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Abstra
t

We 
onsider a universal predi
tor based on pattern mat
hing: Given a sequen
e

X

1

; : : : ; X

n

drawn from a stationary mixing sour
e, it predi
ts the next symbol X

n+1

based on sele
ting a 
ontext of X

n+1

. The predi
tor, 
alled the Sampled Pattern Mat
h-

ing (SPM), is a modi�
ation of the Ehrenfeu
ht{My
ielski pseudo random generator

algorithm. It predi
ts the value of the most frequent symbol appearing at the so 
alled

sampled positions. These positions follow the o

urren
es of a fra
tion of the longest

suÆx of the original sequen
e that has another 
opy inside X

1

X

2

: : : X

n

; that is, in SPM

the 
ontext sele
tion 
onsists of taking 
ertain fra
tion of the longest mat
h. The study

of the longest mat
h for lossless data 
ompression was initiated by Wyner and Ziv in

their 1989 seminal paper. Here, we estimate the redundan
y of the SPM universal pre-

di
tor, that is, we prove that the probability the SPM predi
tor makes worse de
isions

than the optimal predi
tor is O(n

��

) for some 0 < � <

1

2

as n ! 1. As a matter of

fa
t, we show that we 
an predi
t K = O(1) symbols with the same probability of error.

Index Terms: Optimal predi
tor, universal predi
tor, 
ontext sele
tion, sequential de
i-

sion, universal sour
e 
oding, redundan
y of universal predi
tors, pattern mat
hing, suÆx

trees.
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1 Introdu
tion

Predi
tion is important in 
ommuni
ation, 
ontrol, fore
asting, investment, mole
ular biol-

ogy, se
urity, and other areas. We understand how to do optimal predi
tion when the data

model is known, but there is a need for designing universal predi
tion algorithms that will

perform well no matter what the underlying probabilisti
 model is. Universal predi
tion

was subje
t of extensive resear
h over the last 50 years; it dates ba
k to Shannon [23℄. We

mention here only a few referen
es: [1, 2, 5, 8, 16, 17, 18, 20, 22℄. In this paper we propose

a universal predi
tor based on pattern mat
hing whi
h is a modi�
ation of an algorithm

proposed by Ehrenfeu
ht and My
ielski [7℄ for generating a pseudo random sequen
e. It


ould also be viewed as a 
ontext sele
tion rule for sequential de
ision [29℄, and one 
an see

some resembles to the PPM data 
ompression algorithm [4℄. The heart of our s
heme is an

algorithm that �nds the longest suÆx of a sequen
e whose 
opy is lo
ated somewhere inside

the sequen
e. Su
h a longest mat
h was studied by Wyner and Ziv [30℄ (
f. also [25℄) in

the 
ontext of lossless 
ompression.

Before we des
ribe in details our algorithm, we �rst brie
y dis
uss the general predi
tion

problem (
f. [1, 2, 12, 17℄). Let x

1

; x

2

; : : : ; x

n

over some �nite alphabet A be given to an

observer who tries to predi
t the next out
ome x

n+1

, or more generally, makes a de
ision

b

n+1

based on the observed data. We 
onsider only nonanti
ipatory predi
tors whose de
i-

sions depend on x

1

; : : : ; x

n

but not on the future out
omes. On
e the real out
ome x

n+1

is

revealed, the observer in
urs the loss l(b

n+1

; x

n+1

). The obje
tive of the optimal de
ision is

to minimize this loss fun
tion. Throughout the paper, we assume that b

n+1

= x̂

n+1

(thus

we predi
t x

n+1

) and the loss fun
tion is the Hamming distan
e between x̂

n+1

and x

n+1

.

The predi
tor 
an either be deterministi
 or random. For deterministi
 predi
tors there

is a fun
tion f

n

su
h that

x̂

n+1

= f

n+1

(x

1

; : : : ; x

n

):

For random predi
tors, one de�nes a 
onditional probability distribution, say q(�jx

1

; : : : ; x

n

),

and sets

Prf

^

X

n+1

= x̂

n+1

jX

1

= x

1

; : : : ;X

n

= x

n

g = q(x̂

n+1

jx

1

; : : : ; x

n

);

where X

1

; : : : ;X

n

denote random variables. Finally, we 
an analyze predi
tion either in the

probabilisti
 setting or the deterministi
 setting. In the probabilisti
 setting the sequen
e

X

1

;X

2

; : : : is generated by a random sour
e with the underlying probability measure P

(usually unknown to us) while in the deterministi
 setting we 
onsider individual sequen
es.

In this paper, we 
onsider deterministi
 predi
tors in a probabilisti
 setting with the

Hamming distan
e as the loss fun
tion. More pre
isely, we assume that X

1

;X

2

; : : : is drawn
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from a stationary mixing sour
e, and

^

X

n+1

is 
omputed deterministi
ally from the already

observed data (i.e., 
ontext). In short, the value of

^

X

n+1

is de
ided by a majority rule of

symbols observed at sampled positions that are determined by a pattern mat
hing algo-

rithm des
ribed in details below. We shall 
oin the term Sampled Pattern Mat
hing (SPM)

predi
tor for su
h a s
heme.

First, we must understand what is the optimal predi
tor for known sour
e distributions.

It is not diÆ
ult to prove that for stationary ergodi
 sour
es the optimal predi
tor X

�

n+1

is

given by (
f. [2℄)

X

�

n+1

:= arg max

a2A

PrfX

n+1

= ajX

1

= x

1

; : : : ;X

n

= x

n

g (1)

for all n. The so 
alled predi
tability �

�

n

, that is, the average predi
tion error (in the 
ase

of the Hamming distan
e it is simply the the probability of error PrfX

�

n+1

6= X

n+1

g) is

de�ned as

�

�

n

:= PrfX

�

n+1

6= X

n+1

g =

X

x

1

;:::;x

n

P (x

1

; : : : ; x

n

) min

a2A

[PrfX

n+1

6= ajx

1

; : : : ; x

n

g℄ ; (2)

where, throughout this paper, we shall write P (x

1

; : : : ; x

n

) := PrfX

1

= x

1

; : : : ;X

n

= x

n

g.

We illustrate these de�nitions on memoryless and Markov sour
es.

Example 1: Memoryless and Markov Binary Sour
es (
f. [16℄)

1. Memoryless Sour
e. Let � = PrfX

n

= 1g. Then

X

�

n+1

= 1

�

� �

1

2

�

;

�

�

n

= min[�; 1� �℄;

where 1(A) = 1 if A o

urs, and zero otherwise.

2. Markov Sour
e. Assume for simpli
ity that X

n

is the �rst order Markov 
hain. De�ne

�

i

= PrfX

n+1

= 1jX

n

= ig where i 2 f0; 1g. Then

X

�

n+1

= 1

�

�

i

�

1

2

�

; i 2 f0; 1g;

�

�

n

= PrfX

n

= 0gmin[�

0

; 1� �

0

℄ + PrfX

n

= 1gmin[�

1

; 1� �

1

℄

for all n. Clearly, �

�

= lim

n!1

�

�

n

exists for irredu
ible and aperiodi
 Markov 
hains.

We now 
onsider universal predi
tors for a 
lass of sour
es M for whi
h the distribution

of the underlying pro
ess is not known a priori and must be learned from experien
e. We

study here the 
lass M of stationary mixing sour
es that we de�ne more pre
isely in the

next se
tion. In this 
ase, the predi
tability �̂

n

(M) of the predi
tor

^

X

n+1

is de�ned as the

average predi
tion error, that is,

�̂

n

(M) =

1

n

n

X

i=1

Prf

^

X

i

6= X

i

g:

3



As in sour
e 
oding, the primary goal of universal predi
tion is to �nd predi
tors that

minimize (asymptoti
ally) the predi
tability �̂

n

(M) (i.e., they mat
h asymptoti
ally the

optimal predi
tability �

�

n

). However, among su
h predi
tors one looks for those that mini-

mize the redundan
y, r

n

, de�ned as the di�eren
e between the average predi
tion error and

the optimal predi
tion error introdu
ed in (2), that is,

r

n

:= �̂

n

(M) � �

�

n

(M): (3)

Observe, however, that to estimate asymptoti
ally the redundan
y it suÆ
es to bound the

di�eren
e

Prf

^

X

n+1

6= X

n+1

g � PrfX

�

n+1

6= X

n+1

g

for n!1. But

Prf

^

X

n+1

6= X

n+1

g � PrfX

�

n+1

6= X

n+1

g � PrfX

�

n+1

6=

^

X

n+1

g: (4)

Thus one 
an estimate the right-hand side of (4) hoping that the bound is tight enough.

This is true for almost all 
ases (but not all) as illustrated in the next example.

Example 2: Unbiased versus Biased Binary Memoryless Sour
es

Let us 
onsider an unbiased binary memoryless sour
e with both symbols generated

with equal probability. By

e

X

n

we denote a very naive estimator that 
ips an unbiased


oin to make de
isions whether to predi
t 0 or 1. We prove that this estimator is optimal.

Indeed, for a = f0; 1g by (1) we have PrfX

�

n+1

= ag = 0:5, as well as Prf

e

X

n+1

= ag = 0:5.

Moreover,

PrfX

�

n+1

6= X

n+1

g =

1

2

and Prf

e

X

n+1

6= X

n+1

g =

1

2

;

thus Prf

e

X

n+1

6= X

n+1

g � PrfX

�

n+1

6= X

n+1

g = 0 and

e

X

n

is an optimal estimator. But the

right-hand side of (4) is equal to

PrfX

�

n+1

6=

e

X

n+1

g =

1

2

:

The bound proposed in (4) is not tight in this 
ase and should not be used (
f. also [8℄).

Let us now 
onsider a biased binary sour
e with p denoting the probability of generating

0 and q := 1� p, where p > q. Clearly, the predi
tor

e

X

n

suggested above is not good sin
e

PrfX

�

n+1

6= X

n+1

g = q and Prf

e

X

n+1

6= X

n+1

g = 2pq > q:

We now 
onstru
t another predi
tor that makes de
isions based on 
ounting the number

N

0

(n) of 0's and the number N

1

(n) of 1's in the sequen
e X

1

; : : : ;X

n

. The predi
tor

^

X

n+1

outputs 0 if N

0

(n) � N

1

(n), and predi
ts 1 if N

0

(n) < N

1

(n). (We should treat the

4




ase N

0

(n) = N

1

(n) separately, but for our illustrative purpose it is not that important.)

Observe that again PrfX

�

n+1

6= X

n+1

g = q but this time (
f. Lemma 8 of Se
tion 3) for

some � > 0

Prf

^

X

n+1

6= X

n+1

g = PrfN

0

(n) < N

1

(n)gp+ PrfN

0

(n) � N

1

(n)gq

= pO(e

��n

) + q(1�O(e

��n

)) = q +O(e

��n

):

We also have

PrfX

�

n+1

6=

^

X

n+1

g = Prf

^

X

n+1

= 1g = PrfN

1

(n) > N

0

(n)g = O(e

��n

);

therefore, we 
on
lude that the right-hand side of (4) is tight.

In this paper, we propose a universal predi
tor based on pattern mat
hing that we

propose to 
all the Sampled Pattern Mat
hing (SPM). The basi
 idea of our predi
tor

was already anti
ipated by Ehrenfeu
ht and My
ielski [7℄ (
f. also [12℄). The algorithm

des
ribed in [7℄ is as follows: For a given x

1

; : : : ; x

n

, let D

n

:= n � ` + 1 be the maximal

suÆx x

`

; x

`+1

; : : : ; x

n

that o

urs earlier in the sequen
e x

1

; : : : ; x

n

, that is, the smallest

` su
h that x

`

; : : : ; x

n

= x

`�i

; : : : ; x

n�i

for some 1 � i � n. To 
onstru
t a predi
tor,

Ehrenfeu
ht and My
ielski took the smallest i (the most re
ent o

urren
e), say I, for

whi
h the longest mat
h is found, and set x

n+1

= x

n�I+1

. It was 
onje
tured in [7, 12℄

that this is a universal predi
tor. However, Ja
quet [10℄ (
f. also [18℄) proved that for

memoryless sour
es PrfX

n+1

= ag = PrfX

n�I+1

= ag for all a 2 A, but this by itself does

not de�ne a good predi
tor.

To build a universal predi
tor based on the Ehrenfeu
ht and My
ielski idea, we 
onsider

a fra
tional maximal suÆx, say of length d�D

n

e for 0 < � < 1. We shall show that su
h a

shorter mat
hes o

ur O(n

1��

) times with high probability (in short: whp) in X

1

; : : : ;X

n

generated by a stationary mixing sour
e. We �nd all o

urren
es of su
h shorter mat
hes,


alled further markers, in X

1

; : : : ;X

n

and then apply the majority rule to all symbols that

o

ur just after the markers (i.e., we sele
t the most likely symbol of the sampled sequen
e).

We shall prove that su
h a predi
tor is asymptoti
ally optimal for mixing sour
es and its

redundan
y is O(n

��

) for some 0 < � <

1

2

(
f. Theorem 1).

As we mentioned above, there is a large body of literature on predi
tion (
f. [1, 2, 5, 8,

16, 17, 18, 20, 22℄), however, most are either restri
ted to individual sequen
es or Markovian

models. In parti
ular, in [16℄ Merhav, Feder, and Gutman proved that a standard majority

predi
tor (as des
ribed in the se
ond part of Example 2) is asymptoti
ally optimal for

Markov 
hains of known order with the redundan
y O(1=n). A more general sour
es were


onsidered by Weinberger, Rissanen and Feder [29℄ who proved that for the so 
alled tree

5



sour
es (of �nite memory) the majority rule predi
tor is asymptoti
ally optimal with the

redundan
y bounded from the above by

P

s2S

C

s

=n = O(1=n) where s is the set of 
ontext

and C

s

a 
onstant. In [29℄ the authors sele
t a 
ontext over its parent only if it yields a

shorter 
ode length for the past o

urren
es of symbols in that 
ontext. Our SPM predi
tor

is asymptoti
ally optimal for mixing sour
es that in
ludes Markov sour
es of unknown

order as well as tree sour
es. However, redundan
y of su
h a predi
tor is O(n

��

) for some

0 < � <

1

2

.

1

Also, the SPM predi
tor seems to have an algorithmi
 edge sin
e we 
an

provide an eÆ
ient implementation based on suÆx trees (see Se
tion 2.1).

In passing we mention that the SPM predi
tor somewhat resembles the PPM (Predi
tion

by Pattern Mat
hing) data 
ompression algorithm of Cleary and Witten [4℄. In fa
t, our


ontext sele
tion rule 
an also be used for a data 
ompression s
heme. In PPM the \de
ision

rule" depends on the number of times a (long) mat
h o

urs in the text. To be more pre
ise,

from Lemma 1 we 
on
lude that the longest suÆx that o

urs at least twi
e is of the length

1=h(log n�`(n)) for some `(n) where h is the entropy rate of the sour
e. It is not diÆ
ult to

prove (see Lemma 4) that su
h a suÆx o

urs whp O(2

`(n)

) times in the original string of

length n. For the Lempel-Ziv s
heme we have `(n) = O(1) and therefore the longest suÆx

appears O(1) times, while in our SPM algorithm we set `(n) = (1 � �) log n, and then the

�{fra
tional mat
h o

urs O(n

1��

) times. In PPM `(n) seems to be o(log n).

The paper is organized as follows. In the next se
tion we des
ribe the Sampled Pattern

Mat
hing predi
tor, and argue its asymptoti
 optimality for a 
lass of mixing sour
es (
f.

Theorem 1). The proof of the main result is delayed till the last se
tion. In passing we

should mention that we did apply SPM to the predi
tion of mole
ular sequen
es showing

its potential suitability to proteins and DNA predi
tions (
f. [11℄).

2 Main Results

We start this se
tion with a pre
ise des
ription of the Sampled Pattern Mat
hing (SPM)

predi
tor, and show how to implement it eÆ
iently using suÆx trees. Then we formulate

our main theoreti
al results.

2.1 Sampled Pattern Mat
hing Predi
tor

It is assumed that a sequen
e x

n

1

:= x

1

; : : : ; x

n

is given. Ea
h symbol x

i

belongs to a �nite

alphabet A of size V := jAj. For a �xed integer K � 1, the algorithm will predi
t the next

1

It is an interesting open problem to determine the best possible redundan
y for mixing sour
es.

6



K symbols,

2

that is, (x̂

n+1

; : : : ; x̂

n+K

). However, throughout the paper we 
arry out the

analysis of the algorithm only for K = 1.

Let us �x 0 < � < 1. The SPM predi
tion algorithm works as follows:

1. Find the largest suÆx of x

n

1

whose 
opy appears somewhere in the string x

n

1

. We 
all

this suÆx the maximal suÆx and denote its length by D

n

. More pre
isely, D

n

:= l

where l is the largest integer su
h that

(x

n�l+1

; : : : ; x

n

) = (x

n�i�l+1

; : : : ; x

n�i

)

for some 1 � i � n.

2. Take an � fra
tion of the maximal suÆx of length k

n

:= d�D

n

e, that is, the suÆx

x

n�k

n

+1

; : : : ; x

n

. Su
h a fra
tional suÆx o

urs more than twi
e in the original string.

Let L

n

� 2 be the a
tual number of times x

n�k

n

+1

; : : : ; x

n

appears in the string x

n

1

.

Ea
h su
h a o

urren
e de�nes a marker (i.e., a substring), and the K positions after

markers are 
alled the marked positions. Finally, by the sampled sequen
e we

mean a sequen
e 
omposed of all symbols from the K-tuple marked positions. We

shall use these notations throughout the paper.

3. Let now N(x

1

; : : : ; x

K

) be the number of non-overlapping K-tuple (x

1

; : : : ; x

K

) o
-


urren
es in the sampled sequen
e. The SPM predi
tor assigns

(x̂

n+1

; : : : ; x̂

n+K

) = arg maxN(x

1

; : : : ; x

K

) (5)

with a tie broken in an arbitrary manner (e.g., by a random sele
tion). In words,

(x̂

n+1

; : : : ; x̂

n+K

) is assigned to the most frequent K-tuple o

urring in the sampled

sequen
e.

We illustrate the SPM algorithm in the following example.

Example 3. SPM Predi
tor for K = 1

Below is presented a text with the largest suÆx and its 
opy framed (de�ned in Step 1

of the above algorithm):

sljzggdl ygsjsljz kgssljzidsljzjgz ygsjsljz

In fa
t, D

40

= 8. Let � = 0:5. Then the fra
tional suÆx sljz is used to �nd all markers.

They are shown below:

2

In some appli
ations (e.g., mole
ular biology) one may need to predi
t simultaneously more than one

symbol.

7



10,b$

7,bbab$

2,bbaba

3,baba

8,bab$

1,abbaba

4,aba

6,abbab$

9,ab$

$ b a

*

*

*
longest suffix

*

5,babb

Figure 1: The suÆx tree of abbababbab$ with its longest suÆx and markers shown (denoted

by asterisks).

sljz ggdlygsj sljz kgs sljz kljzjgzygsj sljz

The sampled sequen
e is gkk, thus the SPM predi
ts x̂

41

= K.

The next question is how to 
ompute eÆ
iently the longest suÆx, markers, and the

predi
ted symbol x̂

n+1

. We propose to use the suÆx tree 
onstru
tion (
f. [9, 26℄). The

suÆx tree of x

1

; : : : ; x

n

is a trie (i.e., a digital tree) built from all suÆxes of x

1

; : : : ; x

n

$

where $ is a spe
ial symbol that does not belong to the alphabet A. External nodes of su
h

a suÆx tree 
ontain information about the the suÆx positions in the original string and the

substring itself that leads to this node (
f. Figure 1). In addition, we keep pointers to those

external nodes that 
ontain suÆxes ending with the spe
ial symbol $ (sin
e one of them

will be the longest suÆx that we are looking for; in the fa
t the one with the longest path).

Figure 1 shows the suÆx tree 
onstru
ted for x

10

1

$ = abbababbab$. The external nodes


ontaining suÆxes ending with $ are denoted by ovals. Observe that in Figure 1 the node


ontaining (6; abbab) leads to the longest suÆx x

10

6

= abbab of length D

10

= 5 o

urring

also at x

5

1

= abbab. It is very easy to �nd all markers on
e the suÆx tree is built. Indeed,

they are lo
ated in the subtree that 
an be rea
hed following the last d�D

n

e symbols of the

longest suÆx. In Figure 1 for � = 0:5 we 
hosen the fra
tional suÆx to be ab whi
h o

urs

at position 1; 6; 4 and 9 as 
an be read dire
tly from the subtree rea
hed by following the

path ab (see the nodes denoted by asterisks). Reading the most frequent symbol (say for

K = 1) is also simple: We only need to 
onsider strings 
ontained in these nodes (marked

8



by asterisks in Figure 1).

It is well known that a suÆx tree of x

n

1


an be built in O(n) in the worst 
ase (
f. [9℄).

This algorithm, due to Weiner (
f. [9℄), is quite 
ompli
ated. One may want to use a simple

brute-for
e algorithm that runs on average in O(n log n) (
f. [25℄). Moreover, it is easy to

update the suÆx tree when the new symbol x

n+1

is added. The only nodes that we must

look at are the ones with $ to whi
h we keep pointers. In the worst 
ase, we need to inspe
t

O(n) nodes, but on average only O(n

1��

) (
f. Lemma 4).

2.2 Average Redundan
y of the SPM

The prime goal of this work is to derive the redundan
y of the SPM algorithm for a 
lass

of mixing models M that we des
ribe next (
f. [3, 24℄):

(MX) (Strongly)  -Mixing Sour
e

Let F

n

m

be a �-�eld generated by X

n

m

= X

m

X

m+1

: : : X

n

for m � n. The sour
e is


alled mixing, if there exists a bounded fun
tion  (g) su
h that for all m; g � 1 and

any two events A 2 F

m

1

and B 2 F

1

m+g

the following holds

(1�  (g))PrfAgPrfBg � PrfABg � (1 +  (g))PrfAgPrfBg: (6)

If, in addition, lim

g!1

 (g) = 0, then the sour
e is 
alled strongly mixing. Hereafter,

we 
onsider only strongly  -mixing sour
es and we shall 
all them mixing sour
es.

It is known that memoryless sour
es are mixing with  (g) = 0, and Markov sour
es over

a �nite alphabet are strongly mixing with  (g) = O(


g

) for some 
 < 1 (
f. [3, 26℄).

Our main result is summarized next. It asserts that the SPM predi
tor is asymptoti
ally

optimal and its average redundan
y is O(n

��

) for some � > 0. We re
all the optimal

predi
tability (i.e., the average predi
tion error) �

�

n

(M) is 
omputed for the best predi
tor

for known sour
e statisti
s. In our setting the optimal predi
tor is de�ned as

(X

�

n+1

; : : : ;X

�

n+K

) := arg max

(a

1

;:::;a

K

)2A

K

PrfX

n+1

= a

1

; : : : ;X

n+K

= a

K

jx

1

; : : : ; x

n

g

for all (x

1

; : : : ; x

n

) 2 A

n

. The proof of the main result for K = 1 is presented in the next

se
tion.

Theorem 1 Let � >

1

2

and K be �xed. Consider the Sampled Pattern Mat
hing algorithm

that predi
ts the next K out
omes of a sequen
e X

1

; : : : ;X

n

drawn from a  -mixing sour
e

M. Then there exists 0 < � <

1

2

su
h that for n!1

r

n

= �̂

n

(M)� �

�

n

(M) = O(n

��

) (7)

9



provided the  mixing 
oeÆ
ient satis�es

lim

n!1

n

1��

 (n

"

) = 0 (8)

for any arbitrary small " > 0.

Remark. The restri
tion � >

1

2

is ne
essary to assure that the 
ru
ial marker separation

property (
f. next se
tion) holds. This property says that whp two markers are not too


lose to ea
h others. The SPM may still work for � <

1

2

but then its average redundan
y

will de
ay to zero in a slower pa
e. However, the proof presented in the next se
tion does

not 
over su
h an extension.

3 Proof of the Main Result

We shall prove Theorem 1 using a 
ombination of probabilisti
 and 
ombinatorial methods.

The reader is referred to the re
ent book [26℄ for in-depth dis
ussion of these tools. We

start with some de�nitions following by a series of te
hni
al lemmas that will lead us to the

main result.

In the sequel, we shall need R�enyi's entropy, rate of 
onvergen
e to Shannon entropy,

the Asymptoti
 Equipartition Property (AEP), and the Azuma inequality that we brie
y

review below (
f. [6, 15, 24, 26℄).

For �1 � b � 1, the bth order R�enyi entropy is de�ned as

h

b

= lim

n!1

� logE[P

b

(X

n

1

)℄

bn

= lim

n!1

� log

�

P

w2A

n

P

b+1

(w)

�

1=b

n

; (9)

provided the above limit exists. In the above, we write P (w) = PrfX

n

1

= wg for w 2 A

n

. It

is known (e.g., see [24, 26℄) that for mixing pro
esses the R�enyi entropies exist. Observe that

Shannon entropy h = lim

b!0

h

b

. Moreover, by the Shannon-M
Millan-Breiman theorem the


onvergen
e to Shannon entropy is also in the almost sure sense. The AEP states: For a

stationary and ergodi
 sequen
e X

n

1

, for given " > 0 the state spa
e A

n


an be partitioned

into two subsets, B

"

n

(\bad set") and G

"

n

(\good set"), su
h that there is N

"

so that for

n � N

"

we have

2

�nh(1+")

� P (x

n

1

) � 2

�nh(1�")

for x

n

1

2 G

"

n

; (10)

lim

n!1

P (B

"

n

) = 0: (11)

In general, there is no universal rate of 
onvergen
e to the entropy h, however, for

sour
es satisfying the so 
alled Blowing-up Property Marton and Shields [14℄ proved that

10



the 
onvergen
e rate in the AEP is exponential, that is, P (B

"

n

) 
onverges exponentially fast

to zero for su
h pro
esses. In parti
ular, Shields [24℄ showed that for mixing pro
esses there

exists ! > 0 su
h that

P (B

"

n

) = O(2

�!n

) (12)

for large n.

3.1 A Road-map to the Proof

Before we pro
eed with a formal proof we present here a \guided tour" through the main

thrust of our approa
h. As mentioned before, we only 
onsider the 
ase K = 1. In order to

establish a bound for the predi
tion redundan
y, we shall show that (4), that is,

Prf

^

X

n+1

6= X

n+1

g � PrfX

�

n+1

6= X

n+1

g � PrfX

�

n+1

6=

^

X

n+1

g

is small for n!1. As pointed out in Example 2, the right-hand side of the above might not

be small for some 
ases (e.g., when probabilities of generating symbols are indistinguishable),

and then we must use the left-hand side of the above. However, the 
ore of the proof is


ommon to both 
ases.

The main theorem will follow from the fa
t that the sampled sequen
e is mixing. In

Lemma 7 we establish this fa
t whi
h we 
all the mixing property.

Property 1 (Mixing of the sampled sequen
e) The sampled sequen
e is mixing pro-

vided (8) holds for n!1.

Knowing this, it is easy to prove our main result. Indeed, the majority rule for an

(almost) i.i.d. sampled sequen
e suggests to predi
t a 2 A that maximizes the 
onditional

probability P (X

n+1

= ajX

n

1

) provided that the number of markers tends to in�nity. This

result is qualitatively equivalent to the main theorem.

The mixing property of the sampled sequen
e is a 
onsequen
e of two 
ru
ial properties,

namely:

� the marker separation property;

� the marker stability property.

The marker separation property is used to establish the mixing property. We will prove it

in Lemma 3 where the 
ondition � > 1=2 is required.

Property 2 (Marker separation property) There exists " > 0 su
h that for � >

1

2

with high probability as n!1 two 
onse
utive markers in the string X

n

1


annot be 
loser

than n

"

positions.

11



The separation property together with the mixing 
ondition of the original sequen
e

show that a pair of 
onse
utive markers tend to be independent as n ! 1. This should

lead to the proof of the mixing property of the sampled sequen
e. Observe, however, that a

modi�
ation of one part of the string may 
hange the positions of the markers in other parts

of the string. Fortunately, this happens very rarely as the next marker stability property

asserts (
f. Lemma 6).

Property 3 (Marker stability property) There exists " > 0 su
h that with high prob-

ability no modi�
ation of any of the dn

"

e symbols following a marker will transform the

string X

n

1

into a another string

~

X

n

1

with a new set of markers.

In the next subse
tions we prove in the sequel the marker separation property, the

marker stability property, and the mixing property of the sampled sequen
e. Finally, in

Se
tion 3.5 we 
omplete the proof of Theorem 1.

3.2 Marker Separation Property

We establish here the marker separation property. We �rst show in Lemma 1 that the largest

suÆx D

n

is of length

1

h

logn whp (with high probability). This will lead to Lemma 3 whi
h

is a formal statement of the separation property. In addition, we show in Lemma 4 that

whp the number of markers is n

1��

whi
h is also required for the proof of the main result.

Lemma 1 For a string X

n

1

generated by a mixing sour
e, let D

n

be the length of largest

suÆx of X

n

1

that has a 
opy inside X

n

1

, that is,

D

n

= maxfl : 9

1�i�n�l+1

X

n

n�l+1

= X

i+l�1

i

g:

For any " > 0

Pr

�

(1� ")

log n

h

< D

n

< (1 + ")

log n

h

�

= 1�O

�

logn

n

"

�

provided the  -mixing 
oeÆ
ient satis�es (8) of Theorem 1.

Proof. This was basi
ally proved in [13, 25, 28℄ (
f. also [30℄) using the �rst and the se
ond

moment methods (
f. [26℄). We provide here only a sket
h of the proof. Let w 2 G

"=2

k

.

Then for k = (1 + ")h

�1

logn

PrfD

n

� kg �

n�k

X

i=1

X

w2G

"=2

k

PrfX

i+k�1

i

= X

n

n�k+1

= wg+ P (B

"

k

)

�

n�k

X

i=1

(1 +  (n� 2k � i+ 2))2

�kh(1�"=2)

+ P (B

"

k

)

� O(maxfn

�"=2

; P (B

"

log n

)g)

12



for any " > 0. By (12) the upper bound is established.

The lower bound is more intri
ate, but follows the standard approa
h of \loosing up"

the dependen
y by deleting n

"=4

letters after ever symbol of X

n

1

. The derivation from [13℄

lead us to

PrfD

n

< kg � 2 (n

"=4

) +O(log n=n

"=4

)

for k = (1� ")h

�1

log n. This 
ompletes the proof sin
e  (n

"=4

) = O(n

�"

) under (8).

Remark. We should point out that (8) is not ne
essary for Lemma 1 to be true. In general,

the rate of 
onvergen
e is O(maxf (n

�"=4

); n

�"

g) (
f. [13, 28℄). In fa
t, D

n

�

log n

h

(pr.)

for stationary ergodi
 pro
esses (
f. [30℄).

In the sequel, we must study the way markers may overlap. For two strings X and Y we

denote C(X;Y ) the length of the longest 
ommon pre�x of both X and Y . The next lemma

presents an estimate on the tail of the probability distribution of C(X

1

i

;X

1

j

) where X

1

i

and X

1

j

are substrings (starting at positions i and j, respe
tively) of a string generated by

a mixing model.

Lemma 2 There exists � > 0 su
h that for any 1 � i 6= j � n

PrfC(X

n

i

;X

n

j

) � kg � 
2

��k

(13)

where 
 > 0 is a 
onstant.

Proof. We shall follow the proof from [25℄. To simplify the notation let C

i;j

= C(X

n

i

;X

n

j

)

and j = i + d, that is, X

1

j

is d � 1 shifted version of X

1

i

. When d > k the situation is

quite simple (there is no overlap), so we 
on
entrate on the 
ase 1 � d � k. Let w

d

2 A

d

be

a word of length d. Sin
e both strings overlap on k + d positions, there exists w

d

su
h that

X

i+k+d�1

i

= w

b

k

d


+1

d

w

d

and X

i+k+2d�1

i+d

= w

b

k

d


+1

d

w

d

where w

d

is a pre�x of w

d

(
f. [25, 26℄);

that is, X

i+k+d�1

i

is periodi
 with period w

d

. Therefore, we have

PrfC

i;i+d

� kg =

X

A

d

P (w

bk=d
+1

d

w

d

)

� 


X

A

d

P (w

bk=d


d

w

d

)P (w

d

) (14)

� 


s

X

A

d

P

2

(w

bk=d


d

w

d

)P (w

d

) � 


s

X

A

d

P

2

(w

bk=d


d

w

d

) (15)

� 


s

X

A

k

P

2

(w

k

) = 


1

q

E[P (w

k

)℄ (16)

� 
2

�

1

2

kh

1

(1�")

(17)
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where (14) is due to the mixing 
ondition, (15) is a 
onsequen
e of the inequality on means

(
f. [26℄), (16) follows from A

d

� A

k

, and (17) is a 
onsequen
e of the de�nition of the

R�enyi's entropy h

1

(i.e., b = 1 in (9)). In the above, the 
onstant 
 may 
hange from line

to line and " > 0 is any arbitrary small positive 
onstant. This 
ompletes the proof after

setting � =

1

2

h

1

(1� ").

The next lemma is at the heart of our proof, and it establishes the marker separation

property. It says that whp markers 
annot overlap and in fa
t 
annot be too 
lose to ea
h

others. Below " > 0 stands for a small positive number and 
 is 
onstant that may 
hange

from line to line.

Lemma 3 For any " > 0 and � >

1

2

, the probability that for k � �

log n

h

, a string X

n

1


ontains two 
onse
utive 
opies of the suÆx X

n

n�k+1

that are separated by less than d = dn

"

e

positions is O(n

��

) with

�� = max

�

1� 2� + ";�� + ";�!

�

h

(1� ");�

h

1

2h

�"(1 � ")

�

;

where ! is de�ned in (12).

Proof. We start by formalizing the statement of the lemma. De�ne E

n

as follows

E

n

:= fX

n

1

: 9

1�i�n

9

i�j�i+d

: X

i+k�1

i

= X

j+k�1

j

= X

n

n�k+1

g;

that is, E

n

is the set of strings of length n that satis�es the 
ondition of the lemma. Thus,

to prove it suÆ
es to show that P (E

n

) = O(n

��

).

Let us 
onsider two substrings X

i+k�1

i

and X

j+k�1

j

of length k � �

log n

h

. Let the integer

g = maxfj� i�k+ 1; 0g be 
alled the gap between the substrings. We assume that g < n

"

.

We de�ne also the distan
e d between the substrings X

i+k�1

i

and X

j+k�1

j

as d = j � i

(j � i). Clearly d = j � i � k + g. Observe that strings in E

n

may have markers that may

overlap, or may have two markers within distan
e d without overlapping, or may have a

marker within distan
e d from the suÆx X

n

n�k+1

. To analyze these three 
ases we 
onsider

the following sets:

� O

n

: set of strings X

n

1

su
h that the suÆx X

n

n�k+1

and its 
opy overlap on more than

"k positions;

� E

1

n

: set of strings X

n

1

su
h that X

n

1

=2 O

n

and X

n

n�k�d


ontains another 
opy of

X

n

n�k+1

;

� E

2

n

: set of strings X

n

1

su
h that X

n

1

=2 O

n

and two 
onse
utive 
opies (i.e., markers)

of X

n

n�k+1

are within distan
e smaller than d.
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Noti
e that E

n

� O

n

[E

1

n

[E

2

n

. By Lemma 2 we 
an bound the probability of O

n

as follows

P (O

n

) � 
k2

��"k

= O(n

�

h

1

2h

�"(1�")

)

Now, we 
on
entrate on evaluating the probability of the other two sets. Observe that

P (E

1

n

) =

X

w

k

2A

k

�O

n

Prf9

0<j�k+g

: X

n�i

n�k�i

= X

n

n�k

= w

k

g:

Using Lemma 1, Asymptoti
 Equipartition Property (AEP), and mixing 
ondition (6), we

obtain (to simplify notations we write below k(1� ") for bk(1 � ")
):

P (E

1

n

) � 


X

w

k(1�")

2A

k(1�")

Prf9

k(1�")�i�k+g

X

n�i

n�k(1�")�i+1

= w

k(1�")

gPrfX

n

n�k(1�")+1

= w

k(1�")

g

� 
P (B

"

k(1�")

) + 
(k + g)

X

w

k(1�")

2G

"

k(1�")

P

2

(w

k(1�")

)

� 
P (B

"

k(1�")

) + 
(k + g)2

h(1�")

2

k

� 
P (B

"

k(1�")

) + 
n

��+O(")

:

Finally, the probability of E

2

n

, formally satis�es the following identity

P (E

2

n

) =

X

w

k

2A

k

�O

n

Prf9

m<n

9

0<j�k+d

: X

m�j

m�k�j

= X

m

m�k

= X

n

n�k

= w

k

g: (20)

Using the same arguments as above we 
on
lude that

P (E

2

n

) � 
P (B

"

k(1�")

) + 
n(k + g)

X

w

k(1�")

2G

"

k(1�")

P

3

(w

k�d

)

� 
P (B

"

k(1�")

) + 2
nn

"

2

�2h(1�")

2

k

� 
P (B

"

k(1�")

) + 
n

1�2�+O(")

:

Combining the previous estimates we prove the lemma.

Remark: For "! 0 we have 0 < � <

1

2

for � >

1

2

. The 
ondition � >

1

2

is required only

in the proof of this lemma.

Let now L

n

be the number of markers (of length k = b�D

n


). We shall prove that

whp L

n

� n

1���"

where " > 0 is an arbitrary positive number. A
tually, we only need

a lower bound on the number of markers sin
e we know that L

n

� n whi
h suits us quite

well.

Lemma 4 For arbitrarily small " > 0

PrfL

n

< (1� ")n

1���"

g = O(maxfn

��1+"

;  (n

"

)g)

for large n.
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Proof. We only 
onsider nonoverlapping markers that are separated by g = n

"

symbols.

Denote this number of markers by L

�

n

. Clearly, L

n

� L

�

n

and let Z

i

be equal to 1 if a

nonoverlapping n

"

-separated marker o

urs at position i, where 1 � i � n=(k + g) with

k = b�D

n


. Observe that

E[L

�

n

℄ =

n=(k+g)

X

i=1

E[Z

i

℄ �

n

k + g

PrfZ

i

= w

k

2 G

"

k

; k � (1� ")�h

�1

logng � n

1���"

:

Then by Chebyshev's inequality

PrfL

n

< (1� ")n

1���"

g � PrfL

�

n

< (1� ")E[L

�

n

℄g �

Var[L

�

n

℄

"

2

E[L

�

n

℄

2

:

We prove below that

Var[L

�

n

℄ � E[L

n

℄ + 2 (n

"

)E[L

�

n

℄

2

:

To estimate the varian
e Var[L

�

n

℄ we pro
eed basi
ally as in [13℄. Observe that for m =

n=(k + g)

Var[L

�

n

℄ =

m

X

i=1

Var[Z

i

℄ +

X

ji�jj>n

"

Cov[Z

i

Z

j

℄

� E[L

�

n

℄ + 2 (n

"

)

X

ji�jj>n

"

E[Z

i

℄E[Z

j

℄

� E[L

�

n

℄ + 2 (n

"

)E[L

�

n

℄

2

;

whi
h, together with our previous estimates, 
ompletes the proof.

3.3 Marker Stability Properties

We establish here the marker stability property. Assume now that m = bn

"


 for any

arbitrary small " > 0. In the sequel, we shall work with modi�ed strings

e

X

n

1

in whi
h

we 
hange any of the m symbols following a marker. We prove several properties of su
h

modi�ed strings. Among others, in the next lemma we show that whp the largest suÆx

e

D

n

in the modi�ed strings is equal to the suÆx D

n

in the original string.

Lemma 5 Let

e

X

n

1

be a string that di�ers from the string X

n

1

generated by a mixing model

on any of m = bn

"


 positions after a marker of X

n

1

. Let

e

D

n

be the length of the largest

suÆx in

e

X

n

1

. Then there exists " > 0 su
h that

PrfD

n

=

e

D

n

g = 1�O(n

��

) (21)

for some 0 < � <

1

2

.
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A B C D E F G

Cn Sn

Figure 2: Illustration to Lemma 5: Solid intervals represent the largest suÆx and its 
opy,

boxes are markers and sampled positions are marked as 
rosses.

Proof. The thrust of the proof is quite simple. We shall show that the modi�
ation de�ned

in the lemma 
an only 
on
ern markers that 
ontains any of these modi�ed symbols. But

due to marker separation properties (in parti
ular, Lemma 3) su
h an event is quite unlikely

as long as D

n

> (1 � ")

1

h

logn for " suÆ
iently small. Therefore, we assume from now on

that D

n

� (1 � ")

1

h

logn, whi
h by Lemma 1 o

urs with probability 1 � O(n

�"

). We


onsider several 
ases illustrated in Figure 2 (where m = 1 is assumed).

Let S

n

be the suÆx of length D

n

of string X

n

1

, that is, S

n

= X

n

n�D

n

+1

; let C

n

be an

internal 
opy of S

n

in the original string X

n

1

. We assume that C

n

starts at position i, i.e.,

C

n

= X

i+D

n

�1

i

. We 
onsider two 
ases:

Case D

n

<

e

D

n

.

This 
an only happen if the modi�
ation o

urs inside the suÆx S

n

or the 
opy C

n

(
f.

positions C and G in Figure 2). If the 
hange o

urs inside S

n

, then there must be another

marker within distan
e O(log n), whi
h happens with probability O(n

��

). If the 
hange is

inside C

n

(
f. position C in Figure 2), then this will result in produ
ing another marker

within distan
e O(log n) that by Lemma 3 has probability O(n

��

) to o

ur.

Case D

n

>

e

D

n

.

Again, we must 
onsider a few 
ases (we refer to positions A, B, E and F in Figure 2).

In the �rst 
ase a 
hange o

urs in the new largest suÆx of

e

X

n

1

, just before S

n

. But by

Lemma 3 this happens with probability O(n

��

). The se
ond 
ase is more intri
ate. We

assume that the 
hange o

urs inside the string whi
h 
reates a new 
opy

e

C

n

su
h that

j

e

C

n

j =

e

D

n

> D

n

(
f. positions A, B and E in Figure 2). Of 
ourse, the new 
opy

e

C

n


reates a new marker. If this marker does not 
ontain the modi�ed position, then this

marker existed before and was within distan
e O(n

"

) from another marker (see A and B)

whi
h is unlikely to happen. Finally, we 
onsider the situation as illustrated by position

E in Figure 2. We redu
e it again to Lemma 3 by 
onsidering "new" markers of length

1

2

< �

0

< �, and see that again these two new markers are 
lose enough so that Lemma 3


an be used.

The last lemma tells us that whp strings do not modify the positions of their markers if

we alter any of m = bn

"


 symbols after a marker. We shall 
all su
h strings favorite strings.
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This is made more formal in the next de�nition.

De�nition 1 A string X

n

1

is m-favorite if a modi�
ation of any m symbols following a

marker does not 
hange lo
ations of any marker in the new string

e

X

n

1

.

Lemma 5 basi
ally implies that whp any string is favorite. This is proved formally in

the next lemma.

Lemma 6 There exists " > 0 su
h that the probability there exists a modi�
ation of m =

bn

"


 symbols following a marker that 
hanges the position of any marker in X

n

1

is O(n

��

)

for some 0 < � <

1

2

.

Proof. By 
hanging a symbol after a marked position we either 
reate a new marker that

overlap with the previous marker (
f. position E in Figure 2) or delete an existing marker

that overlapped with the previous marker (
f. position A in Figure 2). Thus by Lemma 3

this 
an only o

ur with probability O(n

��

).

Before we pro
eed, we need the following de�nition.

De�nition 2 Strings X

n

1

and

e

X

n

1

are m-paired if:

� X

n

1

and

e

X

n

1

are both m-favorite strings;

� X

n

1

and

e

X

n

1

have their markers at the same positions;

� X

n

1

and

e

X

n

1

mat
h on every positions ex
ept the marked symbols.

We de�ne the orbit F

n

(X

n

1

) of X

n

1

as

F

n

(X

n

1

) := f

e

X

n

1

:

e

X

n

1

is m � paired with X

n

1

g;

and the orbit set (or the set of favorite strings) as

F

n

:=

[

X

n

1

F

n

(X

n

1

) = fX

n

1

: X

n

1

is a favorite stringg:

Given F := F

n

(X

n

1

), let L

n

(F) be the number of markers in a string X

n

1

2 F . Observe

that the favorite strings F may di�er only on m positions following a marker, thus the

number of markers is �xed for a given F . Furthermore, the 
ardinality of F is jFj =

V

mL

n

(F)

. Finally, by Lemma 6 the probability that a string belongs to the set of favorite

strings is 1�O(n

��

).
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3.4 Mixing Property of Sampled Sequen
e

The last two fa
ts just proved have far rea
hing 
onsequen
es. In parti
ular, in Lemmas 5

and 6 we establish that whp markers do not 
hange their positions if we modify any

sampled symbol. Strings satisfying this property were 
alled favorite strings. They play for

our problem the same role as typi
al sequen
e for AEP. In Lemma 7 below we shall prove

that the sampled sequen
e of favorite strings is mixing. This will allow us to 
omplete

the proof of Theorem 1 for strings for whi
h the probabilities of symbol generations are

distinguishable (we shall 
all them Æ-dis
riminant). When these probabilities are very 
lose

(think of the unbiased memoryless sour
e dis
ussed in Example 2) we appeal to the left side

of (4) to 
omplete the proof of Theorem 1.

The next lemma summarizes our knowledge about the sampled sequen
e. It proves

that given F the sampled sequen
e is mixing. In other words, we shall show that the

probability distribution of the sampled sequen
e is within fa
tor (1�O( (k))

L

n

(F)

from an

i.i.d. sequen
e.

Lemma 7 Let F be the orbit of a string that belongs to F

n

. Under the 
ondition that

X

n

1

2 F , the sampled sequen
e is mixing provided (8) holds. More pre
isely, let ` := L

n

(F)

and let i

1

, i

2

; : : : ; i

`

be the marked positions. Then

�

1�  (n

"

)

1 +  (n

"

)

�

`

PrfX

i

1

= x

1

jX

n

1

2 Fg � : : : � PrfX

i

`

= x

`

jX

n

1

2 Fg

� PrfX

i

1

= x

1

; : : : ;X

i

`

= x

`

jX

n

1

2 Fg �

�

1 +  (n

"

)

1�  (n

"

)

�

`

PrfX

i

1

= x

1

jX

n

1

2 Fg � : : : � PrfX

i

`

= x

`

jX

n

1

2 Fg

for any arbitrary small " > 0.

Proof. As in the formulation of the theorem, we let i

1

, i

2

; : : : ; i

`

to be the marked positions,

where ` := L

n

(F). The sampled sequen
e is X

i

1

X

i

2

: : : X

i

`

. We also de�ne I

j

:= fi

1

+

1; : : : ; i

j

+ mg for j = 1; 2; : : : ; `. In words, the sets I

j

represent m positions after ea
h

marker. Observe that given F all the other values X

r

for r =2

S

`

j=1

(i

j

[ I

j

) are �xed. We

denote by X(F)

i

1

�1

1

the �xed substring X

i

1

�1

1

, X(F)

i

k+1

�1

i

k

+1

the �xed substring X

i

k+1

�1

i

k

+1

,

and X(F)

n

i

`

+1

the �xed substring X

n

i

`

+1

when X

n

1

2 F . By de�nitions of the mixing sour
e

(MX) and the favorite sequen
e, we have

PrfX

n

1

2 Fg = PrfX(F)

i

1

1

X

i

1

+m

i

1

: : : X(F)

i

`

�1

i

`�1

+m+1

X

i

`

+m

i

`

X(F)

n

i

`

+m+1

g

� (1�  (m))

`

PrfX(F)

i

1

1

g � : : :� PrfX(F)

i

`

i

`�1

+m

gPrfX(F)

n

i

`

+m

g
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and

PrfX

i

1

= x

1

; : : : ;X

i

`

= x

`

;X

n

1

2 Fg �

� (1 +  (m))

`

PrfX(F)

i

1

1

x

1

g � : : :� PrfX(F)

i

`

i

`�1

+m

x

`

gPrfX(F)

n

i

`

+m

g:

Combining these two inequalities we obtain the desired upper bound. In a similar manner

we obtain the lower bound. This yields the result sin
e (1 +  (n

"

))

n

1��

! 1 as long as (8)

holds.

To obtain a 
omplete pi
ture of the probabilisti
 behavior of the SMP predi
tor, and

to 
ompare it to the optimal predi
tor X

�

n

, we must investigate the distribution of the

most frequent symbol in the sampled sequen
e. We know from Lemma 7 that the sampled

sequen
e is within \distan
e" (1 +  (n

"

))

L

n

(F)

! 1 from an i.i.d. sequen
e provided (8)

holds. However, the distribution of the most frequent symbol depends on how 
lose are the

probabilities of the next symbol X

n+1

given X

n

1

. We te
hni
ally need a di�erent proof of

Theorem 1 for these two 
ases, as we have already pointed out in Example 2. Therefore,

we introdu
e the so 
alled Æ-dis
riminant strings.

De�nition 3 A string x

n

1

is 
alled Æ-dis
riminant if there exists a symbol, say a

max

2 A

su
h that for all a 2 A� fa

max

g

PrfX

n+1

= a

max

jX

n

1

= x

n

1

g � PrfX

n+1

= ajX

n

1

= x

n

1

g > Æ (22)

for some Æ > 0.

Remark. For memoryless sour
es all strings are either Æ-dis
riminant or none is Æ-dis
riminant.

For sour
es with memory, some strings might be Æ-dis
riminant while others not, even for

the same sour
e.

Throughout, we assume that Æ > n

��

for some � > 0. We need to prove the following

simple result before we 
an 
omplete the proof of Theorem 1.

Lemma 8 Let Y

`

1

be a sequen
e of length ` generated by a Æ-dis
riminant memoryless sour
e

over an alphabet A. Let N

a

(Y ) denote the number of times the symbol \a" o

urs in Y .

For all Æ > 0 there exists � > 0 su
h that for all a 6= a

max

:

PrfN

a

max

(Y ) < N

a

(Y )g � exp(��`Æ

2

): (23)

Proof. We use the Azuma inequality (
f. [15, 26℄) applied to N(Y ) := N

a

max

(Y )�N

a

(Y )

for a 6= a

max

. Observe that for any symbol a

E[N(Y )℄ = `(P (a

max

)� P (a)) > `Æ:
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Moreover, for any string Y

0

that di�ers from Y on a single position we have

jN(Y

0

)�N(Y )j � 1:

Hen
e, by the (one-sided) Azuma inequality

PrfN(Y )�E[N(Y )℄ < �"E[N(Y )℄g � exp(�

1

2

`"

2

Æ

2

) � exp(��`Æ

2

)

for some � > 0. Thus

PrfN

a

max

(Y )�N

a

(Y ) > 0g � PrfN

a

max

(Y )�N

a

(Y ) > (1� ")lÆg � 1� exp(��`Æ

2

);

whi
h proves the lemma.

Lemma 9 For a Æ-dis
riminant string generated by a mixing sour
e and belonging to an

orbit F with Æ = n

��

, we have

Prf

^

X

n+1

6= a

max

jX

n

1

2 Fg = O

�

((1 +  (n

"

))�)

L

n

(F)

�

(24)

for some 0 < � < 1 provided 2� < 1� �.

Proof. We use Lemma 8 together with Lemma 7.

3.5 Finishing the Proof of Theorem 1

Now we are in a position to prove Theorem 1 for Æ-dis
riminant strings with Æ > n

��

for

2� < 1��. As dis
ussed in Example 2, for this 
ase we shall show that the right-hand side

of (4), namely, Prf

^

X

n+1

6= X

�

n+1

g = Prf

^

X

n

6= a

max

g is O(n

��

) for some 0 < � <

1

2

. Using

Lemmas 3{9 we have for m = bn

"


 and any " > 0 (below � is a positive 
onstant not bigger

than

1

2

that 
an 
hange from line to line):

Prf

^

X

n+1

6= a

max

g � PrfX

n

1

is not m-favorite g

+ PrfX

n

1

is m-favorite and

^

X

n

1

6= a

max

g

� O(n

��

) +

X

F

P (F)O((1 +  (n

"

)))�)

L

n

(F)

)

� O(n

��

):

This 
ompletes the proof for the Æ-dis
riminant strings.

Finally, we 
onsider the remaining non Æ-dis
riminant strings and assume that

PrfX

n+1

= a

max

jX

n

1

= x

n

1

g � PrfX

n+1

= ajX

n

1

= x

n

1

g � Æ = n

��

(25)
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for 2� < 1�� and all a 2 A. To simplify the presentation, we now assume that the alphabet

A is binary. Extending to a �nite alphabet is straightforward by restri
ting symbol a to the

subset satisfying PrfX

n+1

= ajX

n

1

= x

n

1

g � PrfX

n+1

= a

max

jX

n

1

= x

n

1

g � Æ. As dis
ussed

in Example 2, we must 
onsider now the left-hand side of (4), that is, we shall prove that

PrfX

�

n+1

6= X

n+1

g � Prf

^

X

n+1

6= X

n+1

g � PrfX

�

n+1

6= X

n+1

g+O(n

��

)

for some 0 < � <

1

2

. The left-hand side of the above inequality is obvious, so we only


on
entrate on the right-hand side. We have

Prf

^

X

n+1

6= X

n+1

g � 1�

X

x

n

1

Prf

^

X

n+1

= X

n+1

jX

n

1

= x

n

1

gP (x

n

1

)

� 1�

X

x

n

1

2F

n

Prf

^

X

n+1

= X

n+1

jX

n

1

= x

n

1

gP (x

n

1

):

But due to (25)

PrfX

n+1

=

^

X

n+1

jx

n

1

g � max

a2A

PrfX

n+1

= ajx

n

1

g � n

��

:

Thus we �nd

Prf

^

X

n+1

6= X

n+1

g � 1�

X

x

n

1

2F

n

max

a2A

Prf

^

X

n+1

= X

n+1

jX

n

1

= x

n

1

gP (x

n

1

) + n

��

= 1�

X

x

n

1

max

a2A

Prf

^

X

n+1

= X

n+1

jX

n

1

= x

n

1

gP (x

n

1

) + n

��

+O(n

��

)

= PrfX

n+1

6= X

�

n+1

g+O(n

��

):

This 
ompletes the proof of Theorem 1.
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