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Abstract. We present a rigorous and precise analysis of the maximum degree and the average4
degree in a dynamic duplication-divergence graph model introduced by Solé, Pastor-Satorras et al. in5
which the graph grows according to a duplication-divergence mechanism, i.e. by iteratively creating6
a copy of some node and then randomly alternating the neighborhood of a new node with probability7
p. This model captures the growth of some real-world processes e.g. biological or social networks.8

In this paper, we prove that for some 0 < p < 1 the maximum degree and the average degree of9
a duplication-divergence graph on t vertices are asymptotically concentrated with high probability10
around tp and max{t2p−1, 1}, respectively, i.e. they are within at most a polylogarithmic factor from11
these values with probability at least 1− t−A for any constant A > 0.12
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1. Introduction. Studying properties of random graphs is a popular topic of16

research in computer science and discrete mathematics since the seminal work of Paul17

Erdős and Alfréd Rényi [8]. This model was studied extensively using various prob-18

abilistic and analytic methods. The research mostly concentrated on a few broad19

topics: distribution of structural properties of graphs (e.g. the number of edges, de-20

grees of fixed vertex, maximum degree, diameter), the existence of special subgraphs21

(e.g. motif counting, longest paths, maximum matching, Hamilton cycles), values of22

well-known combinatorial parameters (e.g. largest independent set, chromatic num-23

ber), or extremal properties (Ramsey- and Turán-type) – see e.g. surveys of results24

in [2, 10, 17, 31].25

The widening array of application domains ranging from biology to finance to26

social science inspired further directions of research: first, there appeared an idea27

to bring the models to the real-world data and to study important aspects, such as28

centrality, degree correlation, community detection, or graph compression [19, 20, 24].29

Second, more models of random networks were developed e.g. for inhomogeneous ran-30

dom graphs, geometric random graphs, preferential attachment graphs, or duplication31

graphs [4, 10, 31]. Often, these models were inspired by some generation mechanisms32

(e.g. rich-get-richer), or properties (e.g. scale-free/power-law property) that were33
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2 A. FRIEZE, K. TUROWSKI, AND W. SZPANKOWSKI

claimed at work for the real-world networks [9].34

In particular, since the late 1990s attention turned toward dynamics graphs in35

which the behavior of networks evolves in time, e.g. when sets of vertices and/or36

edges are functions of time, which is definitely the case for certain biological (e.g.37

protein-protein networks) and social networks (e.g. graph of citations).38

One of the family of such networks is the so-called duplication models [5, 4]. It39

was observed that the evolutionary dynamics of protein interaction networks can be40

described by simple duplication and mutation rules [25, 32]. For example, the main41

mechanisms in such models are duplication and divergence: when vertices arrive one42

by one, they are created as copies of some already existing node, chosen uniformly43

at random (duplication), and then the neighborhood is typically altered randomly44

according to some predefined rules (divergence).45

In this paper we study a particular duplication-divergence model, first introduced46

by Solé, Pastor-Satorras et al. [28]. This model is a promising object of inquiry since47

it has been shown empirically that its degree distribution, small subgraph (graphlets)48

counts, and the number of symmetries fit very well the structure of some real-world49

biological and social networks, e.g. protein-protein and citation networks. More50

precisely, there exist heuristics to infer the underlying parameters of the model from51

various biological networks, which enable us to generate similar graphs in terms of de-52

gree distributions, k-hop reachability, closeness, betweenness, and graphlet frequency53

[15, 22] (see also an alternative method of parameter estimation in [29]). It also turns54

out that this model often outperformed alternative ones in terms of systematically55

replicating the degree distribution, small subgraph (graphlets) counts, and symmetries56

of the input networks [6, 27, 29]. This suggests a possible real-world significance for57

the duplication-divergence model, which further motivates the studies of its structural58

properties.59

However, it is also one of the least understood models, much less so than the60

Erdős-Rényi or preferential attachment models. At the moment there exist only a61

handful of precise results related to the behavior of the degree distribution of the62

graphs generated by this model. Our contribution is a step towards closing this gap.63

In short, we prove an asymptotic tight concentration of two parameters in duplication-64

divergence graphs: maximum degree, and average degree (or, equivalently, the number65

of edges) around their mean values.66

The paper is organized as follows: in Section 2 we define formally the duplication-67

divergence model, and we present an overview of the previous results related to the68

properties of the degree distribution. Then, in Section 3 we introduce our result69

for the maximum degree, with proof split into three parts: in Subsection 3.1 and70

Subsection 3.2 we prove upper bounds for the degrees of the earliest and later vertices71

arriving in the graph, respectively, and in Subsection 3.3 we give a proof of the lower72

bound for the degree of the first vertices, which is effectively also the lower degree73

of the maximum degree. Next, we proceed with Section 4, containing the proofs of74

the upper and the lower bounds for the average degree (or, equivalently, the total75

number of edges in the graph), respectively. Finally, we offer some further problems76

and hypotheses that stem from our current research.77

This work is a substantial extension of two conference papers: the one presented78

at COCOON 2021 [12] which contained the weaker concentration results for maximum79

degree only for the case 1
2 < p < 1, and the one presented at WG 2020 [11] which80

contained the weaker claims (proved using different methods) for average degree and81

for degrees only of the earliest vertices.82
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Fig. 1: Graph evolution in the duplication-divergence model: new vertices and their
parents are marked as white and black squares, respectively; p-edges and r-edges are
denoted by dashed and dotted lines.

2. Model definition and earlier work. Throughout the paper we use stan-83

dard graph notation from [7], e.g. V (G) denotes the vertex set of a graph G, degG(s)84

is the degree of node s in G, and we write ∆(G) and D(G) for the maximum degree85

and the average degree in G. Let also NG(s) denote the open neighborhood of s in G.86

All graphs considered in the paper are simple, i.e. without loops or multiple edges.87

Additionally, since we are eventually dealing with a probability space over graphs88

on t vertices, let Gt denote a random variable representing a graph on t vertices.89

Finally, since we are dealing with graphs growing sequentially, we assume that the90

vertices are identified with the natural numbers according to their arrival time. For91

simplicity, we introduce the notation degt(s) for the random variable denoting the92

degree of vertex s in Gt. Clearly, ∆(Gt) and D(Gt) are random variables denoting93

the maximum degree and the average degree in Gt.94

Let us now formally define the duplication-divergence model, denoted DD(t, p, r),95

introduced by Solé et al. [28, 26]. Let Gt0 be some graph on t0 ≤ t vertices, with96

vertices having distinct labels from 1 to t0. Now, for every i = t0, t0 + 1, . . . , t− 1 we97

create Gi+1 from Gi according to the following rules:98

1. we add a new vertex with label i+ 1 to the graph,99

2. we choose a vertex u from Gi uniformly at random – and we denote u as100

parent(i+ 1),101

3. for every vertex v:102

(a) if v is adjacent to u (v ∈ NGi(u)) in Gi, then add an edge between v103

and i+ 1 with probability p,104

(b) if v is not adjacent to u in Gi (v /∈ NGi(u)), then add an edge between105

v and i + 1 with probability r
i . Note that this case also occurs when106

v = u, since u /∈ NGi(u).107

All edge additions are independent Bernoulli random variables.108
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Since both p and r
i for i = t0, . . . , t− 1 are probabilities, we allow the parameter109

space to be p ∈ [0, 1] and r ∈ [0, t0].110

There is indeed a duplication-divergence mechanism at work since we can think of111

the equivalent set of rules in the form “copy a vertex from Gi uniformly at random”,112

“remove its neighbors independently at random with probability 1 − p”, and “add113

edges to all other vertices independently at random with probability r
i ”.114

Throughout the paper we will refer to the standard Big-O Landau notation, as115

popularized e.g. in [13]. Let us recall its basic notion: f(n) = O(g(n)) for some116

functions f and g such that ∃k>0∃n0
∀n>n0

|f(n)| ≤ |k ·g(n)|. Additionally, we will use117

• f(n) = Ω(g(n)) when g(n) = O(f(n)),118

• f(n) = Θ(g(n)) when both f(n) = O(g(n)) and g(n) = O(f(n)),119

• f(n) = o(g(n)) when f(n) = O(g(n)) but not f(n) = O(g(n)).120

Intuitively, f(n) = Ω(g(n)) when limn→∞
|f(n)|
|g(n)| ∈ [k1, k2] for some 0 < k1 < k2. Since121

in the model both p and r (and the order of initial graph Gt0) are constants, the122

asymptotic results are given exclusively in terms of t.123

As it was mentioned earlier, there are only a few rigorous results for the DD(t, p, r)124

model and its special cases. For 0 < p < 1 and r = 0, it was proved in [14] that125

asymptotically there exists a phase transition for the limiting distribution of degree126

frequencies: if p ≤ p∗, then almost all vertices are isolated, i.e. the number of non-127

isolated vertices in Gt is o(t), and if p > p∗, then only a constant fraction of vertices128

(with an explicit constant) are isolated. Moreover, it was proved that for any k the129

fraction of vertices of degree k in Gt converges to 0, and therefore there is no limiting130

degree distribution for p > p∗. From [21] it is known that the number of vertices of131

degree one in Gt is Ω(log t) but again the precise rate of growth of the number of132

vertices with any fixed degree k > 0 is currently unknown.133

However, also for the same case in [18, 16] it was shown for p < exp(−1) that134

the (only) connected component in Gt exhibits a power-law property with the scale135

parameter γ which is the solution of 3 = γ + pγ−2.136

For the general case, the two main parameters under consideration were the degree137

of fixed vertices degt(s) and the average degree of Gt defined as138

D(Gt) =
1

t

t∑
s=1

degt(s).139

140

It was shown in [30] that we can solve the recurrence equation for the expected141

average degree and obtain142

Theorem 2.1. For t→∞ it holds that143

E[D(Gt)] =


Θ(1) if p < 1

2 and r > 0,

Θ(ln t) if p = 1
2 and r > 0,

Θ(t2p−1) otherwise.

144

145

In a similar fashion it was shown that the expected degree of a vertex s is given by146

the following theorem:147
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Theorem 2.2. For t→∞, it holds that148

E[degt(s)] =


Θ
(
log
(
t
s

))
if p = 0 and r > 0,

Θ
((

t
s

)p)
if 0 < p < 1

2 and r > 0,

Θ
(√

t
s log s

)
if p = 1

2 and r > 0,

Θ
((

t
s

)p
s2p−1

)
otherwise.

149

150

Clearly, the latter result for the earliest vertices implies that the expected maximum151

degree is Ω(tp) for all 0 < p < 1.152

In fact, in [30] the authors obtained more than just Theorem 2.1 and Theorem 2.2,153

because they derived the exact formulae for both E[D(Gt)] and E[degt(s)] with their154

very convoluted leading coefficients (depending on s, p, r) together with the asymp-155

totics for Var[D(Gt)] and Var[degt(s)].156

The natural question then is to show that these random variables are concen-157

trated, i.e. whether by moving only some small (e.g. polylogarithmic) factor from the158

mean we could observe the polynomial tail decay. Intuitively, for the later vertices159

we should not expect such a phenomenon: since the parent of a new vertex is drawn160

uniformly, and there are two binomial processes on top of it, we expect the degree dis-161

tribution of degt(t) rather reflect the whole degree distribution, which for some cases162

we know (and for all other we stipulate, based on simulations) is not concentrated.163

However, as we will see in the next sections for the maximum degree and the average164

degree we can answer this question in the affirmative.165

3. Maximum degree. In this section we present our main result concerning the166

concentration of the maximum degree ∆(Gt). We formulate it in the next theorem.167

Theorem 3.1. Let 0 < p < 1. Asymptotically for Gt ∼ DD(t, p, r)168

Pr[(1− α)tp ≤ ∆(Gt) ≤ (1 + α)tp log2−p2(t)] = 1−O(t−A)169170

for any constants α > 0 and A > 0.171

We prove separately a lower bound and a matching (within a polylogarithmic172

factor) upper bound. The main idea of the upper bound proof, presented in the next173

subsection, is as follows: we first in Definition 3.2 introduce auxiliary deterministic174

sequences (ti)
k
i=0 and (Xti)

k
i=0 such that t0 < . . . < tk−1 < t ≤ tk. Although at175

first glance the dependency between (ti)
k
i=0 and (Xti)

k
i=0 given in this definition could176

seem very convoluted, the intuition behind it is very simple: by doing this we can177

prove with little effort that Xti grows close to tpi , provided that we choose the right178

parameters. Indeed, we show that Xt ≤ (1 + α)tp log2−p2(t) for any constant α > 0.179

This way, we want (Xti)
k
i=0 to be a good (i.e. holding with high probability) upper180

bound for degti(s) for all i = 0, . . . , k and all s ≤ t0 (denoted as early vertices), which181

in turn should give us a similar lower bound degt(s) in terms of Xt whp. We proceed182

in two major steps: first, by construction, we have degt0(s) ≤ t0 = Xt0 , and second,183

we prove a bound on degti+1
(s)−degti(s) that ensures it does not exceed Xti+1

−Xti184

with high probability. The latter part is achieved by providing an adequate upper185

bounding of degti+1
(s)− degti(s) by a sum of independent Bernoulli variables, so the186

Chernoff bound can be employed – and by applying a telescoping sum we establish187

that degt(s) ≤ Xt with high probability for all s ≤ t0. Therefore, we find for early188

vertices s (i.e. s ≤ t0) a Chernoff-type bound on the growth of degτ (s) over an interval189

of certain length h.190
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6 A. FRIEZE, K. TUROWSKI, AND W. SZPANKOWSKI

The second part of the proof of our upper bound on the maximum degree is191

inductive: we prove that with high probability for any vertex s ∈ (ti, ti+1] it holds192

that degt(s) ≤ maxτ≤ti{degt(τ)}, that is, the later vertices (that is, for any s > t0)193

can have maximum degree only with a negligible probability. This proof can also be194

decomposed into three steps: first, we show that a vertex s on its arrival cannot have a195

degree greater than (1+ε)(pXt+r) with high probability, and then it cannot increase196

between time s and ti+1 to exceed Xti+1
. Finally, to proceed from degti+1(s) ≤ Xti+1197

whp to degt(s) ≤ Xt whp we use exactly the same Chernoff bound as for early vertices.198

To prove the lower bound we follow the steps from the upper bound for the early199

vertices: we show a respective lower Chernoff-type bound on the growth of degτ (s)200

over an interval of certain length h and we combine it with different (but very similar)201

sequences ti and Xti , thus proving that in this case degτ (s) ≥ Xτ − ln1+p(τ) + 1 with202

high probability for all early vertices (that is, s ≤ t0), and that Xt ≥ (1 − α)tp for203

any α > 0.204

Note that the asymmetry between the proofs of both bounds stems from the205

fact that for the lower bound we only needed to find an inequality that holds with206

high probability for a single vertex, whereas for the upper bound we had to prove an207

inequality that holds with high probability for all vertices s = 1, . . . , t.208

3.1. Upper bound, early vertices (s ≤ t0). We begin with the definitions for209

two auxiliary sequences that we mentioned earlier:210

Definition 3.2. For any t and the given coefficients φ(t), (βi(t))
k−1
i=0 and the211

sequence of positive jumps (wi(t))
k−1
i=0 we define the sequences (ti)

k
i=0 and (Xti)

k
i=0212

and a number k(t) ∈ N, also implicitly dependent on t as follows:213

t0 = φ(t), ti+1 = ti + wi(t),214

Xt0 = t0, Xti+1
= Xti + βi(t)

wi(t)Xti

ti
,215

k is such that tk−1 < t ≤ tk.216217

Moreover, to prove the desired bounds it would be ultimately necessary that φ(t) and218

all wi(t) tend to infinity with t. For brevity, from now on we assume the dependency219

on t as implicit and write φ, βi, and wi instead of φ(t), βi(t), wi(t), respectively.220

Note that inductively from the definition it follows that if βi ≤ 1, then Xti ≤ ti221

for all i = 0, 1, . . . , k.222

Moreover, observe that we do not need to specify the values of Xτ for τ other223

than {t0, t1, . . . , tk}. In the rest of the paper we will be using precisely these values in224

the proofs, so such a definition is sufficient for our purposes. For reader’s convenience225

we shall assume that for any τ ∈ (tl, tl+1) for some l = 0, 1, . . . , k − 1 the sequence is226

completed in any way such that Xtl ≤ Xτ ≤ Xtl+1
.227

Now we analyze the asymptotic properties of these sequences. We start with a228

simple lower bound:229

Lemma 3.3. Assume βi ≥ p− p(1−p)
4 ln ti

and wi ≤ ti
ln ti

. For t→∞ we have Xti ≥ t
p
i230

for all i = 0, 1, . . . , k.231

Proof. Let us define Yτ = τp. By definition we know that Xt0 = t0 ≥ Yt0 . Now,232
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let us assume that Xti ≥ Yti holds for some i ≥ 0. Then we have233

Yti+1
− Yti = ((ti + wi)

p − tpi ) = tpi

((
1 +

wi
ti

)p
− 1

)
234

≤ tpi
(
pwi
ti
− p(1− p)w2

i

4t2i

)
≤ tpi

wi
ti

(
p− p(1− p)

4 ln ti

)
.235

236

since from Taylor expansion it follows that (1 + x)p ≤ 1 + px − p(1−p)x2

4 for any237

p ∈ [0, 1] and any x ∈ (0, 1). Therefore,238

Yti+1
− Yti ≤ Yti

wi
ti

(
p− p(1− p)

4 ln ti

)
≤ Xti

βiwi
ti

= Xti+1
−Xti ,239

240

so clearly Xti+1
≥ Yti+1

holds as well, which completes the inductive step.241

Now we prove an upper bound on Xt.242

Lemma 3.4. Assume that φ ≥ ln t, βi ≤ p + 1
2 ln ti

and wi ≤ ti
ln ti

. It holds243

asymptotically as t→∞ that Xti ≤ φ1−ptpi ln ti for all i = 0, 1, . . . , k.244

Proof. We again proceed by induction with Yτ = φ1−pτp ln τ . Clearly, Xt0 = t0 ≤245

Yt0 = t0 ln t0. Directly from the definition we get246

Yti+1
−Xti+1

= Yti+1
−Xti

(
1 +

βiwi
ti

)
247

≥ φ1−ptpi+1 ln ti+1 − φ1−ptpi ln ti

(
1 +

βiwi
ti

)
248

≥ φ1−ptpi ln ti

((
ti+1

ti

)p(
ln ti+1

ln ti

)
− 1− βiwi

ti

)
249

= φ1−ptpi ln ti

((
1 +

wi
ti

)p(
1 +

ln(1 + wi/ti)

ln ti

)
− 1− βiwi

ti

)
.250

251

Now we use the inequalities derived from the respective Taylor expansions: (1 +252

x)p ≥ 1 + px − p(1−p)x2

2 ≥ 1 and ln(1 + x) ≥ x − x2

2 ≥ 0, true for any p ∈ [0, 1] and253

any x ∈ (0, 1). In particular, in our case x = wi
ti
≤ 1

ln ti
≤ 1

ln ln t = o(1). Therefore254

Yti+1
−Xti+1

≥ φ1−ptpi ln ti

(
(p− βi)wi

ti
+

(
1 +

pwi
ti

)(
wi

ti ln ti
− w2

i

2t2i ln ti

)
255

− p(1− p)w2
i

2t2i

(
1 +

wi
ti ln ti

− w2
i

2t2i ln ti

))
256

≥ φ1−ptp−1
i ln ti · wi

(
− 1

2 ln ti
+

1

ln ti
− wi

8ti

(
1 +

wi
ti ln ti

− w2
i

2t2i ln ti

))
257

≥ φ1−ptp−1
i · wi

(
3

8
− 1

8 ln ti

(
wi
ti
− w2

i

2t2i

))
,258

259

and for sufficiently large t the last expression is clearly non-negative since wi
ti
≤ 1

ln ti
≤260

1
ln t0
≤ 1

lnφ ≤
1

ln ln t → 0, which completes the proof.261

Next, we need some bounds on degτ (s) holding with high probability to match262

with the sequence Xτ . Let us begin with the following estimate:263
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Lemma 3.5. For any φ ≤ τ ≤ t and any 0 ≤ d ≤ h it is true that264

Pr
[
degτ+h(s)− degτ (s) ≥ d |degτ (s)

]
≤ exp

(
d ln

exp(1) · h(p degτ (s) + pd+ r)

dτ

)
.265

266

Proof. First, it follows from the definition of the model that degτ+i+1(s) =267

degτ+i(s) + Iτ+i for i = 0, 1, . . . , h− 1 where Iτ+i ∼ Be(qτ+i) for some qτ+i ∈ [0, 1].268

The probability qτ+i of adding an edge between s and τ + i + 1 is just a sum of269

probabilities of two events:270

1. when parent(τ + i+ 1) ∈ NGτ+i(s) holds, i.e. with probability
degτ+i(s)

τ+i (since271

we draw the parent uniformly), we add an edge with probability p – so the272

whole event has probability
p degτ+i(s)

τ+i ,273

2. when parent(τ + i+ 1) /∈ NGτ+i(s) holds, i.e. with probability 1− degτ+i(s)

τ+i ,274

we add an edge with probability r
τ+i – so the whole event has probability275

r
τ+i

(
1− degτ+i(s)

τ+i

)
.276

Both events are disjoint, so we obtain qτ+i =
p degτ+i(s)+r

τ+i − r degτ+i(s)

(τ+i)2 ≤ p degτ+i(s)+r

τ+i .277

Next, we note that the degree grows by at least d if there is a subsequence of d278

successes i1, i2, . . . , id with only failures between them:279

Pr
[
degτ+h(s)− degτ (s) ≥ d |degτ (s)

]
280

=
∑

0≤i1<...<id<h

Pr

 ⋃
j∈{i1,...,id}

Iτ+j ∪
⋃

j∈[0,id]\{i1,...,id}

¬Iτ+j

281

=
∑

0≤i1<...<id<h

∏
j∈{i1,...,id}

Pr[Iτ+j |degτ+j(s)]
∏

j∈[0,id]\{i1,...,id}

Pr[¬Iτ+j |degτ+j(s)].282

283

Now observe that Pr[¬Iτ+j |degτ+j(s)] ≤ 1 for any j and Pr[Iτ+ij |degτ+ij (s)] ≤284

p(degτ (s)+j−1)+r
τ+ij

for j = 1, 2, . . . , d since j-th success occurs after exactly j − 1 suc-285

cesses, i.e. when the degree of the vertex s is exactly equal to degτ (s) + j − 1. Thus286

Pr
[
degτ+h(s)− degτ (s) ≥ d |degτ (s)

]
≤

∑
0≤i1<...<id<h

d∏
j=1

p(degτ (s) + j − 1) + r

τ + ij
287

≤
(
h

d

)
max

0≤i1<...<id<h


d∏
j=1

p(degτ (s) + j − 1) + r

τ + ij

 .288

289

One can easily spot that the maximum occurs in the case when ij = j − 1 for all290

j = 1, 2, . . . , d. This, coupled with a simple upper bound on the value of the binomial291

coefficient, leads us to the final result292

Pr
[
degτ+h(s)− degτ (s) ≥ d |degτ (s)

]
≤ hd exp(d)

dd

d−1∏
j=0

p(degτ (s) + j) + r

τ + j
293

≤ exp

(
d lnh− d ln d+ d+ d ln

p(degτ (s) + d) + r

τ

)
294

≤ exp

(
d ln

exp(1) · h(p degτ (s) + pd+ r)

dτ

)
.295

296
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This lemma gives a far better bound than the simple estimation degτ+h(s) ≤ degτ (s)+297

h (e.g. used in [12]). However, it is still too coarse to obtain a desired upper bound298

that could be coupled with the sequence Xτ . But we can still use it to kickstart the299

Chernoff bound by bounding the probabilities of all Bernoulli variables:300

Lemma 3.6. For ln1+p t ≤ τ ≤ t, ε = 1
5 ln τ with h ≤ ετ

p(1+2ε) exp(2) it holds for any301

constant A > 0 that302

Pr

[
max

j=0,...,h−1

{
p degτ+j(s) + r

τ + j

}
≥ (1 + ε)

pXτ + r

τ

∣∣∣∣∣degτ (s) ≤ Xτ

]
= O(t−A).303

304

Proof. Substituting d = εXτ in Lemma 3.5 we get asymptotically as t→∞ that305

Pr

[
p degτ+h(s) + r

τ + h
≥ (1 + ε)

pXτ + r

τ

∣∣∣∣∣ degτ (s) ≤ Xτ

]
306

≤ Pr
[
degτ+h(s) ≥ (1 + ε)Xτ |degτ (s) ≤ Xτ

]
307

≤ Pr
[
degτ+h(s)− degτ (s) ≥ εXτ |degτ (s) ≤ Xτ

]
308

≤ exp

(
εXτ ln

exp(1) · h(pXτ + pεXτ + r))

εXτ · τ

)
309

≤ exp

(
εXτ ln

exp(1) · hp(1 + 2ε)Xτ )

εXτ · τ

)
≤ exp(−εXτ )310

≤ exp

(
−max{ln1+p t, τp}

5 ln τ

)
≤ exp

(
− ln t · τp2/(1+p)}

5 ln τ

)
≤ t−A−1,311

312

for any constant A > 0. In the fourth line we applied inequality r ≤ pεXτ . Moreover,313

in the last line we used the facts that Xτ ≥ max{φ, τp} and max{a, b} ≥ aγb1−γ for314

any a, b > 0 and γ ∈ [0, 1].315

To complete the proof it is sufficient to use a union bound over all values up to316

h = O(t).317

Let us now proceed with providing a Chernoff-type bound on the growth of the318

degree of a given early vertex:319

Lemma 3.7. Let 1 ≤ s ≤ τ ≤ t such that τ ≥ φ = ln1+p t. Then for any A > 0 it320

is true that321

Pr

[
degτ+h(s)− degτ (s) ≥ 3A(1 + δ)

δ2
ln t

∣∣∣∣∣degτ (s) ≤ Xτ

]
= O(t−A),322

323

with ε = δ = 1
5 ln τ , and h = 3Aτ ln t

δ2(1+ε)(pXτ+r) .324

Proof. Let us first define an event325

Dε(τ, h) =

[
max

j=0,...,h−1

{
pdegτ+j(s) + r

τ + j

}
≥ (1 + ε)

pXτ + r

τ

∣∣∣∣∣degτ (s) ≤ Xτ

]
.326

327

Clearly,328

Pr
[
degτ+h(s)− degτ (s) ≥ d |degτ (s) ≤ Xτ

]
329

≤ Pr
[
degτ+h(s)− degτ (s) ≥ d |degτ (s) ≤ Xτ ,¬Dε(τ, h)

]
+ Pr[Dε(τ, h)],330331
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10 A. FRIEZE, K. TUROWSKI, AND W. SZPANKOWSKI

Let us estimate the probability of the second event. If h = 3Aτ ln t
δ2(1+ε)(pXτ+r) and332

ε = 1
5 ln τ , then the condition h ≤ ετ

p(1+ε) exp(2) ln τ is met since for some constant C > 0333

we have334

h ≤ Cτ ln t

δ2Xτ
=

Cτ ln t · 25 ln2 τ

max{ln1+p t, τp}
=
Cτ ln t · 25 ln2 τ

ln t · τp2/(1+p)
≤ τ

ln2 τ
335

≤ τ

p · 2 exp(2) · 5 ln τ
≤ ετ

p(1 + ε) exp(2) ln τ
336
337

and from Lemma 3.6 we obtain that Pr[Dε(τ, h)] = O(t−A). Here we again used the338

facts that Xτ ≥ max{φ, τp} and max{a, b} ≥ aγb1−γ for any a, b > 0 and γ ∈ [0, 1].339

Thus, it is sufficient to bound degτ+h(s) − degτ (s) with high probability when340

Dε(τ, h) does not hold, that is, when for all i = 1, . . . , h it is true that341

degτ+i(s)

τ + i
< (1 + ε)

Xτ

τ
.342

343

It follows that Iτ+i = degτ+i+1(s) − degτ+i(s) is stochastically dominated by inde-344

pendent random variables I∗τ+i ∼ Be
(

(1 + ε)pXτ+r
τ

)
for any i = 0, 1, . . . , h − 1 –345

since in the case of Bernoulli variables Be(p1) is stochastically dominated by Be(p2)346

whenever p1 ≤ p2. This way we can eliminate dependencies – the outcome of each347

Iτ influences the distributions for Iτ ′ , τ
′ > τ – and work with independent variables348

I∗τ+i.349

Now, since the new variables are both Bernoulli and independent, we can use the350

well-known left tail Chernoff bound for binomial setting from [10] (see Corollary 21.7)351

which states that for any δ ∈ (0, 1)352

Pr

[
h−1∑
i=0

I∗τ+i ≥ (1 + δ)E

[
h−1∑
i=0

I∗τ+i

]]
≤ exp

(
−δ

2

3
E

[
h−1∑
i=0

I∗τ+i

])
353

354

and therefore355

Pr

[
degτ+h(s)− degτ (s) ≥ (1 + δ)(1 + ε)

h(pXτ + r)

τ

∣∣∣∣∣degτ (s) ≤ Xτ ,¬Dε(τ, h)

]
356

≤ exp

(
−hδ

2(1 + ε)(pXτ + r)

3τ

)
.357

358

To finish the proof it is sufficient to see that h = 3Aτ ln t
δ2(1+ε)(pXτ+r) gives the required359

O(t−A) bound in the last equation.360

Finally, we proceed with the proof of the main result of this section.361

Theorem 3.8. For Gt ∼ DD(t, p, r) with 0 < p < 1 and s ∈ [1, ln1+p t] it holds362

asymptotically that363

Pr
[
degt(s) ≥ (1 + α) tp ln2−p2 t

]
= O(t−A)364

365

for any constants α > 0 and A > 0.366

Proof. Throughout the proof we will use sequences (ti)
k
i=0 and (Xti)

k
i=0 with367

φ = ln1+p t, βi = p+ 1
2 ln ti

, wi = 3(A+1)ti ln t
δ2(1+ε)(pXti+r)

, and ε = δ = 1
5 ln ti

.368
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Observe that all the assumptions of Lemma 3.3 and Lemma 3.4 are met, i.e.369

p ≤ βi ≤ p+ 1
2 ln ti

and wi ≤ ti
ln ti

, so we know that max{ln1+p t, tpi } ≤ Xti ≤ t
p
i ln2−p2 t370

for all i = 0, 1, . . . , k.371

Now let us define events Ai(s) = [degti(s) < Xti ] for i = 0, . . . , k. Clearly, A0(s)372

holds since by definition of Xt0 we have degt0(s) < t0 = Xt0 .373

Suppose that Ai(s) holds. Then we can apply Lemma 3.7 with τ = ti and h = wi:374

Pr[¬Ai+1(s)|Ai(s)] = Pr[degti+1
(s) ≥ Xti+1

| degti(s) < Xti ]375

≤ Pr[degti+1
(s)− degti(s) ≥ Xti+1 −Xti | degti(s) < Xti ]376

= Pr

[
degti+1

(s)− degti(s) ≥ βi
wiXti

ti

∣∣∣degti(s) < Xti

]
377

= Pr

[
degti+1

(s)− degti(s) ≥
βiXti

(1 + ε)(pXti + r)

3(A+ 1)

δ2
ln t

∣∣∣∣∣degti(s) < Xti

]
378

≤ Pr

[
degti+1

(s)− degti(s) ≥
3(A+ 1)(1 + δ)

δ2
ln t

∣∣∣∣∣ degti(s) < Xti

]
= O(t−A−1),379

380

where we used the fact that asymptotically as t→∞381

βiXti

(1 + δ)(1 + ε)(pXti + r)
=

βiXti

Xti

(
p+ δ

(
p+ pε+ r(1+ε)

Xti

)
+ ε

(
p+ r

Xti

))
+ r

382

≥ βi

p+ δ
(
p+ pε+ r(1+ε)

Xti

)
+ ε

(
p+ pε+ r(1+ε)

Xti

)
+ r

Xti

383

≥
p+ 1

2 ln ti

p+ δ + ε+ r
Xti

≥ 1,384

385

where in the denominator of the first inequality we used the facts that p + r
Xti
≤386

p+ pε+ r(1+ε)
Xti

= p+ o(1) ≤ 1 for any constants 0 < p < 1, 0 ≤ r ≤ t0 when t→∞.387

Next, we get388

Pr[degt(s) ≥ Xtk ] ≤ Pr[degtk(s) ≥ Xtk ] = Pr[¬Ak(s)]389

≤
k−1∑
i=0

Pr[¬Ai+1(s)|Ai(s)] + Pr[¬A0(s)] =

k−1∑
i=0

O(t−A−1) = O(t−A),390

391

since asymptotically it is true that wi ≥ 1 for all i = 0, . . . , k, and therefore k ≤ t.392

To complete the proof it is sufficient to note that tk = tk−1(1 +α) ≤ (1 +α)t and393

thus Xtk ≤ (1 + α)tp ln2−p2 t for any constant α > 0.394

3.2. Upper bound, late vertices (s > t0). In the second part of the proof we395

also use the sequences (ti)
k
i=0 and (Xti)

k
i=0 as defined in Definition 3.2. Moreover,396

throughout this section we use the same constants as in the proof of Theorem 3.8:397

φ = ln1+p t, βi = p+ 1
2 ln ti

and wi = 3(A+1)ti ln t
δ2(1+ε)(pXti+r)

.398

The proof consists of showing that for s ∈ [ti, ti+1) for some i = 0, 1, . . . , k − 1399

the degree graph (i.e. degs(s)) is with high probability significantly smaller than its400

corresponding Xti+1
. Furthermore, we show that the increase in the degree between401

degs(s) and degti+1
(s) with high probability cannot compensate for this difference.402
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12 A. FRIEZE, K. TUROWSKI, AND W. SZPANKOWSKI

Thus, Xt (or, to be more precise, Xtk) gives us a good upper bound on degt(s) for all403

s – and therefore also we obtain an upper bound for ∆(Gt).404

Let us introduce auxiliary events Bl(s) =
⋃s
τ=1Al(τ) = [degtl(τ) ≤ Xtl for all405

τ ≤ s ≤ tl] where Ai(s) is, as before, the event that degti(s) ≤ Xti for a fixed s ≤ ti.406

Lemma 3.9. Let s ∈ (tl, tl+1] for some l = 0, 1, . . . , k−1. Then, for any constants407

ε > 0 and A > 0408

Pr
[
degs(s) ≥ (1 + ε)(pXtl+1

+ r) |Bl(tl) ∧ Bl+1(s− 1)
]

= O(t−A).409410

Proof. First, we notice the fact that max{degtl+1
(τ) : 1 ≤ τ ≤ s − 1} ≤ Xtl+1

411

guarantees that max{degs(τ) : 1 ≤ τ ≤ s− 1} ≤ Xtl+1
. Therefore, degs(s) is stochas-412

tically dominated by As ∼ Bin(Xtl+1
, p) +Bin(s− 1, r

s−1 ) and we directly obtain the413

result using the Chernoff bound with E[As] = pXtl+1
+ r:414

Pr
[
degs(s) ≥ (1 + ε)(pXtl+1

+ r)
∣∣∣Bl(tl) ∧ Bl+1(s− 1)

]
415

≤ exp

(
− ε2

ε+ 2
(pXtl+1

+ r)

)
≤ t−A,416

417

asymptotically for any constants ε,A > 0 since Xtl+1
≥ ln1+p t.418

Note that the result implies that with high probability at most slightly more than419

a p fraction of the maximum degree is already present at time s. Therefore, we are420

interested in bounding the remaining part of the degree, i.e. degtl+1
(s)− degs(s), by421

something smaller than the remaining fraction of the maximum degree.422

Lemma 3.10. Let s ∈ (tl, tl+1] for some l = 0, 1, . . . , k−1. Then, for any constant423

α > 0 and A > 0424

Pr
[
degtl+1

(s)− degs(s) ≥ αXtl+1
|Bl(tl) ∧ Bl+1(s− 1)

]
= O(t−A).425

426

Proof. We use Lemma 3.5 with d = αXtl+1
to obtain asymptotically as t → ∞427

that for any A > 0 it holds that428

Pr
[
degtl+1

(s)− degs(s) ≥ αXtl+1
|Bl(tl) ∧ Bl+1(s− 1)

]
429

= Pr
[
degtl+1

(s)− degs(s) ≥ αXtl+1

]
≤ Pr

[
degs+wl(s)− degs(s) ≥ αXtl+1

]
430

≤ exp

(
αXtl+1

ln
exp(1) · wlp(1 + 2α)Xtl+1

αXtl+1
· s

)
431

≤ exp

(
αXtl+1

(
exp(1) · (1 + 2α) · 3(A+ 1)

α(1 + α)
+ ln

ln t

δ2(Xtl + r/p)

))
432

≤ exp

(
αXtl+1

(
Θ(1) + ln

25 ln t · ln2 tl

max{ln1+p t, tpl }

))
433

≤ exp

(
α ln1+p t

(
Θ(1) + ln

25 ln2 tl

t
p2/(1+p)
l

))
≤ exp(−A ln t) ≤ t−A434

435

as needed.436

To proceed we need the following two lemmas.437
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Lemma 3.11. Let s ∈ (tl, tl+1] for some l = 0, 1, . . . , k − 1. Then asymptotically438

as t→∞, for any constant A > 0 it holds that439

Pr
[
degtl+1

(s) ≥ Xtl+1
|Bl(tl) ∧ Bl+1(s− 1)

]
= O(t−A).440

441

Proof. We combine Lemma 3.9 with ε = 1−p
4p and Lemma 3.10 with α = 1−p

2 to442

obtain443

Pr
[
degtl+1

(s) ≥ Xtl+1
|Bl(tl) ∧ Bl+1(s− 1)

]
444

≤ Pr

[
degs(s) ≥

(
1 +

1− p
4p

)
(pXtl+1

+ r)
∣∣∣Bl(tl) ∧ Bl+1(s− 1)

]
445

+ Pr

[
degtl+1

(s)− degs(s) ≥
1− p

2
Xtl+1

∣∣∣Bl(tl) ∧ Bl+1(s− 1)

]
= O(t−A).446

447

Lemma 3.12. Let s ∈ (tl, tl+1] for some l = 0, 1, . . . , k − 1. Then asymptotically448

as t→∞, for any constant A > 0 it holds that449

Pr [¬Bl+1(tl+1)|Bl(tl)] = O(t−A).450451

Proof. Let l be the first value for which the lemma does not hold. Then, from452

Lemma 3.11 we get that for any constant A > 0 it holds that453

Pr [¬Bl+1(tl+1)|Bl(tl) ∧ Bl+1(tl)] =

tl+1−1∑
s=tl

Pr[¬Bl+1(s+ 1)|Bl(tl) ∧ Bl+1(s)]454

=

tl+1−1∑
s=tl

Pr[¬Al+1(s+ 1)|Bl(tl) ∧ Bl+1(s)] = O(t−A).455

456

From Theorem 3.8 we know that Pr[B0(t0)] = 1 − O(t−A). Recall that by our457

assumption Pr[¬Bi+1(ti+1)|Bi(ti)] = 1−O(t−A) for all i = 0, 1, . . . , l− 1, so it follows458

that Pr[Bi(ti)] = 1 − O(t−A) for all i = 0, 1, . . . , l. We use this fact, combined with459

the observation that Bl(tl) ⊆ Al(s) and Theorem 3.8 to get460

Pr [¬Bl+1(tl)|Bl(tl)] ≤
tl∑
s=1

Pr[¬Al+1(s)|Bl(tl)]461

≤
tl∑
s=1

Pr[¬Al+1(s) ∧ Bl(tl)]
Pr[Bl(tl)]

≤
tl∑
s=1

Pr[¬Al+1(s) ∧ Al(s)]
Pr[Bl(tl)]

462

≤
tl∑
s=1

Pr[¬Al+1(s)|Al(s)]
Pr[Bl(tl)]

=

tl∑
s=1

O(t−A)

1−O(t−A)
= O(t−A).463

464

Finally, for any events E1, E2, E3 we have465

Pr[¬E1|E2] = Pr[¬E1 ∧ E3|E2] + Pr[¬E1 ∧ ¬E3|E2]466

≤ Pr[¬E1|E3 ∧ E2] + Pr[¬E3|E2].467468

We substitute E1 = Bl+1(tl+1), E2 = Bl(tl) and E3 = Bl+1(tl) to obtain the final469

result.470
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14 A. FRIEZE, K. TUROWSKI, AND W. SZPANKOWSKI

Finally, we present the main result of this section.471

Theorem 3.13. For Gt ∼ DD(t, p, r) with 0 < p < 1 and any constants α,A > 0472

it holds asymptotically that473

Pr
[
∆(Gt) ≥ (1 + α)tp ln2−p2 t

]
= O(t−A).474

475

Proof. From Lemma 3.4 we know that Xtk ≤ (1 + α)tp ln2−p2 t holds asymptoti-476

cally. It follows that in this case477

Pr
[
∆(Gt) ≥ (1 + α)tp ln2−p2 t

]
≤ Pr[∆(Gt) ≥ Xtk ] ≤ Pr[¬Bk(tk)]478

≤
k−1∑
l=0

Pr[¬Bl+1(tl+1)|Bl(tl)] + Pr[¬B0(t0)] .479

480

Now, from Theorem 3.8 and Lemma 3.12 we know that both Pr[¬B0(t0)] =481

O(t−A) and Pr[¬Bl+1(tl)|Bl(tl)] = O(t−A) for any A > 0, respectively. Putting482

this all together with the fact that asymptotically as t → ∞ it holds that k ≤ t we483

obtain the final result.484

3.3. Lower bound. Here we proceed analogously to the case of the upper bound485

for early vertices. We provide an appropriate Chernoff-type bound for the degree of486

a given vertex with respect to some deterministic sequence. Then we again use a487

special sequence, which has the desired rate of growth and serves as a lower bound488

on degt(s). Note that we don’t need to extend our analysis for the late vertices since489

a lower bound for the degree of any vertex s at time t is also a lower bound for the490

minimum degree of Gt.491

Now, we note that if we start the whole process from a non-empty graph, then492

there exists s ∈ [1, t0] such that degt0(s) ≥ 1. Moreover, even if the starting graph493

is empty, but r > 0, then with high probability there exists a vertex with positive494

degree, as the probability of adding another isolated vertex to an empty graph on t495

vertices is at most (1− r
t )
t ≤ exp(−r), so within first A

r ln t vertices for any A > 0 we496

have a non-isolated vertex with probability at least 1−O(t−A). Of course, if we start497

from an empty graph and r = 0, then for any p there is no edge in the duplication498

process. However, in this case it trivially follows that ∆(Gt) = 0, so we omit this case499

in further analysis.500

That said, let us now proceed with the aforementioned Chernoff-type lower bound501

for the degree of a given early vertex:502

Lemma 3.14. Let 1 ≤ s ≤ τ ≤ t such that τ ≥ φ = ln1+p t. Then for any A > 0503

it is true that504

Pr

[
degτ+h(s)− degτ (s) ≤ 2A(1− δ)

δ2
ln t

∣∣∣∣∣degτ (s) ≥ Xτ

]
= O(t−A),505

506

with ε = δ = p(1−p)
8 ln τ and h = 2Aτ ln t

δ2(1−ε)(pXτ+r) .507

Proof. Let us recall (as in the proof of Lemma 3.5) that for i = 0, 1, . . . , h− 1 we508

have degτ+i+1(s) = degτ+i(s)+Iτ+i where Iτ+i ∼ Be (qτ+i) for qτ+i =
p degτ+i(s)+r

τ+i −509
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r degτ+i(s)

(τ+i)2 . Also clearly degτ+i(s) ≥ degτ (s) for any i = 0, 1, . . . , h, so we have510

qτ+i =
p degτ+i(s)

(
1− r

p(τ+i)

)
+ r

τ + i
≥
p degτ (s)

(
1− r

pτ

)
+ r

τ + h
511

≥
pXτ

(
1− ε2

)
+ r

τ(1 + ε)
≥ (1− ε)pXτ + r

τ
,512

513

since for ε = p(1−p)
8 ln τ it holds that h ≤ εt and ε2 ≥ r

pτ . Therefore for any i =514

0, 1, . . . , h−1 we know that Iτ+i stochastically dominates I∗τ+i ∼ Be
(

(1− ε)pXτ+r
τ

)
.515

As in the proof of the upper bound, the new variables are both Bernoulli and516

independent. So this time we can use the right tail Chernoff bound for binomial517

setting from [10] (see Corollary 21.7) which states that for any δ ∈ (0, 1)518

Pr

[
h−1∑
i=0

I∗τ+i ≤ (1− δ)E

[
h−1∑
i=0

I∗τ+i

]]
≤ exp

(
−δ

2

2
E

[
h−1∑
i=0

I∗τ+i

])
519

520

and therefore521

Pr

[
degτ+h(s)≤degτ (s) + (1− δ)(1− ε) h(pXτ + r)

τ

]
≤exp

(
−hδ

2(1− ε)(pXτ + r)

2τ

)
522
523

as clearly Pr
[
degτ+h(s)− degτ (s) ≤ k

]
= Pr

[∑h−1
i=0 Iτ+i ≤ k

]
≤ Pr

[∑h−1
i=0 I

∗
τ+i ≤ k

]
524

for any k, due to the stochastic dominance.525

To finish the proof it is sufficient to see that h = 2Aτ ln t
δ2(1−ε)(pXτ+r) gives the required526

O(t−A) bound in the last equation.527

In the following, we again use sequences (ti)
k
i=1 and (Xti)

k
i=1 from Definition 3.2.528

Let us also define Ci(s) = [degti(s) > Xti − φ + 1] for a fixed s ≤ ti. Now we are in529

the position to proceed with the main theorem of this section:530

Theorem 3.15. For Gt ∼ DD(t, p, r) with 0 < p < 1 there exists s such that it531

holds asymptotically that532

Pr [degt(s) < (1− α)tp] = O(t−A)533534

for any constants α,A > 0.535

Proof. Let us use φ = ln1+p t, βi = p − p(1−p)
4 ln ti

and wi = 2(A+1)ti ln t
δ2(1−ε)(pXti+r)

with536

δ = ε = p(1−p)
8 ln ti

.537

Suppose that Ci(s) holds. Then we can apply Lemma 3.14 with τ = ti and h = wi:538

Pr[¬Ci+1(s)|Ci(s)] = Pr[degti+1
(s) ≤ Xti+1 | degti(s) > Xti − φ+ 1]539

≤ Pr[degti+1
(s)− degti(s) ≤ Xti+1

−Xti | degti(s) > Xti − φ+ 1]540

= Pr

[
degti+1

(s)− degti(s) ≤ βi
wiXti

ti

∣∣∣degti(s) > Xti − φ+ 1

]
541

≤ Pr

[
degti+1

(s)− degti(s) ≤
2(A+ 1)(1− δ)

δ2
ln t

∣∣∣∣∣degti(s) > Xti − φ+ 1

]
542

= O(t−A−1),543544
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where we used the fact that asymptotically as t→∞ it holds that545

βiXti

(1− δ)(1− ε)(pXti + r)
≤

p− p(1−p)
4 ln ti

p(1− δ − ε)
= 1.546

547

Next, we get548

Pr[degt(s) ≤ Xtk − φ+ 1] ≤ Pr[degtk(s) ≤ Xtk − φ+ 1] = Pr[¬Ck(s)]549

≤
k−1∑
i=0

Pr[¬Ci+1(s)|Ci(s)] + Pr[¬C0(s)] =

k−1∑
i=0

O(t−A−1) = O(t−A),550

551

since asymptotically it is true that wi ≥ 1 for all i = 0, . . . , k, and therefore k ≤ t.552

To complete the proof it is sufficient to note that t ≤ tk ≤ (1 +α)tk−1 ≤ (1 +α)t553

for any constant α > 0 and thus Xtk ≤ (1 + α)tp.554

4. Average degree. Now let us proceed to the results on the average degree of555

Gt defined as556

D(Gt) =
1

t

t∑
s=1

degt(s).557

558

First, we recall from [30, Theorem 9(iii)] that for any τ = t0, . . . , t − 1 it holds559

asymptotically (i.e. when t0 →∞) that560

E[degτ (τ)] =



D(Gt0) pΓ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)τ

2p−1(1 + o(1)) if p ≤ 1
2 , r = 0,

r(1 + o(1)) if p = 0, r > 0,(
r(1−p)
p(1−2p) −

r
p

)
(1 + o(1)) if 0 < p < 1

2 , r > 0,

r log τ (1 + o(1)) if p = 1
2 , r > 0,(

D(Gt0) + 2rt0
t20+2pt0−2r 3F2

[ t0+1,t0+1,1
t0+c3+1,t0+c4+1 ; 1

])
pΓ(t0)Γ(t0+1)

Γ(t0+c3)Γ(t0+c4)τ
2p−1(1 + o(1)) if p > 1

2 ,

561

562

where D(Gt0) is the average degree of the initial graph Gt0 and563

3F2

[ a1,a2,a3
b1,b2 ; z

]
=

∞∑
l=0

(a1)l(a2)l(a3)l
(b1)l(b2)l

zl

l!
564

is the generalized hypergeometric function with (a)l = a(a+1) . . . (a+ l−1), (a)0 = 1565

the rising factorial (see [1] for details).566

In short, if we omit constant factors, there are three regimes of growth: constant,567

ln t, and t2p−1. We need to find the proper high probability bound for each case568

separately, however it turns out that the proofs are very similar.569

4.1. Upper bound. Now we may proceed to the main result of this section:570

the upper bound for the average degree of Gt. It turns out that there are exactly two571

regimes with somewhat different behavior:572

Theorem 4.1. Asymptotically for Gt ∼ DD(t, p, r) it holds that573

Pr[D(Gt) ≥ AC ln t] = O(t−A) for p ≤ 1

2
,574

Pr[D(Gt) ≥ C t2p−1] = O(t−A) for p >
1

2
.575

576

for some fixed constant C > 0 and any A > 0.577
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Proof. For simplicity, we will work with the total number of edges τD(Gτ ) instead578

of D(Gτ ). Clearly, for any τ = t0, . . . , t− 1 it holds that579

(τ + 1)D(Gτ+1)− τD(Gτ ) = 2 degτ+1(τ + 1),580

degτ+1(τ + 1) ∼ Bin(degτ (parent(τ + 1)), p) +Bin(τ − degτ (parent(τ + 1)), r/τ).581582

Therefore, we can use Chernoff bound to obtain for any δ ≥ 0583

Pr
[
(τ + 1)D(Gτ+1)− τD(Gτ ) ≥ 2 (1 + δ)E[degτ+1(τ + 1)]

]
584

≤ exp

(
− 2δ2

2 + δ
E[degτ+1(τ + 1)]

)
.585

586

Now, for p > 1
2 we know that E[degτ (τ)] ≤ C∗τ2p−1 for some constant C∗ > 0.587

Thus, it is sufficient to set t0 = tp/3 and δ =
√

3(A+1) ln t
2C∗τ2p−1 = o(1) for all τ = t0, . . . , t−1588

to get589

Pr
[
(τ + 1)D(Gτ+1)− τD(Gτ ) ≥ 2(1 + δ)C∗ τ2p−1

]
= O(t−A−1),590591

and by summing over all τ that no event from polynomial tails happens we obtain592

Pr
[
tD(Gt) ≥ C t2p

]
≤ Pr

[
tD(Gt)− t0D(Gt0) ≥

t−1∑
i=t0

2(1 + δ)C∗ τ2p−1

]
= O(t−A),593

594

for any constant C ≥ t−2p
∑t−1
i=t0

2(1+δ)C∗ τ2p−1 + t−2pt0D(Gt0) – and such constant595

indeed exists since it is not hard to verify that the latter sum is finite.596

In all cases 0 < p ≤ 1
2 it turns out that

√
3(A+1) ln t
2C∗τ2p−1 →∞. However, for 0 < p ≤ 1

2 ,597

r > 0 we have E[degτ (τ)] ≤ C∗ ln τ for some constant C∗ > 0, and we can assume598

δ →∞ such that599

1 + δ

2
≤ δ2

2 + δ
=

(A+ 1) ln t

2C∗ ln τ
,600

601

so therefore602

Pr[(τ + 1)D(Gτ+1)− τD(Gτ ) ≥ 2(A+ 1) ln t] = O(t−A−1),603

Pr[tD(Gt) ≥ AC t ln t] ≤ Pr

[
tD(Gt)− t0D(Gt0) ≥

t−1∑
i=t0

2(A+ 1) ln i

]
= O(t−A),604

605

for some constant C ≥ 2 + t0
At ln tD(Gt0) when t0 = t1/3.606

Finally, let us study the case 0 < p < 1
2 , r = 0. Again we know that E[degτ (τ)] ≤607

C∗τ2p−1 for some constant C∗ > 0. Again, we can assume608

1 + δ

2
≤ δ2

2 + δ
=

(A+ 1) ln t

2C∗τ2p−1
,609

610

so by a similar reasoning as before we get611

Pr[(τ + 1)D(Gτ+1)− τD(Gτ ) ≥ 2(A+ 1) ln t] = O(t−A−1),612

Pr[tD(Gt) ≥ AC t ln t] ≤ Pr

[
tD(Gt)− t0D(Gt0) ≥

t−1∑
i=t0

2(A+ 1) ln t

]
= O(t−A),613

614

for sufficiently large constant C when t0 = t1/3.615
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4.2. Lower bound. We now turn our attention to establishing the correspond-616

ing lower bound. Note that since E[D(Gt)] = O(log t) for p ≤ 1
2 , the lower polynomial617

tail is trivial in this range since all smaller values are within the polylogarithmic dis-618

tance from the mean. However, we can investigate the case p > 1
2 .619

Theorem 4.2. For Gt ∼ DD(t, p, r) with p > 1
2 asymptotically it holds that620

Pr
[
D(Gt) ≤ C t2p−1

]
= O(t−A).621622

for some fixed constant C > 0 and any A > 0.623

Proof. Similarly as before, we invoke the appropriate Chernoff bound for δ ∈ (0, 1)624

Pr
[
(τ + 1)D(Gτ+1)− τD(Gτ ) ≤ 2 (1− δ)E[degτ+1(τ + 1)]

]
625

≤ exp
(
−δ2E[degτ+1(τ + 1)]

)
.626627

For p > 1
2 it is true that E[degτ (τ)] ≥ C∗τ2p−1 for some constant C∗ > 0. Thus,628

it is sufficient to set t0 = tp/3 and δ =
√

(A+1) ln t
C∗τ2p−1 ≤ 1

2 for all τ = t0, . . . , t− 1 to get629

Pr
[
(τ + 1)D(Gτ+1)− τD(Gτ ) ≤ 2(1− δ)C∗τ2p−1

]
= O(t−A−1),630631

which leads us to632

Pr
[
tD(Gt)− t0D(Gt0) ≤ C t2p

]
633

≤ Pr

[
tD(Gt)− t0D(Gt0) ≤

t−1∑
i=t0

2(1− δ)C∗ τ2p−1

]
= O(t−A).634

635

for any constant 0 < C ≤ t−2p
∑t−1
i=t0

2(1 − δ)C∗ τ2p−1 + t−2pt0D(Gt0) – and such636

constant indeed exists since it is not hard to verify that the latter sum is non-zero637

and finite when t0 = t1/3.638

5. Further challenges. In this paper we focus on deriving large deviations639

for the average and the maximum degree in the duplication-divergence networks.640

By a simple martingale argument one can show that ∆(Gt)/t
p converges to some641

random variable ∆. However, it is still worth asking whether ∆ has finite support642

(e.g. dependent only on p and r, but not on t).643

A natural next challenge would be to obtain the exact asymptotic formula for the644

whole degree distribution. For example, there is an open question whether DD(t, p, r)645

graphs are scale-free, i.e. they have Θ(k−γ) fraction of vertices with degree k. A first646

step towards this goal was already done for r = 0 in [18, 16], where it was proved that647

this property indeed holds for the (only) giant component p < e−1. However, it was648

noticed in [14] that for r = 0 and all 0 < p < 1 such phenomenon does not appear in649

the whole graph, since almost all vertices are isolated, thus for any k > 0 the fraction650

of vertices of degree k tends to 0 as t→∞.651

Finally, finding good bounds on the concentration of both D(Gt) and ∆(Gt) is652

only the step towards the full understanding of this model, as we still do not know653

for example how symmetric such networks are. This, in turn, we believe could help654

find good compression algorithms for these types of networks, as was the case with655

other graph models [3, 23].656

REFERENCES657

This manuscript is for review purposes only.



ON THE CONCENTRATION OF THE MAXIMUM DEGREE. . . 19

[1] M. Abramowitz and I. Stegun, Handbook of mathematical functions: with formulas, graphs,658
and mathematical tables, vol. 55, Dover Publications, 1972.659

[2] B. Bollobás, Random graphs, Cambridge University Press, 2001.660
[3] F. Chierichetti, R. Kumar, S. Lattanzi, A. Panconesi, and P. Raghavan, Models for the661

compressible web, SIAM Journal on Computing, 42 (2013), pp. 1777–1802.662
[4] F. Chung and L. Lu, Complex graphs and networks, no. 107 in CBMS Regional Conference663

Series in Mathematics, American Mathematical Society, 2006.664
[5] F. Chung, L. Lu, T. G. Dewey, and D. Galas, Duplication models for biological networks,665

Journal of Computational Biology, 10 (2003), pp. 677–687.666
[6] R. Colak, F. Hormozdiari, F. Moser, A. Schönhuth, J. Holman, M. Ester, and S. C.667

Sahinalp, Dense graphlet statistics of protein interaction and random networks, in Bio-668
computing 2009, World Scientific Publishing, Singapore, 2009, pp. 178–189.669

[7] R. Diestel, Graph Theory, Springer, 2005.670
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