Finding biclusters in gene expression data
by random projections

Stefano Lonardi Wojciech Szpankowski Qiaofeng Yang
Dept. of Computer Science Dept. of Computer Sciences Dept. of Computer Science
University of California Purdue University University of California
Riverside, CA 92521 West Lafayette, IN 47907 Riverside, CA 92521
Abstract

Given a matrix X composed of symbols, a bicluster is a submatrix obtained by removing
some of the rows and some of the columns of X in such a way that each row of what is left
reads the same string. In this paper, we are concerned with the problem of finding the bicluster
with the largest area in a large matrix X. The problem is first proven to be NP-complete.
We present a fast and efficient randomized algorithm that discovers the largest bicluster by
random projections. A detailed probabilistic analysis of the algorithm and an asymptotic study
on the statistical significance of the solutions are given. We report results of simulations on syn-
thetic data and preliminary experimental results on the analysis of the leukemia gene expression
dataset.

1 Introduction

Clustering refers to the problem of finding a partition of n vectors in an m-dimensional space, such
that the vectors in each cluster are “close” to one another (according to some predefined distance).
The large majority of clustering algorithms do not perform well on high dimensional spaces because
in such spaces data becomes very sparse (see, e.g., [2, 1]).

Recent research has been focused on the problem of finding hidden sub-structures in large
matrices composed by thousands of high dimensional vectors (see, e.g., [4, 25, 24, 3, 27, 22, 18, 21]).
This problem is known as biclustering. In biclustering, one is interested in determining the similarity
in a subset of the dimensions (subset that has to be determined as well). Although there exists
several distinct definitions of a bicluster, the problem can be informally described as the problem
of finding a partition of the vectors and a subset of the dimensions such that the projections along
those directions of the vectors in each cluster are close to one another. The problem requires to
cluster the vectors and the dimensions simultaneously, thus the name “biclustering”.

Biclustering has important applications in several areas, such as data mining, machine learning,
and pattern recognition. Data arising from text analysis, market-basket data analysis, web logs,
etc., is usually arranged in a contingency table or co-occurrence table, such as, a word-document
table, a product-user table, a cpu-job table or a webpage-user table. Discovering a large bicluster
in a product-user matrix indicates, for example, which users share the same preferences. Finding
biclusters has therefore applications in recommender systems and collaborative filtering, identifying
web communities, load balancing, discovering association rules, among others.

The application domain of primary interest here is the analysis of gene expression data obtained
from microarray experiments. Gene expression data is typically arranged in a table with rows
corresponding to genes, and columns corresponding to patients, tissues, time points, etc. The
classical approach to analyze microarray data is clustering. The process of clustering partitions



genes into mutually exclusive clusters under the assumption that genes that are involved in the
same genetic pathway behave similarly across all the testing conditions. The assumption might
be true when the testing conditions are associated with time points. However, when the testing
conditions are heterogeneous, such as patients or tissues, the previous assumption is not appropriate
anymore. One would expect that a group of genes would exhibit similar expression patterns only in
a subset of conditions, such as the subset of patients suffering from the same type of disease. Under
this circumstance, biclustering becomes the alternative to the traditional clustering paradigm. The
results of biclustering may enable one to discover hidden structures in gene expression data in which
many genetic pathways might be embedded. It might also allow one to uncover unknown genetic
pathways, or to assign functions to unknown genes in already known genetic pathways.

Biclustering is indeed, not a new problem. In fact, it is also known under several other names,
namely “co-clustering”, “two-way clustering” and “direct clustering”. The problem was first
introduced in the seventies in a paper by Hartigan [13]. Almost thirty years later, Cheng and
Church [4] raised the interest on this problem for applications in gene expression data analysis.

Several other researchers studied the problem recently. Wang et al. propose the pCluster model
that is capable of discovering shifting or scaling patterns from raw data sets [25]. Tanay et al. [24]
combine a graph-theoretic approach with a statistical modeling of the data to discover biclusters in
large gene expression datasets. Ben-Dor et al. [3] introduce a new notion of a bicluster called order
preserving submatriz, which is a group of genes whose expression level induces a linear ordering
across a subset of the conditions. Murali and Kasif [19] (see also [21]) propose the concept of zmotif,
which is defined as a subset of genes whose expression is simultaneously conserved for a subset of
samples.

As we were writing this document, we became aware of two other very recent contributions
to the subject, by Sheng et al. [22], and Mishra et al. [18], that use a randomized approach
similar with the work described here. Sheng et al. [22] propose a randomized algorithm based on
Gibbs sampling to discover large biclusters in gene expression data. Their model of a bicluster is
probabilistic, that is, each entry of the matrix is associated with a probability. Mishra et al. [18]
are concerned with the problem of finding e-bicliques which maximizes the number of edges'. The
authors give a randomized algorithm but no experimental results are reported.

As in the papers by Murali and Kasif [19] and Sheng et al. [22], our approach to biclustering
gene expression data requires the discretization of the gene expression matrix into a matrix over a
finite alphabet. The simplifying assumption is that the set of states in which each gene operates
is finite, such as up-regulated, down-regulated or unchanged. Once the data is discretized into
strings where each symbol corresponds to a state, the biclustering problem reduces to the problem
of finding a subset of the rows and a subset of the columns such that the submatrix induced has
the property that each row reads the same string. Such a submatrix would therefore correspond
to a group of genes that exhibit a coherent pattern of states over a subset of conditions. This
is indeed the formulation of the problem that we define in Section 2, which is first proven to be
NP-complete. In Section 3 we present a randomized algorithm which is efficient, and easy to
understand and implement. Section 4 presents an asymptotic analysis that allows one to determine
the statistical significance of the solution. Finally, in Section 5 we report simulation results on
synthetic data and preliminary results on the analysis of gene expression data.

'the connection between bicliques and bicluster will be explained in detail in Section 2



2 Notations and problem definition

We use standard concepts and notation about strings. The set 3 denotes a nonempty alphabet of
symbols and a string over X is an ordered sequence of symbols from the alphabet. We use the
variable a as a shorthand for the cardinality of the set X, that is, a = |X|. Given a string z, the
number of symbols in z defines the length |z| of z.

We write zj;, 1 < 4 < |z| to indicate the i-th symbol in z. We use x; ;; shorthand for the
substring z[;z ;1) - - - 77;) where 1 <4 < j < |z|, with the convention that z;;;) = z[;. Substrings in
the form z|;.;) correspond to the prefizes of z, and substrings in the form z[;.,,) to the suffizes of z.

Similarly, we can define a two-dimensional n x m string (or matrix) X € X"*™ over the alphabet
Y. The element (i,7) of X is denoted by X i,j]- A contiguous submatrix from row 7; to row iz and
from column j; to column j; is denoted by X[; iy jy:js-

A row selection of size k of X is defined as the subset of the rows R = {iq,19,...,%x}, where
1 <is <mnforalll <s <k. Similarly, a column selection of size | of X is defined as a subset of
the columns C = {j1,j2,...,51}, where 1 < jy <mforall 1 <t <lI.

The submatrix X (g ¢y induced by the pair (R, C) is defined as the matrix

X

] X X

1,51 i1,J2] 11,]1]
X(ro) = Xis,jr] - Xliz,ja] X,
KXlitogr]  Xlin gl Xlix 1]

Given a selection of rows R, we say that a column j, 1 < j < m, is clean with respect to R if
the symbols in the j-th column of X restricted to the rows R, are identical.

001020
100100
. . 301120 .
Example 1 Given the 6 x 6 matriz X = 201020 | OV the alphabet ¥ = {0, 1, 2, 3}, a selection
131111
110120
110
(R,C) = ({2,5,6},{1,4,6}) results in the matriz Xpc) = | 111 | Given the row selection R =
110

{2,5,6}, columns 1 and 4 are clean.

The problem addressed in this paper is defined as follows.

LARGEST BICLUSTER(f) problem

Instance: A matrix X € X™*™ over the alphabet X.

Question: Find a row selection R and a column selection C' such that the rows of Xy o) are
identical strings and the objective function f(X(g,c)) is maximized.

Some examples of objective functions are the following.
* f2 (X(R,C’)) = |R| provided that |C| = |R)|

* f3 <X(R,C’)) = |R||C]



Example 2 Assume X to be the matriz defined in Example 1. If we choose the objective func-
tions fo there are three solutions, namely ({1,3,4},{2,3,5}) (corresponding to the string 012),
({1,3,4},{2,3,6}) (corresponding to 010) and ({1,3,4},{3,5,6}) (corresponding to 120). If we
choose the objective functions f1 or fs, the solution is ({1,3,4},{2,3,5,6}) (corresponding to 0120).

The problem in general may have multiple solutions which optimize the objective function. The
solutions may also “overlap”, that is, they may share some elements of the original matrix.

The computational complexity of this family of problems depends on the objective function f.
It has been studied mostly from a graph-theoretical viewpoint which corresponds to the special case
> = {0,1}. In fact, observe that a matrix X € {0,1}"*™ is the adjacency matrix of a bipartite
graph G = (V1, Vs, E) with |Vi| = n and |V5| = m. An edge (4,j) € E connects node i € V; to
node j € V5 if X; ; = 1. Thus, a submatrix of 1’s in X corresponds to a subgraph of G which is
completely connected. Such a subgraph is called a biclique. Because of this relation, we will use
the terms “submatrix”, “biclique”, and “bicluster” interchangeably.

When the alphabet is binary, the problem associated with objective function f; is known as
the MAXIMUM VERTEX BICLIQUE problem, and it can be solved in polynomial time because it is
equivalent to the maximum independent set in bipartite graphs which, in turn, can be solved by a
minimum cut algorithm (see, e.g., [15]). The same problem with objective function fy over a binary
alphabet is called BALANCED COMPLETE BIPARTITE SUBGRAPH problem or BALANCED BICLIQUE
problem and it is listed as GT24 among the NP-complete problems in Garey & Johnson’s book [8]
(see also [10]).

The LARGEST BICLUSTER problem with objective function f3 and ¥ = {0, 1} is called MAXIMUM
EDGE BICLIQUE problem. The problem requires to find the biclique which has the maximum
number of edges. The problem was proven to be NP-complete in [20] by reduction to 3SAT. The
weighted version of this problem was shown NP-complete by Dawande et al. [5]. A 2-approximation
algorithm based on LP-relaxation was given in [15].

Theorem 1 The decision problem associated with LARGEST BICLUSTER(f3) is NP-complete.

Proof The problem is trivially in NP. We reduce LARGEST BICLUSTER( f3) to MAXIMUM EDGE
BicLIQUE. Note that LARGEST BICLUSTER is more general than the biclique problems on graphs,
for two reasons (1) in the LARGEST BICLUSTER problem the alphabet is not necessarily binary
and (2) a biclique corresponds to a submatrix of 1’s in the corresponding adjacency matrix, while
LARGEST BICLUSTER can return submatrices with 0’s as well.

Assume that we are given an instance of the biclique problem represented as an adjacency
matrix X € {0,1}"*™. Process X as follows. Replace each 0 in X by a unique new symbol. Now
LARGEST BICLUSTER will be forced to return a matrix of 1’s, which corresponds to a biclique in
the bipartite graph. O

By the same approach, LARGEST BICLUSTER( f2) can also be proven to be NP-complete. Hence-
forth our objective function will be f3, which is associated with the area of the submatrix.

3 Randomized search

Given that LARGEST BICLUSTER( f3) problem is NP-complete, it is unlikely that a polynomial time
algorithm could be found. In this paper, we present a randomized algorithm which is guaranteed
to find the optimal solution with probability 1 — €, where 0 < € < 1.

Assume that we are given a large matrix X € X"*™ in which a submatrix X« c+) is implanted.

Assume also that the submatrix X(g- ¢+ is maximal. To simplify the notation, let r* = |R*| and
= |C*.
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Figure 1: An illustration of a recovery of the embedded matrix by random projections. C* is the set
of columns containing the embedded submatrix. S is a random selection of columns. By following
the steps described in the text, the correct solution can be easily retrieved.

The idea behind the algorithm comes from the following simple observation. Observe that if
we knew R*, then C* could be determined by selecting the clean columns with respect to R*. If
instead we knew C*, then R* could be obtained by taking the maximal set of rows which read the
same string. Unfortunately, neither R* nor C* is known. Our approach is to “sample” the matrix
by random projections, with the expectation that at least some of the projections will overlap with
the solution (R*, C*). Clearly, one can project either rows or columns. In what follows we describe
how to retrieve the solution by sampling columns.

The algorithm works as follows. Select a random subset S of size k uniformly from the set
of columns {1,2,...,m}. Assume for the time being that SN C* # (. If we knew S N C*, then
(R*,C*) could be determined by the following three steps (1) select the string(s) w that appear
exactly 7* times in the rows of X[, snc+], (2) set R* to be the set of rows in which w appears and
(3) set C* to be the set of clean columns corresponding to R*.

Example 3 For example, consider the matriz in Figure 1. The shaded cells contain the embedded
submatriz, and r* = 3, ¢ = 4. Once S N C* is determined, the string AB is chosen since it is
the only one that has frequency equal to r*. Then, R is determined by the location of AB and C' is
determined by selecting the clean columns of R.

The algorithm would work, but there are a few problems that are still unresolved. First, the
set SN C* could be empty. The solution is to try different random projections S, relying on the
argument that the probability that SN C* # 0 at least once will approach one with more and more
projections. The second problem is that we do not really know SN C*. But, certainly SNC* C S,
so our approach is to check all possible subsets U C S such that |U| > kmin, where 1 < kpin < k is
a user-defined parameter. The final problem is that we assumed that we knew r*, but we do not.
The solution is to introduce a row threshold parameter, called 7, that replaces r*.

As it turns out, we need another parameter to avoid producing solutions with too few columns.
The column threshold parameter ¢ is used to discard submatrices whose number of columns is
smaller than ¢. The algorithm considers all the submatrices which satisfy the user-defined row and
column threshold as candidates. Among all candidate submatrices, only the ones that maximize
the total area are kept. A sketch of the algorithm is shown in Figure 2.

The algorithm depends on five key parameters, namely the projection size k, the minimum
subset size kmin, the row threshold 7, the column threshold ¢, and the number of iterations ¢. We
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LARGEST_BICLUSTER-C(X, t, k, kmin, 7, €)
INPUT: X is a n X m matrix over ¥
t is the number of iterations
k is the projection size
kmin is the size of the smallest subset of the projection
7, ¢ are the “thresholds” on the number of rows and columns, resp.
1 repeat t times
2 select randomly a subset S of columns such that |S| = &
3 for all subsets U C S such that |U| > kmin do
4 D < all strings induced by X|;., ¢ that appear at least # times
5 for each string w in D
6 V « rows corresponding to w
7 Z + all “clean” columns corresponding to V'
8 if |Z| > ¢ then save (V, Z)
9 return the (V, Z) that maximizes f

Figure 2: A sketch of the algorithm that discovers large biclusters (sampling columns)

discuss how to choose each of these in the rest of the section.

The projection size k is determined by a probabilistic argument. It is well-known that in a
random string of size m over an alphabet of size a, the number of occurrences of substrings has
two different probabilistic regimes (1) Gaussian distributed for strings shorter than log, m and (2)
Poisson distributed for strings longer than log, m. Based on this observation, when kpyin = k we
argue that £k = log, m is the optimal tradeoff between generating too many trivial solutions (k
too small) and potentially missing the solution (k too large). As it turns out, K = log, m not
only corresponds to the minimum in the graph (not shown) of the function & discussed at the
end of this section, but it has been confirmed to be the optimal choice in our simulations. When
kmin = 1, then k can be chosen significantly larger, but this will adversely affect the running time.
An experimental comparison between ki, = k (i.e., no subsets), and knin = 1 (i.e., all subsets) is
reported in Section 5.1.

The thresholds 7 and ¢ are associated with the uncertainty on the size of the largest submatrix
r*, c* for a particular input instance. There may be situations in which the user has already a good
idea about r*,c¢*. If however r* and ¢* are completely unknown, then we propose the following
trial-and-error strategy. Set 7 to some value, and use Theorem 2 (Section 4) to set the value é.
Run the algorithm. If the algorithm returns too many solutions, try to increase 7 and update
¢ correspondingly. If there are no solutions, lower the value of # and repeat. Observe that the
number of choices for  is finite since 7 € [1,n]. The rationale behind using Theorem 2 to set ¢ is
that it gives the expected number of columns of the largest submatrix in a random matrix, when
the number of rows is fixed. Since we want to find statistically significant biclusters, we are not
interested in submatrices whose size is such that they can be found in totally random matrices.

Because of the randomized nature of the approach, there is no guarantee that the algorithm
will find the solution after a given number of iterations. We therefore need to choose ¢ so that the
probability that the algorithm will recover the solution in at least one of the ¢ trials is 1 — €, where
0 < e <1 is a user-defined parameter.

Let a(n,m,k,r*,c*,a) be the probability of missing the solution in one of the trials assuming
that 7* and ¢* are known and that kynin = 1. There are two disjoint cases in which the algorithm
can miss (R*,C*). The first is when the random projection S misses completely C*, i.e., SNC* = (.
The second is when SN C* = U # () but the string w chosen by the algorithm among the rows
X(1:n,v] also appears in another row that does not belong to the set R* of the real solution. In this



case, the algorithm will select a set of rows larger than R* and thus miss the solution. Hence, we
have

k
a(n,m,k,r*,¢*;a) = P{SNC*=0}+> Pr{|SNC*| =i and |R| >r*}
i=1
k
= P{SNC*=0}+> Pr{|R| >r* given |SNC*| =i}Pr{|SNC* =1}
i=1

Let Y be the random variable associated with the size of the set SN C*, that is, Y = |S N C*|.
Since we are sampling without replacement, Y follows the hypergeometric distribution.

Pr{Y = 0} — (m ; C*) / (7]:’) and Pr{Y =i} = (c;) (2:?)/(2)

In order to compute the probability of missing the solution given |S N C*| = i, we have to
estimate how likely a string w belonging to some of the rows of X1, 7] is more frequent than r*.
Assuming the symbols in the matrix X are generated by a symmetric Bernoulli i.i.d. model, the

n
probability that w will never appear in the other n — r* rows is (1 — %) and therefore

*

. ] 1\
Pr{|R| > r* given |SNC \zz}zl—(l—g)

Combining all together, the probability of missing the solution in one iteration is given by

comre- (1) 662NN

Now suppose we want the probability of missing the solution to be smaller than a given ¢, 0 <

e < 1. We can obtain the number of iterations ¢ by solving the inequality (a(n,m, k,r*, c*, a))t <,
which gives log e

(1)

t>
~ loga(n,m, k,r*,c*, a)

This bound on the number of iterations has been verified by our experimental results (compare
Table 1 in the Appendix with our experimental results shown in Figure 3). For example, by setting
a=4, k=4, e=0.7, equation (1) gives t = 90 iterations whereas the experimental results show
that with 90 iterations we obtain a performance of € = 0.689.

The worst case time complexity of LARGEST_BICLUSTER-C is O (t PO (1;) (kn + nm))

The probability of missing the solution changes significantly when we set knin = k. In this case,
we are not checking any of the subsets of S, but we simply rely on the fact that eventually one of
the random projections S will end up completely contained in C*, in which case we have a chance
to find the solution.

Since we avoid checking the O(2*) subsets of S, the number of iterations ¢ to achieve the same
level of performance of the case ky;, = 1 must be significantly larger. Indeed, by a similar argument
as we did for kpniyn = 1, the probability of missing the solution when knin, = k can be estimated by
the following formula

a(n,m,k,r*,c*;a) = P{SZC*}+Pr{SCC"and |R|> 1"}

~ 1 AT (1 1)71—1'* c
N (c* — k)Imk ak (c* — k)Imk

*1



As mentioned above, we also have the option to project the rows instead of the columns, which
would result in a slightly different algorithm, called LARGEST_BICLUSTER_R. For lack of space we
sketch the algorithm in Figure 4 in the Appendix.

The worst case time complexity of LARGEST_BICLUSTER_R is O (t Z?kain (];)(km -I—nm))
The probability of missing a solution can be obtained using the same argument as above, and it is
given by

i =((57) 50 030" ) (GG

4 Statistical analysis

We now analyze the statistical significance of finding a large submatrix of size r x ¢ hidden into a
random n X m matrix over an alphabet of cardinality a. More specifically, we randomly generate
a matrix X € Y™™ using a memoryless source with parameters {pi,...,ps} where p; is the
probability of the i-th symbol in 3. Given X, the goal is to characterize asymptotically the size of
the largest submatrix in X.

For convenience of notation, let us call P, = p] + p5, + ... + p}, the probability of observing a
clean column over r rows, and let us define H(z) = —zlogz — (1 — z) log(1 — ).

The first result characterizes the random variable associated with the number of columns of the
largest bicluster, when we fix the number of rows.

Theorem 2 Let Cy 0 be the random wvariable associated with the number of columns of the
submatriz with the largest area in a matriz X € X™*™ generated from a memoryless source, once
the number of rows r is fized. Then

Crmyra < mPy + \/QPT(l — P)mF(n,r) = Chax

with high probability and as n — oo, where

|} rlogn ifr =o(n)
F(”aT)_{nH(a) if r=oan where 0 < a < 1

When r = o(n) the error term is O(1/log?n) for some d > 1 that may depend on a, whereas the
error becomes O(1/4/n) when r = an. The prediction on random matrices is indeed quite accurate
as reported in Table 2 (Section 5.1). We claim that the upper bound is actually an equality, that
is, asymptotically and with high probability C;, 1, 74 = Crax-

The practical implications of Theorem 2 are twofold. First, the expected number of columns can
be used to set the column threshold parameter ¢ > max{Cmax,1}. That allows the algorithm to
avoid considering statistically non-significant submatrices. Second, observe that when logn = o(m),
then the dominant term of Cpax is the average, say E[C], of the number of clean columuns, that
is, E[C] = mP,. This implies Cmax/E[C] < 1+ o(1) for logn = o(m), and therefore with high
probability any algorithm is asymptotically optimal. Clearly, this is not true for r = an. Finally,
in passing we add that when we restrict the search to largest squared matrix (see objective function
f2 above), then its side is asymptotically equal to 2log (n/(2logn)) /log P, .

The second result characterizes the random variable associated with the area of the solution,
under some general assumptions on the number of rows and columns.



Theorem 3 Let A, 1,4 be the random variable associated with the area of the largest submatriz
in a matric X € X"*™ generated from a memoryless source. Then, with high probability (i.e.,

1-0(1/4/n)) and as n — oo,
o ifr=an and c = O(1), then Ay e < anc
e if r=0(1) and c = fBn, then Apmq < f*nr
where o and B* are the solution of the following equations
H(a*) = ca*logP,}
H(g*) = Plogp

The intuition behind Theorem 3 is that on random matrices one should expect the largest
submatrix to be “skinny”, that is, a few columns and lots of rows, or vice versa. For example, the
largest submatrix in a random {0, 1}-matrix of size 256 x 256 is of size 2 x 160 (see Table 2). This
phenomenon was also observed in the experiments on microarray data.

For lack of space, proofs of Theorem 2 and Theorem 3 can be found in the Appendix.

5 Implementation and Experiments

We implemented column- and row-sampling algorithms in C++ and tested the programs on a
desktop PC with a 1.2GHz Athlon CPU and 1GB of RAM, under Linux. Although the algorithms
do not require sophisticated data structures, in order to carry out step 4 in the algorithm of Figure 2,
one needs a data structure to store the strings and their frequencies. Since k£ and a are usually
not very large, our experience shows that a simple hash table (of size a*) is a good choice. If
a* becomes too large, a trie would be a better data structure. If one uses the hash table, it is
important to keep track of the non-zero entries in another balanced data structure. That would
avoid the algorithm to spend O(a*) to search for the frequently occurring strings. Observe also that
row-sampling algorithm (Figure 4) does not require any hash table, or any other data structure.
However, our experiments show that in order to get the same level of performance of the column
sampling, it needs a significantly larger projection k£ which adversely affects the running time.

Another issue is to whether one should keep track of the projections generated so far to avoid
generating duplicates. We studied this matter experimentally, and found that it is worthwhile to
keep track of the projections in some balanced data structure only when k is small. If &k is large,
the overhead required to keep the data structure updated is much higher than the time wasted in
processing the same projection multiple times.

5.1 Simulations

In order to evaluate the performance of the algorithms, we designed several simulation experiments.
In these experiments we randomly generated one thousand 256 x 256 matrices of symbols drawn
from an symmetric i.i.d. distribution over an alphabet of cardinality a. Then, in each matrix
we embedded a random 64 x 64 submatrix at random columns and random rows. We ran the
algorithms for a few tens of iterations (¢ = 5,...,100), and for each choice of ¢ we measured the
number of successes out of the 1,000 distinct instances. Figure 3 summarizes the performance of
LARGEST_BICLUSTER_C, for several choices of alphabet size a and projection size k, and minimum
subset size kpin-

In order to make a fair comparison between ki, = k and ki, = 1, the number of iterations
for the case kmin = k was multiplied by 2% — 1. Note that by doing so, we are assuming that one
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Figure 3: Comparing the performance of the randomized algorithm LARGEST_BICLUSTER_C when
kmin = k versus kmin = 1, for different choices of the alphabet size a. The projection size is
k = log, m

projection for ki, = 1 takes about the same time as one projection for kn;, = k, which is not
necessarily very accurate. Under this assumption, however, kmin = k outperforms kmin = 1 (see
Figure 3). This not necessarily true in the row sampling strategy (see Figure 5 in the Appendix).

By comparing the performance of row sampling against column sampling, we observed that if
one uses the same set of parameters, column sampling always outperforms row sampling.

5.2 Preliminary Experimental Results

We applied our algorithm on gene expression data from the leukemia gene expression study [9]. This
data set contains 7129 genes from 72 samples collected from acute leukemia patients at the time
of diagnosis. Out of the 72 samples, 47 were diagnosed as ALL (Acute Lymphoblastic Leukemia)
and the rest 25 as AML (Acute Myeloid Leukemia). After calculating the standard deviation of
the expression levels of each gene, we selected only those genes whose standard deviation is greater
than 200. As a result of this selection procedure 3304 genes were left for further analysis. Then
we discretized the value of the normalized matrix row-by-row by the equal frequency principle into
a = 4 bins.

Figure 6 shows a 42 x 10 bicluster found by running two million iterations of the algorithm
LARGEST _BICLUSTER_C with parameters k = 10, knin = 10, 7# = 37, é¢ = 10. The bicluster is quite
significant not only because of its size, but also because it contains only the symbols A and D which
correspond respectively to the down-regulated and up-regulated states.

A comprehensive report of experimental results will be included in the final version of the paper.
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Appendix

LARGEST_BICLUSTER_R(X, ¢, k, kmin, 7, €)
INPUT: X is a n X m matrix over &
t is the number of iterations
k is the projection size
kmin is the size of the smallest subset of the projection
¢, are the “thresholds” on the number of columns and rows, resp.
1 repeat t times
2 select randomly a subset S of rows such that |S| =k
3 for all subsets U C S such that |U| > kmin do
4 Z < all columns induced by X|y,1.,) that are clean
5 w < string induced by any of the row of X[y, z
6 if |Z| > ¢ then
7 V' « rows of X|1.,,, 7z which contain w
8 if |V| > # then save (V, 2)
9 return the (V, Z) that maximizes f

Figure 4: A sketch of the algorithm that discovers large biclusters (sampling row)

€ a=2k=8|a=4k=4|a=8k=3|a=16k=2 | a=32k=2
0.005 18794 1342 306 179 99
0.05 10626 759 173 101 56
0.1 8168 583 133 78 43
0.2 5709 408 93 54 30
0.3 4271 305 70 41 23
04 3250 232 53 31 17
0.5 2459 176 40 23 13
0.6 1812 129 29 17 10
0.7 1265 90 21 12 7
0.8 792 57 13 8 4
0.9 374 27 6 4 2

Table 1: The estimated number of iterations for a matrix 256 x 256 with a submatrix 64 x 64, for
different choices of €, alphabet size a, and projection size k (sampling columns)
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rows | columns observed | columns predicted

1 256 256

2 160 165.6771209
3 100 103.9626215
4 67 67.24371945
5 45 44.84053788
6 31 30.70906224
7 23 21.48364693
8 16 15.26873716

Table 2: The statistics of large submatrices in a random {0, 1}-matrix of size 256 x 256. The second
column reports the number of columns of the submatrices observed in a random matrix, whereas
the third reports the prediction based on Theorem 2
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Figure 5: Comparing the performance of the randomized algorithm LARGEST BICLUSTER_R for
different choices of the alphabet size a and projection size k

Proofs

Theorem 1 Let Cy 1 rq be the random wvariable associated with the number of columns of the
submatriz with the largest area in a matriz X € X"*™ generated from a memoryless source, once
that the number of rows r is fixed. Then

Cumia < mPy + /2P, (1 — PymF (n, )

with high probability and as n — oo, where

) rlogn if r =o(n)
F(”,T)_{n[{(a) if T =an where 0 < a <1

Proof Recall from Section 4 that P, = p| + p5 + ... + p; for an alphabet ¥ of cardinality a.
Let us define the random variable Z;, . ; associated with the number of clean columns in rows
1< <... <jr <n. Our goal is to find

C = max Z;
n,m,r,a 15]1<<]7‘Sn{ .71,"'a.77'}
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Figure 6: A 42 x 10 bicluster found in the 3304 x 72 leukemia dataset (discretized over an alphabet
of cardinality ¢ = 4), by running ¢ = 2,000, 000 iterations of the LARGEST_BICLUSTER_C algorithm
with parameters k = 10, knin = 10, 7 =37, ¢ =10

Clearly,
m _

and in particular, B[Z;, ;] =mP, and Var[Z;, ;. ]=mP.(1—-P,).
We now proceed as follows.

C = max Z; ;
n,m,r,a 1§j1<---<jr§n{ I

Z: i —R[Z:
= Var[zjl,...,jr] max J15-ensdr (Zj,,....i.]

1<j1<...<jr<n /Var[zjl,...,j,]

= Var(Z;, ;) max. (Y.} +ElZ, ), (2)

+E[Z;,,..5]

where Y, i are (approximately) normally distributed N(0,1). Observe that Y; . ; are not
independent (but we shall show below that they are only weakly dependent).

We now estimate C’, 7 = maxi<j<..<jr<n{Yji,.j }- Since Yj
tributed we have, when r = o(n)

are normally dis-

r

Pr{C’n,m,r,a >z} < <’Z> Pr{lea"')j"' >z}

2
n’ e % /2

r
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Hence for £ = y/2logn” we find that
Pr{C’nmra > V2logn™} <O(1/logn) — 0

as n — oo. We have

Cnmpra <mP, + \/QPT(I — P)mrlogn

with high probability.
If instead r = an. In this case, equation (3) should be replaced by

Pr{C,n,m,r,a >} < (Z) Pr{lea"')jT >z}

1 enH(a)—z?/2

2mna(l — a) z

where H(a) = —aloga — (1 — a@)log(l — ). Thus z = /2nH(«) makes the above probability
small and C’y, 1, .o ~ v/2nH () (pr.). Finally,

Crmma < mPr + /2P, (1 — B)ymnH (o)
with high probability. O
Theorem 2 Let A, be the random variable associated with the area of the submatriz with the

largest area in a matriz X € L"*™ generated from a memoryless source. Then, with high probability
and as n — oo,

e ifr=an and c = O(1), then Ay m,q < a*nc
e if r =0(1) and c = Bn, then Ay, 4 < f*nr
where o* and B* are the solution of the following equations
H(a*) = ca*logP,}!
H(p*) = Plogp

Proof First, observe that

Pr{Apma>r-c} < (“) (m> Pe. (4)

r Cc

Now one needs to select 7 and ¢ such that the right-hand side of equation (4) is small.
Let r = an and ¢ = O(1). As in previous proof, we observe that

n ot (@)
<an> ~ el =)
where H(«) is a natural entropy. Then
enH(a)+clog Pl
Pr{A, ma > acn} < m.
We choose such o* that
H(a*) = ca*log P,,.. (5)
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Then 1
Pr{A > a*enl) < 0.
{ n,m,a } — 27ma*(1 _ a*)

Let now 7 = O(1) and ¢ = On. Repeating the same calculation we have

P"{An,m,a > ﬂcn} < ;enH(ﬂ)-l—ﬁnlongl.

2mnpB(1 — B)

Finding 8* such that
H(f*)=pBmP!

we arrive finally at
1

o (1)

Pr{A, ma> B cn} < 0.
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