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Summary

A modified Sammon algorithm was developed to display a relationship

between proteins based on their amino acid composition. In the first stage of the

method, a 19-dimensional compositional space of representative proteins was

mapped into a 2-dimensional space (2-D) using the original Sammon projection

creating a contour map. In the second stage, this contour map was used as a

reference for new proteins projected into 2-D. Data analysis showed that proteins

belonging to the same structural classes formed characteristic and distinct clusters,

which could be potentially useful in the prediction of protein structural classes.

However, we observed significant overlapping of the clusters which may explain the

limited success of previous protein folding prediction based solely on amino acid

composition. Regardless, the modified Sammon projections can generate a unique

index for each individually projected protein related to its amino acid composition,

which may be a useful tool in the exploratory classification of proteins.

Keywords: nonlinear Sammon projection, amino acid composition, protein structural

classes, indexing of proteins.
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Introduction

The classification of proteins and the prediction of their structural classes are

important tasks in the characterization of newly discovered proteins. Unfortunately, the

classification of proteins is limited only to a subset of proteins with enzymatic activities.

Even for those, no general indexing has been widely accepted. Also, the prediction of

protein folding classes based on primary sequence information remains a difficult task (1-

9).

The comparison of more than two protein sequences is generally not a

straightforward process. Aligning them and measuring similarity/dissimilarity distances

requires complicated computing in multidimensional space equal to the length of the

protein sequences. The comparison of proteins of different lengths creates an additional

requirement of bringing them to the same multidimensional space which necessitates the

introduction of complicated sequence gaps. It is far simpler to compare the amino acid

composition (AAC) of proteins. In this case all proteins can be compared in the same 19-

D compositional space. An individual protein can be described as a point or a vector in

compositional space determined by the molar fractions of the 20 amino acids (10). By

definition, the sum of the molar fractions of all components is equal to 1, therefore only

19 components are independent. By leaving out one component, the protein can still be

unambiguously determined in 19-D space. Even in this reduced space, comparison of

protein vectors is not easy, primarily due to the inabilty of humans to adequately visualize

objects in spaces with greater than 3 dimensions. Several attempts have been made to use

AAC information to predict protein folding classes (7,10-23). In most cases the

compositional information has been brought into a linear format with the introduction of
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various weighting factors and averaging methods. These procedures resulted in a

significant reduction of information which limited its predictive potential.

 In this work we are attempting to use Sammon mapping to project a 19-D

compositional space of proteins into a 2-D space to observe the relationship between

proteins within that newly created space. The algorithm works by projecting protein

vectors from the compositional space onto a planar display such that the Euclidean

distances between the projected images (points) approximates, as closely as possible, the

corresponding distance in the original compositional space (24-26). Neither averaging nor

introduction of correction/weighting factors is necessary in this method. The ability of

this algorithm to capture the essential features of protein sequence or structure similarities

was recently demonstrated by Agrafiotis (25) and Barlow & Richards (26).

RESULTS

Helix example of Sammon nonlinear projection

To explain the Sammon nonlinear projection algorithm, we start with a non-

biological example to show how the algorithm preserves certain dependencies/shapes

(e.g. helices) when projected from 3-D to 2-D space. Figure 1 displays the results

obtained using the nonlinear Sammon algorithm to project 50 points distributed evenly

along a 3-dimensional helix. The parametric equations for this helix are: X = cos Z, Y =

sin Z, Z = t / 21/2 . The points were distributed at one-unit intervals along the curve. To

initiate the algorithm we selected 50 corresponding random points in 2-D space (Fig. 1A).

Each point was assigned to represent one of the 50 points on the helix (3-D space). The

application of the Sammon algorithm caused the 2-D points to organize in such a fashion
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that the Euclidean distances between all pairs of points in 2-D space closely reflect their

Euclidean distances on the helix in 3-D space. After 250 iterations for each point, using

the steepest descent algorithm described in the methods section (MF =0.3), the projected

points formed a highly organized wave shape (Fig. 1B), as described by Sammon (24).

Figure 1C displays the results of an experiment in which one random point was excluded

from the helix. The remaining 49 points were projected creating a gap in the projected

wave shape. In the third experiment, the missing point was reintroduced. All 50 points

were then projected but this time the X, Y coordinates of 49 points were fixed as in

Figure 1C. That is, only the 50th point was optimized, greatly simplifying the calculations.

After only 50 iterations, the missing point fall back into the gap and completed the wave

shape. The orientation of the waves in panel C and D (Figure 1) are different from that in

panel B because the optimizations started from different randomly distributed points in 2-

D space, resulting in different projections.

These experiments demonstrate that a set of vectors in 3-dimensional space can be

projected into 2 dimensional space, recreating the dependencies from a higher dimension

even if one element of the set is missing. The missing element can then be added back to

the pre-computed set to complete the structure without the need to re-optimize the entire

set de novo. This approach represents a significant advantage over traditional approaches

because a full re-optimization “costs” n2 versus n computations for one point

optimization into the constant contour map. (We can now extrapolate this idea to

compsitional space of proteins.)

The Sammon projection of proteins belonging to definite structure classes.
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The AAC of 64 proteins classified by Chou (13) to specific structural classes were

used to calculate the mole fractions of all 20 amino acids. Each protein was described as a

unique vector in compositional space with coordinate factors in the range of 0 to 1 which

corresponds to the molar fraction for each particular amino acid. We numbered the 64

proteins as 1,2,3… ,64 according to the order listed in table 5-8 of Chou (13) or tables 2-5

of Zhang and Chou (14). All 64 protein vectors in the 19-D composition space were then

projected into a 2-D space using the Sammon nonlinear algorithm. The error of the

Sammon projection (Material and Methods section, eq. 1) plotted against the number of

iterations using the steepest descent optimization (MF = 0.3) is shown in Figure 2. A

significant degree of optimization of this projection was seen after about 75 iterations, but

occasionally a burst of error was generated during later iterations. Typically, the results

were analyzed following 250 iterations, well after the errors were resolved. Several

projections of Chou’s proteins have been made starting from different random

distributions of points. In all cases the results were similar, differing primarily in the axial

orientation of the projection and slightly in the resulting error. The best projection,

obtained in these experiments based on the smallest Sammon’s error (0.0746) is

presented in Figure 3. The four different symbols correspond to four different structural

classes: open squares (1-19) - 19 α proteins; open circles (20-34) - 15 β proteins; filled

squares (35-48) - 14 α+ β proteins; filled circles (49-64) - 16 α/β proteins. It is apparent

that the structural classes formed recognizable groupings. However, a few points are clear

outliers and are located outside the expected clusteres. In general, points which were

”misplaced” correspond to the proteins which were also mis-assigned by the Zhang and

Chou prediction algorithm (14). For example, point 32 (outside of any cluster)
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corresponds to Rubredoxin which was clasified as β protein. Its unusual position can be

explained by its low level of β structure (25%), lower then any other protein found in that

set. The Zhang and Chou algorithm predicts α/β structural class for Rubredoxin. Point

38, which represents a High-potential Iron Protein from the α+β class, falls into the

cluster of α proteins in our projection. In this case only 27 % of the total protein has a

defined structure. Zhang and Chou placed this protein in the α structural class. Similar

arguments could be made for other outlying points: 23, 33, 46 and 62. This may suggest

that the presence of irregular protein structure can significantly influence the AAC and

may result in inaccurate class assignment/prediction.

The relationship within each set of proteins was analyzed by complete-linkage

cluster analysis. Cluster analysis can provide an objective automated way to group objects

into clusters in multidimensional spaces. The correlation coefficient of each cluster

corresponds to the maximum distance in which two objects are still considered to have

similar properties. We defined the correlation coefficient as the median 2-D Euclidean

distance for the set after excluding outliers (points: 23, 32, 33, 38, 46 and 62). The results

of the cluster analysis are presented as outlines surrounding each set in Figure 3.

In the process of data analysis we realized that the set of 64 Chou’s proteins could

be too small to make a generalization about all proteins. Therefore, we examined another

set of 193 proteins which has been used by Chou (19) in his latest predictions of

structural classes utilizing Mahalanobis distances. This includes 129 proteins from a

learning set and 64 proteins from a testing set. Proteins in both sets were selected using

more precise constraints of classification (19). Compositional space of all 193 proteins

was then projected into 2-D space using the nominal Sammon nonlinear algorithm. The
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projection was terminated after 500 iterations (MF=0.3), and the result is shown in Figure

4. We used the same symbols as in Figure 3 to designate folding classes: open squares -

39 α proteins; open circles - 52 β proteins; filled squares - 54 α+ β proteins; filled circles -

39 α/β proteins; crosses - 9 ζ  (irregular) proteins. This result was not significantly

different from the previously described projection of 64 proteins. As seen previously, the

different structural classes formed distinct clusters in 2-D space. The α and β clusters

were well separated. The α/β and α+ β proteins formed smooth transitions between the α

and β clusters resulting in partial overlapping of structural clusters. Irregular proteins

were projected outside of the β class. As before, several points were clear outliers and

were not located within their expected clusters.

Very similar results were obtained for a different set of 202 proteins. These

proteins were arbitrarily selected from SCOP data base available on the World Wide Web

(http://www/pdb.bnl.gov.scop) (27). Agin, the four structural classes formed distinct but

overlapping clusters in 2-D space (data not shown).

These results support the early hypothesis that the folding of proteins is

determined by their AAC (7,10-17,19,21). However, we observed a significant degree of

overlapping between clusters (especially for β and α+ β ) which may explain the

inaccuracy of previous protein folding prediction based solely on AAC. The irregular

portions found in all proteins, may contribute significantly to the overall ambiguity.

The Sammon projection using modified distances or a reduced alphabet of amino

acids.
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In hope of improving clustering of structural classes, we explored several different

ways of defining distance between proteins in compositional space. We examine

Minkowski’s  lr distance ( )D P Qpq i i
i
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 for r ranging from 0.5 to 64 (see Material

and Methods). Actually, Euclidean distance used in all the other experiments is a special

case of Minkowski’s definition with r=2. Figure 5A and 5B show the examples of the

Sammon projection for r equal to 1 and 16 respectively. No significant differences were

found in the distribution or separation of structural classes. In fact, with increased value

of r the projected map resulted in grater overlapping of structural clusters. These data

indicate that the application of Minkowski’s general distance definitions does not offer

any advantage over the intuitive Euclidean distance definition.

Additionally, we examined the modification of Euclidean distance by using

weighting factors introduced by Chun-Ting et al. (17). In this particular case the

calculation of Euclidean distance was modified as follows:
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i

* = −
=
∑ 2

1

20

The distances in compositional space were calculated as the product of wi, the weighting

factor and the Euclidean distance for each amino acid. Chun-Ting et al. (17) performed

predictions of the structural class of proteins from AAC based on a linear-programming

approach using these weighting factors. We sought to determine whether weighting

factors would affect nonlinear projections. The results (Fig. 5C) indicated that these
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weighting factors did not improve clustering of the proteins belonging to the same

structural class.

Landes and Risler reported the successful use of a reduced amino acid alphabet in

searching protein data bases (18). They reduced the 20 amino acids alphabet to 10

symbols: (A=T=S), C, (D=E=N), (F=Y), G, H, (I=L=M=V),(K=Q=R), P, W. We were

interested to see if the reduction of the original compositional space into a 9-dimensional

space would affect the clustering of the projected proteins. The application of the reduced

alphabet into the Sammon projection of 193 proteins resulted in an irregular distribution

of points (Fig. 5D). Clusters were still evident, but were not as clearly separated as in the

case of the nominal projection from 19-D compositional space (Fig. 4).

Projection of proteins with unusual amino acid composition.

We investigated whetrer Sammon’s projection could be used to predict the folding

class of “unknown” proteins. Several hundred random proteins from the Pir1 protein data

base were projected individually into the developed map shown in Figure 4. In this

modified projection method, the coordinates of the 193 representative proteins which

formed the contour map were held constant while the coordinates of new proteins were

optimized by the Sammon algorithm. Each newly projected protein was treated as the

194th element. Several projected proteins were found outside the area occupied by the

four clusters of the representative set. Most of these proteins appeared to be small and/or

showed unusual amino acid composition. Several of these proteins were described as

unusual by Cornish-Bowden in his work on dependencies between the size and AAC of

proteins (28). Additionally, we observed that if each individual protein was projected
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several times, the results of the optimizations were significantly different. We believe that

this was due to a lack of reference points outside the area occupied by the set of 193

representative proteins. To overcome that ambiguity, a subset of 27 extra proteins with

unusual AAC were selected from the Pir1 protein data base and added to the

representative set. These proteins or peptides were arbitrarily selected if their length

exceeded 10 amino acids and their X, Y indices fell outside the original clusters. Adding

unusual proteins expanded the representative set from 193 to 220. The expanded set was

then projected using the original Sammon algorithm, forming a new expanded contour

map (Fig. 6). More than 2000 proteins of randomly selected from Pir1 was then projected

into the new extended contour map using the modified Sammon mapping procedure. This

time we observed significantly less variability from multiple projections of the same

proteins. Each protein gave a distinct point in the 2-D map. Thus, it appeared that each

newly projected protein could be characterized by unique X,Y coordinates on a 2-D map,

reflecting its unique amino acid composition. This method could offer a new way to

classify proteins based solely on AAC.

Projection of amino acid composition of hemoglobins into the extended contour

map.

The amino acid composition of porcine hemoglobin alpha chain was projected

into the extended contour map as an additional 221th protein. As previously described, the

X,Y coordinates of the 220 proteins from the extended contour map were held as fixed

points. The projected porcine hemoglobin fell into the cluster of the α proteins, close to

the other hemoglobins used in the representative set. The observed index for the α chain
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of the porcine hemoglobin was 0.390 ;0.630 which is very close to the other hemoglobins

used in the representative set. This operation of the projection of the 221th protein was

repeated for the beta chain of porcine hemoglobin and 320 other different alpha and beta

globins with similar results. All of the projected α and β chains formed a distinct well

defined group inside the cluster of α proteins as expected for hemoglobins (Fig. 7).

Similarly, 47 protein-tyrosine kinases and 14 serine proteinases were projected into the

extended contour map. These also formed distinct groups inside the α/β and β classes

respectively, as would be predicted for those protein families (Fig. 7).

Additionally, a subset of 60 proteins used by Nakashima et al. (10) for their

folding class predictions were projected into the extended contour map (data not shown).

Interestingly, almost all these proteins fell into the clusters to which they had been

previously classified. Together, our results indicate that the Sammon nonlinear projection

can be used to predict the structural classes of unknown proteins, although some

ambiguity in the assignment remains due to the overlapping of structural class clusters.

Conclusion

The nonlinear Sammon mapping algorithm may be a useful tool to examine the

complicated multidimensional systems in protein science. When applied to project 19-D

compositional space of proteins, it can provide a new way of mapping and indexing. We

have demonstrated that proteins with similar functionality can be mapped to the same

region in 2-D space. This method may have application in the prediction of folding

classes and potentially functional properties of newly sequenced proteins based on

compositional indices.



12

Our results suggest that the prediction of protein folding based on amino acid

composition may never overcome certain limitations, such as overlapping clusters.

Although, different structural classes of proteins form distinct clusters when projected

into 2-D space, these clusters have a tendency to overlap. This overlapping of clusters

may result in the ambiguous assignment of structural classes of unknown proteins,

especially proteins sharing significant contributions of irregular fold. The validity of this

approach depends very strongly on whether the examined set of proteins has a broad

enough distribution of AAC. Therefore, it is possible that further expansion of the

representative/learning set with detailed verification of the protein folds may limit

overlapping and improve prediction accuracy.

We would like to point out the computational advantage of the contour map. The

original Sammon algorithm (24), and its application to the protein classification as

proposed by Agrafiotis (25), required N2 computations per iteration of the steepest decent

algorithm (as discussed in the Method section), where N is the number of projected

proteins. In our modified method, representative proteins have been projected onto a

precomputed contour map (in our experiments N=220), and new proteins were added by

comparing them only individually to these N points. Therefore, the projection of

compositional space for a new protein costs only ‘N’ computations per iteration. This

difference translates to a significant saving in computation time especially for large sets

of proteins.

Material and Methods
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Calculation of distances between proteins in the composition space.

In the first experiment presented in Figure 1 we used the standard Euclidean

distance between two points in 3-D space. The distance between two proteins (level of

dissimilarity) was computed based on the amino acid composition, according to the

Minkowski lr distance (21) in equation 1:

( )D P Qpq i i
i

r r
* = −


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


=
∑

1

20
1

            (1),

where Pi , Qi are the mole fraction of the ith kind of amino acid in the proteins P and Q,

respectively. Each protein corresponds to a point with coordinates given by the mole

fraction of the 20 constituent amino acids. Except where noted, the Minkowski distance

was simplified to Euclidean distance with r=2 .

The Sammon projection

The projection of 19-D compositional space onto the 2-D Euclidean space was

obtained according to the original Sammon nonlinear projection algorithm (24-26). This

algorithm attempts to approximate in the best possible way (i.e., in the square error sense)

a relationship between points in a multidimensional space when projected into 2-D

spaces. A detail description of the algorithm has been presented by Sammon (24), so we

only illustrate its meaning using a simple example. As shown below, the distance

relationship in a higher dimension cannot be fully preserved in a lower dimensional

space. For example, imagine three points A, B and C in 3-D space with given distances

between them, defined as D*
AB, D*

AC and D*
BC. These distances cannot be preserved in

the projected 2-D space (DAB, DAC and DBC). The best you can do is to preserve the
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distance between points A and B and minimize the error (EAC and EBC) when locating

point C.

A B

C’

EAC

EBC

DBC

DAB

DAB
*

C
C

DAC

DBC*DAC
*

In general, the goal of Sammon’s algorithm is to minimize the discrepancy in “distance”

which was defined as the error of the projection:

( ) ( )
E x y

c

D D x y

D
ij ij

ij

b

i j

n

,
( , )*

*=
−

<
∑1

(2)

where Dij
*  is a distance in original space (19-D compositional space) computed according

to equation 1,  ( ) ( ) ( )D x y x x y yij i j i j, = − + −
2 2

 is the Euclidean distance in 2-D

space,  b is a parameter, c is constant and n is the number of proteins in the representative

set. It should be pointed out that the parameter b can model a variety of situations (29).
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Throughout the computation, as in Agrafiotis (25), we have assumed that b=2 and

c Dij
i j

n

=
<
∑ * .

To find optimal coordinates of a point (x, y), a numerical optimization procedure

called the steepest descent algorithm was applied. In this method, the optimal solution

was found in several iteration starting from a (random) initial point. In each iteration we

moved towards the gradient of the function E(x,y). In the m th iteration we computed the

m th estimate of E(x,y), written as E x y
m

( , )
( ) . In the next iteration new coordinates of each

point x (m+1), y (m+1) were computed according to the following formula:

for m=1 to number of iterations

for i=1 to n
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( , )
( )

+ = −1
2
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∂
∂

∂
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end

end.

where MF (“magic factor”) is an experimentally determined coefficient. The first and the

second derivative of E(x,y) with respect to x are shown below ( in a similar manner, one

can compute the derivatives with respect to y):
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In the implementation of the steepest descent method we stopped the iteration procedure

after 250 cycles.

In the experiments, when additional protein n+1 was projected into the contour

map the same algorithms were used, except that the iteration procedure was used only to

optimize the distance of the new protein without affecting the distances already optimized

between elements of the learning set. The following modified formula was used:

for m=1 to number of iterations

x x MF

E
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E
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m

n
m

x y
m

x y
m+

+
+= −1

1
1 2

2

( ) ( )

( , )
( )

( , )
( )

∂
∂

∂
∂

 

y y MF

E
y

E
y

n
m

n
m

x y
m

x y
m+

+
+= −1

1
1 2

2

( ) ( )

( , )
( )

( , )
( )

∂
∂

∂
∂

end.

In addition the summation of error E(x,y) (eq. 1) is over the single index i ( this is only in

terms of the sum).

Computer programs and data files.
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The source code of the computer programs were written in Borland Turbo Pascal®

version 7. Executable Windows® versions of programs (Helix.exe and SammProj.exe)

used in this paper and corresponding contour maps, lists of proteins and their indices are

available at http://www.cs.purdue.edu/people/spa/.
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A B

C D

Figure 1. Sammon projection of a helix: A-starting random distribution of 50 points, B-optimized
projection (map) of 50 points after 250 iterations, C-contour map of 49 points (1 selected point is missing
from the map of 50 points) after 250 iterations, D-projection of the missing 50th point into the contour map
after 50 further iterations.
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Figure 2. Error of Sammon projection (MF=0.3) plotted against number of
iteration for sets of 64 (solid line) and 202 (dashed line) projected proteins.
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α β α/β α+ β

Figure 3. 2-D contour map of compositional space of Chou’s 64 proteins (13)
belonging to four different folding classes. Open squares - 19α proteins; open circles
- 15 β proteins; filled squares - 14 a+β proteins; filed circles - 16 α/β proteins.
Outlines were drawn based on cluster analysis for each structural class. Optimization
was terminated after 250 iterations (MF=0.3). The error of the projection was 0.0746.
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α β α/β α+ β ζ  irreg.

Figure 4. 2-D contour map of compositional space of Chou’s 193 proteins (19) belonging
to different folding classes: open squares - 39 α proteins; open circles - 52 β proteins;
filled squares - 54 α+ β proteins; filed circles - 39 α/β proteins; crosses - 9 ζ  (irregular)
proteins. Optimization was terminated after 500 iterations (MF=0.3). The error of the
projection was 0.151.
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A B

C D

Figure 5. Sammon projection of Chou’s 193 proteins (19) after 250 iterations using (MF=0.3): A -
Minkowski distance for r=1, B Minkowski distance for r=16, C - Euclidean distance modified by
weighting factors (17), D - a reduced amino acid alphabet (18).
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α β α/β α+ β irreg. unusual

Figure 6. 2-D contour map of 220 proteins. The set of 193 proteins (Fig.3) was appended
with additional 27 proteins with unusual composition (Appendix A). After 500 iteration
(MF=0.3) the error of the Sammon projection was 0.135.
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14 serine prot. (β)

47 protein-tyrosine
kinases (α/β)

322 globins (α)

Figure 7. Projection of: 321diffrent alpha and beta hemoglobin subunits (open
circles), 47 protein-tyrosine kinases (open squares), and 14 serine proteinases (filled
circles) into the 220 proteins contour map. 50 rounds of optimization (MF =0.3) was
performed for each added protein.



27



* To whom correspondence should be addressed: Baxter Hemoglobin Therapeutics Inc., 2545 Central Ave. Boulder, CO 80301

Appendix A.
Amino acid composition of the 27 unusual proteins (unusual amino acid composition). The data for each protein contain two lines: the first line indicates
its length, Pir code and name. The second line gives the frequencies of 20 amino acids according to the alphabetical order of the single amino acid code:
ACDEFGHIKLMNPQRSTVWY.

430 P1;HHBYD8 Heat shock protein DDR48 - Yeast (Saccharomyces cerevisiae)
 0.47  0.00 13.49  0.70  1.16 11.40  0.00  0.70  6.98  0.23  0.70 23.26  0.00  1.63  1.40 26.51  0.47  0.93  0.00 10.00;
109 P1;TNHUA Prothymosin alpha - Human
10.09  0.00 17.43 31.19  0.00  8.26  0.00  0.92  7.34  0.92  0.00  5.50  0.92  1.83  1.83  3.67  5.50  4.59  0.00  
75 P1;TISYD2 proteinase inhibitor (Bowman-Birk) D-II - soybean
 0.00 18.67 14.67  2.67  1.33  1.33  1.33  1.33  5.33  4.00  4.00  2.67  6.67  5.33  6.67 16.00  4.00  0.00  
61 P1;FECF Ferredoxin - Chlorobium sp.
19.67 14.75  3.28 11.48  1.64  8.20  0.00  8.20  0.00  1.64  0.00  1.64  6.56  1.64  0.00  3.28  6.56  
61 P1;PIHUPF Basic proline-rich peptide P-F - Human
 1.64  0.00  0.00  0.00  0.00 22.95  0.00  0.00  8.20  0.00  0.00  3.28 40.98 14.75  1.64  6.56  0.00  
51 P1;HSBOS Sperm histone - Bovine
 1.96 13.73  0.00  0.00  1.96  3.92  1.96  1.96  0.00  1.96  1.96  0.00  0.00  1.96 50.98  3.92  5.88  3.92  0.00  3.92;
48 P1;EWBY8 H+-transporting ATP synthase
 0.00  0.00  0.00  0.00 14.58  2.08  0.00  8.33  2.08 25.00  8.33  2.08  6.25  6.25  4.17  6.25  4.17  
38 P1;C32038 mu-agatoxin III - funnel-weaving spider (Agelenopsis aperta)
 7.89 21.05 10.53  0.00  0.00 10.53  0.00  0.00  0.00  0.00  2.63  0.00  5.26  2.63 10.53 13.16  0.00  2.63  
14 P1;QMVHMM mastoparan M - hornet (Vespa mandarinia)
28.57  0.00  0.00  0.00  0.00  0.00  0.00 14.29 21.43 28.57  0.00  7.14  0.00  0.00  0.00  0.00  0.00  
13 P1;JTJG3 Tremerogen a-13 - Basidiomycete (Tremella mesenterica)
 0.00  7.69  7.69  7.69  0.00 38.46  0.00  0.00  0.00  0.00  0.00  7.69  7.69  0.00  7.69  7.69  0.00  7.69  0.00  
11 P1;XASNBA Bradykinin-potentiating peptide B - Mamushi
 0.00  0.00  0.00  0.00  0.00  9.09  0.00  9.09  9.09  9.09  0.00  0.00 45.45  9.09  9.09  0.00  0.00  
10 P1;AKLQ Adipokinetic hormone - Migratory locust
 0.00  0.00  0.00  0.00 10.00 10.00  0.00  0.00  0.00 10.00  0.00 20.00 10.00 10.00  0.00  0.00 20.00  0.00 10.00  0.00;
10 P1;SPPGNK neuromedin K - pig
 0.00  0.00 20.00  0.00 20.00 10.00 10.00  0.00  0.00 10.00 20.00  0.00  0.00  0.00  0.00  0.00  0.00 10.00  0.00  
259 P1;TPRBTS Troponin T, skeletal muscle - Rabbit
10.04  0.00  5.79 18.15  1.93  3.09  2.32  3.09 15.06  7.34  1.93  1.93  3.47  3.86  9.65  3.47  2.32  4.25  0.77  1.54;
61 P1;SMHU1F Metallothionein 1F - Human
 8.20 32.79  3.28  3.28  0.00  8.20  0.00  0.00 13.11  0.00  1.64  1.64  3.28  1.64  0.00 14.75  3.28  4.92  0.00  
13 P1;UNBO neurotensin - bovine
 0.00  0.00  0.00  7.69  0.00  0.00  0.00  7.69  7.69 15.38  0.00  7.69 15.38  7.69 15.38  0.00  0.00  
14 P1;QMWAVV mastoparan - yellowjacket (Vespula lewisii)
28.57  0.00  0.00  0.00  0.00  0.00  0.00 14.29 21.43 28.57  0.00  7.14  0.00  0.00  0.00  0.00  0.00  
22 P1;MXKN1 mu-conotoxin GIIIA - cone shell (Conus geographus)
 4.55 27.27  9.09  0.00  0.00  0.00  0.00  0.00 18.18  0.00  0.00  0.00 13.64  9.09 13.64  0.00  4.55  0.00  
82 P1;QFBO micro glutamic acid-rich protein - bovine
18.29  0.00  4.88 47.56  0.00  8.54  0.00  0.00 12.20  0.00  0.00  0.00  2.44  2.44  0.00  1.22  2.44  0.00  



29

40  P1;FDFI8 Antifreeze protein GS-8 - Grubby sculpin
60.00  0.00  5.00  2.50  0.00  2.50  0.00  2.50  7.50  5.00  2.50  0.00  2.50  2.50  2.50  0.00  5.00  0.00  
291  P1;EEWTG gamma-gliadin B precursor - wheat
 4.12  2.75  0.69  1.03  4.47  2.75  1.37  6.87  1.37  8.25  2.06  1.37 15.12 30.24  1.37  6.19  3.09  5.15  0.69  1.03;
29  P1;SNUMP sillucin - Rhizomucor pusillus
3.45 27.59  0.00  0.00  0.00 13.79  0.00  3.45  6.90  3.45  0.00  3.45  3.45  3.45  3.45 10.34  3.45  
221  P1;KGZQH histidine/alanine-rich protein - Plasmodium falciparum
27.60  0.45  7.24  0.90  3.17  3.62 27.15  0.45  2.71  4.98  0.45 12.67  0.00  0.45  0.45  4.52  1.36  1.81  0.00  
61  P1;DNVPB DNA-binding protein - budgerigar fledgling disease virus
9.84  0.00  0.00  0.00  0.00  1.64  1.64  0.00  1.64 34.43  1.64  3.28 14.75  6.56 14.75  6.56  3.28  0.00  
44  P1;W5WLE E5 protein - bovine papillomavirus type 1
4.55  4.55  2.27  2.27 15.91  4.55  2.27  0.00  0.00 34.09  4.55  2.27  4.55  2.27  0.00  2.27  2.27  4.55  
660 P1;QQBE3 BHLF1 protein - human herpesvirus 4 (strain B95-8)
16.06  2.58  2.12  2.27  0.15 15.76  2.42  0.00  0.00  2.88  0.15  1.06 22.12  5.61 13.94  5.30  5.30  1.06  
65 >P1;VHNVBM nucleocapsid protein - Bombyx mori nuclear polyhedrosis virus
3.08  0.00  0.00  0.00  0.00  7.69  0.00  1.54  0.00  3.08  1.54  0.00  3.08  0.00 40.00 16.92 10.77  1.54  0.00 10.77;


