily eventually equal1252

1 almost surely for all sources in P1 ∪ P2, which would mean that it is not a universal stopping time1253

for the model class P1 ∪ P2. To see why this issue might arise, note that τ
(i)
η,2m is known to eventually1254

equal 1 almost surely only for sources in Pi. Thus, if it happens to be the case that there is some event1255

A ( N∞ and p1 ∈ P1 with p1(A) > 0 for which we have p2(A) = 0 for every source p2 ∈ P2, then τ
(2)
η,2m1256

might never stop waiting on the sequences in A. This doesn’t stop P2 from being d.w.c.. But when we1257

introduce sources from P1, in particular p1, we find that τη,m, as defined in (38), will never stop waiting1258

under p1. The stopping rule τη,m would then not be a universal stopping rule for the model class P1∪P2.1259
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