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Abstract

Symmetries of graphs intervene in diverse applications, ranging from enumeration, to
graph structure compression, to the discovery of graph dynamics (e.g., inference of the
arrival order of nodes in a growing network). It has been known for some time that Erdős-
Rényi graphs are asymmetric with high probability, but it is also known that real world
graphs (such as the web and biological networks) have a significant amount of symmetry.
So a natural question to ask is whether preferential attachment graphs, in which in each
step a new node with m edges is added, exhibit any symmetry. It turns out that the
problem is harder than in the Erdős-Rényi case and reveals unexpected results: in recent
work it was proved that preferential attachment graphs are symmetric for m = 1 (as
expected), and there is some non-negligible probability of symmetry for m = 2. The
question was left open for m ≥ 3. It was conjectured, however, that the preferential
attachment graphs are asymmetric with high probability when more than two edges are
added each time a new node arrives. In this paper we settle this conjecture in the positive.
We then use it to estimate the entropy of unlabeled preferential attachment graphs (called
the structural entropy of the model). To do this, we prove a new, precise asymptotic result
for the labeled graph entropy, and we give bounds on another combinatorial parameter
of the graph model: the number of ways in which the given graph structure could have
arisen by preferential attachment (a measure of the extent to which the graph structure
encodes information about the order in which nodes arrived). These results have further
implications for information theoretic and statistical problems of interest on preferential
attachment graphs.

Index Terms: Preferential attachment graphs, entropy, graph automorphism, symmetry,
degree distribution.
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1 Introduction

Study of the asymptotic behavior of the symmetries of graphs, originally motivated by enu-
merative combinatorial problems, has recently found diverse applications in problems ranging
from graph compression to discovering interesting motifs to understanding dynamics of growing
graphs.

Let us explore some of these applications in more detail. The basic problem of structural
(unlabeled graph) compression can be formulated as follows: given a probability distribution
on labeled graphs, determine a binary encoding of samples from the induced unlabeled graph
distribution so as to minimize expected description length. In [5] the authors studied this
problem in the setting of Erdős-Rényi graphs. They showed that, under any distribution giv-
ing equal probability to isomorphic graphs, the entropy of the induced distribution on graph
structures (i.e., isomorphism classes of graphs) is less than the entropy of the original distribu-
tion by an amount proportional to the expected logarithm of the number of automorphisms.
Thus the solution to the above problem is intimately connected with the symmetries of the
random graph model under consideration. We explore this topic in some detail in Lemma 1 of
Section 2.

We mention also a few representative algorithmic motivations for the study of graph sym-
metries. The first involves the problem of motif discovery : given a graph G and a pattern graph
H, the problem is to find all subgraphs of G that are isomorphic to H. It has been observed
(see, e.g., [17]) that taking into account the symmetries of H can significantly decrease the
time and space complexity of the task. The same is true for G if it has nontrivial symmetries.

In the area of Markov chains, the paper [4] studies the following problem: given a graph G,
the task is to assign weights to edges of G so as to minimize the mixing time of the resulting
Markov chain. The authors show that symmetries in G may be exploited to significantly reduce
the size of a semidefinite program formulation which solves the problem. Moreover, they point
out several references to literature in which symmetry plays a key role in reducing complexity
for various problems.

Study of symmetries is further motivated by their connection to various measures of in-
formation contained in a graph structure. For instance, the topological entropy of a random
graph, studied by [18] and [20], measures the uncertainty in the orbit class (i.e., the set of
nodes having the same long-term neighborhood structure) of a node chosen uniformly at ran-
dom from the node set of the graph. If the graph is asymmetric with high probability, then
the topological entropy is maximized: if n is the size of the graph, then the topological entropy
is, to leading order, log n. In general, if the symmetries of the graph can be characterized
precisely, then so can the topological entropy.

The present paper is a step in the direction of understanding symmetries of complex net-
works and toward extending graph structure compression results to random graph models
other than Erdős-Rényi. In particular, many real-world graphs exhibit a power law degree
distribution (see [8]). A commonly studied model for real-world networks is the preferential
attachment mechanism introduced in [1], in which a graph is built one vertex at a time, and
each new vertex t makes m choices of neighbors in the current graph, where it attaches to a
given old vertex v with probability proportional to the current degree of v. We study here a
simple variant of the preferential attachment model (see [8] and the conclusion section for other
models), and in the conclusion of this paper we suggest that the symmetry behavior of other
preferential models can be studied using the approach developed here. Our main result is the
following: for the variant of the preferential attachment model under consideration, when each
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vertex added to the graph chooses a fixed number m ≥ 3 neighbors, with high probability,
there are no nontrivial symmetries. This is perhaps surprising in light of the many symmetries
observed in real-world networks [14].

The problem of establishing asymmetry in preferential attachment graphs appears to be
difficult. Literature on symmetries of preferential attachment graphs seems to be scarce. We
are aware only of [16], where two of the authors of the present paper, with colleagues, proved
that such graphs are symmetric for m = 1 and (with asymptotically positive probability) also
for m = 2. The authors of [16] conjectured that preferential attachment graphs are indeed
asymmetric for m ≥ 3. In this paper we first settle this conjecture in the positive using different
methods than the one applied in [11] and [16]. Namely, instead of relying on the graph defect (a
measure of asymmetry defined in [11] which is necessarily bounded in preferential attachment
graphs, and hence has poor concentration properties), we shall observe that symmetry would
imply that certain vertices make the same choices with regard to an initial set of vertices
uniquely identifiable by their degrees, which we prove is unlikely to happen for preferential
attachment graphs whenever m ≥ 3.

After settling the asymmetry question for preferential attachment graphs, we use it to
address the issue of graph entropy. We first give in Theorem 2 a precise estimate of the
labelled graph entropy (improving on the result of [19]), and then estimate the unlabelled
graph entropy (also known as the structural entropy). In Lemma 1 we relate both entropies.
Then, using our asymmetry result from Theorem 1, we estimate the structural entropy. To
derive the structural entropy estimate, we study the characteristics of the directed, acyclic
graph version of the preferential attachment process (culminating in Proposition 1, which may
be of independent interest). In particular, we estimate the number of ways that a given graph
could have arisen according to the preferential attachment mechanism.

We emphasize that the labeled and unlabeled graph entropies that we study are fundamen-
tal, as they give the minimum achievable expected length of any source code (i.e., compression
code) for these graphs.

Now we review some of the literature on symmetries of random graphs. Study of the
asymptotic behavior of the automorphism group of a random graph started with a paper of
Erdős and Rényi [9], where they showed that G(n,M) (i.e., the uniformly random graph on n
vertices with M edges) with constant density (i.e. when M = Θ(n2)) is asymmetric with high
probability, a result motivated by the combinatorial question of determining the asymptotics
of the number of unlabeled graphs on n vertices for n → ∞. Then Wright [22] proved that
G(n,M) whp becomes asymmetric as soon as the number of isolated vertices in it drops under
1. His result was later strengthened by Bollobás [2], who also proved asymmetry for r-regular
graphs with r ≥ 3. The asymptotic size of the automorphism group of G(n,M) for small M ,
where the graph is not connected, was given by  Luczak [12]. As a similar question motivated
the investigation of symmetry properties of random regular graphs, Bollobás improved his
result from [2] by showing in [3] that unlabelled regular graphs with degree r ≥ 3 are whp
asymmetric as well. Let us note that it is a substantially stronger theorem (see the discussion
below after Theorem 1).

For general models, asymmetry results can be nontrivial to prove, due in part to the fact
that asymmetry is a global property. Furthermore, the particular models considered here
present difficulties not seen in the Erdős-Rényi case: there is significant dependence between
edge events, and graph sparseness makes derivation of concentration results difficult. However,
settling the symmetry/asymmetry question opens the door to several other lines of investi-
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gation, including, e.g., the design of optimal structural compression schemes and the precise
characterization of the limits of inference problems (see, for example, [15]) for preferential at-
tachment graphs. These applications crucially depend on our precise understanding of graph
symmetry.

The paper is organized as follows. In the next Section 2 we present our main results
regarding the graph asymmetry and structural entropy. In Section 3, we state and prove
several results on the degree sequence which will be useful in subsequent proofs. We prove
the graph asymmetry result in Secton 4 and the entropy results, along with the necessary
structural results on the directed version of the model, in Sections 5 and 6.

2 Main Result

In this section, we state the main problem, introduce the model that we consider, and formulate
the main results. First, we review some standard graph-theoretic terminology and notation.

We start with the notion of structure-preserving transformations between labeled graphs:
given two graphs (possibly with multiple edges between nodes) G1 and G2 with vertex sets
V (G1) and V (G2), a mapping φ : V (G1)→ V (G2) is said to be an isomorphism if it is bijective
and preserves edge relations; that is, for any x, y ∈ V (G1), the number of edges (possibly 0)
between x and y is equal to the number of edges in G2 between φ(x) and φ(y). When such a
φ exists, G1 and G2 are said to be isomorphic.

An isomorphism from a graph G to itself is called an automorphism or symmetry of G.
The set of automorphisms of G, together with the operation of function composition, forms a
group, which is called the automorphism group of G, denoted by Aut(G). We then say that G
is symmetric if it has at least one nontrivial symmetry and that G is asymmetric if the only
symmetry of G is the identity permutation.

Our first main goal is to answer, for G distributed according to a preferential attachment
model, the question of whether with high probability the automorphism group is trivial (i.e.,
|Aut(G)| = 1) or not.

We say that a multigraph G on vertex set [n] = {1, 2, . . . , n} is m-left regular if the only
loop of G is at the vertex 1, and each vertex v, 2 ≤ v ≤ n, has precisely m neighbours in the
set [v−1]. The preferential attachment model PA(m;n) is a dynamic model of network growth
which gives a probability measure on the set of all m-left regular graphs on n vertices proposed
in [1]. More precisely, for an integer parameter m ≥ 1 we define graph PA(m;n) with vertex
set [n] = {1, 2, . . . , n} using recursion on n in the following way: the graph G1 ∼ PA(m; 1) is
a single node with label 1 with m self-edges (these will be the only self-edges in the graph, and
we will only count each such edge once in the degree of vertex 1).

Inductively, to obtain a graph Gn+1 ∼ PA(m;n + 1) from Gn, we add vertex n + 1 and
make m random choices v1, ..., vm of neighbors in Gn as follows: for each vertex w ≤ n (i.e.,
vertices in Gn),

P (vi = w|Gn, v1, ..., vi−1) =
degn(w)

2mn
,

where throughout the paper we denote by degn(w) the degree of vertex w ∈ [n] in the graph
Gn (in other words, the degree of w after vertex n has made all of its choices).

We note that our proof techniques adapt to tweaks of the model in which multiple edges
are not allowed.
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We next formulate our first main result regarding asymmetry of PA(m;n) for m ≥ 3 that
we prove in Section 4.

Theorem 1 (Asymmetry for preferential attachment model). Let G ∼ PA(m;n) for fixed
m ≥ 3. Then, with high probability as n→∞,

|Aut(G)| = 1.

More precisely, for m ≥ 3,

P (|Aut(G)| > 1) = O(n−0.004) (1)

for large n.

One may wonder if one can strengthen the above statement and claim that for m ≥ 3 we
have E|Aut(PA(m;n))| = 1 + o(1); if this would be the case, then a natural unlabelled version
of the model, which we denote by PAu(m;n), defined below would be with high probability
asymmetric too. However, somewhat surprisingly, it is not the case.

To make this precise, let us recall that in the case of the uniform random graph model
G(n,M), where we choose a graph uniformly at random from the family of all graphs with n
labeled vertices and M edges, the automorphism group becomes with high probability trivial
just above the connectivity threshold; i.e., when 2M/n − log n → ∞; in fact, at this moment
the expected size of Aut(G(n,M)) is whp 1 +o(1). Moreover, almost precisely at this time the
unlabeled uniform random graph Gu(n,M) which is chosen at random from the family of all
unlabeled graphs with n vertices and M edges becomes asymmetric and, furthermore, the the
structure of Gu(n,M) is almost identical to the structure of G(n,M); i.e., Gu(n,M) is basically
G(n,M) with erased labels (for more information on this model, see [13]). As we have already
mentioned above, the same is true for r-regular random graphs with r ≥ 3, where the uniform
labeled and unlabeled graph models have basically the same asymptotic properties [3].

Returning to the preferential attachment case, for any m-left regular graph G let S(G)
denote the class of all m-left regular graphs which are isomorphic to G, and let S denote the
family containing all S(G), i.e. the family of all ‘unlabeled m-left regular graphs’. We define
the unlabeled graph distribution PAu(n;m) as the probability distribution on S, where the
probability of each class S(G) is proportional to the average of the probabilities that a labeled
version of S(G) is PA(m;n), i.e. proportional to

1

|S(G)|
∑

H∈S(G)

P (H = G(m;n)) .

Note that this is a different distribution from the one that samples a preferential attachment
graph and takes its isomorphism class. Note, also, that Gu(n,M) is defined in the same way,
but in that case all terms in the sum are the same, so each equivalence class is equally likely.
Now we can ask if the typical structure of PAu(m;n) is the same, or very close to that of
PA(m;n) (i.e., a preferential attachment graph with labels removed); in particular if it is
asymmetric. It seems that it is not this case. To see this, notice that the typical PA(m;n)
is asymmetric and, furthermore, whp it contains L = Ωm(n) vertices with label at least 3n/4,
such that they are of degree m and all their neighbors are among vertices of label smaller
that n/2. For such a graph G we will show that |S(G)| ≥ L! = exp(Ωm(n log n)) and so for
every H ∈ S(G) we have Pr(H = G(m;n)) ≤ exp(−Ωm(n log n)). On the other hand for
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the graph H ′ such that all vertices of labels ` ≥ m + 1 has neighbors {1, 2, . . . ,m} we have
Pr(H ′ = G(m;n)) ≥ exp(−Om(n)). Thus, the very asymmetric H ′ is much more likely to
appear as Gu(m;n) than a ‘typical’ graph G(m;n).

Here we will not investigate the properties of PAu(m;n) but rather characterize the infor-
mation content of the distribution on unlabeled graphs given by sampling from PA(m;n) and
removing the labels (i.e., taking the isomorphism class of the sampled graph).

As a direct application of Theorem 1, we estimate the structural entropy H(S(G)). Recall
that the entropy H(G) of the labeled graph G ∼ PA(m;n) is defined as

H(G) = −
∑
G∈Gn

P (G) logP (G),

where Gn denotes the set of graphs on n vertices. The structural entropy H(S(G)) is then
simply the entropy of the isomorphism type of G. We next show how to find a relation
between these two entropies. By the chain rule for conditional entropy,

H(G) = H(S(G)) +H(G|S(G)). (2)

The second term, H(G|S(G)), measures our uncertainty about the labeled graph if we are given
its structure. We will give a formula for H(G|S(G)) in terms of |Aut(G)| and another quantity,
defined as follows: suppose that, after generating G, we relabel G by drawing a permutation π
uniformly at random from Sn, the symmetric group on n letters, and computing π(G). Then
conditioning on π(G) yields a probability distribution for possible values of π−1 = σ. We can
write H(G|S(G)) in terms of H(σ|σ−1(G)) = H(σ|σ(G)) and E[log |Aut(G)|] using the chain
rule for entropy, resulting in the following lemma.

Lemma 1 (Structural entropy for preferential attachment graphs). Let G ∼ PA(m;n) for
fixed m ≥ 1, and let σ be a uniformly random permutation from Sn. Then we have

H(G)−H(S(G)) = H(σ|σ(G))− E[log |Aut(G)|]. (3)

Remark 1. In the proof of Theorem 3 below, we prove an alternative, more combinatorial
representation for H(σ|σ(G)); see (38).

To estimate the structural entropy H(S(G)) using Lemma 1, we need to find an expression
for the labeled graph entropy H(G) and evaluate the two terms on the right-hand side of (3).

In Section 5 we prove the following asymptotic formula for the entropy H(G) of the pref-
erential attachment graphs.

Theorem 2 (Entropy of preferential attachment graphs). Consider G ∼ PA(m;n) for fixed
m ≥ 1. We have

H(G) = mn log n+m (log 2m− 1− logm!−A)n+ o(n), (4)

where

A =
∞∑
d=m

log d

(d+ 1)(d+ 2)
.

6



This should be compared with Theorem 1 of [19], which gives the first term and upper
and lower bounds on the second term. Our result goes further by pinning down the exact
value of the second term. Our proof borrows some elements from [19] but requires a nontrivial
extension.

Now, we are in the position to complete our computation of the structural entropy.

Theorem 3 (Structural entropy of preferential attachment graphs). Let m ≥ 3 be fixed.
Consider G ∼ PA(m;n). We have

H(S(G)) = (m− 1)n log n+R(n), (5)

where R(n) satisfies

Cn ≤ |R(n)| ≤ O(n log logn)

for some nonzero constant C = C(m).

To do this, we evaluate (3) by relating H(σ|σ(G)) to a combinatorial parameter of the
directed version of G. We show this derivation in Section 6.

3 Results on the Degree Sequence

In this section, we present results on the degree sequence of preferential attachment graphs
which we will use in the proofs of our main results in subsequent sections.

First, recall that degt(s) is the degree of a vertex s < t after time t (i.e., after vertex t has
made its choices). We also define dgt(s) = degt(s)−m.

Our first lemma gives a bound on the in-degree of each vertex at any given time. This will
give a corollary (Corollary 1) that bounds the probability that two given vertices are adjacent
at a given time.

Lemma 2. For any v, w,

Pr(dgv(w) = d) ≤
(
m+ d− 1

m− 1

)(
1−

√
w

v
+O

(
d√
vw

))d
In particular,

Pr(degv(w) = d) ≤ (2m+ d)m exp

(
−
√
w

v
d+O

(
d2

√
vw

))
.

Proof. We estimate this probability as follows. Below we set td+1 = mv + 1.

Pr(dgv(w) = d) ≤
∑

mw<t1<t2<···<td≤mv

d∏
i=1

m+ i− 1

2ti

ti+1−1∏
j=ti+1

(
1− m+ i

2j

)

≤
∑

mw<t1<t2<···<td≤mv

(m+ d− 1)!

(m− 1)!

d∏
i=1

1 +O(d/ti)

2ti
exp

(
−
ti+1−1∑
j=ti

i

2j

)

=
∑

mw<t1<t2<···<td≤mv

(m+ d− 1)!

(m− 1)!

d∏
i=1

1 +O(d/ti)

2ti
exp

(
−

mv∑
j=ti

1

2j

)
≤
(
d+m− 1

m− 1

)( mv∑
i=mw+1

1 +O(d/ti)

2ti
exp

(
−

mv∑
j=t

1

2j

))d
.
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Note that

mv∑
i=mw+1

1 +O(d/ti)

2ti
exp

(
−

mv∑
j=ti

1

2j

)
≤

mv∑
i=mw+1

1 +O(d/ti)

2ti
exp

(
− 1

2
log

mv

ti
+O

( 1

ti

))

≤
mv∑

i=mw+1

1 +O(d/ti)

2
√
mvti

≤ 1−
√
w/v +O(d/

√
vw) .

Thus, the assertion follows.

Recall that for t > s, the expectation of degt(s) is O(
√
t/s). We first state a simple tail

bound to the right of this expectation, which may be found in [10] (it also is a corollary of
Lemma 2):

Lemma 3 (Right tail bound for a vertex degree at a specific time). Let r < t. Then

P [degt(r) ≥ Aem(t/r)1/2(log t)2] = O(t−A)

for any constant A > 0 and any t.

Using the above lemma, we can show a stronger concentration result for the random variable
degt(s) whenever s� t, as captured in the following lemma.

Lemma 4. For s < t we have

P [| degt(s)− E[degt(s)]| > y] ≤ exp

(
− y2

O(t1/2+ε1/s1/2)

)
+ exp(−poly(t)) (6)

for any y ≤ O( t
1/2+ε1

s1/2m
) and any fixed ε1 > 0.

The proof uses the method of bounded variances. In particular, we will use the following
result from [7].

Lemma 5 (Method of bounded variances). Let f be a function of n random variables
X1, ..., Xn, each Xi taking values in a set Ai, such that E[f ] <∞.

Assume that, for some numbers m and M ,

m ≤ f(X1, ..., Xn) ≤M

almost surely. Let B be any event (which we think of as occurring only with low probability),
and let V and ci be defined as follows: first, we denote by Fτ , τ = 0, ..., n, the σ-field generated
by X1, ..., Xτ and the event BC (i.e., the complement of B). Then we denote by {Yτ} the Doob
martingale with respect to the filtration {Fτ}:

Yτ = E[f(X1, ..., Xn)|Fτ ].
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We define the difference bounds cτ to satisfy

|Yτ − Yτ−1| ≤ cτ

with probability 1, and the variance bounds vτ to satisfy

sup
x1,...,xτ−1

Var[Yτ − Yτ−1|X1 = x1, ..., Xτ−1 = xτ−1] ≤ vτ .

We define V =
∑n

τ=1 vτ .
Then, for any t ≤ 2V/maxi ci,

P (f < E[f ]− t− (M −m)P (B)) ≤ exp

(
− t2

4V

)
+ P (B).

With this lemma, we can prove Lemma 4.

Proof of Lemma 4. Our choice of f in the theorem will be degt(s), which is a function of the
random variables giving the number of times each vertex s + τ , τ = 1, ..., t − s, chooses to
connect to s. Each such random variable is denoted by deg(s+ τ → s).

Easily enough, m ≤ degt(s) ≤M = (t− s)m, since vertex s chooses m neighbors, and each
vertex after s may connect to s at most m times.

We choose B in Lemma 5 to be the unlikely event that the degree of s after any sufficiently
large time is much larger than its expected value: in particular, for some constants ε, ε1 > 0
which we will fix later,

B =

[ ⋃
τ≥tε

degs+τ (s) >
(s+ τ)1/2+ε1

s1/2

]
.

Using Lemma 3, we can upper bound P (B):

P (B) ≤
∑
τ≥tε

P

(
degs+τ (s) > (s+ τ)1/2+ε1/s1/2

)
≤ t · exp(−poly(t)),

by plugging into the lemma t := s+τ , s := s, and A := e−mtε1/ log2(t+1) and union bounding.

Bounding the variances: We next estimate each vτ . We define, for each τ ∈ {0, ..., t−s},
Fτ to be the σ-field generated by the event BC and the connection choices of the vertices
s+ 1, ..., s+ τ . We then define Xτ to be

Xτ = E[degt(s)|Fτ ].

Next, we express Xτ as a sum over vertices arriving later than s: defining A = BC for
convenience,

Xτ = m+

s+τ∑
x=s+1

[deg(x→ s)|A] +

t∑
x=s+τ+1

E[deg(x→ s)|Fτ ],
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so that the difference Xτ+1 −Xτ is given by

Xτ+1 −Xτ =

s+τ+1∑
x=s+1

[deg(x→ s)|A] +

t∑
x=s+τ+2

E[deg(x→ s)|Fτ+1]

− (
s+τ∑
x=s+1

[deg(x→ s)|A] +
t∑

x=s+τ+1

E[deg(x→ s)|Fτ ])

= [deg((s+ τ + 1)→ s)|A]− E[deg(s+ τ + 1)→ s|Fτ ] (7)

+

t∑
x=s+τ+2

(E[deg(x→ s)|Fτ+1]− E[deg(x→ s)|Fτ ]).

Now, recall that vτ is, by definition,

vτ ≥ sup Var[Xτ+1 −Xτ |Fτ ],

where the supremum is taken over all possible connection choices of the vertices s+ 1, ..., s+ τ .
We first estimate the variances of the individual terms, and then we estimate the covariances.

Under the conditioning by Fτ for τ > tε, the variance of the first term may be upper
bounded as follows:

Var[deg(s+ τ + 1→ s)|Fτ ] ≤ O(
(s+ τ)1/2+ε1

s1/2(s+ τ)
) = O(

(s+ τ)ε1−1/2

s1/2
)

where we have used the fact that the event A holds in the conditioning. For τ ≤ tε, a cruder
estimate suffices: since 0 ≤ deg(s+τ +1→ s) ≤ m, we have that Var[deg(s+τ +1→ s)|Fτ ] ≤
O(m2).

The variance of the second term, Var[−E[deg(s+ τ + 1)|Fτ ]
∣∣Fτ ], is 0, because the random

variable E[deg(s+ τ + 1)|Fτ ] is a constant on the σ-field Fτ .
Finally, to compute the variance of the remaining sum, the plan is to upper bound it in

absolute value, which will then yield a bound on the variance. In particular, we claim that the
absolute value of the xth term of the sum is at most Cx−(s+τ+1)O((s+τ)−1) for some constant
C < 1, so that the entire sum is at most O(1/(s + τ)). To prove this, we first note that we
may safely ignore the conditioning on A (this incurs some error, but it is small enough to be
ignored); in what follows, we denote by F ′x the σ-field Fx without the inclusion of A (i.e., the
σ-field generated by the edge choices of the vertices s+ 1, ..., s+ x).

Then to prove the claimed bound, we proceed by induction on x. For the base case of
x = s+ τ + 2, we have

E[deg(s+ τ + 2→ s)|F ′τ+1] = m
degs+τ+1(s)

2m(s+ τ + 1)

(
1−

degs+τ+1(s)

2m(s+ τ + 1)

)
.

On the other hand, E[deg(s+ τ + 2→ s)|F ′τ ] is given by the same expression with the degrees
replaced by their expected values conditioned on F ′τ :

E[deg(s+ τ + 2→ s)|F ′τ ] = m
E[degs+τ+1(s)|F ′τ ]

2m(s+ τ + 1)

(
1−

E[degs+τ+1(s)|F ′τ ]

2m(s+ τ + 1)

)
.

Since this degree can differ by at most m from this expected value, we have (after some
calculation) that the first term of the sum is upper bounded by m

2x(1+ 1
2x) ≤ m

x . This establishes
the base case.

10



Now, for the inductive step, we have, from the definition of the model,

E[deg(x→ s)|F ′x−1] = E
[
Binomial

(
m,

degx−1(s)

2m(x− 1)

)]
= m

degx−1(s)

2m(x− 1)

(
1−

degx−1(s)

2m(x− 1)

)
.

Conditioning on the smaller σ-field F ′τ , we get

E[deg(x→ s)|F ′τ+1] = m
E[degx−1(s)|F ′τ+1]

2m(x− 1)

(
1−

E[degx−1(s)|F ′τ+1]

2m(x− 1)

)
We can now apply the inductive hypothesis to the right-hand side to approximate the condi-
tional expectations:

E[deg(x→ s)|F ′τ+1]

=
E[degx−1(s)|F ′τ ] + Cx−s−τ−2D

x−1

2(x− 1)

(
1−

E[degx−1(s)|F ′τ+1]

2m(x− 1)

)
≤ E[deg(x→ s)|F ′τ ] +

Cx−s−τ−2D

2(x− 1)2
.

Since x ≥ s+ τ + 3 ≥ 5, we have that 1
(x−1)2

< 1
x , so that

E[deg(x→ s)|F ′τ+1]− E[deg(x→ s)|F ′τ ] ≤ Cx−s−τ−1D/x,

as desired.
Now, to convert this bound on the absolute value of the sum to a bound on its variance,

we use the following inequality: for any random variable X with E[X] = 0 such that |X| ≤ r,
we have

Var[X] ≤ r2/4.

Since the expected value of the sum is at most O((s+ τ)−1), this implies that the variance of
the sum is at most O((s+ τ)−1).

We next bound the covariances of (7). The only nontrivial covariance is between the first
term and the sum. We may again use the upper bound on the absolute value of the sum to
upper bound the covariance: letting Y denote the sum,

Cov[deg(s+ τ + 1→ s), Y |Fτ ]

= E[deg(s+ τ + 1→ s)Y |Fτ ]− E[deg(s+ τ + 1→ s)|Fτ ]E[Y |Fτ ]

≤ E[deg(s+ τ + 1→ s)|Fτ ](O(s+ τ)−1 − E[Y |Fτ ])

= E[deg(s+ τ + 1→ s)|Fτ ]O(s+ τ)−1.

To conclude, we have that

Var[Xτ+1 −Xτ |Fτ ] ≤ vτ =

O(m2) τ ≤ tε

O

(
(s+τ)ε1−1/2

s1/2

)
τ > tε

11



This implies that

V =
t−s∑
τ=1

vτ = O(m2tε) +O(t1/2+ε1/s1/2) = O(t1/2+ε1/s1/2),

where the last equality holds provided that we choose ε small enough with respect to ε1. This
concludes the derivation of V .

Bounding the differences: We next bound the differences cτ . We start with the expression
(7). The first two terms may be easily upper bounded by 2m:

|[deg((s+ τ + 1)→ s)|A]− E[deg(s+ τ + 1)→ s|Fτ ]|
≤ [deg((s+ τ + 1)→ s)|A] + E[deg(s+ τ + 1)→ s|Fτ ]

≤ 2m,

using the triangle inequality and the fact that the maximum value for the number of times any
vertex chooses another is m.

Exactly as before, the remaining sum is O((s+ τ)−1) in absolute value, so that

|Xτ+1 −Xτ | = cτ = O(m).

Putting everything together: Combining the estimates on cτ and V and P (B), and
invoking Lemma 5, we find that

P (degt(s) < E[degt(s)]− y − (t− s) exp(−poly(t)))

≤ exp

(
− y2

O(V )

)
+ exp(−poly(t))

= exp

(
− y2

O(t1/2+ε1/s1/2)

)
+ exp(−poly(t))

for any y ≤ 2V/O(m), as desired.

Next, we give a lemma on the expected number of vertices of degree d at time t. We
denote this quantity by N̄t,d and the random variable itself by Nt,d. We start by recalling an
approximation result on this quantity [21].

Lemma 6 (Expected value of Nt,d). We have, for t ≥ 1 and 1 ≤ d ≤ t and for any fixed
m ≥ 1, ∣∣∣∣N̄t,d −

2m(m+ 1)t

d(d+ 1)(d+ 2)

∣∣∣∣ ≤ C,
for some fixed C = C(m) > 0.

This approximation is useful whenever d = o(t1/3). For larger d, the error term C dom-
inates. For our proofs, we need to extend this result for larger d as t → ∞. We have the
following result along these lines.
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Lemma 7 (Upper bound on N̄t,d). We have, for t→∞, d ≥ t1/15, and fixed m ≥ 1,

N̄t,d = O

(
t

d(d+ 1)(d+ 2)

)
= O

(
t

d3

)
. (8)

Proof. We will prove the claimed upper bound by induction on the number of edge connection
choices made so far in the graph (e.g., after vertex t has made all of its choices, this number is
mt).

Let us define M̄τ,d to be the expected number of vertices with degree d in the graph after τ
vertex choices have been made in the graph. Note that M̄τ,d = N̄τ/m,d whenever τ is divisible
by m. Thus, to prove our desired result, it is sufficient to prove that

M̄τ,d = O

(
{τ}m

d(d+ 1)(d+ 2)

)
(9)

for τ → ∞ and d ≥ (τ/m)1/15 (for convenience, we denote by {τ}m the largest integer ≤ τ
that is divisible by m). The base case is provided by Lemma 6.

Next, note that M̄τ,d satisfies the following recurrence:

M̄τ,d ≤ M̄τ−1,d

(
1− d−m

2{τ}m

)
+ M̄τ−1,d−1

d− 1

2{τ}m
− M̄τ−1,d

d−m
2{τ}m

= M̄τ−1,d

(
1− d−m

{τ}m

)
+ M̄τ−1,d−1

d− 1

2{τ}m
. (10)

This is because an m-tuple that has degree d after choice τ either had degree d after choice
τ − 1 and wasn’t chosen by the τth choice, or had degree d − 1 and was chosen by choice τ .
Moreover, any m-tuple with degree d at time τ − 1 that was chosen by choice τ no longer
has degree d. The upper bound is a result of the specific details of our model but may be
generalized.

Next, we apply the inductive hypothesis, resulting in

M̄τ,d ≤
C{τ − 1}m

d(d+ 1)(d+ 2)

(
1− d−m

{τ}m

)
+

C{τ}m
(d− 1)d(d+ 1)

d− 1

2{τ}m
(11)

≤ C{τ − 1}m
d(d+ 1)(d+ 2)

(
1− d−m

{τ}m

)
+

C

2d(d+ 1)
, (12)

for some positive constant C(m) = C. This can be rearranged to yield

M̄τ,d ≤
C{τ − 1}m

d(d+ 1)(d+ 2)
+

C

2d(d+ 1)
− C{τ − 1}m(d−m)

d(d+ 1)(d+ 2){τ}m
. (13)

To continue, we split into two cases: either {τ−1}m = {τ}m or {τ−1}m = τ−m = {τ}m−m.
In the first case, (13) becomes

M̄τ,d ≤
C{τ}m

d(d+ 1)(d+ 2)
+

C

2d(d+ 1)
− C

(d+ 1)(d+ 2)
+

Cm

d(d+ 1)(d+ 2)
.

Now, provided that τ is large enough, and since d is Ω(τ1/15), the sum of the last three factors
is negative, so that

M̄τ,d ≤
C{τ}m

d(d+ 1)(d+ 2)
,
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as desired.
Now we handle the second case (where τ − 1m = {τ}m −m):

M̄τ,d ≤
C{τ}m − Cm
d(d+ 1)(d+ 2)

+
C

2d(d+ 1)
− C({τ}m −m)(d−m)

d(d+ 1)(d+ 2){τ}m

=
C{τ}m

d(d+ 1)(d+ 2)
+

C

2d(d+ 1)
− Cd

d(d+ 1)(d+ 2)
+

Cm(d−m)

d(d+ 1)(d+ 2){τ}m

≤ C{τ}m
d(d+ 1)(d+ 2)

+
C

2d(d+ 1)
− Cd

d(d+ 1)(d+ 2)
+

Cmd

d(d+ 1)(d+ 2){τ}m
.

We then proceed exactly as in the previous case, which completes the proof.

The next result, a corollary of Lemma 2, gives an upper bound on the probability that two
given vertices are adjacent.

Corollary 1. Let w < v. Then the probability that v is adjacent to w is bounded above by
5m
√

1/(vw) log(3v/w). In particular, each two vertices v, w ≥ εn are adjacent with probability
smaller than (5m/ε) log(3/ε)/n.

Proof. The probability that v and w are adjacent is bounded from above by∑
d≥0

md

2mv
Pr(dgv(w) = d−m) .

When d ≤ d0 = 8m
√
v/w log(3v/w) the above sum is clearly smaller d0/2 =

4m
√

1/vw log(3v/w). If d ≥ d0 one can use Lemma 2 to estimate this sum by
m
√

1/vw log(3v/w).

The next result gives a bound on the probability that two early vertices have the same
degree.

Lemma 8. The probability that for some s < s′ < k2 = n0.02 we have degn(s) = degn(s′) is
O(n−0.004).

Proof. Let s < s′ < k2 = n0.02. We first estimate the probability that degn(s) = degn(s′). In
order to do so we set n′ = n0.6 and define

deg(s) = degn−n′(s) and deg(s) = degn(s)− deg(s) .

Note that

P (degn(s) = degn(s′)) =
∑
d,d′,d′

P (degn(s) = degn(s′)|deg(s) = d, deg(s′) = d′,deg(s′) = d′)

× P (deg(s) = d, deg(s′) = d′,deg(s′) = d′)

=
∑
d,d′,d′

P (deg(s) = d′ + d′ − d|deg(s) = d, deg(s′) = d′, deg(s′) = d′)

× P (deg(s) = d, deg(s′) = d′,deg(s′) = d′) . (14)
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Observe that due to Lemma 4, with probability 1 − O(n−1) a vertex s ∈ [k2] has degree
between n0.488 and n0.51 at any time in the interval [n− n′, n]. Furthermore, one can estimate
the random variable deg(s) conditioned on deg(s) = d from above and below by binomial

distributed random variables and use Chernoff bound to show that with probability at least
1−O(n−1) we have∣∣∣ dn′

2mn
− deg(s)

∣∣∣ =
∣∣∣0.5mdn−0.4 − deg(s)

∣∣∣ ≤ ( dn′
2mn

)0.6
≤ n0.08 . (15)

Thus, in order to estimate P (degn(s) = degn(s′)), it is enough to bound

ρ(d′, d′, d) = P (deg(s) = d′ + d′ − d|deg(s) = d,deg(s′) = d′, deg(s′) = d′)

for n0.488 ≤ d, d′ ≤ n0.51 and

|0.5dn−0.4/m− (d′ + d′ − d)| ≤ n0.08 .

In order to simplify the notation set ` = d′ + d′ − d. Let us estimate the probability that
deg(s) = ` conditioned on deg(s) = d and deg(s′) = d′. The probability that some vertex

v > n− n′ is connected to s by more than one edge is bounded from above by

Cn′
(mdegn(s)

n− n′
)2
≤ n0.6O(n−0.98) = O(n−0.38)

so we can omit this case in further analysis. The probability that we connect a given vertex
v > n− n′ with s is given by

m degv−1(s)

2m(v − 1)
=
d+O(dn−0.4)

2(n−O(n′))
=

d

2n

(
1 +O(n−0.4)

)
. (16)

Consequently, the probability that deg(s) = ` conditioned on deg(s) = d and deg(s′) = d′ is

given by (
n′

`

)
ρ`(1− ρ)n

′−`
(

1 +O(n−0.4)
)`(

1 +O(n−0.4d/n)
)n′−`

,

where ρ = d/2n.
If we additionally condition on the fact that deg(s′) = d′ (so that we now have conditioned

on deg(s) = d,deg(s′) = d′, and deg(s′) = d′), it will result in an extra factor of the order(
1 +O(d/2n)

)d′
since it means that some d′ vertices already made their choice (and selected

s′ as their neighbour). Note however that, since `, d′ = O(dn′/n) = O(n0.11) we have(
1 +O(n−0.4)

)`
= 1 +O(n−0.29)(

1 +O(n−0.4d/n)
)n′−`

= 1 +O(n−0.29)(
1 +O(d/2n)

)d′
= 1 +O(n−0.48) .

Hence, the probability that deg(s) = ` conditioned on deg(s) = d, deg(s′) = d′, and deg(s′) = d′

is given by (
n′

`

)
ρ`(1− ρ)n

′−`
(

1 +O(n−0.29)) ,
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and so it is well approximated by the binomial distribution. On the other hand, the probability
that the random variable with binomial distribution with parameters n′ and ρ takes a particular
value is bounded from above by O(1/

√
n′ρ). Thus, for a given pair of vertices s < s′ < k2 = n.02

we have
P (degn(s) = degn(s′)) = O(

√
n/n′d) +O(n−1) = O(n−.044) .

Hence, the probability that such a pair of vertices, s < s′ < k2 = n.02 exists is bounded from
above by O(k4n−.044) = O(n−.004).

4 Proof of Theorem 1

In this section we shall give a complete proof of Theorem 1. Let us define first two properties,
A and B of Gn(m) which are crucial for our argument. Here and below we set, for convenience,
k = k(n) = n0.01.

(A) Gn(m) has property A if no two vertices t1, t2, where k < t1 < t2, are adjacent to the
same m neighbors from the set [t1 − 1].

(B) Gn(m) has property B if the degree of every vertex s ≤ k is unique in Gn(m), i.e. for
no other vertex s′ of Gn(m) we have degn(s) = degn(s′).

It is easy to see that

P (|Aut(Gn(m))| = 1) ≥ P (Gn(m) ∈ A ∩B) , (17)

and so
P (|Aut(Gn(m))| > 1) ≤ P (Gn(m) /∈ A) + P (Gn(m) /∈ B) . (18)

Indeed, let us suppose that Gn(m) has both properties A and B, and σ ∈ Aut(Gn(m)). Let us
assume also that σ is not the identity, and let t1 be the smallest vertex such that t2 = σ(t1) 6= t1.
Note that B implies that for all s ∈ [k] we have σ(s) = s, so that we must have k < t1 < t2.
On the other hand from A it follows that t1 and t2 = σ(t1) have different neigbourhoods in
the set [k] which consists of fixed point of σ. This contradiction shows that σ is the identity,
i.e. |Aut(Gn(m))| = 1 which proves (17).

Thus, in order to prove Theorem 1 it is enough to show that both probabilities P (Gn(m) /∈
A) and P (Gn(m) /∈ B) tend to 0 polynomially fast as n→∞.

Let us study first the property A. Our task is to estimate from above the probability that
there exist vertices t1 and t2 such that k < t1 < t2, which select the same m neighbours (which,
of course, belong to [t1 − 1]). Thus we conclude

P (Gn(m) /∈ A) ≤
∑

k<t1<t2

P (t1, t2 choose the same neighbours in [t1 − 1])

≤
∑

k<t1<t2

∑
1≤r1≤r2...≤rm<t1

P (t1, t2 choose r1, ..., rm) . (19)

The event in the last expression is an intersection of dependent events but, if we condition on
the degrees degt`(rs) of the chosen vertices rs at times t1, t2, then the choice events become
independent.
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Let us define D as an event that for some ` = 1, 2, and s = 1, 2, . . . ,m,

degt`(rs) ≤
√
t`/rs(log t`)

3 .

Then from Lemma 3 it follows that

P (Gn(m) /∈ D) ≤ t−100m
1 .

Consequently, for k < t1 < t2 we get

P (t1, t2 choose r1, ..., rm) ≤ P (t1, t2 choose r1, ..., rm
∣∣D) + P (¬D)

≤
2∏
`=1

m∏
s=1

√
t`/rs log3 t`

2t`
+ k−100m

≤ (log t2)6m
2∏
`=1

m∏
s=1

1√
t`rs

+ n−m

Thus, (19) becomes

P (Gn(m) /∈ A) ≤
∑

k<t1<t2

(log t2)6m
∑

1≤r1≤r2...≤rm<t1

2∏
`=1

m∏
s=1

1√
t`rs

+ n−1

≤
∑

k<t1<t2

(t1t2)−m/2(log t2)6m
∑

1≤r1≤r2...≤rm<t1

m∏
s=1

1

rs
+ n−1

≤
∑
k<t1

t−m+1
1 (log t1)9m + n−1

≤ k2−m(log k)9m + n−1

Hence
P (Gn(m) /∈ A) ≤ n−0.005 . (20)

In this section we show that, with probability close to 1, the k = n0.01 oldest vertices of
Gn(m) have unique degrees and so these are fixed points of every automorphism. The key
ingredient of our argument is Lemma 8.

To estimate the probability that Gn(m) /∈ B, we reason as follows: from Lemma 8 we know
that with probability at least 1−O(n−.004) the degrees of all vertices smaller than k2 = n0.02

are pairwise different. Furthermore, using Lemma 4, one can deduce that with probability at
least 1 − O(n−1) all vertices s < k have degrees larger than those of all vertices t > k2 (in
particular using the left tail bound to show that vertices < k all have high degree and the right
tail bound to show that vertices > k2 have low degree whp). Consequently, with probability
1−O(n−0.004) degrees of vertices from [k] are unique, i.e. Gn(m) /∈ B.

Finally, Theorem 1 follows directly from (18) and our estimates for P (Gn(m) /∈ A) and
P (Gn(m) /∈ B).

5 Proof of Theorem 2

In this section we prove Theorem 2 on the entropy of labeled preferential attachment graphs.
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We start by noting that, using the chain rule for entropy, we can write

H(Gn) =

n∑
t=1

H(vt+1|Gt), (21)

where we denote by vt+1 the multiset of connection choices of vertex t + 1 (i.e., a value for
vt+1 takes the form of a multiset of m vertices < t+ 1). This follows because Gn corresponds
precisely to exactly one n-tuple (v1, v2, ..., vn) of vertex choice multisets.

To calculate the remaining conditional entropy for each t, we first note that it would be
simpler if vt+1 were a sequence of vertex choices, rather than a multiset (i.e., an equivalence
class of sequences). First, let us denote by ṽt+1 the sequence of m choices made by vertex t+1.
I.e., ṽt+1,1 is the first choice that it makes, and so on. Then we have the following observation:

H(ṽt+1|Gt) = H(ṽt+1, vt+1|Gt) = H(vt+1|Gt) +H(ṽt+1|vt+1, Gt), (22)

where the first equality is because vt+1 is a deterministic function of ṽt+1, and the second is
by the chain rule for conditional entropy. We thus have

H(vt+1|Gt) = H(ṽt+1|Gt)−H(ṽt+1|vt+1, Gt). (23)

The second term on the right-hand side is at most a constant with respect to n, so its total
contribution to H(Gn) is at most O(n). We will estimate it precisely later, but will first
compute H(ṽt+1|Gt).

By definition of conditional entropy,

H(ṽt+1|Gt) =
∑

G on t vertices

P (Gt = G)H(ṽt+1|Gt = G).

Next, note that, conditioned on Gt = G, the m choices that vertex t+1 makes are independent
and identically distributed. So the remaining conditional entropy is just m times the condi-
tional entropy of a single vertex choice made by t + 1. Using the definition of entropy (as a
sum over all possible vertex choices, from 1 to t) and grouping together terms corresponding
to vertices of the same degree (which all have the same conditional probability), we get

H(ṽt+1|Gt) = m
∑
G

P (Gt = G)

t∑
d=m

Nd(G)pt,d log(1/pt,d), (24)

where Nd(G) denotes the number of vertices of degree d in the fixed graph G, and we define
(using the notation of [19])

pt,d =
d

2mt
.

Note that the d sum starts from d = m, since m is the minimum possible degree in the graph.
Next, we bring the G sum inside the d sum, and we note that∑

G

P (Gt = G)Nd(G) = E[Nd(G)],

which we denote by N̄t,d.
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Thus, we can express H(ṽt+1|Gt) as

H(ṽt+1|Gt) = m

t∑
d=m

N̄t,dpt,d log(1/pt,d), (25)

Plugging this into (21), we get

H(Gn) +
n∑
t=1

H(ṽt+1|vt+1, Gt) = m
n∑
t=1

t∑
d=m

N̄t,dpt,d log(1/pt,d). (26)

Now, we split the inner sum into two parts:

H(Gn) +

n∑
t=1

H(ṽt+1|vt+1, Gt) = m

n∑
t=1

bt1/15c∑
d=m

N̄t,dpt,d log(1/pt,d)

+m
n∑
t=1

t∑
d=bt1/15c+1

N̄t,dpt,d log(1/pt,d). (27)

The first part provides the dominant contribution, of order Θ(n log n), and we will show that
the second part is o(n), due to the smallness of N̄t,d.

Estimating the small d terms: To estimate the contribution of the first sum, we apply
Lemma 6 to estimate N̄t,d and we use the definition of pt,d:

n∑
t=1

bt1/15c∑
d=m

N̄t,dpt,d log(1/pt,d) +

n∑
t=1

bt1/15c∑
d=m

Cd

2mt
log(2mt/d)

= 2m(m+ 1)

n∑
t=1

t

bt1/15c∑
d=m

1

d(d+ 1)(d+ 2)

d

2mt
log

(
2mt

d

)
+ o(n)

= (m+ 1)
n∑
t=1

bt1/15c∑
d=m

d(log t+ log 2m− log d)

d(d+ 1)(d+ 2)
+ o(n).

Here, the second sum on the left-hand side is the error in approximation incurred by invoking
Lemma 6. It is easily seen to be o(n).

Now, the tail sum is

n∑
t=1

∞∑
d=bt1/15c+1

d(log t+ log 2m− log d)

d(d+ 1)(d+ 2)
≤

n∑
t=1

∞∑
d=bt1/15c+1

O(log d)

(d+ 1)(d+ 2)
= o(n),

so we have

n∑
t=1

bt1/15c∑
d=m

N̄t,dpt,d log(1/pt,d) = log n! + (log 2m−A)n+ o(n),

where we define A as in the statement of Theorem 2.
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Upper bounding the large d terms: Our goal is now to show that the second sum of
(27), which we denote by E, is o(n).

We apply Lemma 7 to upper bound N̄t,d, which yields

E ≤ C
n∑
t=1

t∑
d=bt1/15c+1

t

d3
· d

2tm
log(2tm/d) ≤ C ′

n∑
t=1

log t

t∑
d=bt1/15c+1

d−2,

where we canceled factors in the numerator and denominator of each term, and we upper
bounded the expression inside the logarithm using the fact that d > bt1/15c.

The inner sum is easily seen to be O(t−1/15), so that, finally,

E ≤ C ′
n∑
t=1

t−1/15 log t = o(n),

as desired.
We thus end up with

n∑
t=1

H(ṽt+1|Gt) = m log n! +m(log 2m−A)n+ o(n). (28)

Estimating H(ṽt+1|vt+1, Gt): The final step is to estimate the contribution of
H(ṽt+1|vt+1, Gt). Let Ct denote the set of multisets of m elements coming from [t] having
no repeated elements. Then we can write

H(ṽt+1|vt+1, Gt) =
∑

G,v∈Ct

P (Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G)

+
∑

G,v/∈Ct

P (Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G). (29)

The first sum can be estimated as follows: we trivially upper bound H(ṽt+1|vt+1 = v,Gt =
G) ≤ logm! and take it outside the sum. This gives∑

G,v∈Ct

P (Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G) ≤ logm!
∑

G,v∈Ct

P (Gt = G, vt+1 = v)

= logm!P (vt+1 ∈ Ct).

Now we can upper bound the remaining probability in this expression by noting that with high
probability, the maximum degree in Gt is Õ(

√
t) [10]. Using this fact, we have, for arbitrarily

small fixed ε > 0,

P (vt+1 ∈ Ct) = P (vt+1 ∈ Ct,max. degree of Gt ≤ Ct1/2+ε)

+ P (vt+1 ∈ Ct,max. degree of Gt > Ct1/2+ε) (30)

The first term is at most

P (vt+1 ∈ Ct,max. degree of Gt ≤ Ct1/2+ε) ≤ 1−

(
1− Ct1/2+ε

2mt

)m−1

= 1−
(

1−Θ(t−1/2+ε/m)
)m−1

= Θ(t−1/2+ε).
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Now, the second term of (30) is at most

P (vt+1 ∈ Ct,max. degree of Gt > Ct1/2+ε) ≤ P (max. degree of Gt > Ct1/2+ε)

= O(e−t
ε
)

and is thus negligible compared to the first term.
Thus, the first sum in (29) is at most∑

G,v∈Ct

P (Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G) = O(t−1/2+ε). (31)

We will now show that the second sum in (29), over all multisets v of size m with no
repeated elements, is (1 + o(1)) logm!. This is trivial, since vertex t + 1 is equally likely to
have chosen the elements of v in any order. Thus,

H(ṽt+1|vt+1 = v,Gt = G) = logm!. (32)

This implies that∑
G,v/∈Ct

P (Gt = G, vt+1 = v)H(ṽt+1|vt+1 = v,Gt = G) = logm! · P (vt+1 /∈ Ct)

= logm!(1−O(t−1/2+ε)).

Thus,

H(ṽt+1|vt+1, Gt) = logm!(1 +O(t−1/2+ε)).

Summing over all t yields a total contribution of

−
n∑
t=1

H(ṽt+1|vt+1, Gt) = −n logm! + o(n). (33)

Putting everything together: From (26), (28), and (33), we get

H(Gn) = mn log n+m(log 2m− 1−A− logm!)n+ o(n), (34)

where A is as in the statement of Theorem 2.

6 Proof of Theorem 3

We now prove the claimed estimate of the structural entropy.
We first show that the contribution of E[log |Aut(G)|] is negligible (in particular, o(n)).

From Theorem 1, we immediately have

E[log |Aut(G)|] ≤ n log n · n−0.004 = o(n).

We now move on to estimate H(σ|σ(G)), which we will show to satisfy

n log n−O(n log log n) ≤ H(σ|σ(G)) ≤ n log n− n+O(log n). (35)
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To go further, we need to define a few sets which will play a role in our derivation. We
define the admissible set Adm(S) of a given unlabeled graph S to be the set of all labeled
graphs g with S(g) = S such that g could have been generated according to the preferential
attachment model with given parameters. That is, denoting by gt the subgraph of g induced
by the vertices 1, ..., t for each t ∈ [n], we have that the degree of vertex t in gt is exactly m.
We can similarly define Adm(g) = Adm(S(g)). Then, for a graph g, we define Γ(g) to be the
set of permutations π such that π(g) ∈ Adm(g). We will also define, for an arbitrary set of
graphs B,

AdmB(g) = Adm(g) ∩B, ΓB(g) = {π : π(g) ∈ AdmB(g)}.

For a given graph g, these sets are related by the following formula (the simple proof of
this fact is a tweak of that given in [15]):

|AdmB(g)| = |ΓB(g)|
|Aut(g)|

. (36)

We next need to consider some directed graphs associated with G: we start with DAG(G),
which is defined on the same vertex set as G; there is an edge from u to v < u in DAG(G)
if and only if there is an edge between u and v in G (in other words, DAG(G) is simply the
graph G before we remove edge directions). Note that, if we ignore self-loops, DAG(G) is a
directed, acyclic graph.

We denote the unlabeled version of DAG(G) (i.e., the set of all labeled directed graphs
with the same structure as DAG(G)) by UDAG(G). We will also, at times, abuse notation
and write UDAG(G) as the set of all labeled, undirected graphs with the same structure as
UDAG(G) and with labeling consistent with UDAG(G) as a partial order.

We have the following observations regarding these directed graphs.

Lemma 9. For any two graphs g1, g2 satisfying UDAG(g1) = UDAG(g2), we have

P (G = g1) = P (G = g2).

Proof. This can be seen by deriving a formula for the probability assigned to a given graph g
by the model and noting that it only depends on the structure and admissibility (a graph is
said to be admissible if it is in Adm(S) for some unlabeled graph S). If g is not admissible,
then there exists some t ∈ [n] such that the degree of vertex t at time t is not equal to m. This
has probability 0, so P (G = g) = 0.

Now, if g is an admissible graph, then we can write P (G = g) as a product over possible
degrees of vertices at time n: let degg(v) denote the degree of vertex v in g. We consider the
immediate ancestors (i.e., the parents, the vertices that chose to connect to v) of v in DAG(g),
denoting the number of edges that they supply to v by d1(v), ..., dk(v)(v), where k(v) is the
number of parents of v. We also denote by Kg(v) the number of orders in which the parents of
v could have arrived in the graph (which is only a function of UDAG(g). Then we can write
P (G = g) as follows:

P (G = g) =

∏
d≥m

∏
v : degg(v)=dKg(v)

∏kg(v)
j=1

(
m
j

)
(m+ d1(v) + · · · dj−1(v))dj(v)∏n−1

i=1 (2mi)m
. (37)

Here, each factor of the v product corresponds to the sequence of d−m choices to connect to
vertex v, which can be ordered in a number of ways determined by the structure of DAG(g).
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The innermost product gives the contribution of each such choice. Since this formula is only in
terms of the degree sequence of the graph and UDAG(g), two graphs that are admissible and
have the same unlabeled DAG must have the same probability, which completes the proof.

Lemma 10. Fix an unlabeled graph S on n nodes with P (S(G) = S) > 0 with some fixed
m ≥ 1. Then the number of distinct unlabeled directed graphs with undirected structure S is at
most eΘ(n).

Proof. Observe that the number of edges in S is Θ(n), as it arises with positive probability
from PA(m;n) and m is fixed.

Then note that each of the Θ(n) edges may be given one of two orientations, resulting in
at most 2Θ(n) distinct directed graphs, which completes the proof.

The next lemma shows that H(σ|σ(G)) may be expressed in terms of the quantities just
defined.

Lemma 11. Fix m ≥ 1 and consider G ∼ PA(m;n). Let σ ∈ Sn be a uniformly random
permutation. Then

H(σ|σ(G)) = E[log |ΓUDAG(G)(G)|] +O(n). (38)

Proof. First, we give an alternative representation of H(σ|σ(G)). Recall that H(G|S(G)) =
H(σ|σ(G)) − E[log |Aut(G)|]. The plan is to derive an alternative expression for H(G|S(G))
as follows: by the chain rule for entropy, we have

H(G|S(G)) = H(G,UDAG(G)|S(G))

= H(UDAG(G)|S(G)) +H(G|UDAG(G))

= O(n) +H(G|UDAG(G)).

Here, the last equality is a result of Lemma 10. Now, by Lemma 9, we have

H(G|UDAG(G)) = E[log |AdmUDAG(G)(G)|] = E[log |ΓUDAG(G)|]− E[log |Aut(G)|] +O(n),

where the second equality is an application of (36). This completes the proof.

Remark 2. Note that Lemma 11 is robust to small variations in the model.

Now, to calculate H(σ|σ(G)), it thus remains to estimate E[log |ΓUDAG(G)(G)|].
We will lower bound |ΓUDAG(G)(G)| in terms of the sizes of the levels of DAG(G), defined

as follows: L1 consists of the vertices with in-degree 0 (i.e., with total degree m). Inductively,
Lj is the set of vertices incident on edges coming from vertices in Lj−1. Equivalently, a vertex
w is an element of some level ≥ j if and only if there exist vertices v1 < · · · < vj such with
v1 > w and the path vjvj−1 · · · v1w exists in G.

Then it is not too hard to see that any product of permutations that only permute vertices
within levels is a member of ΓUDAG(G)(G). Thus, we have, with probability 1,

|ΓUDAG(G)(G)| ≥
∏
j≥1

|Lj |!.

To continue, we will prove a proposition (Proposition 1 below), to the effect that almost
all vertices lie in low levels of DAG(G). We define X = X(ε, k) to be the number of vertices
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w > εn that are at level ≥ k in DAG(G). In other words, w is counted in X if there exist
vertices v1 < v2 < · · · < vk for which w < v1 and the path vk · · · v1w exists in DAG(G).

We have the following lemma bounding E[X]:

Lemma 12. For any ε = ε(n) > 0, there exists k = k(ε) for which

E[X(ε, k)] ≤ εn.

In particular, we can take any k satisfying

k ≥ 15
m

ε2
log(3/ε). (39)

Proof. Suppose that w > εn. We want to upper bound the probability that there exist vertices
v1 < · · · < vk, with w < v1, such that there is a path vk · · · v1w in G. Applying Corollary 1,
this probability is upper bounded by(

n

k

)
· ((5m/ε) log(3/ε))k

nk
≤ e ((5m/ε) log(3/ε))k

kk

Now, it is sufficient to show that we can choose k so that this is ≤ ε. In fact, we can choose
k ≥ 3 · 5m

ε2
log(3/ε). This completes the proof.

Now, we define Y = Y (k) to be the number of vertices w ≥ 1 that are at level ≥ k in
DAG(G). The variables X and Y are related by the following inequalities, which hold with
probability 1:

X ≤ Y ≤ X + εn.

Now, to get a bound on Y , we apply Markov’s inequality:

Pr[Y ≥ δn] ≤ E[Y ]

δn
≤ E[X] + εn

δn
,

and provided that (39) holds, we can further bound by

Pr[Y ≥ δ] ≤ 2ε/δ

using Lemma 12. Then, provided that we choose δ =
√

2ε, we have shown that

Pr[Y ≥ δ] ≤ δ.

This is summarized in the following proposition.

Proposition 1. For any δ = δ(n) > 0, there exists ` = `(δ) for which the number of vertices
that are not in the first ` layers of DAG(G) is at most δn, with high probability.

In particular, we can take ` ≥ 15m
2δ4

log(3/(2δ2)).

We now use Proposition 1 to finish our lower bound on E[log |ΓUDAG(G)(G)|]. Fix ε = 1
log2 n

,

so that δ =
√

2ε = Θ(1/ log n), and choose ` = 15m
2δ4

log(3/(2δ2)). Then, defining A to be the
event that the number of vertices in layers > ` is at most δn = Θ(n/ log n), we have

E[log |ΓUDAG(G)(G)|] ≥ E[log |ΓUDAG(G)(G)|
∣∣ A](1− δ).
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Among the ` layers, there are at most `− 1 that satisfy, say, |Li| < log log n, since
∑`

i=1 |Li| ≥
(1− δ)n. So we have the following:

∑̀
i=1

log(|Li|!) = O(` log log n log log log n) +
∑
i∈B

(|Li| log |Li|+O(|Li|)),

where B = {i ≤ ` : |Li| ≥ log log n}, and we used Stirling’s formula to estimate the terms
i ∈ B.

The sum
∑

i∈B O(|Li|) = O((1− δ)n) = O(n), so it remains to estimate∑
i∈B
|Li| log |Li|.

Let N =
∑

i∈B |Li|. Then, multiplying and dividing each instance of |Li| by N in the above
expression, it becomes∑

i∈B
|Li| log |Li| = N

∑
i∈B

|Li|
N

log
|Li|
N

+N
∑
i∈B

|Li|
N

logN.

The first sum is simply −NH(X), where X is a random variable distributed according to the
empirical distribution of the vertices on the levels i ∈ B. Since |B| ≤ `, we have that | −
NH(X)| ≤ N log `. Thus, the first term in the above expression is O(N log `) = O(n log log n).

Meanwhile, the second term is N logN
∑

i∈B
|Li|
N = N logN = n log n − O(n log logn). Thus,

in total, we have shown

E[log |ΓUDAG(G)(G)|] ≥ n log n−O(n log log n).

Compare this with the trivial upper bound on E[log |ΓUDAG(G)(G)|]:

E[log |ΓUDAG(G)(G)|] ≤ log n! = n log n− n+O(log n).

This implies that we have recovered the first term, but there is a gap in our lower and upper
bounds on the second term.

7 Conclusion and Further Work

In this paper, we just proved that a version of the standard preferential attachment graph is
asymmetric if every node adds more than two edges. It is easy to extend this statement to
the case when the attachment is uniform and a mixture of uniform and preferential: e.g., for
a fixed β ∈ [0, 1], the probability that a connection choice goes to node w at time n+ 1 is

P (vi = w|Gn, v1, ..., vi−1) = β
degn(w)

2mn
+ (1− β)

1

n
.

Another, possibly more practical, model was introduced by Cooper and Frieze [6] in which
essentially the number of edges added follows a given distribution. We believe our methodology
can handle this case, too.

However, consider a model in which the weight of a vertex when m new edges are generated
is proportional to the degree raised to some power α. In this paper we considered α = 1. We are
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confident our approach could be adopted to work for all α > 0 to find the threshold mα for the
asymmetry which, clearly, will grow with α. However, in the case α 6= 1 the problem becomes
much harder since, for instance, the probability that t chooses vertex s as its neighbor depends
not only on the degree degt(s) but on the whole degree sequence at the time t. Nonetheless,
these difficulties could be overcome by modern combinatorial methods and we plan to deal
with this model in the nearest future.
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