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ANNOTATING PATHWAYSIN INTERACTION NETWORKS

Jayesh Pandéy Mehmet Koyutiirk, Wojciech Szpankowski and Ananth Grama
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Integrating molecular interaction data with existing kietige of molecular function
reveals mechanisms that underly cellular organization.pvésent MRADA, a software
tool that implements a comprehensive analysis suite fatiomal annotation of pathways.
NARADA takes as input a species-specific molecular interactiowarktand annotation
of biomolecules in the network and provides the user withtaspathways composed of
functional attributes, which may be thought of pathway tkigs in the functional annota-
tion space that recur in various contexts (different groofpspecific molecules with sim-
ilar functional annotation patterns) in the molecular iattion network. MRADA has its
underpinnings in formal statistical measures of signifiegrand algorithmic bases for per-
formance. Comprehensive evaluation on Eheoli transcriptional regulation and protein-
protein interaction data demonstrat@®hDA’s ability to detect known, as well as novel
pathways.

1. Introduction

Network models are commonly used to abstract biomolecndaractions. Recent
research has focused on identifying common patterns irethesvorks, within
and across species, with the expectation that such pattevesal evolutionary
design principles that underly cellular organization.dad, coherent topological
motifs (e.g, feedback and feed-forward loops) and their constituerieoutes
are observed to recur significantly in the protein-protetaiiaction and transcrip-
tional regulatory networks of model organisms [1]. Comfigesanalysis of extant
networks also suggests that modular subcomponents of tedserks are likely
to be conserved together [2,3].

These observations support the hypothesis that the org#nal principles
that underly interaction networks may be represented irfdha of functional
(sub)networks — “rules” or “templates” that recur in vaisozontexts in the func-
tional organization of the cell. The underlying problem afngralizing from
molecular annotations, provided by libraries such as Gemel@gy [4], to sub-
network annotations is important — and forms the technicallenge addressed in
this paper. Preliminary studies show that such annotatiansndeed be derived;
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Fig. 1. (A) From interactions between functional attritsute pathways of functional attributes. (B)
Significant pairwise interactions between functionaliladies do not necessarily imply indirect paths.

however, they do not provide an automated methodology, onmgeehensive an-
alytical (statistical) basis for the annotations [5-8]h®ikowskiet. al.[5] predict
functions of proteins irS. cerevisiagrotein-protein interaction network by hy-
pothesizing that proteins of known function and cellulardtion tend to cluster
together. Leest. al.[6] study theS. cerevisiagranscriptional regulatory network
with a view to understanding relationships between fumeticategories of genes.
They observe that many transcriptional regulators withiiuractional category
bind to transcriptional regulators that play key roles ia ¢lontrol of other cellular
processes. For example, cell cycle activators bind to aégenes that regulate
metabolism, environmental response, and developmeng &bral. [7] identify
putative genetic interactions in yeast via synthetic gerstay (SGA) analysis
and investigate the functional relevance of their resultaé context of GO anno-
tations.

These results are limited to case-specific studies thatrginécus on vali-
dation or evaluation of results through simple statistanahlyses — yet they pro-
vide significant insights. Generalizing these observataiows identification of
standardized pathways, creation of reference databasbseof and indirect in-
teractions between various processes, and projectingrexisiowledge of model
organisms to other species. What is lacking is a comprefxessi of tools that
combine these sources of data (molecular annotations amcations) to iden-
tify significantly overrepresented patterns of interactiorough reliable statistical
modeling with a formal computational basis.

In recent work [9], we explore the statistical and algoritbhmnderpinnings
of this problem. In this paper, we describe a comprehensigkit, NARADA,
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for pathway annotation. ARADA can be applied to diverse abstractioesy(
gene regulatory networks, protein-protein interactiotwoeks), and can use as
reference node annotations any user-specified ontologgrsiésin specify func-
tional categories of interest, query for statistically exepresented pathways in
terms of these functional categories, visually manipudete inspect these path-
ways, and view reflections of these pathways in “moleculeg’, (gene network)
and “functional” {.e., network of functional attributes) spaceARADA evaluates
the statistical significance of pathways based on a novestital model, which
emphasizes the modularity of pathways by conditioning erftequency of their
building blocks. MRADA is implemented in Java and is available as a web applet,
as well as a standalone application at http://www.cs.peuetlurjpandey/narada.

2. Models

Molecular interactions are abstracted using various nétwaodels. Regula-
tion of gene expression, for example, is commonly modeléuguBoolean net-
works [10]. Protein-protein interactions (PPIs), on thieesthand, represent vari-
ous forms of physical association between proteins, inotuchodification, trans-
port, and complex formation [11]. ARADA is designed to handle different types
of networks and different sources of data in a unifying fravmkk. In this section,
for the sake of clarity, we present the mathematical undeipgs of N\RADA in
the context of gene regulatory networks, and focus on ifleation of regulatory
pathways.

The basic approach to integrating existing knowledge ofegesgtworks and
functional annotation is to (i) project nodes from thene spacento thefunc-
tional attribute spacgand (ii) find significant pathways in the functional atttibu
space. The first step is accomplished using a reference moddadion library.

A simple method for accomplishing the second step is to iflestatistically
abundant (significant) pairs of interacting functionatibtttes. For example, in
Figure 1(A), theE. coli transcription network contains 36 activator interactions
between 2 genes that take partpositive regulation of transcriptiorand 18
genes that are involved iadillary or flagellar motility. This observation may be
abstracted as aule that characterizes the regulatory relationship betweeseth
two processegpositive regulation of transcriptionp-regulateillary or flagel-

lar motility in E. coli. Indeed, this approach is used to understand the functional
organization ofS. cerevisiasynthetic genetic array [7] and transcriptional regu-
latory networks [6].

Statistically significant pathway annotations cannot beally composed
from constituent pairwise annotations. This is becauss gderaction between a
pair of functional attributes is within a specific context{fierent pair of genes) in
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Fig. 2. (a) A sample gene regulatory net-
work and the functional annotation of the
genes in this network. Each node represents
a unique gene and is tagged by the set of
functional attributes attached to that gene.
Activator interactions are shown by regular
arrows, repressor interactions are shown by
dashed arrows. (b) Functional attribute net-
work derived from the gene regulatory net-
work in (a). In this multigraph, nodes (func-
tional attributes) are represented by squares
and ports (genes) are represented by dark
circles.

the network. This is illustrated in Figure 1. In both (A) af8),(the two regulatory
interactions shown on the panel (i) are significantly freque the gene network.
In Figure 1(A), the genes involved positive regulation of transcriptioshown
in panel (ii) are common to both interactions and the combpethway shown in
the panel (iii) is frequent. On the other hand, in Figure 1{B§ set of genes in-
volved inprotein modificatior(in panel (ii)) are different for the two interactions,
so the combined pathway (in panel (iii)) does not exist ingare network at all!
However, a method that relies on assessment of only paimitseactions would
identify indirect regulation obiotin biosynthetic procedsy sensory perception
throughprotein modificatioras a significant pathway, which is not a conclusion
that is supported by available data.

Data Model. A gene network is modeled as a labeled directed graph witesiod
representing genes and edges representing regulatorgdgtioms. Each edge is
associated with a type that specifies the mode of regulatictivation, repression
or dual). Each gene in the network is associated with a denational attributes
which provide functional annotations of the gene. Withasts| of generality, we
use Gene Ontology (GO) [4] to annotate the genes in the nktwor

Given a gene network and annotation, the corresporfdimctional attribute
networkis defined as follows: each functional attribufe is represented by a
multinode which contains a set gforts each corresponding to a gegethat is
associated witlT;. The frequencys(T;) of a functional attribute is equal to the
number of genes that are associated WithEachmultiedgel;7; corresponds to
a set of edgegg; in the gene network, such that is associated witl’; and
g; is associated witlT;. The frequencys(T;T;) of a multiedge is equal to the
number of such edges in the gene networknAltipathof lengthk is a sequence
of k distinct functional attributes (multinoded)T;,, T;,, ..., T3, }. A sequence of
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genes{g;,, gj,, ---» gj, ; IS an occurrence of multipatfl;,, T;,, ..., 7;, } if each
gj, is associated with the correspondifig and there is an edge from, to g, ,
in the gene network for ea¢hThe frequency ({7}, , T,, ..., T3, }) of a multipath
is the number of occurrences of that multipath in the geneorit

A sample gene network and its corresponding functionabati network is
shown in Figure 2. In Figure 2, the frequency of multipath— 7, - T3 is 4.

Statistical Model. The “interestingness” of a pathway is associated withidsl-
ularity, i.e., the significance of the coupling of its building blocks. hatsstical
terms, this is achieved by conditioning the distributionh# frequency (modeled
as a random variable) of a pathway on the frequency of itsathisgmodeled as
fixed parameters). Note that, in this approach, statissicalificance is used as
an indicator of the modularity of a pathway in the functioaahotation space,
i.e, the hypothesis that is tested here is that a pathway of imadtattributes
corresponds to a design template that is conserved anadogdied through evo-
lution [12]. Thefore, the statistical significance of a padly should be interpreted
as the likelihood that the observed pattern is biologiaalgvant (in Kitano’s [12]
terms, it may have a place in the “periodic table” of funcibregulatory circuits),
rather than being a measure of the pattern’s biologicavaslee or importance.

A single interaction is the shortest pathway in a functiataibute network.
We evaluate the significance of single interaction by takinig account the fre-
quency of each functional attribute and the degree digtabwof the gene net-
work. For each functional attributg;, its expected in-degre@ and out-degree
d; are specified. Then, edges are generated by randomly select: >, 5; =
>_; 0; edges fromm = 3 .. .. .y, Bid; potential edges, where each of thg;
potential edges are betweg&handT). Letting ®,; = ®(T;T;) be frequency of
T;T; in the random model, we observe thligt is a hypergeometric random vari-
able and obtaip;; = P(®;; > ¢y;) = Yoyl (B8 (P /().

Now letII; , denote the patlT;,,T,, ..., T;, }. Forl < j < k, we want
to evaluate the significance of the coupling between patbwhy; andIl; ;.
Our reference model assumes that the frequency of pathi¥aysandl1l; ; is
establisheda-priori. Let ®,; and ¢;  denote®(Il; ;) and ¢(II, x), the ran-
dom variable that represents the frequency of pathWiay and its observed
value, respectively. Then, thevalue of the coupling betweeld; ; andIl; ; is
defined a1,k = P(P1x > d14lP1; = 1,5, P56 = ¢5)-We approx-
imate this value using Chvatal’s bound on hypergeometiic[13] to obtain
P1jk < exp(d1,j0;kHy, (t1,56)) Wherety j i = @1k /d1,;05k, 95 = 1/0;5 (¢5is
frequency of tern¥;), andH,(t) = tlog £ 4 (1 —t) log % denotes divergence.
This estimate is Bonferroni-corrected for multiple tegtine,, it is adjusted by a

factor ofl_[.l;:1 | ngeTij F(ge)l-
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3. Methods and Features

NARADA is implemented in Java, and can be run as a web applet or a stan-
dalone application. It requires an installation of Java tita@ Environment ver-

sion 1.4.214 (update 14) or later and has been tested to run of windods an
linux platform. The base applicatiorrREs is based on Cytoscape [14]. This soft-
ware framework allows for development of sophisticatedaization and anal-

ysis functions through java-based plugins. The user mamuisource code for
NARADA are available at http://www.cs.purdue.edu/homes/jpgindeada.

Query Interface. Currently, N\RADA supports three classes of queries:

e Q;: Given a functional attribut&’, find all significant pathways that are regu-
lated by (originate at) genes that are associated With

e Qo: Given a functional attributd’, find all significant pathways that regulate
(terminate at) genes that are associated With

e Q;: Given a sequence of functional attributés, T, , ..., T3, , find all occur-
rences of the corresponding pathway in the gene network.

A pathway is identified as being significant if ifsvalue is less than a user-
specified levely. Pathways do not have repeated internal nodes, but cyeled-(f
back loops) are allowedle., the output to querie®; (Qz) may include a pathway
that terminates (originates) at the queried term itsetfyjoted each occurrence of
the cycle corresponds to a cycle in the gene network.

Algorithms. For a given term, we perform an enumerative search on the func
tional attribute network (without explicitly construcgthe network) starting from
the node that corresponds to the query term. For queriepefiy(Q.), the search
proceeds forwards (backwards) with respect to edge direcBonsequently, the
output is a tree that is rooted at the query term.

During the course of the search process, the significancadi pathway
is tested as follows: if the length of the pathway is one, it is a multiedge,
its significance is evaluated with respect to the baselindeh®therwise, as-
sume that we are trying to extend pathw@y, , ..., T;, _, } by adding multiedge
T;,. ., Ti,., whereT;, is the query term. We condition the significance of pathway
{T;,,...,T;, } on the frequency of pathway¥;,,...,T;,_,} andT;, ,T; . The
motivation behind this is as follows: if the regulatory effexf 7;, , onT;, is
significantly coupled with pathway7;,, ..., T;,_, }, i.e, a significant number of
its occurrences in the network are likely to be preceded lsypthway, then this
may correspond to aule that characterizes the regulation8f through a chain
of regulatory interactions specified by pathw@s, , ..., T;, }.

For queries from clasfs, consider the sequence of functional attributes
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T, Ti,, ..., T;,. . For such a query, ARADA finds all occurrences of the pathways
{Ti, ... T, }, {13, ..., Ty, } and{T;,, ..., T;, }. To find all occurrences of a path-
way, for each functional attribute, the genes that bridgeptievious and next node
in the sequence are identified. Then, the frequencies oé thathways are used
to compute the significance as described in the previoutse®&y mapping all
genes that are identified to the gene networkRNDA displays all occurrences
of the pathway in the gene network.

Per formance Enhancement and Heuristics. A major limitation of the algorithm
above is that it is brute force and its time complexity is exguatial ink (length
of the path). The longest pathway that is of interest is a-deéned parameter
in NARADA. Since pathways of biological significance are expectecetéably
short, the practical constraints posed by this exponeatiaiplexity are some-
what mitigated. However, since there exist several gersstie attached to many
functional attributes and vice versa, the branching faofathe search process
is quite large. For this reason, pruning heuristics thatleesignificant pathway
identification tractable for very large networks and longathways are still nec-
essary. In MRADA, various heuristics that explat priori biological knowledge
are implemented to accelerate the search process. Weentltéise heuristics be-
low. We also note that development of efficient heuristieg thtegrate syntactic
and semantic information remains an important open problem

Gene Ontology hierarchythe current release of ARADA uses Gene Ontol-
ogy (GO) [4] as the default reference library for annotatioNARADA’s default
behavior in handling this hierarchy is to use the most spe@f term on each
branch of GO hierarchy for each gene. In other words, if tefinsndT; are at-
tached to gengy and if T} is a parent ofl; in GO hierarchyice., eitherT; is aT;
or T; is part of T;), then onlyT; is considered in the functional attribute network.
The user is allowed to alter this behavior by selecting tootaie the genes using
any specific level of the hierarchy. Each query can also beaéfby moving a
term in the query up or down the GO hierarchy.

Strongly significant pathwayNARADA delivers near interactive query re-
sponse using a biologically motivated pruning technique. &dll a pathway
strongly significantf all of its subpaths are significant. In biological terms, a
strongly significant pathway is likely to correspond to andigantly modular pro-
cess, in which not only the building blocks of the pathwaysgaificant, but are
also tightly coupled. This makes it possible to extend pathlength without sig-
nificant re-computation. For queries of tyRe andQ., the option for searching
strongly significant paths is available imRADA.

Short-circuiting common term&he main motivation in identification of sig-
nificant regulatory pathways is understanding the crdssietiwveen different pro-
cesses, functions, and cellular components. Therefonetiins and processes
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that are known to play a key role in gene regulatierg( transcription regulator
activity or DNA binding) may overload the identified pathveagnd overwhelm
other interesting patterns. However, genes that are regeror these functions
are likely to bridge regulatory interactions between défg processes [6], so they
cannot be ignored. For this reason, such GO terms are sincuited,i.e., if pro-
cessT; regulatesl’;, which is a key process in transcription, aig regulates
another processy, then the pathwa¥; — T; — T} is replaced with regulatory
interactionl; — Tj.

Interface. A user interface with comprehensive functionality and sifation
capabilities is available in NRADA. The visualization infrastructure is built using
an open source library, Prefuse [15], which provides stahdaaph visualiza-
tion functions. The current version ofARADA can handle large networks with
thousands of genes and annotations. The graph views (fardmte and func-
tional attribute space) support pan, drag, zoom, and stdrdgout functionali-
ties, search by node name and node link-outs to biologit¢abdaes. Screenshots
from NARADA are shown in Figure 3.

The input to MRADA consists of three files:

e A molecular interaction network, in which interacting malées and type of
interaction are specified using the simple interaction(féé f ) format [14].
Multiple networks can be loaded simultaneousIgR¥MDA creates separate vi-
sualizations for each. These networks may belong to diffeyeganisms.

e Specification of the functional attributes and their relas €.g, Gene Ontol-
ogy (GO)obo file). Currently, only one attribute set can be used in onsisas

e Annotation file that specifies the mapping between nodes laid functional
attributes. Multiple annotation files can be loaded to pilewnapping for one
or more networks.

Detecting pathway annotation$he interface to query significant pathways
originating (or terminating) at a functional attributeaalls the user to specify
parameter, the limit on pathway length, and a flag indicatthgther the search is
limited to strongly significant pathways. The result of aigu@ (Q.) is displayed
as a tree. Each path from the root to a leaf represents a samtiff overrepre-
sented pathway. Thevalue of each pathway is stored at the corresponding leaf.
Each pathway can also be separately viewed in a GO Path freimieh offers the
user the ability to move up/down the GO hierarchy for any niodhe pathway.
Moreover, this interface also allows the user to view alluwoences of the path-
way in the gene network. It is also possible to submit a singkery to NA\RADA
to run queries of typ@, Q. for all functional attributes in bulk. The results of
such a query can be directly written to an output file. To qudirgccurrences of
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a specified pathway of attributes (query tylg, the user enters the sequence of
GO terms, specifies the edges along with their tygeg,(mode of regulation),
and the output can then be explored through the GO path view.

4. Resultsand Discussion

We run NARADA on theE. colitranscriptional network and.coli protein interac-
tion network to identify core functional pathways that urideellular regulation
and signaling irk.coli.

We obtain thee. colitranscriptional network (TrN) from RegulonDB [16]. The
release 5.6 of this dataset contains 1363 genes with 31b®ategy interactions.
ThekE. coliprotein interaction network (PIN) is obtained from DIP [1The latest
release (20070219) of this dataset contains 1841 proteth®o®58 interactions.
We use Gene Ontology [4] as a library of functional attrilsut€he annotation
of E. coli genes and proteins is obtained from the UniProt GOA Prote¢éne
release [18]. Using the default mapping provided by GO, tbeegnetwork is
mapped to functional attribute networks of the three nameapin GO. Mapping
to the biological process space provides maximum coveragemnber of genes or
proteins annotated. In the TrN 904 genes are mapped to onererafi340 process
terms, while for the PIN 793 proteins are mapped to one or mab843 process
terms. We discuss here results obtained by this mappingxRADA is equally
useful for the molecular function branch of the GO, with teslike transcription
factor binding— > ATP binding— > electron carrier activity Results relating to
molecular functions and cellular components, as well agxehensive results on
pathways of biological processes for both networks, ardabla at http://www.
cs.purdue.edu/homes/jpandey/narada/.

We use MRADA to identify all significant pathways of length 2 to 5. In or-
der to identify these paths, we run querigs(andQ, for transcription network)
with a critical o« of 0.01 on all annotated biological processes. The number of
pathways obtained using combinations of the algorithmtoog described in the
previous section are shown in Table 1. These results diften forevious results
in [9] on account of better annotation which affects the leordhi-correction. On a
Pentium M (1.6GHz) laptop with 1.21GB RAM identification df significantly
over-represented pathways takes average of 1.2s per quefyN, and 8s per
query for PIN, for upto path length 5 and 4 respectively. Roorgly significant
paths, it takes less than 0.5s per query in the TrN, and lassak per query in the
PIN for paths of length upto 5. Strongly significant pathwayes, those obtained
by extending only significant pathways, compose an impogart of the highly
significant pathways. This observation suggests that fegignily modular path-
ways are also likely to be composed of significantly modulalding blocks. In
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Table 1. Total number of significant pathways identified byRXDA for various path

lengths.
E. coli network algorithm 2 3 4 5
transcriptional All significant pathways 213 1404 3472 2251
Strongly significant pathways 213 210 248 148
Short-circuiting common terms 445 422 371 38
protein interaction All significant pathways 208 3533 53486

Strongly significant pathways 208 699 4196 36266

the TrN after short-circuiting terms related to transédpf translation, and regu-
lation thereof, identification of all significant paths tak&9s per query for paths
of length 5. Note that a short-circuited path of length 5 nhagttually correspond
to a path of length upto 9 with hidden (short-circuited) nade

Sample resultsParts of the significant pathways that regulate phosphoryla
tion via genes involved in transcription and DNA recombiotare shown in
Figure 4(a). As genes involved in transcription are abutiggmesent in the net-
work, part of the pathwayQJNA recombination— transcriptior) occurs rarely
(12 times) and is not significant, but hof the 12 times it occurs, the genes in-
volved in transcription regulate phosphorylation and thiaplete pathway occurs
38times p < 4 x 10~1%). Thefistranscriptional regulator is responsible for regu-
lation of nuoA-Noperon [19], while théhlA transcriptional activator regulates the
hyflocus [20]. Indeed, it is observed that integration hostfaghfA,ihfB) affects
the regulation of these phosphorylation related genasA-N, hyf hycdirectly
and indirectly [20].

Figure 4 (b) shows a significant pathway that is composéiaslation DNA
replicationandprotein folding as well as the corresponding proteins and their in-
teractions in the PPI network. This pathway rec2igimes ¢ < 3.6 x 1073)
in the PPI network. Proteins involved BDINA replicationare abundantly present
in the network, but are connected to proteins involvegrotein foldingonly 8
times. 5 out of these 8 interactions are preceded by proit@isved in transla-
tion. The dnaK chaperone system, consisting of dnaK, dnd gk are involved
in remodeling and refolding of proteins, with cbpA functieg as a dnaJ-like co-
chaperon [21,22]. dnaA involved in DNA replication actyis protected by dnakK
from reaching a self-aggregate inactive form [23]. Mosttaf bther proteins in-
volved in translation form part of ribosomal assembly onslational elongation
factor activity [24].

A global view of E.coli functional regulatory network: summary of all sig-
nificant pathways identified oB. colitranscription network is shown in Figure 5.
This view provides a mapping of thecoli transcriptional network to the biolog-
ical process space of Gene Ontology. In the figure, the top £@#ficant path-
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ways for pathway lengths 2 to 4 are shown. The edges thatittdestignificant
pathways of length 2, 3, and 4 are shown using solid, dasmetidatted lines,
respectively. This results in a connected network of 71fional attributes. In the
figure, the font size of each GO term is proportional to itsrdedn this network,
and thickness of an edge is proportional to its significancsignificance of the
pathway it is a part of). As seen in the figure, this networklistered into var-
ious fundamental processes. A large subnetwork consigisookesses related to
response to stress and stimulus, DNA repair, and negativgation of transcrip-
tion. This subnetwork is mostly composed of down-regulatiateractions. A sec-
ond important group of processes that are tightly couplatisinetwork relates
to cell motility, cytochrome assembly, flagellum and pesitiegulation of tran-
scription. These processes are mostly connected via upategy interactions.
Observe that the regulatory interactions in thiesal subnetworks correspond to
significant pathways of length 2g., they are direct regulatory interactions, but
they also may be parts of significant indirect pathways.

The edges that are part of significant indirect pathwayssétin dashed and
dotted lines) form the rest of the network. These edges guitiir severatubpro-
cesses (which are shown in large fonts representing thglirtdégree), including
DNA recombination, transcription, and DNA dependent ragjah of transcrip-
tion. These are indeed processes that are characterizeztiatsgenetic regula-
tion. The indirect pathways that go through these mediatmrgsses connect local
hubs of the clustered processes, such as response to giemdulagellum bio-
genesis, as well as other fundamental processes includiigue metabolic and
biosynthetic processes, translation, signaling, andsfrart. These observations
illustrate NARADA’s ability to accurately capture the basic principles of gtim
regulation and characterize the crosstalk between vapmeesses through iden-
tification of indirect regulatory relationships.

For the protein interaction network a large portion of thgngficant pathways
involve cellular protein metabolic process, cell cyclell civision, translation,
and response to antibiotic. These hub processes intertittawiariety of other
biological processes.

A notable problem with projecting networks to the abstraeice of functional
annotation is that the results are not directly testablethwer words, there is no
obvious experimental method that could be used to falséynibtion that a path-
way of functional attributes discovered byARADA is biologicall relevant. These
is because, by definition, the pathways identified ly\RNDA are abstract. Note,
however, that patterns identified byARADA can indeed be used to discover novel
biological information that can be experimentally verifi@shd this provides an
indirect method for testing the hypotheses generated AgA®A. Recent appli-
cations of frequent pathway templates in Gene Ontologyespaxdude functional
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annotation of individual proteins [25] and prediction ofyjanism-specific path-
ways [26].
5. Conclusion

We present a comprehensive software toocARNDA, to project molecular in-

teraction networks to the functional attribute spacerRNDA provides several

interfaces to detect significantly overrepresented pathwRased on results ob-
tained from thek. coli transcription network, NRADA identifies several known,
as well as novel pathways, at near-interactive query ratete that the current
knowledge of regulatory networks is incomplete, and istéito a few model or-

ganisms. Therefore, application of our method on curreavifylable data does not
provide a comprehensive library of regulatory network d@ation. On the other

hand, the partial annotation provided by our method formsedul basis for ex-

tending our knowledge of regulatory networks beyond welliged processes and
model organisms.
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