ON THE CONCENTRATION OF THE MAXIMUM DEGREE
IN THE DUPLICATION-DIVERGENCE MODELS*
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Abstract. We present a rigorous and precise analysis of the maximum degree and the average
degree in a dynamic duplication-divergence graph model introduced by Solé, Pastor-Satorras et al. in
which the graph grows according to a duplication-divergence mechanism, i.e. by iteratively creating
a copy of some node and then randomly alternating the neighborhood of a new node with probability
p. This model captures the growth of some real-world processes e.g. biological or social networks.

In this paper, we prove that for some 0 < p < 1 the maximum degree and the average degree of
a duplication-divergence graph on t vertices are asymptotically concentrated with high probability
around P and max{t?P~1 1}, respectively, i.e. they are within at most a polylogarithmic factor from
these values with probability at least 1 — t~4 for any constant A > 0.
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1. Introduction. Studying properties of random graphs is a popular topic of
research in computer science and discrete mathematics since the seminal work of Paul
Erdés and Alfréd Rényi [8]. This model was studied extensively using various prob-
abilistic and analytic methods. The research mostly concentrated on a few broad
topics: distribution of structural properties of graphs (e.g. the number of edges, de-
grees of fixed vertex, maximum degree, diameter), the existence of special subgraphs
(e.g. motif counting, longest paths, maximum matching, Hamilton cycles), values of
well-known combinatorial parameters (e.g. largest independent set, chromatic num-
ber), or extremal properties (Ramsey- and Turdn-type) — see e.g. surveys of results
in [2, 10, 17, 31].

The widening array of application domains ranging from biology to finance to
social science inspired further directions of research: first, there appeared an idea
to bring the models to the real-world data and to study important aspects, such as
centrality, degree correlation, community detection, or graph compression [19, 20, 24].
Second, more models of random networks were developed e.g. for inhomogeneous ran-
dom graphs, geometric random graphs, preferential attachment graphs, or duplication
graphs [4, 10, 31]. Often, these models were inspired by some generation mechanisms
(e.g. rich-get-richer), or properties (e.g. scale-free/power-law property) that were
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2 A. FRIEZE, K. TUROWSKI, AND W. SZPANKOWSKI

claimed at work for the real-world networks [9].

In particular, since the late 1990s attention turned toward dynamics graphs in
which the behavior of networks evolves in time, e.g. when sets of vertices and/or
edges are functions of time, which is definitely the case for certain biological (e.g.
protein-protein networks) and social networks (e.g. graph of citations).

One of the family of such networks is the so-called duplication models [5, 4]. It
was observed that the evolutionary dynamics of protein interaction networks can be
described by simple duplication and mutation rules [25, 32]. For example, the main
mechanisms in such models are duplication and divergence: when vertices arrive one
by one, they are created as copies of some already existing node, chosen uniformly
at random (duplication), and then the neighborhood is typically altered randomly
according to some predefined rules (divergence).

In this paper we study a particular duplication-divergence model, first introduced
by Solé, Pastor-Satorras et al. [28]. This model is a promising object of inquiry since
it has been shown empirically that its degree distribution, small subgraph (graphlets)
counts, and the number of symmetries fit very well the structure of some real-world
biological and social networks, e.g. protein-protein and citation networks. More
precisely, there exist heuristics to infer the underlying parameters of the model from
various biological networks, which enable us to generate similar graphs in terms of de-
gree distributions, k-hop reachability, closeness, betweenness, and graphlet frequency
[15, 22] (see also an alternative method of parameter estimation in [29]). It also turns
out that this model often outperformed alternative ones in terms of systematically
replicating the degree distribution, small subgraph (graphlets) counts, and symmetries
of the input networks [6, 27, 29]. This suggests a possible real-world significance for
the duplication-divergence model, which further motivates the studies of its structural
properties.

However, it is also one of the least understood models, much less so than the
Erdés-Rényi or preferential attachment models. At the moment there exist only a
handful of precise results related to the behavior of the degree distribution of the
graphs generated by this model. Our contribution is a step towards closing this gap.
In short, we prove an asymptotic tight concentration of two parameters in duplication-
divergence graphs: maximum degree, and average degree (or, equivalently, the number
of edges) around their mean values.

The paper is organized as follows: in Section 2 we define formally the duplication-
divergence model, and we present an overview of the previous results related to the
properties of the degree distribution. Then, in Section 3 we introduce our result
for the maximum degree, with proof split into three parts: in Subsection 3.1 and
Subsection 3.2 we prove upper bounds for the degrees of the earliest and later vertices
arriving in the graph, respectively, and in Subsection 3.3 we give a proof of the lower
bound for the degree of the first vertices, which is effectively also the lower degree
of the maximum degree. Next, we proceed with Section 4, containing the proofs of
the upper and the lower bounds for the average degree (or, equivalently, the total
number of edges in the graph), respectively. Finally, we offer some further problems
and hypotheses that stem from our current research.

This work is a substantial extension of two conference papers: the one presented
at COCOON 2021 [12] which contained the weaker concentration results for maximum
degree only for the case % < p < 1, and the one presented at WG 2020 [11] which
contained the weaker claims (proved using different methods) for average degree and
for degrees only of the earliest vertices.
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ON THE CONCENTRATION OF THE MAXIMUM DEGREE... 3

Ue Us Us

U1 U2 us Uyq U1 U2 u3 Uqg

Fig. 1: Graph evolution in the duplication-divergence model: new vertices and their
parents are marked as white and black squares, respectively; p-edges and r-edges are
denoted by dashed and dotted lines.

2. Model definition and earlier work. Throughout the paper we use stan-
dard graph notation from [7], e.g. V(G) denotes the vertex set of a graph G, degs(s)
is the degree of node s in G, and we write A(G) and D(G) for the maximum degree
and the average degree in G. Let also Ng(s) denote the open neighborhood of s in G.
All graphs considered in the paper are simple, i.e. without loops or multiple edges.

Additionally, since we are eventually dealing with a probability space over graphs
on t vertices, let G} denote a random variable representing a graph on t vertices.
Finally, since we are dealing with graphs growing sequentially, we assume that the
vertices are identified with the natural numbers according to their arrival time. For
simplicity, we introduce the notation deg,(s) for the random variable denoting the
degree of vertex s in G;. Clearly, A(G;) and D(G;) are random variables denoting
the maximum degree and the average degree in Gj.

Let us now formally define the duplication-divergence model, denoted DD(¢, p, ),
introduced by Solé et al. [28, 26]. Let Gy, be some graph on ty, < t vertices, with
vertices having distinct labels from 1 to ty. Now, for every ¢ = tg,to+1,...,t — 1 we
create G;11 from G; according to the following rules:

1. we add a new vertex with label ¢ + 1 to the graph,
2. we choose a vertex u from G; uniformly at random — and we denote u as
parent(i + 1),
3. for every vertex v:
(a) if v is adjacent to u (v € Ng,(u)) in G;, then add an edge between v
and i 4+ 1 with probability p,
(b) if v is not adjacent to u in G; (v ¢ Ng,(u)), then add an edge between
v and ¢ + 1 with probability %. Note that this case also occurs when
v =u, since u ¢ Ng, (u).
All edge additions are independent Bernoulli random variables.
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4 A. FRIEZE, K. TUROWSKI, AND W. SZPANKOWSKI

Since both p and % for i ={,..., — 1 are probabilities, we allow the parameter
space to be p € [0,1] and r € [0,tg].

There is indeed a duplication-divergence mechanism at work since we can think of
the equivalent set of rules in the form “copy a vertex from G; uniformly at random”,
“remove its neighbors independently at random with probability 1 — p”, and “add
edges to all other vertices independently at random with probability 7.

Throughout the paper we will refer to the standard Big-O Landau notation, as
popularized e.g. in [13]. Let us recall its basic notion: f(n) = O(g(n)) for some
functions f and g such that Jx~03n, Vasn|f(7)| < |k-g(n)|. Additionally, we will use

e f{n) = Qg(n)) when g(n) = O(f(n)),

* f(n) =06(g(n)) when both f(n) = O(g(n)) and g(n) = O(f(n)),

e F(n) = og(n)) when f(n) = O(g(n)) but not f(n) = O(g(n)).
Intuitively, f(n) = Q(g(n)) when lim,, % € [k1, k2] for some 0 < k1 < ko. Since
in the model both p and r (and the order of initial graph G¢,) are constants, the
asymptotic results are given exclusively in terms of ¢.

As it was mentioned earlier, there are only a few rigorous results for the DD(t, p, )
model and its special cases. For 0 < p < 1 and r = 0, it was proved in [14] that
asymptotically there exists a phase transition for the limiting distribution of degree
frequencies: if p < p*, then almost all vertices are isolated, i.e. the number of non-
isolated vertices in Gy is o(t), and if p > p*, then only a constant fraction of vertices
(with an explicit constant) are isolated. Moreover, it was proved that for any k the
fraction of vertices of degree k in Gy converges to 0, and therefore there is no limiting
degree distribution for p > p*. From [21] it is known that the number of vertices of
degree one in G; is Q(logt) but again the precise rate of growth of the number of
vertices with any fixed degree k& > 0 is currently unknown.

However, also for the same case in [18, 16] it was shown for p < exp(—1) that
the (only) connected component in G; exhibits a power-law property with the scale
parameter v which is the solution of 3 = v 4 p7~=2.

For the general case, the two main parameters under consideration were the degree
of fixed vertices deg,(s) and the average degree of G; defined as

D(G) = ;3 desy(s).

It was shown in [30] that we can solve the recurrence equation for the expected
average degree and obtain

THEOREM 2.1. For t — oo it holds that
o(1) ifp<szandr >0,

E[D(Gy)] = { ©(Int)  ifp=2 andr >0,
O(t*~1) otherwise.

N N[

In a similar fashion it was shown that the expected degree of a vertex s is given by
the following theorem:
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THEOREM 2.2. Fort — oo, it holds that

(10 (é)) ifp=0andr >0,
o((t))  #0<p<}andr>o,
E[d =
[deg,(s)] (\/%logS) ipr% and r > 0,
o (

(ﬁ pSQ ) otherwise.

Clearly, the latter result for the earliest vertices implies that the expected maximum
degree is Q(t?) for all 0 < p < 1.

In fact, in [30] the authors obtained more than just Theorem 2.1 and Theorem 2.2,
because they derived the exact formulae for both E[D(G})] and E[deg,(s)] with their
very convoluted leading coefficients (depending on s, p, r) together with the asymp-
totics for Var[D(G;)] and Var[deg,(s)].

The natural question then is to show that these random variables are concen-
trated, i.e. whether by moving only some small (e.g. polylogarithmic) factor from the
mean we could observe the polynomial tail decay. Intuitively, for the later vertices
we should not expect such a phenomenon: since the parent of a new vertex is drawn
uniformly, and there are two binomial processes on top of it, we expect the degree dis-
tribution of deg,(¢) rather reflect the whole degree distribution, which for some cases
we know (and for all other we stipulate, based on simulations) is not concentrated.
However, as we will see in the next sections for the maximum degree and the average
degree we can answer this question in the affirmative.

3. Maximum degree. In this section we present our main result concerning the
concentration of the maximum degree A(G}). We formulate it in the next theorem.

THEOREM 3.1. Let 0 < p < 1. Asymptotically for Gy ~ DD(t,p, )
Pr[(1— a)t? < A(Gy) < (14 a)tPlog® ()] =1 - O(t™4)

for any constants o > 0 and A > 0.

We prove separately a lower bound and a matching (within a polylogarithmic
factor) upper bound. The main idea of the upper bound proof, presented in the next
subsection, is as follows: we first in Definition 3.2 introduce auxiliary deterministic
sequences (t;)F o and (Xy,)¥ o such that tg < ... < ty_; < t < t;. Although at
first glance the dependency between (¢;)¥_, and (X,)*_, given in this definition could
seem very convoluted, the intuition behind it is very simple: by doing this we can
prove with little effort that X;, grows close to t!, provided that we choose the right

parameters. Indeed, we show that X; < (1 + «a)t? log2_p2 (t) for any constant o > 0.

This way, we want (X;,)¥_, to be a good (i.e. holding with high probability) upper
bound for deg, (s) for alli =0,...,k and all s < ¢y (denoted as early vertices), which
in turn should give us a similar lower bound deg,(s) in terms of X; whp. We proceed
in two major steps: first, by construction, we have deg, (s) <ty = Xy,, and second,
we prove a bound on deg,,  (s) —deg,, (s) that ensures it does not exceed Xy, , — X,
with high probability. The latter part is achieved by providing an adequate upper
bounding of deg,, , (s) —deg,, (s) by a sum of independent Bernoulli variables, so the
Chernoff bound can be employed — and by applying a telescoping sum we establish
that deg,(s) < X; with high probability for all s < ty. Therefore, we find for early
vertices s (i.e. s < tg) a Chernoff-type bound on the growth of deg,.(s) over an interval
of certain length h.

This manuscript is for review purposes only.
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6 A. FRIEZE, K. TUROWSKI, AND W. SZPANKOWSKI

The second part of the proof of our upper bound on the maximum degree is
inductive: we prove that with high probability for any vertex s € (¢;,¢;41] it holds
that deg,(s) < max,<;,{deg,(7)}, that is, the later vertices (that is, for any s > o)
can have maximum degree only with a negligible probability. This proof can also be
decomposed into three steps: first, we show that a vertex s on its arrival cannot have a
degree greater than (1+¢)(pX;+7) with high probability, and then it cannot increase
between time s and ;41 to exceed Xy, . Finally, to proceed from deg;, ,(s) < Xy, 41
whp to deg,(s) < X; whp we use exactly the same Chernoff bound as for early vertices.

To prove the lower bound we follow the steps from the upper bound for the early
vertices: we show a respective lower Chernoff-type bound on the growth of deg,_(s)
over an interval of certain length h and we combine it with different (but very similar)
sequences t; and X, thus proving that in this case deg, (s) > X, —In'*?(7) + 1 with
high probability for all early vertices (that is, s < tg), and that X; > (1 — a)t? for
any o > 0.

Note that the asymmetry between the proofs of both bounds stems from the
fact that for the lower bound we only needed to find an inequality that holds with
high probability for a single vertex, whereas for the upper bound we had to prove an
inequality that holds with high probability for all vertices s =1,...,t.

3.1. Upper bound, early vertices (s < ¢p). We begin with the definitions for
two auxiliary sequences that we mentioned earlier:

DEFINITION 3.2. For any t and the given coefficients $(t), (8;(t))52y and the
sequence of positive jumps (w;(t))"=3 we define the sequences (t;)¥_, and (Xt,)¥_,

and a number k(t) € N, also implicitly dependent on t as follows:

to = ¢(1), tiv1 = t; +w;(t),
Ww; )X, i
Xto = to, Xti+1 = Xti + 51(75)%

)

k is such that tp_1 <t < tg.

Moreover, to prove the desired bounds it would be ultimately necessary that ¢(t) and
all w;(t) tend to infinity with ¢. For brevity, from now on we assume the dependency
on t as implicit and write ¢, 3;, and w; instead of ¢(t), 3;(t), w;(t), respectively.
Note that inductively from the definition it follows that if 8; < 1, then Xy, <,
foralli=0,1,... k.
Moreover, observe that we do not need to specify the values of X, for 7 other

than {to,t1,...,tx}. In the rest of the paper we will be using precisely these values in
the proofs, so such a definition is sufficient for our purposes. For reader’s convenience
we shall assume that for any 7 € (¢;,¢41) for some I =0,1,...,k — 1 the sequence is

completed in any way such that X; < X, < Xy, .
Now we analyze the asymptotic properties of these sequences. We start with a
simple lower bound:

LEMMA 3.3. Assume 3; > p—i(}T—t’:) and w; < hft Fort — oo we have Xy, > t¥
foralli=0,1,... k.

Proof. Let us define Y, = 7P. By definition we know that X;, =ty > Y;,. Now,

This manuscript is for review purposes only.
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let us assume that X;, > Y;, holds for some ¢ > 0. Then we have

W p
Vi = Vi = (6w =) =2t ((14) 1)

t;
pwi  p(l —p)wi w; p(1 —p)
<t Y A Sl et T PG B A Y 2 Sl A
-t < t; 4t22 - vt b 41nt;

since from Taylor expansion it follows that (1 4+ z)? < 1+ px — % for any
p € [0,1] and any x € (0, 1). Therefore,

Wi p(1—p) Biw;
tit1 ty = 1t t; (p 4Int, > > A, £, tit1 tis
so clearly X;,,, > Y;,,, holds as well, which completes the inductive step. |

Now we prove an upper bound on X;.

LEMMA 3.4. Assume that ¢ > Int, 5; < p+ ﬁ and w; < lrft It holds

asymptotically as t — oo that Xy, < ¢ ~Pt¥Int; for alli=0,1,... k.
Proof. We again proceed by induction with Y, = ¢!=P7P In7. Clearly, X;, =ty <
Y;, = toInty. Directly from the definition we get

iW;
Yii-%—l - Xti+1 = Kz‘+1 - Xti <1 + B)

t;

w0
> ¢ P Inti — o' P Int; <1 + ﬂ; Z)
3

p
> PP Int, tiv1 Intip) 1 Biw;
ti In ti ti

:d)l*ptflnti <(1+%>p <1+1n(1+wi/ti)) 15111)1)

t; Int; t;

Now we use the inequalities derived from the respective Taylor expansions: (1 +
2
)P > 1+pm—% > 1 and In(1 + z) ZI—%Q > 0, true for any p € [0,1] and

any z € (0,1). In particular, in our case = % < L < —— = o(1). Therefore
- p — Bi)w pw; w; w;
Yy, — X, > ¢ Pt Inty (74— 1+ — !
tn ~ Koy 207 Ik ti ti ) \t:ilnt; 22Int;

_popef (L wi v
2t? tilnt; 2t?Int;
1 1 W w; w?
> ot P ngy o w [ — -1 L
=0T It ( 2Int; * Int; 8t ( * tiInt; 2tz21nti)>

_ 3 1 w; w?
>l PPl (2 - — [ = - L
29w <8 8Int, <ti 2t$)>’

and for sufficiently large ¢ the last expression is clearly non-negative since 7+ < lnltv <
1 1 1

W S na < 5177 — 0, which completes the proof. ]

Next, we need some bounds on deg,(s) holding with high probability to match
with the sequence X,. Let us begin with the following estimate:

This manuscript is for review purposes only.
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8 A. FRIEZE, K. TUROWSKI, AND W. SZPANKOWSKI

LEMMA 3.5. For any ¢ <7 <t and any 0 < d < h it is true that

exp(1) - h(pdeg,.(s) + pd + r))
dr '

Pr[deg, . (s) — deg.(s) > d |deg,(s)] < exp (dln

Proof. First, it follows from the definition of the model that deg,,; ,(s) =
deg, ;(s) 4+ Ir4; for i = 0,1,...,h — 1 where I, ; ~ Be(gr4;) for some ¢-1; € [0,1].
The probability ¢,4; of adding an edge between s and 7 + ¢ + 1 is just a sum of
probabilities of two events:

1. when parent(7 +i + 1) € Ng._,(s) holds, i.e. with probability gTij_;(S) (since
we draw the parent uniformly), we add an edge with probability p — so the

whole event has probability pdcfé_:ii(s),
2. when parent(7 + i+ 1) ¢ Ng,,(s) holds, i.e. with probability 1 — dengij_;(S),

we add an edge with probability - — so the whole event has probability
r_ (1 _ deg.,_+1:(s))
T+1 T+1 :

Both events are disjoint, so we obtain ¢, 4; =

pdegf+1(8)+r _ rdeg,yi(s) - pdeg ()4

T+ (‘r+z)2 —= T+i
Next, we note that the degree grows by at least d if there is a subsequence of d
successes i1, 19, . . . ,ig with only failures between them:

Pr [degTJrh(S) - degT(s) > d |deg7(8>]

Z Pr U IT+j U U g

0<iy <...<ig<h j€{it,...ia} FE€[0,3a]\{i1,...,ia}
= > [T  Prifesjldeg,  ;(s)] II  Prlleijldes, (s).
0<i1<...<ig<h j€{i1,...,iq} J€[0,3a]\{i1,...,ia}

Now observe that Pr[=I i |deg,;(s)] < 1 for any j and Pr[l-i;;|deg,; (s)] <
p(deg (s)+j—1)+r for j = 1,2

T+, ’
cesses, i.e. when the degree of the vertex s is exactly equal to deg.(s) + j — 1. Thus

.,d since j-th success occurs after exactly 7 — 1 suc-

p(deg (s)+j—1)+r
Prldeg, on(s) —deg,(5) > d [deg, (9] < S]] L )
0<i1<...<ig<h j=1

h (d j—1
< e H p(deg,(s)+j—1)+r
d) 0<ii<...<ig<h T + 15

One can easily spot that the maximum occurs in the case when 7; = j — 1 for all
7 =1,2,...,d. This, coupled with a simple upper bound on the value of the binomial
coefficient, leads us to the final result

h? exp(d) T pldeg,(s) + ) +7
Pr[degT_Hl(s) —deg.(s) > d |deg7(8)] < qd H T+

<e <dlnh dind+d+dln p(degf(8)+d)+r)
T
<e (dlneXp (pdilgf()+pd+r)). .
T
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ON THE CONCENTRATION OF THE MAXIMUM DEGREE... 9

This lemma gives a far better bound than the simple estimation deg,_; (s) < deg,(s)+
h (e.g. used in [12]). However, it is still too coarse to obtain a desired upper bound
that could be coupled with the sequence X... But we can still use it to kickstart the
Chernoff bound by bounding the probabilities of all Bernoulli variables:

LEMMA 3.6. ForIn'"P¢t <7<t e = withh <

i it holds for any
constant A > 0 that

eT
p(142¢) exp(2)

Pr| max =0(t™).
§=0,erish—1

X-
paAr T deg.(s) < X
T

{pdegm(S) +r

T+7 }2(1—1—5)

Proof. Substituting d = X in Lemma 3.5 we get asymptotically as t — oo that

PI' [pdeg7+h(8) +T Z (1 +€)pXT +T
T+h

deg, (s) < XT]

< Pr[deg, 1(s) > (14 )X | deg, (5) < X.]
<Pr [d6g7+h(s) - dEgT(S) >eXr |deg,r(s) < XT:I

exp(1) - h(pX, + peX, + 1))
eX, T

exp(l) :};;El;l-— 2€)X7—)) < exp(—EXr)

4+py _p .2/ (1+p)
. exp(_nm{lnw}) . exp<_1n“}> Cpant

< exp (EX +ln

< exp <5X -Iln

5Int 5Int

for any constant A > 0. In the fourth line we applied inequality r < peX,. Moreover,
in the last line we used the facts that X, > max{¢, 7P} and max{a,b} > a?b'~7 for
any a,b >0 and v € [0, 1].

To complete the proof it is sufficient to use a union bound over all values up to

h=0(t). O

Let us now proceed with providing a Chernoff-type bound on the growth of the
degree of a given early vertex:

LEMMA 3.7. Let 1 < s <7 <t such thatT > ¢ = In'*?¢. Then for any A >0 it
18 true that

3A(1 +6)

52 Int

Pr [degm(s) — deg, (s) > deg, (s) < X, | = O(t~),

; s _ _1 _ 3ATInt
with e =0 = gy, and h = PRy e

Proof. Let us first define an event

de (s)+r X
p gT—&-](‘) }2(1+6)p st
T+ T

§=0,....,h—1

D.(r,h) = [ max {

Clearly,

Pr [deg, ,4(s) — deg, (s) > d | deg, (5) < X,]
< Pr[deg,,,(s) — deg,(s) > d |deg,(s) < X, ~D.(7,h)| + Pr[D.(r, h)],
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. I _ 3ArInt

Let us estimate the probability of the second event. If h = W and
€= 51%, then the condition h < is met since for some constant C' > 0

we have

eT
p(l+€)exp(2) InT

Crlnt Crlnt-25In 7 _CTlnt-25ln27' T
- 02X, max{lnl+p t, TP} T Int-P/04p) T n2 4
T eT
< <
T p-2exp(2)-5InT T p(1+¢)exp(2)InT

and from Lemma 3.6 we obtain that Pr[D.(7,h)] = O(t~*). Here we again used the
facts that X, > max{¢, 7P} and max{a,b} > a7b'~7 for any a,b > 0 and ~ € [0, 1].

Thus, it is sufficient to bound deg,;(s) — deg,(s) with high probability when
D (1, h) does not hold, that is, when for all ¢ = 1,..., h it is true that

deg7'+i (S)

X
— < (1+¢)
T+

-
It follows that I, ; = deg,,; ,(s) — deg, ;(s) is stochastically dominated by inde-
pendent random variables I7 ; ~ Be ( (1 —&-s)prﬂ) for any i« = 0,1,...,h — 1 —
since in the case of Bernoulli variables Be(p) is stochastically dominated by Be(p2)
whenever p; < py. This way we can eliminate dependencies — the outcome of each
I influences the distributions for I., 7/ > 7 — and work with independent variables
I,
Now, since the new variables are both Bernoulli and independent, we can use the
well-known left tail Chernoff bound for binomial setting from [10] (see Corollary 21.7)

which states that for any ¢ € (0,1)
h—1
o)

=0

Pr

h—1
> I, > (1+0)E
=0

h—1 (52
Z I:+i‘| 1 < exp <—3E

=0

and therefore

h(pX-
Pr [deg; . (s) ~ deg,(s) > (1+ 9)(1 +2) LX) Jaeg (o) < X, -Du( h)]
T
2
< exp<h5 (1+e)(pX, + r)) '
3T

To finish the proof it is sufficient to see that h = % gives the required
O(t=*) bound in the last equation. 0

Finally, we proceed with the proof of the main result of this section.

THEOREM 3.8. For Gy ~ DD(t,p,r) with0 < p <1 and s € [1,ln1+p t] it holds
asymptotically that

Pr [degt(s) >(1+a)t? 27 ¢| = ot

for any constants o > 0 and A > 0.

Proof. Throughout the proof we will use sequences (t;)%_, and (X;,)¥_, with

WP B — e L gy = BAEDE e s
(ZS—IH t, ﬂ" =p+ 2Int;”’ Wy = 02 (1+e)(pXe, +r)’ and ¢ =0 = 5Int; "
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Observe that all the assumptions of Lemma 3.3 and Lemma 3.4 are met, i.e.

pﬁﬂigp—}-ﬁandwig

2
-, 80 we know that max{In'" ¢ ¥} < X, <t'In* P ¢

foralli=0,1,...,k.

Now let us define events A;(s) =

[deg;, (s) < Xy,] for i =0,..., k. Clearly, Ao(s)

holds since by definition of X;, we have deg, (s) < to = X,.

Suppose that A;

Pr[=A;1(s)|Ai(s)]
< Plr[degti+1 (s)

=Pr degti+1 (s)

=Pr

< Pr

degmH( s) —

degtiﬂ (s) —

(s) holds. Then we can apply Lemma 3.7 with 7 = ¢; and h = w;:

= Pr[degtiJrl (S) > XtH»l | degti(s) < Xti}

(I+e)(pXe, +r) 02

3(A+1)(1+49)
52

—deg;, () > Xy, — Xy, (s) < Xy,
w; X
— deg,, (s) > ;220 | deg,, (s) < Xt,.]
degy, () > —b X 3AXD 1 1gee () < X]

degti (5) > Int degti (5) < Xti, — ()(thfl)7

where we used the fact that asymptotically as ¢ — oo

Bi Xy,

Bi Xy,

A+ +e)pX, +1)  x, (p+o(ptpet ) +e(pr5)) +r

where in the denominator of the first inequality we used the facts that p + ﬁ

D+ pe+ r(1+s)

Next, we get

Prideg,(s) > Xy, ] < Prldeg,, (s) > Xi,]

k—1

<> P

=0

since asymptotically it is true that w; > 1 for all 1 =0, ...,
To complete the proof it is sufficient to note that tx = tx_1(1+ @)

thus X,

Bi

>
p+6(p+p5+ T(HE)) +e (p+ps+ T(”E)) + %

> p+2lnti
S pHotet o

<

=p+o0(1) <1 for any constants 0 < p < 1, 0 < r < ¢y when t — oco.

= Pr[ﬂAk(S)]

—~Air1(s)]Ai(s)] + Pr[-Ao(s Z o(t = o(t™"),

k, and therefore k < t.
<(1+a)tand

< (1+a)t? In>"" ¢ for any constant a > 0. 0

3.2. Upper bound, late vertices (s > t3). In the second part of the proof we
also use the sequences (t;)¥_, and (X;,)¥_, as defined in Definition 3.2. Moreover,
throughout this section we use the same constants as in the proof of Theorem 3.8:

¢ =W'*P¢, 5

The proof consists of showing that for s € [t;,t;41) for some ¢ = 0,1,...,

the degree graph (i.

corresponding Xy, .

deg,(s) and degy,

_ 1 o
—p—|—21nti and w; =

3(A+1)t; Int
02(14e)(pXe,+7) "
k-1
e. deg,(s)) is with high probability significantly smaller than its
Furthermore, we show that the increase in the degree between
(s) with high probability cannot compensate for this difference.
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Thus, X; (or, to be more precise, Xy, ) gives us a good upper bound on deg,(s) for all
s — and therefore also we obtain an upper bound for A(Gy).

Let us introduce auxiliary events By(s) = J._; Ai(7) = [deg,, (1) < Xy, for all
T < s < ty] where A;(s) is, as before, the event that deg, (s) < X;, for a fixed s < t;.

LEMMA 3.9. Let s € (t1,t141] for somel =0,1,...,k—1. Then, for any constants
e>0and A>0

Pr[deg,(s) > (1 +¢&)(pXt,,, +7) [Bi(t) ABiyi(s — 1)] = O(t™4).

Proof. First, we notice the fact that max{deg,  (7):1 <7 <s—1} < X, ,
guarantees that max{deg,(7): 1 <7 <s—1} < Xy,,,. Therefore, deg,(s) is stochas-
tically dominated by A, ~ Bin(Xy,,,,p) + Bin(s —1, ;75) and we directly obtain the
result using the Chernoff bound with E[A,] = pX;,, + 7

Pr [deg,(s) = (1+ &) (pXer,, +7) [Bu(ts) A Biya(s — 1)]

2
€ _
< exp(5+ 2(pth+1 +T)) <t 4,

asymptotically for any constants €, A > 0 since X;,,, > In'*7¢. d

Note that the result implies that with high probability at most slightly more than
a p fraction of the maximum degree is already present at time s. Therefore, we are
interested in bounding the remaining part of the degree, i.e. deg,, (s) — deg,(s), by
something smaller than the remaining fraction of the maximum degree.

LEMMA 3.10. Let s € (¢;,t141] for somel =0,1,... k—1. Then, for any constant
a>0and A>0

Pr [degtl+1 () — deg,(s) > aXy,, |Bi(t) A Biyi(s — 1)} = O(t™4).

Proof. We use Lemma 3.5 with d = aXy,,, to obtain asymptotically as t — oo
that for any A > 0 it holds that

Pr [deg,,,, (s) = deg,(s) = aXi,., Bi(t) ABria(s = 1)]

=Pr [degml(s) —deg,(s) > aXtHl} < Pr[deg, ., (s) — deg,(s) > aXy,,, |

exp(l) ! wlp(l + 204)th+1
OthLJrl -8

< exp (aXtHl In

exp(l) - (1+2a)-3(A+1) N Int
a(l+a) +1 52(Xt1+7"/p)>)

25Int - In? ¢
< ex OéX @ 1 + h’l —_—
- p( s ( M) max{In' ™7 ¢, tf}))

25In°t
aln' Pt (@(1) +In M)) <exp(—Alnt) <t~ 4
1

<exp|aXy,, (

as needed. 0

To proceed we need the following two lemmas.
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138 LEMMA 3.11. Let s € (t;,t141] for somel =0,1,...,k — 1. Then asymptotically
439 ast — o0, for any constant A > 0 it holds that

440 Pr [deg,,, (5) = i, [Bi(t) A By (s = 1)] = O(t).

442 Proof. We combine Lemma 3.9 with ¢ = 14;: and Lemma 3.10 with o = 1_Tp to
443 obtain

i Pr [degtlﬂ(s) > Xy, [Bi(t) A Bria(s — 1)}

11—

445 <Pr [degs(s) > (1 + 4;)> (X4, + 1) ’Bl(tl) ABiii(s— 1)}

1-— _
446 +Pr [degtHl(s) — deg,(s) > TpXturl Bi(t) A Bjy1(s — 1)] =0t ™). O
447
448 LEMMA 3.12. Let s € (t,t141] for some l =0,1,...,k — 1. Then asymptotically
449 as t — oo, for any constant A > 0 it holds that
459 Pr =By (ti1)|Bi(t)] = O ).
452 Proof. Let [ be the first value for which the lemma does not hold. Then, from
453  Lemma 3.11 we get that for any constant A > 0 it holds that

tip1—1
454 Pr B4 (tiy)|Bi(t) A Biga ()] = Y Pr[-Biya(s + 1)[Bi(t) A Biya(s)]
s=t;
tiy1—1

155 = Z Pr[—=A;1(s 4+ 1)|Bi(t) A Biy1(s)] = O(tiA).
456 s=t;
457 From Theorem 3.8 we know that Pr[By(tg)] = 1 — O(t~*). Recall that by our

158 assumption Pr[-B;y1(ti41)|Bi(t;)] =1—0(t=4) foralli = 0,1,...,1— 1, so it follows
159 that Pr[B;(t;)] = 1 — O(t=4) for all i = 0,1,...,l. We use this fact, combined with
460 the observation that B;(t;) C A;(s) and Theorem 3.8 to get

t
461 Pr [ﬁBl+1(tl)|Bl(tl)} < Z Pr[ﬁAl+1(S)|Bl(tl)]
s=1
t
~ Pr[=Ai41(s) A Bi(ty)] r[~ A1 (s) A A(s)]
5 <
o =2 PiBi(n)] z; Pr Bl ()]
t ty _
~ Pr[- A (s)[Ai(s)] o) A
463 < =0(t .
b ST P SRR
465 Finally, for any events E1, Eo, E3 we have
466 PI‘[_\E1|E2] = PI‘[_\El A E3|E2] + PI‘[_\El A _|E3‘E2]
468 < PY[ﬁE1|E3 AN EQ] + PI‘[ﬁE3|E2].

169  We substitute By = Bj11(ti+1), E2 = Bi(t;) and E3 = By11(¢;) to obtain the final
470 result. O
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Finally, we present the main result of this section.

THEOREM 3.13. For G ~ DD(t,p,r) with 0 < p < 1 and any constants a, A > 0
it holds asymptotically that

Pr [A(Gt) > (1+a)tPIn? 7 t| = 0t=4).

Proof. From Lemma 3.4 we know that X, < (14 a)t?In®>"? * ¢ holds asymptoti-
cally. It follows that in this case

Pr[A(G,) > (1 + a)t? n2 7’ t] < Pr[A(G)) > X, ] < Pr[-By(ty)]

k—1
< D Pr[oBia(tiea)|Bi(th)] + Pr[=Bo(to)] -

N
Il
<

Now, from Theorem 3.8 and Lemma 3.12 we know that both Pr[—By(tg)] =
O(t=4) and Pr[-By1()|Bi(t;)] = O(t=4) for any A > 0, respectively. Putting
this all together with the fact that asymptotically as ¢ — oo it holds that k < ¢ we
obtain the final result. d

3.3. Lower bound. Here we proceed analogously to the case of the upper bound
for early vertices. We provide an appropriate Chernoff-type bound for the degree of
a given vertex with respect to some deterministic sequence. Then we again use a
special sequence, which has the desired rate of growth and serves as a lower bound
on deg,(s). Note that we don’t need to extend our analysis for the late vertices since
a lower bound for the degree of any vertex s at time ¢ is also a lower bound for the
minimum degree of G;.

Now, we note that if we start the whole process from a non-empty graph, then
there exists s € [1,to] such that deg; (s) > 1. Moreover, even if the starting graph
is empty, but r > 0, then with high probability there exists a vertex with positive
degree, as the probability of adding another isolated vertex to an empty graph on ¢
vertices is at most (1 — £)* < exp(—r), so within first 2 Int vertices for any 4 > 0 we
have a non-isolated vertex with probability at least 1 —O(t~4). Of course, if we start
from an empty graph and r = 0, then for any p there is no edge in the duplication
process. However, in this case it trivially follows that A(G;) = 0, so we omit this case
in further analysis.

That said, let us now proceed with the aforementioned Chernoff-type lower bound
for the degree of a given early vertex:

LEMMA 3.14. Let 1 < s <7 <t such that T > ¢ = In'*tPt. Then for any A >0
it is true that

24(1 — )

52 = O(t_A)7

Prideg, (s) —deg,(s) < Int [deg. (s) > X,

. _ ¢ p(l-p) _ 2AT In
with e =0 = B2 and h = 51250 X+

Proof. Let us recall (as in the proof of Lemma 3.5) that for ¢ = 0,1,...,h—1 we

deg, i (s)+
have deg, ., ,(s) = deg,;(s)+Ir4; where I ; ~ Be(qry;) for gy = % -
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%52(8). Also clearly deg, ,;(s) > deg.(s) for any i = 0,1,...,h, so we have
pdeg, ;(s) (1 p(Tﬂ)) +r pdegT(s) (1 - —) +r
i = T4+ - T+h
X, (1—¢%) + X,
X ( )+ >(1- g)u,
T(1+¢) T
since for € = 8(11n f ) it holds that h < et and €2 > pLT. Therefore for any ¢ =

0,1,...,h—1 we know that I, stochastically dominates I}, , ~ Be ((1 - s)prﬂ .

As in the proof of the upper bound, the new variables are both Bernoulli and
independent. So this time we can use the right tail Chernoff bound for binomial
setting from [10] (see Corollary 21.7) which states that for any § € (0,1)

h—1 h—1 52 [h=t
Pr ;I:Jm‘ <(1- ;I:H]} < exp <_2E ;I:Jri])

and therefore

Pr [degT+h(s) <deg (s) + (1 6)(1—¢) "(Z’X;m} <exp (_ hd?(1— &) (pX- + r))

2T

as clearly Pr[deg,,,(s) —deg,(s) < k] = Pr {ZZ o Iri < k} <Pr [Zh ! I, < k}
for any k, due to the stochastic dominance.

To finish the proof it is sufficient to see that h = % gives the required

O(t=*) bound in the last equation. |

In the following, we again use sequences (¢;)¥_; and (X;,)¥_; from Definition 3.2.
Let us also define C;(s) = [deg, (s) > X, — ¢ + 1] for a fixed s < t;. Now we are in
the position to proceed with the main theorem of this section:

THEOREM 3.15. For Gy ~ DD(t,p,r) with 0 < p < 1 there exists s such that it
holds asymptotically that
Pr[deg,(s) < (1 — a)t?] = O(t™4)

for any constants a, A > 0.

1— 2(A+1)t; Int .
Proof. Let us use ¢ = In'™P¢t, g; = p — pAl(lntI:) and w; = 52(1(%1)1)(:-4%) with

Suppose that Ci(s) holds. Then we can apply Lemma 3.14 with 7 = ¢; and h = w;:

Pr{Ci1(5)[Ci(s)] = Prldes,, () < Xi,., | degy, () > X, — 6+ 1]
< Pr[degtiJrl (S) - degti (S) < Xti+1 - th‘ | degti(s) > Xti - ¢ + 1]

—Pr [degtm(s) ~ deg, (s) < g Ui

2(A + 1)(1 - 0)
52

t;

()>Xti—¢+1]

< Pr|deg,,,, (s) —deg,(s) < Int |deg, (s) > X;, —¢p+1

=0,
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545 where we used the fact that asymptotically as ¢ — oo it holds that
1—
546 BiXs, <P i =1
547 (1=80)A—e)(pXe, +7) ~ p(1 =6 —¢)
548 Next, we get
549 Pr[deg,(s) < X¢, — ¢ + 1] < Pr[deg,, (s) < th — ¢+ 1] = Pr[Cx(s)]
k-1
550 < Z Pr[—Ci+1(5)|Ci(s)] + Pr[—Co(s Z ot~ 4=hH =014,
551 i=0

N

since asymptotically it is true that w; > 1 for all ¢ = 0, ..., k, and therefore k < ¢.
To complete the proof it is sufficient to note that ¢ <t < (1+ a)tr—1 < (1 +a)t
for any constant « > 0 and thus X;, < (14 a)t?. 0

ot Ut Ut
(G2 B B
w

=

555 4. Average degree. Now let us proceed to the results on the average degree of
556 G defined as

1
557 =7 Z deg,(s)
558 s=1
559 First, we recall from [30, Theorem 9(iii)] that for any 7 = tg,...,¢t — 1 it holds
5

60 asymptotically (i.e. when tg — oo) that

I(to)T (to+1 _ .
D(Gro)rfigstenttrren ™ (L + o(1) ifp < r=0,
(14 o(1)) ip=0, T>O
T(l_p)_ﬁ) 1+o(1 if 0 < 1
a D < ,r >0,
561 Eldeg. (1)) = (p(1 2w ) ( (1))
rlog7 (14 o(1)) ifp=1 T>0
2rt to+1,to+1,1 |
D(Gto) m 3F2 I:t0+g3+l 20+C4+1 3 1])
D (to)T (to+1 . )
562 %T% 1+ 0(1)) ifp> 3

563  where D(GYy,) is the average degree of the initial graph Gy, and

o

a1,a2,a3 al (12 CL?))l Z
564 3Fy
[ bi,ba 3% ; : bl b2 m

565 is the generalized hypergeometric function with (a); = a(a+1)...(a+1—1), (a)g =1
566 the rising factorial (see [1] for details).

567 In short, if we omit constant factors, there are three regimes of growth: constant,
565 Int, and t2?~!. We need to find the proper high probability bound for each case
569 separately, however it turns out that the proofs are very similar.

570 4.1. Upper bound. Now we may proceed to the main result of this section:
571 the upper bound for the average degree of G;. It turns out that there are exactly two
572 regimes with somewhat different behavior:

573 THEOREM 4.1. Asymptotically for Gy ~ DD(t, p,r) it holds that

1
574 Pr[D(G;) > AC Int] = O(t~4) forp < 3
573 Pe[D(Gy) > €271 = O ) forp> 5.

577 for some fixed constant C' > 0 and any A > 0.
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Proof. For simplicity, we will work with the total number of edges 7D(G,) instead
of D(G,). Clearly, for any 7 = tg,...,¢t — 1 it holds that

(1 +1)D(Gr41) — 7D(G7) = 2deg, 1 (T + 1),
deg, (7 + 1) ~ Bin(deg, (parent(r + 1)), p) + Bin(r — deg, (parent(r 4 1)), /7).

Therefore, we can use Chernoff bound to obtain for any § > 0

Pr [(7+ 1)D(Gri1) — 7D(Gy) = 2 (1+8) Efdeg, (7 + 1]
262
< oxp~ s Blde, (1))

Now, for p > 1 we know that E[deg, ()] < C*7%~! for some constant C* > 0.

Thus, it is sufficient to set to = t?/3 and § = 4/ % =o(1) for all T = tg,...,t—1
to get

Pr (7 + 1)D(Gr41) — TD(G;) > 2(1 4 6)C* 7_2p7]:| —Oo(tAY,

and by summing over all 7 that no event from polynomial tails happens we obtain

t—1
tD(Gy) — toD(Gy,) > Y 2(1 +6)C* 7217-1] = O(t™4),

i=tg

Pr [tD(G,) > Ct*"] < Pr

for any constant C' > ¢=2P Zf;tlo 2(14-6)C* 7%~1 +t72Pt,D(Gy,) — and such constant
indeed exists since it is not hard to verify that the latter sum is finite.
Inall cases 0 < p < % it turns out that 4/ % — oo. However, for 0 < p < %,

r > 0 we have E[deg, (7)] < C*In7 for some constant C* > 0, and we can assume
0 — oo such that

1+6 52 (A+1)Int

2 T 246  2C*InT

so therefore

Pr[(t +1)D(Gr11) — 7D(G;) > 2(A+ 1) Int] = Ot~ 471,
Pr[tD(Gy) > ACtnt] < Pr|tD(Gy) — toD(Gy,) > | 2(A+ 1) Ini| = O(t*A),

%

to

for some constant C' > 2 4+ 22— D(Gy,) when to = t1/3,
Finally, let us study the case 0 < p < 1, 7 = 0. Again we know that E[deg, ()] <

C*72P~! for some constant C* > 0. Again, we can assume

146 _ 2  (A+1)Int
2 T 2445 20717
so by a similar reasoning as before we get

Pr{(r + 1)D(Gy41) — 7D(G)
Pr[tD(Gy) > ACtInt] < Pr|tD(Gy) — toD(Gy,) > t 20A+1)Int| =0,

to

2(A+1)Int] = O(t=471),

[
Y

3

for sufficiently large constant C' when to = ¢'/3. O
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4.2. Lower bound. We now turn our attention to establishing the correspond-

ing lower bound. Note that since E[D(G;)] = O(logt) for p < 1, the lower polynomial

tail is trivial in this range since all smaller values are within the polylogarithmic dis-
tance from the mean. However, we can investigate the case p > %

THEOREM 4.2. For Gy ~ DD(t,p,r) with p > % asymptotically it holds that
Pr[D(G,) < Ct**~ '] = 0@t ).

for some fixed constant C' > 0 and any A > 0.
Proof. Similarly as before, we invoke the appropriate Chernoff bound for § € (0, 1)

Pr (7 +1)D(Gr41) — TD(G;) < 2(1 — 6)E[deg, (7 + 1)]]
< exp(—6°E[deg, 1 (7 + 1)]).

For p > 1 it is true that E[deg, (7)] > C*7%~! for some constant C* > 0. Thus,
it is sufficient to set to = t#/3 and § = \/ % < % for all 7 =tg,...,t —1 to get

Pr[(7 + 1)D(Gr41) — TD(G;) < 2(1 = 8) C* P~ = O(¢ =471,
which leads us to

Pr [tD(Gy) — tyD(Gh,) < C't7]

< Pr

t—1
tD(Gy) — toD(Gy,) < Z 2(1 —6)C* 721’—11 =0@t™).

i=to

for any constant 0 < C' < ¢t=2P Zf;tlo 2(1 — 8)C* r2P=1 + t=2P¢,D(GYy,) — and such
constant indeed exists since it is not hard to verify that the latter sum is non-zero
and finite when t, = t/3. O

5. Further challenges. In this paper we focus on deriving large deviations
for the average and the maximum degree in the duplication-divergence networks.
By a simple martingale argument one can show that A(G;)/t? converges to some
random variable A. However, it is still worth asking whether A has finite support
(e.g. dependent only on p and 7, but not on ¢).

A natural next challenge would be to obtain the exact asymptotic formula for the
whole degree distribution. For example, there is an open question whether DD(¢, p, )
graphs are scale-free, i.e. they have ©(k~7) fraction of vertices with degree k. A first
step towards this goal was already done for » = 0 in [18, 16], where it was proved that
this property indeed holds for the (only) giant component p < e~!. However, it was
noticed in [14] that for » = 0 and all 0 < p < 1 such phenomenon does not appear in
the whole graph, since almost all vertices are isolated, thus for any k > 0 the fraction
of vertices of degree k tends to 0 as ¢t — oo.

Finally, finding good bounds on the concentration of both D(G;) and A(G;) is
only the step towards the full understanding of this model, as we still do not know
for example how symmetric such networks are. This, in turn, we believe could help
find good compression algorithms for these types of networks, as was the case with
other graph models [3, 23].
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