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Abstract. With ever increasing amount of available data on protein-protein in-
teraction (PPI) networks and research revealing that thesenetworks evolve at a
modular level, discovery of conserved patterns in these networks becomes an im-
portant problem. Recent algorithms on aligning PPI networks target simplified
structures such as conserved pathways to render these problems computation-
ally tractable. However, since conserved structures that are parts of functional
modules and protein complexes generally correspond to dense subnets of the net-
work, algorithms that are able to extract conserved patterns in terms of general
graphs are necessary. With this motivation, we focus here ondiscovering protein
sets that induce subnets that are highly conserved in the interactome of a pair of
species. For this purpose, we develop a framework that formally defines the pair-
wise local alignment problem for PPI networks, models the problem as a graph
optimization problem, and presents fast algorithms for this problem. In order to
capture the underlying biological processes correctly, webase our framework on
duplication/divergence models that focus on understanding the evolution of PPI
networks. Experimental results from an implementation of the proposed frame-
work show that our algorithm is able to discover conserved interaction patterns
very effectively (in terms of accuracies and computationalcost). While we focus
on pairwise local alignment of PPI networks in this paper, the proposed algorithm
can be easily adapted to finding matches for a subnet query in adatabase of PPI
networks.

1 Introduction

Increasing availability of experimental data relating to biological sequences, coupled
with efficient tools such as BLAST and CLUSTAL have contributed to fundamental
understanding of a variety of biological processes [1, 2]. These tools are used for dis-
covering common subsequences and motifs, which convey functional, structural, and
evolutionary information. Recent developments in molecular biology have resulted in
a new generation of experimental data that bear relationships and interactions between
biomolecules [3]. An important class of molecular interaction data is in the form of
protein-protein interaction (PPI) networks, which provide the experimental basis for
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understanding modular organization of cells, as well as useful information for predict-
ing the biological function of individual proteins [4]. High throughput screening meth-
ods such as two-hybrid analysis [5], mass spectrometry [6],and TAP [7] provide large
amounts of data on these networks.

As revealed by recent studies, PPI networks evolve at a modular level [8] and conse-
quently, understanding of conserved substructures through alignment of these networks
can provide basic insights into a variety of biochemical processes. However, although
vast amounts of high-quality data is becoming available, efficient network analysis
counterparts to BLAST and CLUSTAL are not readily availablefor such abstractions.
As is the case with sequences, key problems on graphs derivedfrom biomolecular inter-
actions include aligning multiple graphs [9], finding frequently occurring subgraphs in
a collection of graphs [10], discovering highly conserved subgraphs in a pair of graphs,
and finding good matches for a subgraph in a database of graphs[11]. In this paper, we
specifically focus on discovering highly conserved subnetsin a pair of PPI networks.
With the expectation that conserved subnets will be parts ofcomplexes and modules,
we base our model on the discovery of two subsets of proteins from each PPI network
such that the induced subnets are highly conserved.

Based on the understanding of the structure of PPI networks that are available for
several species, theoretical models that focus on understanding the evolution of protein
interactions have been developed. Among these, the duplication/divergence model has
been shown to be successful in explaining the power-law nature of PPI networks [12].
In order to capture the underlying biological processes correctly, we base our frame-
work on duplication/divergence models through definition of duplications, matches,
and mismatches in a graph-theoretic framework. We then reduce the resulting align-
ment problem to a graph optimization problem and propose efficient heuristics to solve
this problem. Experimental results based on an implementation of our framework show
that the proposed algorithm is able to discover conserved interaction patterns very ef-
fectively. The proposed algorithm can be also adapted to finding matches for a subnet
query in a database of PPI networks.

2 Related Work

As the amount of cell signaling data increases rapidly, there have been various ef-
forts aimed at developing methods for comparative network analysis. In a relatively
early study, Dandekar et al. [13] comprehensively align glycolysis metabolic pathways
through comparison of biochemical data, analysis of elementary modes, and compar-
ative genome analysis, identifying iso-enzymes, several potential pharmacological tar-
gets, and organism-specific adaptations. While such efforts demonstrate the potential
of interaction alignment in understanding cellular processes, these analyses are largely
manual, motivating the need for automated alignment tools.

As partially complete interactomes of several species become available, researchers
have explored the problem of identifying conserved topological motifs in different
species [8, 14]. These studies reveal that many topologicalmotifs are significantly con-
served within and across species and proteins that are organized in cohesive patterns
tend to be conserved to a higher degree. A publicly availabletool, PathBLAST, adopts
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the ideas in sequence alignment to PPI networks to discover conserved protein path-
ways across species [11]. By restricting the alignment to pathways,i.e., linear chains
of interacting proteins, this algorithm renders the alignment problem tractable, while
preserving the biological implication of discovered patterns.

Since the local alignment of PPI networks for patterns in theform of general graphs
leads to computationally intractable problems, tools based on simplified models are
generally useful. However, as functional modules and protein complexes are likely to
be conserved across species [8], algorithms for aligning general graphs are required for
understanding conservation of such functional units. In a recent study, Sharan et al. [15]
have proposed probabilistic models and algorithms for identifying conserved modules
and complexes through cross-species network comparison. Similar to their approach,
we develop a framework for aligning PPI networks to discoversubsets of proteins in
each species such that the subgraphs induced by these sets are highly conserved. In
contrast to existing methods, our framework relies on theoretical models that focus on
understanding the evolution of protein interaction networks.

3 Theoretical Models for Evolution of PPI Networks

There have been a number of studies aimed at understanding the general structure of PPI
networks. It has been shown that these networks are power-law graphs,i.e., the relative
frequency of proteins that interact withk proteins is proportional tok−γ , whereγ is a
network-specific parameter [16]. In order to explain this power-law nature, Barábasi and
Albert have proposed [16] a network growth model based on preferential attachment,
which is able to generate networks with degree distributionsimilar to PPI networks.
According to this model, networks expand continuously by addition of new nodes and
these new nodes prefer to attach to well-connected nodes when joining the network.
Observing that older proteins are better connected, Eisenberg and Levanon [17] explain
the evolutionary mechanisms behind such preference by the strength of selective pres-
sure on maintaining connectivity of strongly connected proteins and creating proteins
to interact with them. Furthermore, in a relevant study, it is observed that the interac-
tions between groups of proteins that are temporally close in the course of evolution are
likely to be conserved, suggesting synergistic selection during network evolution [18].

A common model of evolution that explains preferential attachment and power-law
nature of PPI networks is the duplication/divergence modelthat is based on gene dupli-
cations [12, 19–21]. According to this model, when a gene is duplicated in the genome,
the node corresponding to the product of this gene is also duplicated together with its
interactions. An example of protein duplication is shown inFigure 1. A protein loses
many aspects of its functions rapidly after being duplicated. This translates into di-
vergence of duplicated (paralogous) proteins in the interactome through deletion and
insertion of interactions. Deletion of an interaction in a PPI network implies the elimi-
nation of an existing interaction between two proteins due to structural and/or functional
changes. Similarly, insertion of an interaction into a PPI network implies the emergence
of a new interaction between two non-interacting proteins,caused by mutations that
change protein surfaces. Examples of insertion and deletion of interactions are also il-
lustrated in Figure 1. If a deletion or insertion is related to a recently duplicated protein,
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Fig. 1. Duplication/divergence model for evolution of PPI networks. Starting with three interac-
tions between three proteins, proteinu1 is duplicated to addu′

1 into the network together with its
interactions (dashed circle and lines). Then,u1 loses its interaction withu3 (dotted line). Finally,
an interaction betweenu1 andu′

1 is added to the network (dashed line).

it is said to be correlated; otherwise, it is uncorrelated [19]. Since newly duplicated
proteins are more tolerant to interaction loss because of redundancy, correlated dele-
tions are generally more probable than insertions and uncorrelated deletions [12]. Since
the elimination of interactions is related to sequence-level mutations, one can expect a
positive correlation between similarity of interaction profiles and sequence similarity
for paralogous proteins [20]. It is also theoretically shown that network growth models
based on node duplications generate power-law distributions [22].

In order to accurately identify and interpret conservationof interactions, complexes,
and modules across species, we base our framework for the local alignment of PPI net-
works on duplication/divergence models. While searching for highly conserved groups
of interactions, we evaluate mismatched interactions and paralogous proteins in light
of the duplication/divergence model. Introducing the concepts of match (conservation),
mismatch (emergence or elimination) and duplication, which are in accordance with
widely accepted models of evolution, we are able to discoveralignments that also allow
speculation about the structure of the network in the commonancestor.

4 Pairwise Local Alignment of PPI Networks

In light of the theoretical models of evolution of PPI networks, we develop a generic
framework for the comparison of PPI networks in two different species. We formally
define a computational problem that captures the underlyingbiological phenomena
through exact matches, mismatches, and duplications. We then formulate local align-
ment as a graph optimization problem and propose greedy algorithms to effectively
solve this problem.

4.1 The Pairwise Local Alignment Problem

A PPI network is conveniently modeled by an undirected graphG(U, E), whereU
denotes the set of proteins anduu′ ∈ E denotes an interaction between proteinsu ∈ U
andu′ ∈ U . For pairwise alignment of PPI networks, we are given two PPInetworks
belonging to two different species, denoted byG(U, E) andH(V, F ). The homology
between a pair of proteins is quantified by a similarity measure that is defined as a
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functionS : (U ∪ V ) × (U ∪ V ) → ℜ. For anyu, v ∈ U ∪ V , S(u, v) measures the
degree of confidence inu andv being orthologous if they belong to different species
and paralogous if they belong to the same species. We assume that similarity scores
are non-negative, whereS(u, v) = 0 indicates thatu andv cannot be considered as
potential orthologs or paralogs. In this respect,S is expected to be highly sparse,i.e.,
each protein is expected to have only a few potential orthologs or paralogs. We discuss
the reliability of possible choices for assessing protein similarity in detail in Section 4.4.

For PPI networksG(U, E) and H(V, F ), a protein subset pairP = {Ũ , Ṽ } is
defined as a pair of protein subsetsŨ ⊆ U and Ṽ ⊆ V . Any protein subset pairP
induces a local alignmentA(G, H, S, P ) = {M,N ,D} of G andH with respect toS,
characterized by a set of duplicationsD, a set of matchesM, and a set of mismatches
N . The biological analog of aduplicationis the duplication of a gene in the course
of evolution. Each duplication is associated with a penalty, since duplicated proteins
tend to diverge in terms of their interaction profiles in the long term [20]. Amatch
corresponds to a conserved interaction between two orthologous protein pairs, which
is rewarded by a match score that reflects our confidence in both protein pairs being
orthologous. Amismatch, on the other hand, is the lack of an interaction in the PPI
network of one of the species between a pair of proteins whoseorthologs interact in
the other species. A mismatch may correspond to the emergence (insertion) of a new
interaction or the elimination (deletion) of a previously existing interaction in one of the
species after the split, or an experimental error. Thus, mismatches are also penalized to
account for the divergence from the common ancestor. We provide formal definitions
for these three concepts to construct a basis for the formulation of local alignment as an
optimization problem.

Definition 1. Local Alignment of PPI networks. Given protein interaction networks
G(U, E), H(V, F ), and a pairwise similarity functionS defined over the union of their
protein setsU ∪ V , any protein subset pairP = (Ũ , Ṽ ) induces a local alignment
A(G, V, S, P ) = {M,N ,D}, where

M = {u, u′ ∈ Ũ , v, v′ ∈ Ṽ : S(u, v) > 0, S(u′, v′) > 0, uu′ ∈ E, vv′ ∈ F} (1)

N = {u, u′ ∈ Ũ , v, v′ ∈ Ṽ : S(u, v) > 0, S(u′, v′) > 0, uu′ ∈ E, vv′ /∈ F}
∪ {u, u′ ∈ Ũ , v, v′ ∈ Ṽ : S(u, v) > 0, S(u′, v′) > 0, uu′ /∈ E, vv′ ∈ F}

(2)

D = {u, u′ ∈ Ũ : S(u, u′) > 0} ∪ {v, v′ ∈ Ṽ : S(v, v′) > 0} (3)

Each matchM ∈ M is associated with a scoreµ(M). Each mismatchN ∈ N and
each duplicationD ∈ D are associated with penaltiesν(N) andδ(D), respectively.

The score of alignmentA(G, H, S, P ) = {M,N ,D} is defined as:

σ(A) =
∑

M∈M

µ(M) −
∑

N∈N

ν(N) −
∑

D∈D

δ(D). (4)

We aim to find local alignments with locally maximal score (drawing an analogy
to sequence alignment [23],high-scoring subgraph pairs). This definition of the lo-
cal alignment problem provides a general framework for the comparison of PPI net-
works, without explicitly formulating match scores, mismatch, and duplication penal-
ties. These functions can be selected and their relative contributions can be tuned based
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on theoretical models and experimental observations to effectively synchronize with
the underlying evolutionary process. Clearly, an appropriate basis for deriving these
functions is the similarity score functionS. We discuss possible choices for scoring
functions in detail in Section 4.4.

A sample instance of the pairwise local alignment problem isshown in Figure 2(a).
Consider the alignment induced by the protein subset pairŨ = {u1, u2, u3, u4} and
Ṽ = {v1, v2, v3}, shown in Figure 2(b). The only duplication in this alignment is
(u1, u2). If this alignment is chosen to be a “good” one, then, based onthe existence
of this duplication in the alignment, ifS(u2, v1) < S(u1, v1), we can speculate that
u1 andv1 have evolved from the same gene in the common ancestor, whileu2 is an
in-paralog that emerged from duplication ofu1 after split. The match set consists of
interaction pairs(u1u1, v1v1), (u1u2, v1v1), (u1u3, v1v3), and(u2u4, v1v2). Observe
thatv1 is mapped to bothu1 andu2 in the context of different interactions. This is as-
sociated with the functional divergence ofu1 andu2 after duplication. Moreover, the
self-interaction ofv2 in H is mapped to an interaction between paralogous proteins
in G. The mismatch set is composed of(u1u4, v1v2), (u2u2, v1v1), (u2u3, v1v3), and
(u3u4, v3v2). The interactionu3u4 in G is left unmatched by this alignment, since the
only possible pair of proteins iñV that are orthologous to these two proteins arev3 and
v2, which do not interact inH . One conclusion that can be derived from this alignment
is the elimination or emergence of this interaction in one ofthe species after the split.
The indirect path betweenv3 andv2 throughv1 may also serve as a basis for the tol-
erability of the loss of this interaction. We can also simplyattribute this observation to
experimental noise. However, if we includev4 in Ṽ as well, then the induced alignment
is able to matchu3u4 andv3v4. This will strengthen the probability that this interaction
existed in the common ancestor. However,v4 comes at the price of another duplication
since it is paralogous tov2. This example illustrates the challenge of correctly matching
proteins to their orthologs in order to reveal the maximum amount of reliable informa-
tion about the conservation of interaction patterns. Our model translates this problem
into a trade-off between mismatches and duplications, favoring selection of duplicate
proteins that have not quite diverged in the alignment.

4.2 Alignment Graphs and the Maximum-Weight Induced Subgraph Problem

It is possible to collect information on matches and mismatches between two PPI net-
works into a single alignment graph by computing a modified version of the graph
Cartesian product that takes orthology into account. Assigning appropriate weights to
the edges of the alignment graph, the local alignment problem defined in the previous
section can be reduced to an optimization problem on this alignment graph. We define
an alignment graph for this purpose.

Definition 2. Alignment Graph. For a pair of PPI networksG(U, E), H(V, F ), and
protein similarity functionS, the corresponding weighted alignment graphG(V,E) is
computed as follows:

V = {v = {u, v} : u ∈ U, v ∈ V andS(u, v) > 0}. (5)
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Fig. 2. (a) An instance of the pairwise local alignment problem. Theproteins that have non-zero
similarity scores (i.e., are potentially orthologous), are colored the same. Note that S does not
necessarily induce a disjoint grouping of proteins in practice. (b) A local alignment induced
by the protein subset pair{u1, u2, u3, u4} and{v1, v2, v3}. Ortholog and paralog proteins are
vertically aligned. Existing interactions are shown by solid lines, missing interactions that have an
existing ortholog counterpart are shown by dotted lines. Solid interactions between two aligned
proteins in separate species correspond to a match, one solid one dotted interaction between two
aligned proteins in separate species correspond to a mismatch. Proteins in the same species that
are on the same vertical line correspond to duplications.

In other words, we have a node in the alignment graph for each pair of ortholog pro-
teins. Each edgevv

′ ∈ E, wherev = {u, v} andv
′ = {u′, v′}, is assigned weight

w(vv
′) = µ(uu′, vv′) − ν(uu′, vv′) − δ(u, u′) − δ(v, v′). (6)

Here,µ(uu′, vv′) = 0 if (uu′, vv′) /∈ M, and similarly for mismatch and duplication
penalties.

Consider the PPI networks in Figure 2(a). To construct the corresponding alignment
graph, we first compute the product of these two PPI networks to obtain five nodes that
correspond to five ortholog protein pairs. We then put an edgebetween two nodes of
this graph if the corresponding proteins interact in both networks (match edge), interact
in only one of the networks (mismatch edge), or at least one of them is paralogous (du-
plication edge), resulting in the alignment graph of Figure 3(a). Note thatthe weights
assigned to these edges, which are shown in the figure, are notconstant, but are func-
tions of their incident nodes. Observe that the edge between{u1, v1} and{u2, v1} acts
a match and duplication edge at the same time, allowing analysis of the conservation of
self-interactions of duplicated proteins.

The weighted alignment graph is conceptually similar to theorthology graph of Sha-
ran et al. [15]. However, instead of accounting for similarity of proteins through node
weights, we encapsulate the orthology information in edge weights, which also allows
consideration of duplications effectively. This construction of the alignment graph al-
lows us to formulate the alignment problem as a graph optimization problem defined
below.

Definition 3. Maximum Weight Induced Subgraph Problem.Given graphG(V,E)
and a constantǫ, find a subset of nodes,̃V ∈ V such that the sum of the weights of the
edges in the subgraph induced byṼ is at leastǫ, i.e., W (Ṽ) =

∑

v,v′∈Ṽ
w(vv

′) ≥ ǫ.
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Fig. 3. (a) Alignment graph corresponding to the instance of Fig. 2(a). Note that match
scores, mismatch and duplication penalties are functions of incident nodes, which is not
explicitly shown in the figure for simplicity. (b) Subgraph induced by node set̃V =
{{u1, v1}, {u2, v1}, {u3, v3}, {u4, v2}}, which corresponds to the alignment shown in Fig. 2(b).

Not surprisingly, this problem is equivalent to the local alignment of PPI networks
defined in the previous section, as formally stated in the following theorem:

Theorem 1. Given PPI networksG, H , and a protein similarity functionS, let
G(V,E, w) be the corresponding alignment graph. IfṼ is a solution to the maximum
weight induced subgraph problem onG(V,E, w), thenP = {Ũ , Ṽ } induces an align-
mentA(G, H, S, P ) with σ(A) = W (Ṽ), whereŨ = {u ∈ U : ∃v ∈ V s.t.{u, v} ∈
Ṽ} andṼ = {v ∈ V : ∃u ∈ U s.t.{u, v} ∈ Ṽ}.

Proof. Follows directly from the construction of alignment graph.
The induced subgraph that corresponds to the local alignment in Figure 2(b) is

shown in Figure 3(b).
It can be easily shown that the maximum-weight induced subgraph problem is NP-

complete by reduction from maximum clique, by assigning unit weight to edges and
−∞ to non-edges. This problem is closely related to the maximumedge subgraph [24]
and maximum dispersion problems [25] that are also NP-complete. Although the posi-
tive weight restriction on these problems limits the application of existing algorithms to
the maximum weight induced subgraph problem, the nature of the conservation of PPI
networks makes a simple greedy heuristic quite effective for the local alignment of PPI
networks.

4.3 A Greedy Heuristic for Local Alignment of Protein Interaction Networks

In terms of protein interactions, functional modules and protein complexes are densely
connected while being separable from other modules,i.e., a protein in a particular mod-
ule interacts with most proteins in the same module either directly or through a com-
mon module hub, while it is only loosely connected to the restof the network [26].
Since analysis of conserved motifs reveals that proteins inhighly connected motifs are
more likely to be conserved suggesting that such dense motifs are parts of functional
modules [8], high-scoring local alignments are likely to correspond to functional mod-
ules. Therefore, in the alignment graph, we can expect that proteins that belong to a
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procedure GREEDYMAWISH(G)
⊲ Input G(V, E, w): Alignment graph 6 repeat
⊲ Input ǫ: Threshold on subgraph weight 7 Ṽ← Ṽ ∪ {ṽ}

⊲ Output Ṽ: Subset of selected nodes 8 W ←W + g(ṽ)

⊲ g(v): Gain of addingv into Ṽ 9 for eachv ∈ (V \ Ṽ) s.t.̃vv ∈ E do
⊲ W : Total subgraph weight 10 g(v)← g(v) + w(ṽv)

1 for eachv ∈ V do 11 ṽ← argmax
v∈(V\Ṽ)g(v)

2 g(v)← w(vv) 12 until g(v) ≤ 0
3 w(v) =

P

vv′∈E
w(vv

′) 13 if W > 0

4 Ṽ← ∅, W ← 0 14 then return Ṽ

5 ṽ← argmax
v∈V

w(v) 15 else return∅

Fig. 4. Greedy algorithm for finding a set of nodes that induces a subgraph of maximal total
weight on the alignment graph.

conserved module will induce heavy subgraphs, while being loosely connected to other
parts of the graph. This observation leads to a greedy algorithm that can be expected to
work well for the solution of the maximum weight induced subgraph problem on the
alignment graph of two PPI networks. Indeed, similar approaches are shown to perform
well in discovering conserved or dense subnets in PPI networks [15, 27]. By seeding a
growing subgraph with a protein that has a large number of conserved interactions and
small number of mismatched interactions (i.e., a conserved hub) and adding proteins
that share conserved interactions with this graph one by one, it is possible to discover a
group of proteins with a set of dense interactions that are conserved, likely being part
of a functional module.

A sketch of the greedy algorithm for finding a single conserved subgraph on the
alignment graph is shown in Figure 4. This algorithm grows a subgraph, which is of lo-
cally maximal total weight. To find all non-redundant “good”alignments, we start with
the entire alignment graph and find a maximal subgraph. If this subgraph is statistically
significant according to the reference model described in Section 4.5, we record the
alignment that corresponds to this subgraph and mark its nodes. We repeat this process
by allowing only unmarked nodes to be chosen as seed until no subgraph with positive
weight can be found. Restricting the seed to only non-aligned nodes avoids redundancy
while allowing discovery of overlapping alignments. Finally, we rank all subgraphs
based on their significance and report the corresponding alignments. A loose bound on
the worst-case running time of this algorithm isO(|V||E|), since each alignment takes
O(|E|) time and each node can be the seed at most once. Assuming that the number of
orthologs for each protein is bounded by a constant, the sizeof the alignment graph is
linear in the total size of the input networks.

4.4 Selection of Model Components

In order for the discovered PPI network alignments to be biologically meaningful, se-
lection of the underlying similarity function and the models for scoring and penalizing
matches, mismatches, and duplications is crucial, as in thecase of sequences.
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Similarity Function. Since proteins that are involved in a common functional module,
or more generally, proteins that interact with each other, show local sequence similar-
ities, care must be taken while employing pairwise sequencealignment as a measure
of potential orthology between proteins. Furthermore, while aligning two PPI networks
and interpreting the alignment, only duplications that correspond to proteins that are du-
plicated after the split of species are of interest. Such protein pairs are called in-paralogs,
while the others are called out-paralogs [28]. Unfortunately, distinguishing between in-
paralogs and out-paralogs is not trivial. Therefore, we assign similarity scores to protein
pairs conservatively by detecting orthologs and in-paralogs using a separate algorithm,
INPARANOID [28], which is developed for finding disjoint ortholog clusters in two
species. Each ortholog cluster discovered by this algorithm is characterized by two
main orthologs, one from each species, and possibly several other in-paralogs from
both species. The main orthologs are assigned a confidence value of 1.0, while the in-
paralogs are assigned confidence scores based on their relative similarity to the main
ortholog in their own species. We define the similarity between two proteinsu andv as

S(u, v) = confidence(u)× confidence(v). (7)

This provides a normalized similarity function that takes values in the interval[0, 1] and
quantifies the confidence in the two proteins being orthologous or paralogous.

Scores and Penalties.Match score.A match is scored positively in an alignment to re-
ward a conserved interaction. Therefore, the score represents the similarity between the
two interactions that are matched. Since the degree of conservation in the two ortholog
protein pairs involved in the matched interactions need notbe the same, it is appropriate
to conservatively assign the minimum of the similarities atthe two ends of the matching
interaction to obtain:

µ(uu′, vv′) = µ̄S(uu′, vv′), (8)

whereS(uu′, vv′) = min{S(u, v), S(u′, v′)} and µ̄ is a pre-determined parameter
specifying the relative weight of a match in the total alignment score. While we use
this definition ofS(uu′, vv′) in our implementation,S(u, v) × S(u′, v′) provides a
reliable measure of similarity between the two protein pairs.

Mismatch penalty.Similar to match score, mismatch penalty is defined as:

ν(uu′, vv′) = ν̄S(uu′, vv′), (9)

whereν̄ is the relative weight of a mismatch. With this penalty function, each lost inter-
action of a duplicate protein is penalized to reflect the divergence of duplicate proteins.

Duplication penalty.Duplications are penalized to account for the divergence ofthe
proteins after duplication. Sequence similarity providesa crude approximation to the
age of duplication and likelihood of being paralogs [21]. Hence, duplication penalty is
defined as:

δ(u, u′) = δ̄(d − S(u, u′)), (10)

whereδ̄ is the relative weight of a duplication andd ≥ maxu,u′∈U S(u, u′) is a param-
eter that determines the extent of penalizing duplications. Considering the similarity
function of (7), settingd = 1.0 results in no penalty for duplicates that are paralogous
to the main ortholog with 100% confidence.
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4.5 Statistical Significance

To evaluate the statistical significance of discovered high-scoring alignments, we com-
pare them with a reference model generated by a random source. In the reference model,
it is assumed that the interaction networks that belong to the two species are indepen-
dent from each other as well as the protein sequences. To accurately capture the power-
law nature of PPI networks, we assume that the interactions are generated randomly
from a distribution characterized by a given degree sequence. The probabilityquu′ of
observing an interaction between two proteinsu, u′ ∈ U for the degree sequence de-
rived fromG can be estimated by a Monte Carlo algorithm that repeatedly swaps the
incident nodes of randomly chosen edges [15]. On the other hand, we assume that the
sequences are generated by a memoryless source, such thatu ∈ U andv ∈ V are or-
thologous with probabilityp. Similarly, u, u′ ∈ U andv, v′ ∈ V are paralogous with
probabilitypU andpV , respectively. Since the similarity function of (7) provides a mea-
sure of the probability of true homology between a given pairof proteins, we estimate

p by
P

u∈U,v∈V
S(u,v)

|U||V | . Hence,E[S(u, v)] = p for u ∈ U, v ∈ V . The probabilities of
paralogy are estimated similarly.

In the reference model, the expected value of the score of an alignment induced by
Ṽ ⊆ V is

E[W (Ṽ)] =
∑

v,v′∈Ṽ

E[w(vv
′)],

where

E[w(vv
′)] = µ̄p2quu′qvv′ − ν̄p2(quu′ (1 − qvv′) + (1 − quu′)qvv′ )

−δ̄(pU (1 − pU ) + pV (1 − pV ))
(11)

is the expected weight of an edge in the alignment graph. Moreover, with the sim-
plifying assumption of independence between interactions, we haveV ar[W (Ṽ)] =
∑

v,v′∈Ṽ
V ar[w(vv

′)], enabling us to compute thez-score to evaluate the statistical
significance of each discovered high-scoring alignment, under the normal approxima-
tion that we assume to hold.

4.6 Extensions to the Model

Accounting for Experimental Error. PPI networks obtained from high-throughput
screening are prone to errors in terms of both false negatives and positives [4]. While
the proposed framework can be used to detect experimental errors through cross-species
comparison to a certain extent, experimental noise can alsodegrade the performance of
the alignment algorithm. In other words, mismatches shouldbe penalized for lost inter-
actions during evolution, not for experimental false negatives. To account for such errors
while analyzing interaction networks, several methods have been developed to quantify
the likelihood of an interaction or complex co-membership between proteins [29–31].
Given the prior probability distribution for protein interactions and set of observed in-
teractions, these methods compute the posterior probability of interactions based on
Bayesian models. Hence, PPI networks can be modeled by weighted graphs to account
for experimental error more accurately.
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While the network alignment framework introduced in Section 4.1 assumes that
interactions are represented by unweighted edges, it can beeasily generalized to a
weighted graph model as follows. Assuming that weight̟uv represents the posterior
probability of interaction betweenu andv, we can define match score and mismatch
penalty in terms of their expected values derived from theseposterior probabilities.
Therefore, for anyu, u′ ∈ U andv, v′ ∈ V , we have

µ(uu′, vv′) = µ̄S(uu′, vv′)̟uu′̟vv′ (12)

ν(uu′, vv′) = ν̄S(uu′, vv′)(̟uu′(1 − ̟vv′) + (1 − ̟uu′)̟vv′ ). (13)

Note that match and mismatch sets are not necessarily disjoint here in contrast to the
unweighted graph model, which is indeed a special case of this model.

Tuning Model Components and Parameters.Sequence similarity. A more flexible
approach for assessing similarity between proteins is direct employment of sequence
alignment scores. In PathBLAST [32], the similarity between two proteins is defined as
the log-likelihood ratio for homology,i.e., S(u, v) = log(p(u, v)/p̄), wherep(u, v) is
the probability of true homology betweenu andv given the BLASTE value of their
alignment and̄p is the expected value ofp over all proteins in the PPI networks being
aligned. To avoid consideration of similarities that do notresult from orthology, it is
necessary to set cut-off values on the significance of alignments [32, 20].

Shortest-path mismatch model.Since proteins that are linked by a short alterna-
tive path are more likely to tolerate losing their interaction, mismatch penalty can be
improved using a shortest-path mismatch model, defined as:

ν(uu′, vv′) = ν̄S(uu′, vv′)(max{∆(u, u′), ∆(v, v′)} − 1), (14)

where∆(u, u′) is the length of the shortest path between proteinsu andu′. While this
model is likely to improve the alignment algorithm, it is computationally expensive
since it requires solution of the all pairs shortest path problem on both PPI networks.

Linear duplication model.The alignment graph model enforces each duplicate pair
in an alignment to be penalized. For example, if an alignmentcontainsn paralogous
proteins in one species,

(

n
2

)

duplications are penalized to account for each duplicate
pair. However, in the evolutionary process, each paralogous protein is the result of a
single duplication,i.e., n paralogous proteins are created in onlyn − 1 duplications.
Therefore, we refer to the current model asquadratic duplication model, since the num-
ber of penalties is a quadratic function of number of duplications. While this might be
desirable as being more restrictive on duplications, to be more consistent with the un-
derlying biological processes, it can be replaced by alinear duplication model. In this
model, each duplicate protein is penalized only once, basedon its similarity with the
paralog that is most similar to itself.

5 Experimental Results

In this section, we present local alignment results to illustrate the effectiveness of the
proposed framework and the underlying algorithm on interaction data retrieved from the
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Homo Sapiens

PO22ANDR OCT1PO31GCR HMG2 OBF1ESR1 PRGRCBP GRIP1 HMG1ZAC1 THB1TIF2
Mus Musculus

PO22ANDR OCT1PO31GCR HMG2 OBF1ESR1 PRGRCBP GRIP1 HMG1ZAC1 THB1TIF2

Fig. 5. A conserved subnet that is part of DNA-dependent transcription regulation in human and
mouse PPI networks. Ortholog proteins are vertically aligned. Existing interactions are shown
by solid edges, missing interactions that have an existing orthologous counterpart in the other
species are shown by dotted edges.

DIP protein interaction database [33]. We align the PPI networks of two mammalians
that are available in the database;Homo sapiens(Hsapi) andMus musculus(Mmusc).
As of October 2004, the Hsapi PPI network contains 1369 interactions among 1065 pro-
teins while Mmusc PPI network contains 286 interactions among 329 proteins. Running
INPARANOID on this set of 1351 proteins, we discover 237 ortholog clusters. Based on
the similarity function induced by these clusters, we construct an alignment graph that
consists of 273 nodes and 1233 edges. The alignment graph contains 305 matched inter-
actions, 205 mismatched interactions in Hsapi, 149 mismatched interactions in Mmusc,
536 duplications in Hsapi, and 384 duplications in Mmusc. Wethen compute local
alignments using the algorithm of Section 4.3 on this graph.By trying alternate settings
for the relative weights of match score and mismatch, duplication penalties, we identify
54 non-redundant alignments, 15 of which contain at least 3 proteins on each network.
Note that construction of alignment graph and discovery of local alignments on this
graph takes only a few milliseconds.

A conserved subnet of DNA-dependent transcription regulation that is found to be
statistically significant (z-score=18.1) is shown in Figure 5. The subnet is composed
of three major common functional groups, namely transcription factors and coactiva-
tors PO22, PO31, OCT1, TIF2, OBF1, steroid hormone receptors GCR, ANDR, ESR1,
PRGR, GRIP1, THB1, and high mobility proteins HMG1 and HMG2.Indeed, it is
known that HMG1 and HMG2 are co-regulatory proteins that increase the DNA bind-
ing and transcriptional activity of the steroid hormone class of receptors in mammalian
cells [34]. All proteins in this subnet are localized in nucleus, with mobility proteins
particularly localizing in condensed chromosome. This subnet contains 17 matching
interactions between 15 proteins. Two interactions of TIF2(transcriptional intermedi-
ary factor 2) that exist in human are missing in mouse. If we increase the relative weight
of mismatch penalties in the alignment score, the alignmentdoes not contain TIF2 any
more, providing a perfect match of 16 interactions.

The subnet that is part of transforming growth factor beta receptor signaling path-
way, which is significantly conserved (z-score=19.9) in human and mouse PPI networks
is shown in Figure 6. This subnet contains 8 matching interactions among 10 proteins.
It is composed of two separate subnets that are connected through the interaction of
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Homo Sapiens

BMRB AVR2ALK3BMP4 BMRA BMP6 AVR1 AVRB BMP7 GDF5
Mus Musculus

BMRB AVR2ALK3BMP4 BMRA BMP6 AVR1 AVRB BMP7 GDF5

Fig. 6. A conserved subnet that is part of transforming growth factor beta receptor signaling
pathway in human and mouse PPI networks.

Homo Sapiens Mus Musculus

1A02 1B14 1B54 1B51 1B21 HLAB

B2MG

HLAE HA1B HA12 HA11

B2MG

Fig. 7. A conserved subnet that is part of antigen presentation and antigen processing in human
and mouse PPI networks. Homologous proteins are horizontally aligned. Paralogous proteins in
a species are shown from left to right in the order of confidence in being orthologous to the
respective proteins in the other species.

their hubs, namely BMP6 (bone morphogenetic protein 6 precursor) and BMRB (ac-
tivin receptor-like kinase 6 precursor). All proteins in this subnet have the common
function of transforming growth factor beta receptor activity and are localized in the
membrane. Note that self-interactions of three proteins inthis subnet that exist in hu-
man PPI network are missing in mouse and one self-interaction that exists in mouse is
missing in human.

As an example for duplications, a subnet that is part of antigen presentation and anti-
gen processing, which is significantly conserved (z-score=456.5) in human and mouse
PPI networks is shown in Figure 7. This subnet is a star network of several paralo-
gous class I histocompatibility antigens interacting withB2MG (beta-2 microglobulin
precursor) in both species. In the figure, paralogous proteins are displayed in order of
confidence in being orthologous to the corresponding proteins in the other species from
top to bottom. This star network is associated with MHC classI receptor activity. Since
all proteins that are involved in these interactions are homologous, we can speculate
that all these interactions have evolved from a single common interaction. Note that
such patterns are found only with the help of the duplicationconcept in the alignment
model. Neither a pathway alignment algorithm, nor an algorithm that tries to match
each protein with exactly one ortholog in the other species will be able to detect such
conserved patterns. Indeed, this subnet can only be discovered when the duplication
coefficient is small (̄δ ≤ 0.12µ̄).
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6 Concluding Remarks and Ongoing Work

This paper presents a framework for local alignment of protein interaction networks
that is guided by theoretical models of evolution of these networks. The model is based
on discovering sets of proteins that induce conserved subnets with the expectation that
these proteins will constitute a part of protein complexes or functional models, which
are expected to be conserved together. A preliminary implementation of the proposed
algorithm reveals that this framework is quite successful in uncovering conserved sub-
structures in protein interaction data.

We are currently working on a comprehensive implementationof the proposed
framework that allows adaptation of several models for assessing protein similarities
and scoring/penalizing matches, mismatches and duplications. Furthermore, we are
working on a rigorous analysis of distribution of the alignment score, which will en-
able more reliable assessment of statistical significance.Once these enhancements are
completed, the proposed framework will be established as a tool for pairwise alignment
of PPI networks, that will be publicly available through a web interface. The frame-
work will also be generalized to the search of input queries in the form of subnets in
a database of PPI networks. Using this tool researchers willbe able to find conserved
counterparts of newly discovered complexes or modules in several species.
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