
A Universal Preditor Based on Pattern Mathing

�

November 9, 2001

Philippe Jaquet Wojieh Szpankowski

y

Izydor Apostol

INRIA Dept. of Computer Siene Amgen In.

Roquenourt Purdue University One Amgen Center Drive

78153 Le Chesnay Cedex W. Lafayette, IN 47907 Thousand Oaks, CA 91320

Frane U.S.A. U.S.A.

Philippe.Jaquet�inria.fr spa�s.purdue.edu iapostol�amgen.om

In Memory of Aaron D. Wyner (1939{1997)

Abstrat

We onsider a universal preditor based on pattern mathing: Given a sequene

X

1

; : : : ; X

n

drawn from a stationary mixing soure, it predits the next symbol X

n+1

based on seleting a ontext of X

n+1

. The preditor, alled the Sampled Pattern Math-

ing (SPM), is a modi�ation of the Ehrenfeuht{Myielski pseudo random generator

algorithm. It predits the value of the most frequent symbol appearing at the so alled

sampled positions. These positions follow the ourrenes of a fration of the longest

suÆx of the original sequene that has another opy inside X

1

X

2

: : : X

n

; that is, in SPM

the ontext seletion onsists of taking ertain fration of the longest math. The study

of the longest math for lossless data ompression was initiated by Wyner and Ziv in

their 1989 seminal paper. Here, we estimate the redundany of the SPM universal pre-

ditor, that is, we prove that the probability the SPM preditor makes worse deisions

than the optimal preditor is O(n

��

) for some 0 < � <

1

2

as n ! 1. As a matter of

fat, we show that we an predit K = O(1) symbols with the same probability of error.

Index Terms: Optimal preditor, universal preditor, ontext seletion, sequential dei-

sion, universal soure oding, redundany of universal preditors, pattern mathing, suÆx

trees.
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1 Introdution

Predition is important in ommuniation, ontrol, foreasting, investment, moleular biol-

ogy, seurity, and other areas. We understand how to do optimal predition when the data

model is known, but there is a need for designing universal predition algorithms that will

perform well no matter what the underlying probabilisti model is. Universal predition

was subjet of extensive researh over the last 50 years; it dates bak to Shannon [23℄. We

mention here only a few referenes: [1, 2, 5, 8, 16, 17, 18, 20, 22℄. In this paper we propose

a universal preditor based on pattern mathing whih is a modi�ation of an algorithm

proposed by Ehrenfeuht and Myielski [7℄ for generating a pseudo random sequene. It

ould also be viewed as a ontext seletion rule for sequential deision [29℄, and one an see

some resembles to the PPM data ompression algorithm [4℄. The heart of our sheme is an

algorithm that �nds the longest suÆx of a sequene whose opy is loated somewhere inside

the sequene. Suh a longest math was studied by Wyner and Ziv [30℄ (f. also [25℄) in

the ontext of lossless ompression.

Before we desribe in details our algorithm, we �rst briey disuss the general predition

problem (f. [1, 2, 12, 17℄). Let x

1

; x

2

; : : : ; x

n

over some �nite alphabet A be given to an

observer who tries to predit the next outome x

n+1

, or more generally, makes a deision

b

n+1

based on the observed data. We onsider only nonantiipatory preditors whose dei-

sions depend on x

1

; : : : ; x

n

but not on the future outomes. One the real outome x

n+1

is

revealed, the observer inurs the loss l(b

n+1

; x

n+1

). The objetive of the optimal deision is

to minimize this loss funtion. Throughout the paper, we assume that b

n+1

= x̂

n+1

(thus

we predit x

n+1

) and the loss funtion is the Hamming distane between x̂

n+1

and x

n+1

.

The preditor an either be deterministi or random. For deterministi preditors there

is a funtion f

n

suh that

x̂

n+1

= f

n+1

(x

1

; : : : ; x

n

):

For random preditors, one de�nes a onditional probability distribution, say q(�jx

1

; : : : ; x

n

),

and sets

Prf

^

X

n+1

= x̂

n+1

jX

1

= x

1

; : : : ;X

n

= x

n

g = q(x̂

n+1

jx

1

; : : : ; x

n

);

where X

1

; : : : ;X

n

denote random variables. Finally, we an analyze predition either in the

probabilisti setting or the deterministi setting. In the probabilisti setting the sequene

X

1

;X

2

; : : : is generated by a random soure with the underlying probability measure P

(usually unknown to us) while in the deterministi setting we onsider individual sequenes.

In this paper, we onsider deterministi preditors in a probabilisti setting with the

Hamming distane as the loss funtion. More preisely, we assume that X

1

;X

2

; : : : is drawn

2



from a stationary mixing soure, and

^

X

n+1

is omputed deterministially from the already

observed data (i.e., ontext). In short, the value of

^

X

n+1

is deided by a majority rule of

symbols observed at sampled positions that are determined by a pattern mathing algo-

rithm desribed in details below. We shall oin the term Sampled Pattern Mathing (SPM)

preditor for suh a sheme.

First, we must understand what is the optimal preditor for known soure distributions.

It is not diÆult to prove that for stationary ergodi soures the optimal preditor X

�

n+1

is

given by (f. [2℄)

X

�

n+1

:= arg max

a2A

PrfX

n+1

= ajX

1

= x

1

; : : : ;X

n

= x

n

g (1)

for all n. The so alled preditability �

�

n

, that is, the average predition error (in the ase

of the Hamming distane it is simply the the probability of error PrfX

�

n+1

6= X

n+1

g) is

de�ned as

�

�

n

:= PrfX

�

n+1

6= X

n+1

g =

X

x

1

;:::;x

n

P (x

1

; : : : ; x

n

) min

a2A

[PrfX

n+1

6= ajx

1

; : : : ; x

n

g℄ ; (2)

where, throughout this paper, we shall write P (x

1

; : : : ; x

n

) := PrfX

1

= x

1

; : : : ;X

n

= x

n

g.

We illustrate these de�nitions on memoryless and Markov soures.

Example 1: Memoryless and Markov Binary Soures (f. [16℄)

1. Memoryless Soure. Let � = PrfX

n

= 1g. Then

X

�

n+1

= 1

�

� �

1

2

�

;

�

�

n

= min[�; 1� �℄;

where 1(A) = 1 if A ours, and zero otherwise.

2. Markov Soure. Assume for simpliity that X

n

is the �rst order Markov hain. De�ne

�

i

= PrfX

n+1

= 1jX

n

= ig where i 2 f0; 1g. Then

X

�

n+1

= 1

�

�

i

�

1

2

�

; i 2 f0; 1g;

�

�

n

= PrfX

n

= 0gmin[�

0

; 1� �

0

℄ + PrfX

n

= 1gmin[�

1

; 1� �

1

℄

for all n. Clearly, �

�

= lim

n!1

�

�

n

exists for irreduible and aperiodi Markov hains.

We now onsider universal preditors for a lass of soures M for whih the distribution

of the underlying proess is not known a priori and must be learned from experiene. We

study here the lass M of stationary mixing soures that we de�ne more preisely in the

next setion. In this ase, the preditability �̂

n

(M) of the preditor

^

X

n+1

is de�ned as the

average predition error, that is,

�̂

n

(M) =

1

n

n

X

i=1

Prf

^

X

i

6= X

i

g:
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As in soure oding, the primary goal of universal predition is to �nd preditors that

minimize (asymptotially) the preditability �̂

n

(M) (i.e., they math asymptotially the

optimal preditability �

�

n

). However, among suh preditors one looks for those that mini-

mize the redundany, r

n

, de�ned as the di�erene between the average predition error and

the optimal predition error introdued in (2), that is,

r

n

:= �̂

n

(M) � �

�

n

(M): (3)

Observe, however, that to estimate asymptotially the redundany it suÆes to bound the

di�erene

Prf

^

X

n+1

6= X

n+1

g � PrfX

�

n+1

6= X

n+1

g

for n!1. But

Prf

^

X

n+1

6= X

n+1

g � PrfX

�

n+1

6= X

n+1

g � PrfX

�

n+1

6=

^

X

n+1

g: (4)

Thus one an estimate the right-hand side of (4) hoping that the bound is tight enough.

This is true for almost all ases (but not all) as illustrated in the next example.

Example 2: Unbiased versus Biased Binary Memoryless Soures

Let us onsider an unbiased binary memoryless soure with both symbols generated

with equal probability. By

e

X

n

we denote a very naive estimator that ips an unbiased

oin to make deisions whether to predit 0 or 1. We prove that this estimator is optimal.

Indeed, for a = f0; 1g by (1) we have PrfX

�

n+1

= ag = 0:5, as well as Prf

e

X

n+1

= ag = 0:5.

Moreover,

PrfX

�

n+1

6= X

n+1

g =

1

2

and Prf

e

X

n+1

6= X

n+1

g =

1

2

;

thus Prf

e

X

n+1

6= X

n+1

g � PrfX

�

n+1

6= X

n+1

g = 0 and

e

X

n

is an optimal estimator. But the

right-hand side of (4) is equal to

PrfX

�

n+1

6=

e

X

n+1

g =

1

2

:

The bound proposed in (4) is not tight in this ase and should not be used (f. also [8℄).

Let us now onsider a biased binary soure with p denoting the probability of generating

0 and q := 1� p, where p > q. Clearly, the preditor

e

X

n

suggested above is not good sine

PrfX

�

n+1

6= X

n+1

g = q and Prf

e

X

n+1

6= X

n+1

g = 2pq > q:

We now onstrut another preditor that makes deisions based on ounting the number

N

0

(n) of 0's and the number N

1

(n) of 1's in the sequene X

1

; : : : ;X

n

. The preditor

^

X

n+1

outputs 0 if N

0

(n) � N

1

(n), and predits 1 if N

0

(n) < N

1

(n). (We should treat the
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ase N

0

(n) = N

1

(n) separately, but for our illustrative purpose it is not that important.)

Observe that again PrfX

�

n+1

6= X

n+1

g = q but this time (f. Lemma 8 of Setion 3) for

some � > 0

Prf

^

X

n+1

6= X

n+1

g = PrfN

0

(n) < N

1

(n)gp+ PrfN

0

(n) � N

1

(n)gq

= pO(e

��n

) + q(1�O(e

��n

)) = q +O(e

��n

):

We also have

PrfX

�

n+1

6=

^

X

n+1

g = Prf

^

X

n+1

= 1g = PrfN

1

(n) > N

0

(n)g = O(e

��n

);

therefore, we onlude that the right-hand side of (4) is tight.

In this paper, we propose a universal preditor based on pattern mathing that we

propose to all the Sampled Pattern Mathing (SPM). The basi idea of our preditor

was already antiipated by Ehrenfeuht and Myielski [7℄ (f. also [12℄). The algorithm

desribed in [7℄ is as follows: For a given x

1

; : : : ; x

n

, let D

n

:= n � ` + 1 be the maximal

suÆx x

`

; x

`+1

; : : : ; x

n

that ours earlier in the sequene x

1

; : : : ; x

n

, that is, the smallest

` suh that x

`

; : : : ; x

n

= x

`�i

; : : : ; x

n�i

for some 1 � i � n. To onstrut a preditor,

Ehrenfeuht and Myielski took the smallest i (the most reent ourrene), say I, for

whih the longest math is found, and set x

n+1

= x

n�I+1

. It was onjetured in [7, 12℄

that this is a universal preditor. However, Jaquet [10℄ (f. also [18℄) proved that for

memoryless soures PrfX

n+1

= ag = PrfX

n�I+1

= ag for all a 2 A, but this by itself does

not de�ne a good preditor.

To build a universal preditor based on the Ehrenfeuht and Myielski idea, we onsider

a frational maximal suÆx, say of length d�D

n

e for 0 < � < 1. We shall show that suh a

shorter mathes our O(n

1��

) times with high probability (in short: whp) in X

1

; : : : ;X

n

generated by a stationary mixing soure. We �nd all ourrenes of suh shorter mathes,

alled further markers, in X

1

; : : : ;X

n

and then apply the majority rule to all symbols that

our just after the markers (i.e., we selet the most likely symbol of the sampled sequene).

We shall prove that suh a preditor is asymptotially optimal for mixing soures and its

redundany is O(n

��

) for some 0 < � <

1

2

(f. Theorem 1).

As we mentioned above, there is a large body of literature on predition (f. [1, 2, 5, 8,

16, 17, 18, 20, 22℄), however, most are either restrited to individual sequenes or Markovian

models. In partiular, in [16℄ Merhav, Feder, and Gutman proved that a standard majority

preditor (as desribed in the seond part of Example 2) is asymptotially optimal for

Markov hains of known order with the redundany O(1=n). A more general soures were

onsidered by Weinberger, Rissanen and Feder [29℄ who proved that for the so alled tree

5



soures (of �nite memory) the majority rule preditor is asymptotially optimal with the

redundany bounded from the above by

P

s2S

C

s

=n = O(1=n) where s is the set of ontext

and C

s

a onstant. In [29℄ the authors selet a ontext over its parent only if it yields a

shorter ode length for the past ourrenes of symbols in that ontext. Our SPM preditor

is asymptotially optimal for mixing soures that inludes Markov soures of unknown

order as well as tree soures. However, redundany of suh a preditor is O(n

��

) for some

0 < � <

1

2

.

1

Also, the SPM preditor seems to have an algorithmi edge sine we an

provide an eÆient implementation based on suÆx trees (see Setion 2.1).

In passing we mention that the SPM preditor somewhat resembles the PPM (Predition

by Pattern Mathing) data ompression algorithm of Cleary and Witten [4℄. In fat, our

ontext seletion rule an also be used for a data ompression sheme. In PPM the \deision

rule" depends on the number of times a (long) math ours in the text. To be more preise,

from Lemma 1 we onlude that the longest suÆx that ours at least twie is of the length

1=h(log n�`(n)) for some `(n) where h is the entropy rate of the soure. It is not diÆult to

prove (see Lemma 4) that suh a suÆx ours whp O(2

`(n)

) times in the original string of

length n. For the Lempel-Ziv sheme we have `(n) = O(1) and therefore the longest suÆx

appears O(1) times, while in our SPM algorithm we set `(n) = (1 � �) log n, and then the

�{frational math ours O(n

1��

) times. In PPM `(n) seems to be o(log n).

The paper is organized as follows. In the next setion we desribe the Sampled Pattern

Mathing preditor, and argue its asymptoti optimality for a lass of mixing soures (f.

Theorem 1). The proof of the main result is delayed till the last setion. In passing we

should mention that we did apply SPM to the predition of moleular sequenes showing

its potential suitability to proteins and DNA preditions (f. [11℄).

2 Main Results

We start this setion with a preise desription of the Sampled Pattern Mathing (SPM)

preditor, and show how to implement it eÆiently using suÆx trees. Then we formulate

our main theoretial results.

2.1 Sampled Pattern Mathing Preditor

It is assumed that a sequene x

n

1

:= x

1

; : : : ; x

n

is given. Eah symbol x

i

belongs to a �nite

alphabet A of size V := jAj. For a �xed integer K � 1, the algorithm will predit the next

1

It is an interesting open problem to determine the best possible redundany for mixing soures.

6



K symbols,

2

that is, (x̂

n+1

; : : : ; x̂

n+K

). However, throughout the paper we arry out the

analysis of the algorithm only for K = 1.

Let us �x 0 < � < 1. The SPM predition algorithm works as follows:

1. Find the largest suÆx of x

n

1

whose opy appears somewhere in the string x

n

1

. We all

this suÆx the maximal suÆx and denote its length by D

n

. More preisely, D

n

:= l

where l is the largest integer suh that

(x

n�l+1

; : : : ; x

n

) = (x

n�i�l+1

; : : : ; x

n�i

)

for some 1 � i � n.

2. Take an � fration of the maximal suÆx of length k

n

:= d�D

n

e, that is, the suÆx

x

n�k

n

+1

; : : : ; x

n

. Suh a frational suÆx ours more than twie in the original string.

Let L

n

� 2 be the atual number of times x

n�k

n

+1

; : : : ; x

n

appears in the string x

n

1

.

Eah suh a ourrene de�nes a marker (i.e., a substring), and the K positions after

markers are alled the marked positions. Finally, by the sampled sequene we

mean a sequene omposed of all symbols from the K-tuple marked positions. We

shall use these notations throughout the paper.

3. Let now N(x

1

; : : : ; x

K

) be the number of non-overlapping K-tuple (x

1

; : : : ; x

K

) o-

urrenes in the sampled sequene. The SPM preditor assigns

(x̂

n+1

; : : : ; x̂

n+K

) = arg maxN(x

1

; : : : ; x

K

) (5)

with a tie broken in an arbitrary manner (e.g., by a random seletion). In words,

(x̂

n+1

; : : : ; x̂

n+K

) is assigned to the most frequent K-tuple ourring in the sampled

sequene.

We illustrate the SPM algorithm in the following example.

Example 3. SPM Preditor for K = 1

Below is presented a text with the largest suÆx and its opy framed (de�ned in Step 1

of the above algorithm):

sljzggdl ygsjsljz kgssljzidsljzjgz ygsjsljz

In fat, D

40

= 8. Let � = 0:5. Then the frational suÆx sljz is used to �nd all markers.

They are shown below:

2

In some appliations (e.g., moleular biology) one may need to predit simultaneously more than one

symbol.
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10,b$

7,bbab$

2,bbaba

3,baba

8,bab$

1,abbaba

4,aba

6,abbab$

9,ab$

$ b a

*

*

*
longest suffix

*

5,babb

Figure 1: The suÆx tree of abbababbab$ with its longest suÆx and markers shown (denoted

by asterisks).

sljz ggdlygsj sljz kgs sljz kljzjgzygsj sljz

The sampled sequene is gkk, thus the SPM predits x̂

41

= K.

The next question is how to ompute eÆiently the longest suÆx, markers, and the

predited symbol x̂

n+1

. We propose to use the suÆx tree onstrution (f. [9, 26℄). The

suÆx tree of x

1

; : : : ; x

n

is a trie (i.e., a digital tree) built from all suÆxes of x

1

; : : : ; x

n

$

where $ is a speial symbol that does not belong to the alphabet A. External nodes of suh

a suÆx tree ontain information about the the suÆx positions in the original string and the

substring itself that leads to this node (f. Figure 1). In addition, we keep pointers to those

external nodes that ontain suÆxes ending with the speial symbol $ (sine one of them

will be the longest suÆx that we are looking for; in the fat the one with the longest path).

Figure 1 shows the suÆx tree onstruted for x

10

1

$ = abbababbab$. The external nodes

ontaining suÆxes ending with $ are denoted by ovals. Observe that in Figure 1 the node

ontaining (6; abbab) leads to the longest suÆx x

10

6

= abbab of length D

10

= 5 ourring

also at x

5

1

= abbab. It is very easy to �nd all markers one the suÆx tree is built. Indeed,

they are loated in the subtree that an be reahed following the last d�D

n

e symbols of the

longest suÆx. In Figure 1 for � = 0:5 we hosen the frational suÆx to be ab whih ours

at position 1; 6; 4 and 9 as an be read diretly from the subtree reahed by following the

path ab (see the nodes denoted by asterisks). Reading the most frequent symbol (say for

K = 1) is also simple: We only need to onsider strings ontained in these nodes (marked

8



by asterisks in Figure 1).

It is well known that a suÆx tree of x

n

1

an be built in O(n) in the worst ase (f. [9℄).

This algorithm, due to Weiner (f. [9℄), is quite ompliated. One may want to use a simple

brute-fore algorithm that runs on average in O(n log n) (f. [25℄). Moreover, it is easy to

update the suÆx tree when the new symbol x

n+1

is added. The only nodes that we must

look at are the ones with $ to whih we keep pointers. In the worst ase, we need to inspet

O(n) nodes, but on average only O(n

1��

) (f. Lemma 4).

2.2 Average Redundany of the SPM

The prime goal of this work is to derive the redundany of the SPM algorithm for a lass

of mixing models M that we desribe next (f. [3, 24℄):

(MX) (Strongly)  -Mixing Soure

Let F

n

m

be a �-�eld generated by X

n

m

= X

m

X

m+1

: : : X

n

for m � n. The soure is

alled mixing, if there exists a bounded funtion  (g) suh that for all m; g � 1 and

any two events A 2 F

m

1

and B 2 F

1

m+g

the following holds

(1�  (g))PrfAgPrfBg � PrfABg � (1 +  (g))PrfAgPrfBg: (6)

If, in addition, lim

g!1

 (g) = 0, then the soure is alled strongly mixing. Hereafter,

we onsider only strongly  -mixing soures and we shall all them mixing soures.

It is known that memoryless soures are mixing with  (g) = 0, and Markov soures over

a �nite alphabet are strongly mixing with  (g) = O(

g

) for some  < 1 (f. [3, 26℄).

Our main result is summarized next. It asserts that the SPM preditor is asymptotially

optimal and its average redundany is O(n

��

) for some � > 0. We reall the optimal

preditability (i.e., the average predition error) �

�

n

(M) is omputed for the best preditor

for known soure statistis. In our setting the optimal preditor is de�ned as

(X

�

n+1

; : : : ;X

�

n+K

) := arg max

(a

1

;:::;a

K

)2A

K

PrfX

n+1

= a

1

; : : : ;X

n+K

= a

K

jx

1

; : : : ; x

n

g

for all (x

1

; : : : ; x

n

) 2 A

n

. The proof of the main result for K = 1 is presented in the next

setion.

Theorem 1 Let � >

1

2

and K be �xed. Consider the Sampled Pattern Mathing algorithm

that predits the next K outomes of a sequene X

1

; : : : ;X

n

drawn from a  -mixing soure

M. Then there exists 0 < � <

1

2

suh that for n!1

r

n

= �̂

n

(M)� �

�

n

(M) = O(n

��

) (7)

9



provided the  mixing oeÆient satis�es

lim

n!1

n

1��

 (n

"

) = 0 (8)

for any arbitrary small " > 0.

Remark. The restrition � >

1

2

is neessary to assure that the ruial marker separation

property (f. next setion) holds. This property says that whp two markers are not too

lose to eah others. The SPM may still work for � <

1

2

but then its average redundany

will deay to zero in a slower pae. However, the proof presented in the next setion does

not over suh an extension.

3 Proof of the Main Result

We shall prove Theorem 1 using a ombination of probabilisti and ombinatorial methods.

The reader is referred to the reent book [26℄ for in-depth disussion of these tools. We

start with some de�nitions following by a series of tehnial lemmas that will lead us to the

main result.

In the sequel, we shall need R�enyi's entropy, rate of onvergene to Shannon entropy,

the Asymptoti Equipartition Property (AEP), and the Azuma inequality that we briey

review below (f. [6, 15, 24, 26℄).

For �1 � b � 1, the bth order R�enyi entropy is de�ned as

h

b

= lim

n!1

� logE[P

b

(X

n

1

)℄

bn

= lim

n!1

� log

�

P

w2A

n

P

b+1

(w)

�

1=b

n

; (9)

provided the above limit exists. In the above, we write P (w) = PrfX

n

1

= wg for w 2 A

n

. It

is known (e.g., see [24, 26℄) that for mixing proesses the R�enyi entropies exist. Observe that

Shannon entropy h = lim

b!0

h

b

. Moreover, by the Shannon-MMillan-Breiman theorem the

onvergene to Shannon entropy is also in the almost sure sense. The AEP states: For a

stationary and ergodi sequene X

n

1

, for given " > 0 the state spae A

n

an be partitioned

into two subsets, B

"

n

(\bad set") and G

"

n

(\good set"), suh that there is N

"

so that for

n � N

"

we have

2

�nh(1+")

� P (x

n

1

) � 2

�nh(1�")

for x

n

1

2 G

"

n

; (10)

lim

n!1

P (B

"

n

) = 0: (11)

In general, there is no universal rate of onvergene to the entropy h, however, for

soures satisfying the so alled Blowing-up Property Marton and Shields [14℄ proved that

10



the onvergene rate in the AEP is exponential, that is, P (B

"

n

) onverges exponentially fast

to zero for suh proesses. In partiular, Shields [24℄ showed that for mixing proesses there

exists ! > 0 suh that

P (B

"

n

) = O(2

�!n

) (12)

for large n.

3.1 A Road-map to the Proof

Before we proeed with a formal proof we present here a \guided tour" through the main

thrust of our approah. As mentioned before, we only onsider the ase K = 1. In order to

establish a bound for the predition redundany, we shall show that (4), that is,

Prf

^

X

n+1

6= X

n+1

g � PrfX

�

n+1

6= X

n+1

g � PrfX

�

n+1

6=

^

X

n+1

g

is small for n!1. As pointed out in Example 2, the right-hand side of the above might not

be small for some ases (e.g., when probabilities of generating symbols are indistinguishable),

and then we must use the left-hand side of the above. However, the ore of the proof is

ommon to both ases.

The main theorem will follow from the fat that the sampled sequene is mixing. In

Lemma 7 we establish this fat whih we all the mixing property.

Property 1 (Mixing of the sampled sequene) The sampled sequene is mixing pro-

vided (8) holds for n!1.

Knowing this, it is easy to prove our main result. Indeed, the majority rule for an

(almost) i.i.d. sampled sequene suggests to predit a 2 A that maximizes the onditional

probability P (X

n+1

= ajX

n

1

) provided that the number of markers tends to in�nity. This

result is qualitatively equivalent to the main theorem.

The mixing property of the sampled sequene is a onsequene of two ruial properties,

namely:

� the marker separation property;

� the marker stability property.

The marker separation property is used to establish the mixing property. We will prove it

in Lemma 3 where the ondition � > 1=2 is required.

Property 2 (Marker separation property) There exists " > 0 suh that for � >

1

2

with high probability as n!1 two onseutive markers in the string X

n

1

annot be loser

than n

"

positions.

11



The separation property together with the mixing ondition of the original sequene

show that a pair of onseutive markers tend to be independent as n ! 1. This should

lead to the proof of the mixing property of the sampled sequene. Observe, however, that a

modi�ation of one part of the string may hange the positions of the markers in other parts

of the string. Fortunately, this happens very rarely as the next marker stability property

asserts (f. Lemma 6).

Property 3 (Marker stability property) There exists " > 0 suh that with high prob-

ability no modi�ation of any of the dn

"

e symbols following a marker will transform the

string X

n

1

into a another string

~

X

n

1

with a new set of markers.

In the next subsetions we prove in the sequel the marker separation property, the

marker stability property, and the mixing property of the sampled sequene. Finally, in

Setion 3.5 we omplete the proof of Theorem 1.

3.2 Marker Separation Property

We establish here the marker separation property. We �rst show in Lemma 1 that the largest

suÆx D

n

is of length

1

h

logn whp (with high probability). This will lead to Lemma 3 whih

is a formal statement of the separation property. In addition, we show in Lemma 4 that

whp the number of markers is n

1��

whih is also required for the proof of the main result.

Lemma 1 For a string X

n

1

generated by a mixing soure, let D

n

be the length of largest

suÆx of X

n

1

that has a opy inside X

n

1

, that is,

D

n

= maxfl : 9

1�i�n�l+1

X

n

n�l+1

= X

i+l�1

i

g:

For any " > 0

Pr

�

(1� ")

log n

h

< D

n

< (1 + ")

log n

h

�

= 1�O

�

logn

n

"

�

provided the  -mixing oeÆient satis�es (8) of Theorem 1.

Proof. This was basially proved in [13, 25, 28℄ (f. also [30℄) using the �rst and the seond

moment methods (f. [26℄). We provide here only a sketh of the proof. Let w 2 G

"=2

k

.

Then for k = (1 + ")h

�1

logn

PrfD

n

� kg �

n�k

X

i=1

X

w2G

"=2

k

PrfX

i+k�1

i

= X

n

n�k+1

= wg+ P (B

"

k

)

�

n�k

X

i=1

(1 +  (n� 2k � i+ 2))2

�kh(1�"=2)

+ P (B

"

k

)

� O(maxfn

�"=2

; P (B

"

log n

)g)

12



for any " > 0. By (12) the upper bound is established.

The lower bound is more intriate, but follows the standard approah of \loosing up"

the dependeny by deleting n

"=4

letters after ever symbol of X

n

1

. The derivation from [13℄

lead us to

PrfD

n

< kg � 2 (n

"=4

) +O(log n=n

"=4

)

for k = (1� ")h

�1

log n. This ompletes the proof sine  (n

"=4

) = O(n

�"

) under (8).

Remark. We should point out that (8) is not neessary for Lemma 1 to be true. In general,

the rate of onvergene is O(maxf (n

�"=4

); n

�"

g) (f. [13, 28℄). In fat, D

n

�

log n

h

(pr.)

for stationary ergodi proesses (f. [30℄).

In the sequel, we must study the way markers may overlap. For two strings X and Y we

denote C(X;Y ) the length of the longest ommon pre�x of both X and Y . The next lemma

presents an estimate on the tail of the probability distribution of C(X

1

i

;X

1

j

) where X

1

i

and X

1

j

are substrings (starting at positions i and j, respetively) of a string generated by

a mixing model.

Lemma 2 There exists � > 0 suh that for any 1 � i 6= j � n

PrfC(X

n

i

;X

n

j

) � kg � 2

��k

(13)

where  > 0 is a onstant.

Proof. We shall follow the proof from [25℄. To simplify the notation let C

i;j

= C(X

n

i

;X

n

j

)

and j = i + d, that is, X

1

j

is d � 1 shifted version of X

1

i

. When d > k the situation is

quite simple (there is no overlap), so we onentrate on the ase 1 � d � k. Let w

d

2 A

d

be

a word of length d. Sine both strings overlap on k + d positions, there exists w

d

suh that

X

i+k+d�1

i

= w

b

k

d

+1

d

w

d

and X

i+k+2d�1

i+d

= w

b

k

d

+1

d

w

d

where w

d

is a pre�x of w

d

(f. [25, 26℄);

that is, X

i+k+d�1

i

is periodi with period w

d

. Therefore, we have

PrfC

i;i+d

� kg =

X

A

d

P (w

bk=d+1

d

w

d

)

� 

X

A

d

P (w

bk=d

d

w

d

)P (w

d

) (14)

� 

s

X

A

d

P

2

(w

bk=d

d

w

d

)P (w

d

) � 

s

X

A

d

P

2

(w

bk=d

d

w

d

) (15)

� 

s

X

A

k

P

2

(w

k

) = 

1

q

E[P (w

k

)℄ (16)

� 2

�

1

2

kh

1

(1�")

(17)

13



where (14) is due to the mixing ondition, (15) is a onsequene of the inequality on means

(f. [26℄), (16) follows from A

d

� A

k

, and (17) is a onsequene of the de�nition of the

R�enyi's entropy h

1

(i.e., b = 1 in (9)). In the above, the onstant  may hange from line

to line and " > 0 is any arbitrary small positive onstant. This ompletes the proof after

setting � =

1

2

h

1

(1� ").

The next lemma is at the heart of our proof, and it establishes the marker separation

property. It says that whp markers annot overlap and in fat annot be too lose to eah

others. Below " > 0 stands for a small positive number and  is onstant that may hange

from line to line.

Lemma 3 For any " > 0 and � >

1

2

, the probability that for k � �

log n

h

, a string X

n

1

ontains two onseutive opies of the suÆx X

n

n�k+1

that are separated by less than d = dn

"

e

positions is O(n

��

) with

�� = max

�

1� 2� + ";�� + ";�!

�

h

(1� ");�

h

1

2h

�"(1 � ")

�

;

where ! is de�ned in (12).

Proof. We start by formalizing the statement of the lemma. De�ne E

n

as follows

E

n

:= fX

n

1

: 9

1�i�n

9

i�j�i+d

: X

i+k�1

i

= X

j+k�1

j

= X

n

n�k+1

g;

that is, E

n

is the set of strings of length n that satis�es the ondition of the lemma. Thus,

to prove it suÆes to show that P (E

n

) = O(n

��

).

Let us onsider two substrings X

i+k�1

i

and X

j+k�1

j

of length k � �

log n

h

. Let the integer

g = maxfj� i�k+ 1; 0g be alled the gap between the substrings. We assume that g < n

"

.

We de�ne also the distane d between the substrings X

i+k�1

i

and X

j+k�1

j

as d = j � i

(j � i). Clearly d = j � i � k + g. Observe that strings in E

n

may have markers that may

overlap, or may have two markers within distane d without overlapping, or may have a

marker within distane d from the suÆx X

n

n�k+1

. To analyze these three ases we onsider

the following sets:

� O

n

: set of strings X

n

1

suh that the suÆx X

n

n�k+1

and its opy overlap on more than

"k positions;

� E

1

n

: set of strings X

n

1

suh that X

n

1

=2 O

n

and X

n

n�k�d

ontains another opy of

X

n

n�k+1

;

� E

2

n

: set of strings X

n

1

suh that X

n

1

=2 O

n

and two onseutive opies (i.e., markers)

of X

n

n�k+1

are within distane smaller than d.
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Notie that E

n

� O

n

[E

1

n

[E

2

n

. By Lemma 2 we an bound the probability of O

n

as follows

P (O

n

) � k2

��"k

= O(n

�

h

1

2h

�"(1�")

)

Now, we onentrate on evaluating the probability of the other two sets. Observe that

P (E

1

n

) =

X

w

k

2A

k

�O

n

Prf9

0<j�k+g

: X

n�i

n�k�i

= X

n

n�k

= w

k

g:

Using Lemma 1, Asymptoti Equipartition Property (AEP), and mixing ondition (6), we

obtain (to simplify notations we write below k(1� ") for bk(1 � ")):

P (E

1

n

) � 

X

w

k(1�")

2A

k(1�")

Prf9

k(1�")�i�k+g

X

n�i

n�k(1�")�i+1

= w

k(1�")

gPrfX

n

n�k(1�")+1

= w

k(1�")

g

� P (B

"

k(1�")

) + (k + g)

X

w

k(1�")

2G

"

k(1�")

P

2

(w

k(1�")

)

� P (B

"

k(1�")

) + (k + g)2

h(1�")

2

k

� P (B

"

k(1�")

) + n

��+O(")

:

Finally, the probability of E

2

n

, formally satis�es the following identity

P (E

2

n

) =

X

w

k

2A

k

�O

n

Prf9

m<n

9

0<j�k+d

: X

m�j

m�k�j

= X

m

m�k

= X

n

n�k

= w

k

g: (20)

Using the same arguments as above we onlude that

P (E

2

n

) � P (B

"

k(1�")

) + n(k + g)

X

w

k(1�")

2G

"

k(1�")

P

3

(w

k�d

)

� P (B

"

k(1�")

) + 2nn

"

2

�2h(1�")

2

k

� P (B

"

k(1�")

) + n

1�2�+O(")

:

Combining the previous estimates we prove the lemma.

Remark: For "! 0 we have 0 < � <

1

2

for � >

1

2

. The ondition � >

1

2

is required only

in the proof of this lemma.

Let now L

n

be the number of markers (of length k = b�D

n

). We shall prove that

whp L

n

� n

1���"

where " > 0 is an arbitrary positive number. Atually, we only need

a lower bound on the number of markers sine we know that L

n

� n whih suits us quite

well.

Lemma 4 For arbitrarily small " > 0

PrfL

n

< (1� ")n

1���"

g = O(maxfn

��1+"

;  (n

"

)g)

for large n.
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Proof. We only onsider nonoverlapping markers that are separated by g = n

"

symbols.

Denote this number of markers by L

�

n

. Clearly, L

n

� L

�

n

and let Z

i

be equal to 1 if a

nonoverlapping n

"

-separated marker ours at position i, where 1 � i � n=(k + g) with

k = b�D

n

. Observe that

E[L

�

n

℄ =

n=(k+g)

X

i=1

E[Z

i

℄ �

n

k + g

PrfZ

i

= w

k

2 G

"

k

; k � (1� ")�h

�1

logng � n

1���"

:

Then by Chebyshev's inequality

PrfL

n

< (1� ")n

1���"

g � PrfL

�

n

< (1� ")E[L

�

n

℄g �

Var[L

�

n

℄

"

2

E[L

�

n

℄

2

:

We prove below that

Var[L

�

n

℄ � E[L

n

℄ + 2 (n

"

)E[L

�

n

℄

2

:

To estimate the variane Var[L

�

n

℄ we proeed basially as in [13℄. Observe that for m =

n=(k + g)

Var[L

�

n

℄ =

m

X

i=1

Var[Z

i

℄ +

X

ji�jj>n

"

Cov[Z

i

Z

j

℄

� E[L

�

n

℄ + 2 (n

"

)

X

ji�jj>n

"

E[Z

i

℄E[Z

j

℄

� E[L

�

n

℄ + 2 (n

"

)E[L

�

n

℄

2

;

whih, together with our previous estimates, ompletes the proof.

3.3 Marker Stability Properties

We establish here the marker stability property. Assume now that m = bn

"

 for any

arbitrary small " > 0. In the sequel, we shall work with modi�ed strings

e

X

n

1

in whih

we hange any of the m symbols following a marker. We prove several properties of suh

modi�ed strings. Among others, in the next lemma we show that whp the largest suÆx

e

D

n

in the modi�ed strings is equal to the suÆx D

n

in the original string.

Lemma 5 Let

e

X

n

1

be a string that di�ers from the string X

n

1

generated by a mixing model

on any of m = bn

"

 positions after a marker of X

n

1

. Let

e

D

n

be the length of the largest

suÆx in

e

X

n

1

. Then there exists " > 0 suh that

PrfD

n

=

e

D

n

g = 1�O(n

��

) (21)

for some 0 < � <

1

2

.
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A B C D E F G

Cn Sn

Figure 2: Illustration to Lemma 5: Solid intervals represent the largest suÆx and its opy,

boxes are markers and sampled positions are marked as rosses.

Proof. The thrust of the proof is quite simple. We shall show that the modi�ation de�ned

in the lemma an only onern markers that ontains any of these modi�ed symbols. But

due to marker separation properties (in partiular, Lemma 3) suh an event is quite unlikely

as long as D

n

> (1 � ")

1

h

logn for " suÆiently small. Therefore, we assume from now on

that D

n

� (1 � ")

1

h

logn, whih by Lemma 1 ours with probability 1 � O(n

�"

). We

onsider several ases illustrated in Figure 2 (where m = 1 is assumed).

Let S

n

be the suÆx of length D

n

of string X

n

1

, that is, S

n

= X

n

n�D

n

+1

; let C

n

be an

internal opy of S

n

in the original string X

n

1

. We assume that C

n

starts at position i, i.e.,

C

n

= X

i+D

n

�1

i

. We onsider two ases:

Case D

n

<

e

D

n

.

This an only happen if the modi�ation ours inside the suÆx S

n

or the opy C

n

(f.

positions C and G in Figure 2). If the hange ours inside S

n

, then there must be another

marker within distane O(log n), whih happens with probability O(n

��

). If the hange is

inside C

n

(f. position C in Figure 2), then this will result in produing another marker

within distane O(log n) that by Lemma 3 has probability O(n

��

) to our.

Case D

n

>

e

D

n

.

Again, we must onsider a few ases (we refer to positions A, B, E and F in Figure 2).

In the �rst ase a hange ours in the new largest suÆx of

e

X

n

1

, just before S

n

. But by

Lemma 3 this happens with probability O(n

��

). The seond ase is more intriate. We

assume that the hange ours inside the string whih reates a new opy

e

C

n

suh that

j

e

C

n

j =

e

D

n

> D

n

(f. positions A, B and E in Figure 2). Of ourse, the new opy

e

C

n

reates a new marker. If this marker does not ontain the modi�ed position, then this

marker existed before and was within distane O(n

"

) from another marker (see A and B)

whih is unlikely to happen. Finally, we onsider the situation as illustrated by position

E in Figure 2. We redue it again to Lemma 3 by onsidering "new" markers of length

1

2

< �

0

< �, and see that again these two new markers are lose enough so that Lemma 3

an be used.

The last lemma tells us that whp strings do not modify the positions of their markers if

we alter any of m = bn

"

 symbols after a marker. We shall all suh strings favorite strings.
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This is made more formal in the next de�nition.

De�nition 1 A string X

n

1

is m-favorite if a modi�ation of any m symbols following a

marker does not hange loations of any marker in the new string

e

X

n

1

.

Lemma 5 basially implies that whp any string is favorite. This is proved formally in

the next lemma.

Lemma 6 There exists " > 0 suh that the probability there exists a modi�ation of m =

bn

"

 symbols following a marker that hanges the position of any marker in X

n

1

is O(n

��

)

for some 0 < � <

1

2

.

Proof. By hanging a symbol after a marked position we either reate a new marker that

overlap with the previous marker (f. position E in Figure 2) or delete an existing marker

that overlapped with the previous marker (f. position A in Figure 2). Thus by Lemma 3

this an only our with probability O(n

��

).

Before we proeed, we need the following de�nition.

De�nition 2 Strings X

n

1

and

e

X

n

1

are m-paired if:

� X

n

1

and

e

X

n

1

are both m-favorite strings;

� X

n

1

and

e

X

n

1

have their markers at the same positions;

� X

n

1

and

e

X

n

1

math on every positions exept the marked symbols.

We de�ne the orbit F

n

(X

n

1

) of X

n

1

as

F

n

(X

n

1

) := f

e

X

n

1

:

e

X

n

1

is m � paired with X

n

1

g;

and the orbit set (or the set of favorite strings) as

F

n

:=

[

X

n

1

F

n

(X

n

1

) = fX

n

1

: X

n

1

is a favorite stringg:

Given F := F

n

(X

n

1

), let L

n

(F) be the number of markers in a string X

n

1

2 F . Observe

that the favorite strings F may di�er only on m positions following a marker, thus the

number of markers is �xed for a given F . Furthermore, the ardinality of F is jFj =

V

mL

n

(F)

. Finally, by Lemma 6 the probability that a string belongs to the set of favorite

strings is 1�O(n

��

).
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3.4 Mixing Property of Sampled Sequene

The last two fats just proved have far reahing onsequenes. In partiular, in Lemmas 5

and 6 we establish that whp markers do not hange their positions if we modify any

sampled symbol. Strings satisfying this property were alled favorite strings. They play for

our problem the same role as typial sequene for AEP. In Lemma 7 below we shall prove

that the sampled sequene of favorite strings is mixing. This will allow us to omplete

the proof of Theorem 1 for strings for whih the probabilities of symbol generations are

distinguishable (we shall all them Æ-disriminant). When these probabilities are very lose

(think of the unbiased memoryless soure disussed in Example 2) we appeal to the left side

of (4) to omplete the proof of Theorem 1.

The next lemma summarizes our knowledge about the sampled sequene. It proves

that given F the sampled sequene is mixing. In other words, we shall show that the

probability distribution of the sampled sequene is within fator (1�O( (k))

L

n

(F)

from an

i.i.d. sequene.

Lemma 7 Let F be the orbit of a string that belongs to F

n

. Under the ondition that

X

n

1

2 F , the sampled sequene is mixing provided (8) holds. More preisely, let ` := L

n

(F)

and let i

1

, i

2

; : : : ; i

`

be the marked positions. Then

�

1�  (n

"

)

1 +  (n

"

)

�

`

PrfX

i

1

= x

1

jX

n

1

2 Fg � : : : � PrfX

i

`

= x

`

jX

n

1

2 Fg

� PrfX

i

1

= x

1

; : : : ;X

i

`

= x

`

jX

n

1

2 Fg �

�

1 +  (n

"

)

1�  (n

"

)

�

`

PrfX

i

1

= x

1

jX

n

1

2 Fg � : : : � PrfX

i

`

= x

`

jX

n

1

2 Fg

for any arbitrary small " > 0.

Proof. As in the formulation of the theorem, we let i

1

, i

2

; : : : ; i

`

to be the marked positions,

where ` := L

n

(F). The sampled sequene is X

i

1

X

i

2

: : : X

i

`

. We also de�ne I

j

:= fi

1

+

1; : : : ; i

j

+ mg for j = 1; 2; : : : ; `. In words, the sets I

j

represent m positions after eah

marker. Observe that given F all the other values X

r

for r =2

S

`

j=1

(i

j

[ I

j

) are �xed. We

denote by X(F)

i

1

�1

1

the �xed substring X

i

1

�1

1

, X(F)

i

k+1

�1

i

k

+1

the �xed substring X

i

k+1

�1

i

k

+1

,

and X(F)

n

i

`

+1

the �xed substring X

n

i

`

+1

when X

n

1

2 F . By de�nitions of the mixing soure

(MX) and the favorite sequene, we have

PrfX

n

1

2 Fg = PrfX(F)

i

1

1

X

i

1

+m

i

1

: : : X(F)

i

`

�1

i

`�1

+m+1

X

i

`

+m

i

`

X(F)

n

i

`

+m+1

g

� (1�  (m))

`

PrfX(F)

i

1

1

g � : : :� PrfX(F)

i

`

i

`�1

+m

gPrfX(F)

n

i

`

+m

g

19



and

PrfX

i

1

= x

1

; : : : ;X

i

`

= x

`

;X

n

1

2 Fg �

� (1 +  (m))

`

PrfX(F)

i

1

1

x

1

g � : : :� PrfX(F)

i

`

i

`�1

+m

x

`

gPrfX(F)

n

i

`

+m

g:

Combining these two inequalities we obtain the desired upper bound. In a similar manner

we obtain the lower bound. This yields the result sine (1 +  (n

"

))

n

1��

! 1 as long as (8)

holds.

To obtain a omplete piture of the probabilisti behavior of the SMP preditor, and

to ompare it to the optimal preditor X

�

n

, we must investigate the distribution of the

most frequent symbol in the sampled sequene. We know from Lemma 7 that the sampled

sequene is within \distane" (1 +  (n

"

))

L

n

(F)

! 1 from an i.i.d. sequene provided (8)

holds. However, the distribution of the most frequent symbol depends on how lose are the

probabilities of the next symbol X

n+1

given X

n

1

. We tehnially need a di�erent proof of

Theorem 1 for these two ases, as we have already pointed out in Example 2. Therefore,

we introdue the so alled Æ-disriminant strings.

De�nition 3 A string x

n

1

is alled Æ-disriminant if there exists a symbol, say a

max

2 A

suh that for all a 2 A� fa

max

g

PrfX

n+1

= a

max

jX

n

1

= x

n

1

g � PrfX

n+1

= ajX

n

1

= x

n

1

g > Æ (22)

for some Æ > 0.

Remark. For memoryless soures all strings are either Æ-disriminant or none is Æ-disriminant.

For soures with memory, some strings might be Æ-disriminant while others not, even for

the same soure.

Throughout, we assume that Æ > n

��

for some � > 0. We need to prove the following

simple result before we an omplete the proof of Theorem 1.

Lemma 8 Let Y

`

1

be a sequene of length ` generated by a Æ-disriminant memoryless soure

over an alphabet A. Let N

a

(Y ) denote the number of times the symbol \a" ours in Y .

For all Æ > 0 there exists � > 0 suh that for all a 6= a

max

:

PrfN

a

max

(Y ) < N

a

(Y )g � exp(��`Æ

2

): (23)

Proof. We use the Azuma inequality (f. [15, 26℄) applied to N(Y ) := N

a

max

(Y )�N

a

(Y )

for a 6= a

max

. Observe that for any symbol a

E[N(Y )℄ = `(P (a

max

)� P (a)) > `Æ:
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Moreover, for any string Y

0

that di�ers from Y on a single position we have

jN(Y

0

)�N(Y )j � 1:

Hene, by the (one-sided) Azuma inequality

PrfN(Y )�E[N(Y )℄ < �"E[N(Y )℄g � exp(�

1

2

`"

2

Æ

2

) � exp(��`Æ

2

)

for some � > 0. Thus

PrfN

a

max

(Y )�N

a

(Y ) > 0g � PrfN

a

max

(Y )�N

a

(Y ) > (1� ")lÆg � 1� exp(��`Æ

2

);

whih proves the lemma.

Lemma 9 For a Æ-disriminant string generated by a mixing soure and belonging to an

orbit F with Æ = n

��

, we have

Prf

^

X

n+1

6= a

max

jX

n

1

2 Fg = O

�

((1 +  (n

"

))�)

L

n

(F)

�

(24)

for some 0 < � < 1 provided 2� < 1� �.

Proof. We use Lemma 8 together with Lemma 7.

3.5 Finishing the Proof of Theorem 1

Now we are in a position to prove Theorem 1 for Æ-disriminant strings with Æ > n

��

for

2� < 1��. As disussed in Example 2, for this ase we shall show that the right-hand side

of (4), namely, Prf

^

X

n+1

6= X

�

n+1

g = Prf

^

X

n

6= a

max

g is O(n

��

) for some 0 < � <

1

2

. Using

Lemmas 3{9 we have for m = bn

"

 and any " > 0 (below � is a positive onstant not bigger

than

1

2

that an hange from line to line):

Prf

^

X

n+1

6= a

max

g � PrfX

n

1

is not m-favorite g

+ PrfX

n

1

is m-favorite and

^

X

n

1

6= a

max

g

� O(n

��

) +

X

F

P (F)O((1 +  (n

"

)))�)

L

n

(F)

)

� O(n

��

):

This ompletes the proof for the Æ-disriminant strings.

Finally, we onsider the remaining non Æ-disriminant strings and assume that

PrfX

n+1

= a

max

jX

n

1

= x

n

1

g � PrfX

n+1

= ajX

n

1

= x

n

1

g � Æ = n

��

(25)
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for 2� < 1�� and all a 2 A. To simplify the presentation, we now assume that the alphabet

A is binary. Extending to a �nite alphabet is straightforward by restriting symbol a to the

subset satisfying PrfX

n+1

= ajX

n

1

= x

n

1

g � PrfX

n+1

= a

max

jX

n

1

= x

n

1

g � Æ. As disussed

in Example 2, we must onsider now the left-hand side of (4), that is, we shall prove that

PrfX

�

n+1

6= X

n+1

g � Prf

^

X

n+1

6= X

n+1

g � PrfX

�

n+1

6= X

n+1

g+O(n

��

)

for some 0 < � <

1

2

. The left-hand side of the above inequality is obvious, so we only

onentrate on the right-hand side. We have

Prf

^

X

n+1

6= X

n+1

g � 1�

X

x

n

1

Prf

^

X

n+1

= X

n+1

jX

n

1

= x

n

1

gP (x

n

1

)

� 1�

X

x

n

1

2F

n

Prf

^

X

n+1

= X

n+1

jX

n

1

= x

n

1

gP (x

n

1

):

But due to (25)

PrfX

n+1

=

^

X

n+1

jx

n

1

g � max

a2A

PrfX

n+1

= ajx

n

1

g � n

��

:

Thus we �nd

Prf

^

X

n+1

6= X

n+1

g � 1�

X

x

n

1

2F

n

max

a2A

Prf

^

X

n+1

= X

n+1

jX

n

1

= x

n

1

gP (x

n

1

) + n

��

= 1�

X

x

n

1

max

a2A

Prf

^

X

n+1

= X

n+1

jX

n

1

= x

n

1

gP (x

n

1

) + n

��

+O(n

��

)

= PrfX

n+1

6= X

�

n+1

g+O(n

��

):

This ompletes the proof of Theorem 1.
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