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Abstract

Constrained sequences are strings satisfying certain additional structural restrictions

(e.g., some patterns are forbidden). They find applications in communication, digital

recording, and biology. In this paper, we restrict our attention to the so-called (d, k)

constrained binary sequences in which any run of zeros must be of length at least d

and at most k, where 0 ≤ d < k. In many applications one needs to know the number

of occurrences of a given pattern w in such sequences, for which we coin the term

constrained pattern matching. For a given word w, we first estimate the mean and

the variance of the number of occurrences of w in a (d, k) sequence generated by a

memoryless source. Then we present the central limit theorem and large deviations

results. As a by-product, we enumerate asymptotically the number of (d, k) sequences

with exactly r occurrences of w, and compute Shannon entropy of (d, k) sequences with

a given number of occurrences of w. We also apply our results to detect under- and over-

represented patterns in neuronal data (spike trains), which satisfy structural constraints

that match the framework of (d, k) binary sequences. Throughout this paper we use

techniques of analytic algorithmics such as combinatorial calculus, generating functions,

and complex asymptotics.

Categories and Subject Descriptors:

F.2.2. [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms

and Problems – Computations on discrete structures;

G.2.1 [Discrete Mathematics]: Combinatorics – Generating functions; counting problems

General Terms: Algorithms

Additional Terms: Pattern matching, constrained sequences, languages, autocorrelation

polynomials, neuronal spike trains, complex asymptotics

∗The work was supported in part by the NSF Grants CCF-0513636, and DMS-0503742, the NIH Grant

R01 GM068959-01, AFOSR Grant 073071, and NSA Grant 07G-044.

1



1 Introduction

The main idea of constrained pattern matching is to search for special structures (patterns)

in a constrained sequence. In digital communication systems such as magnetic and optical

recording, the main purpose of constrained pattern matching is to improve the performance

by matching system characteristics to those of the channel. In biology constrained sequences

are in abundance (e.g., spike trains of neuronal data). In this paper, we restrict our goal to

study and understand some aspects of pattern matching in constrained sequences. Although

our methods work for a large class of constrained systems, we further restrict our analysis

to the so-called (d, k) sequences in which runs of zeros cannot be smaller than d nor bigger

than k, where 0 ≤ d < k. Such sequences have proved to be very useful for digital recording

and biology. In digital recording, they have been widely used in hard disk drives and digital

optical discs such as CD, DVD, and Blu-ray. In biology, for example, the spike trains of

neuronal data, recorded from different neurons in the brain of an animal, seem to satisfy

structural constraints that exactly match the framework of (d, k) binary sequences. Indeed,

refractoriness requires that a neuron cannot fire two spikes in too short a time; this precisely

translates into the constraint that the induced binary spike train needs to contain at least

a certain number of zeros (corresponding to no activity) between each two consecutive ones

(corresponding to firing times).

In these applications, one often requires that some given words do not occur or occur

only a few times in a (d, k) sequence. Therefore, we study here the following problem:

given a word w or a set of words W, how many times it occurs in a (d, k) sequence. For

such a problem we coin the term constrained pattern matching as an extension of standard

pattern matching [14, 20, 22]. We study this problem in a probabilistic framework, that

is, we assume that a sequence is generated by a (biased) memoryless source and derive

the (conditional) distribution of the number of occurrences of w in a (d, k) sequence. We

need the conditional distribution since naturally only a small fraction of binary sequences

satisfies the (d, k) constraints.

In the (standard) pattern matching problem, one asks for pattern occurrences in a binary

string also known as text without any additional restrictions on the text. In a probabilistic

framework, one determines the distribution of the number of pattern occurrences. The

first analysis of such pattern matching goes back at least to Feller, and enormous progress

in this area has been reported since then [2, 8, 14, 17, 22, 23]. For instance, Guibas and

Odlyzko [8] (cf. also [10, 20]) revealed the fundamental role played by autocorrelation

languages and their associated polynomials in the analysis of pattern matching. Régnier

and Szpankowski [19, 20] established that the number of occurrences of a given pattern

is asymptotically normal under a diversity of probabilistic models that include Markov

chains. Nicodème, Salvy, and Flajolet [17] showed generally that the number of places in

a random text at which a ‘motif’ (i.e., a general regular expression pattern) terminates

is asymptotically normally distributed. Bender and Kochman [2] studied occurrences of a

generalized pattern using (in a nutshell) the de Bruijn graph representation that allowed

the authors to establish the central limit theorem, but without explicit mean and variance.

Recent surveys on pattern matching can be found in Lothaire [14] (Chaps. 6 and 7). To

the best of our knowledge, none of these works deal with pattern matching in constrained

sequences such as (d, k) sequences.
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In the information theory community, (d, k) sequences were analyzed since Shannon

with some recent contributions [4, 13, 15, 24]. Pattern matching in constrained sequences

can in principle be analyzed by various versions of the de Bruijn graph [2, 7] or automaton

approach [2, 17]. This is an elegant and general approach but it sometimes leads to compli-

cated analyses and is computationally extensive. In our constrained pattern matching, for

example, one must build a de Bruijn graph over all strings of length equal to the longest

string in the set W. The (d, k) constraints are built into the graph as forbidden strings (i.e.,

runs of zeros of length smaller than d or larger than k), which result in forbidden edges of

the graph. Based on this method, one represents the number of pattern occurrences as a

product of a matrix representation of the underlying de Bruijn graph and hence its largest

eigenvalue (cf. [2, 7]). In general, this matrix is of a large dimension and such a solution is

not easily interpretable in terms of the original patterns.

In this paper, we take the view of combinatorics on words. We first construct languages

representing (d, k) sequences containing exactly r occurrences of a given pattern w or a set

of patterns W. Using generating functions and complex asymptotics, we present simple

and precise asymptotics for the mean and variance of the number of pattern occurrences.

In particular, we estimate the probability that a randomly generated sequence is a (d, k)

sequence. We also compute the asymptotic formulas for the probability that there are r

occurrences of w in a (d, k) sequence generated by a binary memoryless source. We present

the asymptotics for different ranges of r including central limit and large deviation regimes.

Furthermore, we enumerate (d, k) sequences that contain exactly r occurrences of w and

compute Shannon entropy when the binary source is unbiased. To put the theory into

practice, we show how these theoretical results can be applied to analyze neuronal spike

data.

The paper is organized as follows. In Section 2, after introducing some preliminary

notions and definitions we present our main analytical and experimental results. Most

proofs are delayed till Section 3 where we use analytic tools such as generating functions,

singularity analysis, and the saddle point method to establish our main results.

2 Main Results

To simplify our presentation, we first derive all results for restricted (d, k) sequences unless

stated otherwise. A restricted (d, k) sequence is a (d, k) sequence that starts with 0 and ends

with 1. We will relax this assumption later. We aim at finding the probability distribution

of the number of occurrences of a given pattern w in a (d, k) sequence generated by a binary

memoryless source. Here w is also a (d, k) sequence, and pattern overlapping is allowed.

Let us start with language representations. Define

Ad,k = {0 . . . 0
︸ ︷︷ ︸

d

, · · · , 0 . . . 0
︸ ︷︷ ︸

k

}

as a set of runs of zeros of length between d and k. The extended alphabet is then [15]

Bd,k = Ad,k · {1} = {0 . . . 0
︸ ︷︷ ︸

d

1, · · · , 0 . . . 0
︸ ︷︷ ︸

k

1}.

Observe that restricted (d, k) sequences are built over Bd,k, and we count pattern occurrences

also over Bd,k. For example, w = 01 does not occur in a (1, 4) sequence 0010001 since
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it contains only two symbols over Bd,k, namely 001 and 0001. We shall also relax this

assumption later.

As in the classical pattern matching, a special set (language) plays an important role.

We define it next. Let w = w1 . . . wm ∈ {0, 1}m with w1 = 0 and wm = 1. Over Bd,k we

have w = β1 . . . βm′ , where βi ∈ Bd,k and
∑m′

i=1 |βi| = m. Let S denote the autocorrelation

set of w over Bd,k, that is,

S = {βm′

ℓ+1 : βℓ
1 = βm′

m′−ℓ+1}, 1 ≤ ℓ ≤ m′

where βj
i = βi · · · βj and βj

i = ǫ if i > j.

As in [3, 11, 20], we introduce four languages, T (d,k)
r , R(d,k), U (d,k), and M(d,k) as follows:

(i) T (d,k)
r as the set of all (d, k) sequences containing exactly r occurrences of w;

(ii) R(d,k) as the set of all (d, k) sequences containing only one occurrence of w, located

at the right end;

(iii) U (d,k) defined as

U (d,k) = {u : w · u ∈ T (d,k)
1 },

that is, a word u ∈ U (d,k) if u is a (d, k) sequence and w ·u has exactly one occurrence

of w at the left end of w · u;

(iv) M(d,k) defined as

M(d,k) = {v : w · v ∈ T (d,k)
2 and w occurs at the right end of w · v},

that is, any word in {w} ·M(d,k) has exactly two occurrences of w, one at the left end

and the other at the right end.

To simplify our notation, we drop the upper index (d, k) unless it is necessary. It is easy

to see that for r ≥ 1 [20, 22]

Tr = R ·Mr−1 · U , (1)

T0 · {w} = R · S. (2)

In order to find relationships between the languages R, M, and U , we extend the approach

from [20] to yield

M∗ = B∗ · {w} + S, (3)

U · B = M + U − {ǫ}, (4)

{w} ·M = B · R − (R− {w}), (5)

where B∗ is the set of all restricted (d, k) sequences, that is,

B∗ = {ǫ} + B + B2 + B3 + · · · .

Similarly, M∗ =
∑∞

i=0 Mi, where M0 = {ǫ}. For example, (3) indicates that any word in

language M∗ is either in S (if the length of the word from M∗ is smaller than that of w)

or it must end with w.
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At this point we need to set up the probabilistic framework. Throughout, we assume

that a binary sequence is generated by a memoryless source with p being the probability of

emitting a ‘0’ and q = 1 − p. Among others, we compute the probability that a randomly

generated sequence is a (d, k) sequence. We actually derive the conditional probability

distribution of the number of occurrences of w in a (d, k) sequence.

We start by defining for a language L its probability generating function L(z) as

L(z) =
∑

u∈L
P (u)z|u|,

where P (u) is the probability of a word u and |u| is the length of u over the binary alphabet.

In particular, the autocorrelation polynomial S(z) is the probability generating function for

the autocorrelation language S. In general, we write [zn]L(z) for the coefficient of L(z) at

zn.

The language relationships (3)–(5) are translated into probability generating functions:

1

1 − M(z)
=

1

1 − B(z)
· zmP (w) + S(z), (6)

U(z) =
M(z) − 1

B(z) − 1
, (7)

R(z) = zmP (w) · U(z), (8)

where P (w) is the probability of w, and

B(z) = pdqzd+1 + pd+1qzd+2 + · · · + pkqzk+1

= zq
(zp)d − (zp)k+1

1 − zp
. (9)

In particular, from (1),(2) and above, one finds

T0(z) =
S(z)

D(z)
, (10)

Tr(z) =
zmP (w)(D(z) + B(z) − 1)r−1

D(z)r+1 , (11)

where

D(z) = S(z)(1 − B(z)) + zmP (w). (12)

Let On be a random variable representing the number of occurrences of w in a (regular)

binary sequence of length n. Then, the generating function Tr(z) for (d, k) sequences is

defined as

Tr(z) =
∑

n≥0

P (On = r,Dn)zn,

where Dn is the event that a randomly generated binary sequence of length n is a (d, k)

sequence. Let us also define the bivariate generating function T (z, u) as

T (z, u) =
∑

r≥0

Tr(z)ur =
∑

r≥0

∑

n≥0

P (On = r,Dn)znur.

5



¿From (1) and (2), we find

T (z, u) = R(z)
u

1 − uM(z)
U(z) + T0(z). (13)

Observe that T (z, u) is not a bivariate probability generating function since [zn]T (z, 1) 6=
1. But we can easily make it a conditional probability generating function. First, define

P (Dn) = [zn]T (z, 1)

as the probability that a randomly generated sequence of length n is a (d, k) sequence. We

also introduce a short-hand notation On(Dn) for the conditional number of occurrences of

w in a (d, k) sequence. More formally,

P (On(Dn) = r) = P (On = r | Dn).

Therefore, the probability generating function of On(Dn) is

E[uOn(Dn)] =
[zn]T (z, u)

[zn]T (z, 1)
.

Thus, the expected value of On(Dn) is

E[On(Dn)] =
[zn]Tu(z, 1)

[zn]T (z, 1)
, (14)

where Tu(z, 1) is the derivative of T (z, u) at u = 1, and

E[On(Dn)(On(Dn) − 1)] =
[zn]Tuu(z, 1)

[zn]T (z, 1)
(15)

is the second factorial moment, where Tuu(z, 1) is the second derivative with respect to u

at u = 1.

2.1 Analytical Results

Our main analytical results are summarized in the following two theorems. In Theorem 1

we present asymptotics for P (Dn) and the first two moments of On(Dn). The proof is

presented in Section 3.1.

Theorem 1 Let ρ := ρ(p) be the unique positive real root of B(z) = 1 where B(z) is defined

in (9), and let λ = 1/ρ. Then the probability of generating a (d, k) sequence is asymptotically

P (Dn) =
1

B′(ρ)
λn+1 + O(ωn) (16)

for some ω < λ. Furthermore,

E[On(Dn)] =
(n − m + 1)P (w)

B′(ρ)
λ−m+1 + O(1),
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and the variance becomes

Var[On(Dn)] = (n − m + 1)P (w)

[
(1 − 2m)P (w)

B′(ρ)2
λ−2m+2

+
P (w)B′′(ρ)

B′(ρ)3
λ−2m+1 +

2S(ρ) − 1

B′(ρ)
λ−m+1

]

+ O(1) (17)

for large n.

The next theorem presents the asymptotic formulas of P (On(Dn) = r) for three different

ranges of r, including central limit and large deviations regimes. The results are derived in

Sections 3.2–3.4 by using analytical tools.

Theorem 2 Let τ := τ(p,w) be the smallest positive real root of D(z) = 0 where D(z) is

defined in (12), and ρ := ρ(p) < τ be the the unique positive real root of B(z) = 1. Then,

for large n, the followings hold:

(i) For r = O(1) with r ≥ 1,

P (On(Dn) = r) ∼ P (w)B′(ρ)(1 − B(τ))r−1

D′(τ)r+1τ r−m

(
n − m + r

r

)(ρ

τ

)n+1
.

(ii) [Central limit theorem] For r = E[On(Dn)] + x
√

Var[On(Dn)] with x = O(1),

On(Dn) − E[On(Dn)]
√

Var[On(Dn)]

d→N(0, 1)

where N(0, 1) is the standard normal distribution.

(iii) [Large deviations] For r = (1 + δ)E[On(Dn)] with δ > 0, let a be a real constant such

that na = (1 + δ)E[On(Dn)], and let

ha(z) = a log M(z) − log z.

We denote by za the unique real root of the equation h′
a(z) = 0 such that za ∈ (0, ρ). Then,

P (On(Dn) = na) =
c1 · e−nI(a)

√
2πn

[

1 +
c2

n
+ O

(
1

n2

)]

and

P (On(Dn) ≥ na) =
c1 · e−nI(a)

√
2πn(1 − M(za))

[

1 + O

(
1

n

)]

where I(a) = − log ρ − ha(za), which is positive, and

c1 =
ρB′(ρ)g(za)

τa

with g(z) = P (w)zm−1

D(z)2M(z)
and τ2

a = h′′
a(za). The constant c2 is explicitly computed in (32).
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Figure 1: λ versus p.

Remark 1. In Figure 1 we plot λ = 1/ρ versus p for various (d, k) sequences. Observe that

the probability P (Dn) ≍ λn is asymptotically maximized for some p 6= 0.5 (biased source)

which may be used to design a better run-length coding as in [1].

Remark 2. When the binary source is unbiased (p = q = 1
2), we can count the num-

ber, Nn(r), of (d, k) sequences of length n that contain w exactly r times, by computing

[zn]Tr(2z). In fact, Nn(r) = 2nP (On = r,Dn) and one finds asymptotics of Nn(r) from part

(i) of Theorem 2. In particular, Shannon entropy is

C(r) = lim
n→∞

log2 Nn(r)

n
= log2

(
2

τ

)

,

where τ = τ(1/2, w) is defined in Theorem 2 for p = 1/2.

Remark 3. We considered only restricted (d, k) sequences. A small modification can extend

this analysis to all (d, k) sequences. Let T all
r be the set of all (d, k) sequences containing

exactly r occurrences of w. Then

T all
r = {ǫ, 1} · Tr · ({ǫ} + Ad,k),

and one can easily derive generating functions and asymptotic expressions from the above.

Remark 4. We counted the occurrences of the pattern w over the alphabet Bd,k. We can

extend this analysis to count the occurrences over a binary alphabet (e.g., w = 01 occurs

twice in a (1, 4) sequence, 0010001). Again, let w = w1 . . . wm ∈ {0, 1}m with w1 = 0 and

wm = 1, and w be represented over Bd,k, that is, w = β1 . . . βm′ where βi ∈ Bd,k. Then the

autocorrelation set S2 over the binary alphabet is defined as

S2 = {wm
ℓ+1 : wℓ

1 = wm
m−ℓ+1}, 1 ≤ ℓ ≤ m.

Using the languages Tr, R, M, and U defined above, we find

Tr = R ·Mr−1 · U ,

T0 · Z · {w} = R · S2,

M∗ = B∗ · Z · {w} + S2,

U · B = M + U − {ǫ},
Z · {w} ·M = B · R − (R−Z · {w}),
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where Z = {ǫ, 0, 00, · · · , 0k+1−|β1|}, and 0k denotes a run of zeros of length k. Applying the

same techniques as above we can derive the generating functions and asymptotic results.

Remark 5. We can also extend our results to a set of patterns W = {w1, w2, . . . , wK}
such that wi (1 ≤ i ≤ K) is not a substring of another pattern wj (1 ≤ j ≤ K, i 6= j)

over alphabet Bd,k. Let us introduce some new languages. In particular, for any given two

strings u and v, let

Su,v = {v|v|k+1 : u
|u|
|u|−k+1 = vk

1}, 1 ≤ k ≤ min{|u|, |v|}

be the correlation set. Now we define a correlation set over Bd,k for patterns in W. Let

wi = βi1 . . . βis and wj = βj1 . . . βjm . Then Sij, the correlation set for wi and wj over Bd,k,

is defined as

Sij = {βjm

jℓ+1
: βis

is−ℓ+1
= βjℓ

j1
}, 1 ≤ ℓ ≤ min{s,m}.

For 1 ≤ i, j ≤ K, we introduce new languages as follows (again, we drop the upper

index (d, k)):

(i) Ri as the set of all (d, k) sequences (over Bd,k) containing only one occurrence of wi,

located at the right end;

(ii) Ui is defined as {u : wi · u ∈ T1}, that is, a word u ∈ Ui if u is a (d, k) sequence and

wi · u has exactly one occurrence of wi at the left end of wi · u;

(iii) M[r]
ij defined as, for r ≥ 1,

M[r]
ij = {v : wi · v ∈ Tr+1 and wj occurs at the right end of wi · v},

that is, any word in {wi} · M[r]
ij is a (d, k) sequence and has one occurrence of wi at

the left end, one occurrence of wj at the right end, and r − 1 occurrences from W
elsewhere. We write Mij = M[1]

ij .

We can see that Tr(r ≥ 1) and T0 are represented as follows:

Tr =
∑

1≤i,j≤K

Ri · M[r−1]
ij · Uj , (18)

T0 · {wj} = Rj +
∑

1≤i≤K

Ri · (Sij − {ǫ}) (19)

for 1 ≤ j ≤ K. The languages Mij , Ui, and Rj satisfy following relationships [19] for

1 ≤ i, j ≤ K.

∑

k≥1

M[k]
ij = B∗ · {wj} + Sij − {ǫ}, (20)

Ui · B =
∑

1≤j≤K

Mij + Ui − {ǫ}, (21)

B · Rj − (Rj − {wj}) =
∑

1≤i≤K

{wi} ·Mij . (22)
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As before, the language relationships (20)–(22) are translated into generating functions [19]:

(I − M(z))−1 = S(z) +
1

1 − B(z)
−→
1 · −→W t

(z),

−→
U (z) =

1

1 − B(z)
(I −M(z)) · −→1 ,

−→
R

t
(z) =

1

1 − B(z)

−→
W

t
(z) · (I − M(z)),

where M(z) and S(z) are K×K matrices such that Mij(z) and Sij(z) are the (i, j)-elements

in M(z) and S(z), respectively. Furthermore, I is the K × K identity matrix, and
−→
W (z),−→

R (z),
−→
U (z), and

−→
1 are column vectors of length K such that

−→
W (z) = (z|w1|P (w1), · · · , z|wK |P (wK))

t
,

−→
R (z) = (R1(z), · · · , RK(z))t,

−→
U (z) = (U1(z), · · · , UK(z))t, and

−→
1 = (1, · · · , 1)t.

¿From (18)–(19) and above, one finds

T0(z) =

−→
R

t
(z) · S(z) · −→1
−→
W

t
(z) · −→1

,

Tr(z) =
−→
W

t
(z) · (D(z) + (B(z) − 1)I)r−1 ·D(z)−(r+1) · −→1 ,

where D(z) =
−→
1 · −→W t

(z) + (1 − B(z))S(z).

Using this and following the footsteps of our previous analysis, as presented in the next

section, one easily shows that for large n

E[On(Dn)] =

K∑

i=1

(n − |wi| + 1)P (wi)

B′(ρ)
λ−|wi|+1 + O(1),

and

Var[On(Dn)] = nα + O(1),

where ρ := ρ(p) is the unique positive real root of B(z) = 1, λ = 1/ρ, and α is an

explicitly computable constant. Furthermore, technically more challenging analysis allows

us to conclude that On(Dn) satisfies the central limit theorem.

2.2 Experimental Results

We now apply our theoretical results to statistical inference of some biological data. As a

potential application of our main results, we use part (iii) of Theorem 2 to detect under-

and over-represented structures in neuronal data (spike trains), and to obtain justifiably

accurate statistical inferences about their biological properties and functions. We shall first

argue that neuronal data are best represented by constrained sequences. Indeed, current

technology allows for the simultaneous recording of the spike trains from one hundred (or

more) different neurons in the brain of a live animal. Such experiments have produced

enormous amounts of extremely valuable data, and one of the core research areas of activity

in neuroscience is devoted to developing accurate and precise statistical tools to quantify
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Figure 2: Number of occurrences of w within a window of size 500; here [i] stands for the pattern 0 · · · 01

with i − 1 zeros.

and describe the amount and representation of the information that is contained in this

data [18]. Because of the very nature of the biological mechanisms that produce them,

spike train data satisfy structural constraints that match the framework of (d, k) binary

sequences, as discussed above.

For experiments, we use single-electrode data from cortical neurons under random cur-

rent injection. The details can be found in [12, 25]. This spike timing data can be trans-

formed into a (d, k) sequence by setting the time resolution and dividing time into bins of

the same size. Each time bin is represented by a bit 0 or 1. If there is a spike in a certain

time bin, it is represented by a bit 1; otherwise it is represented by a bit 0. A fundamental

question is how one classifies an occurrence of a pattern as significant. Here, the conno-

tation of “significant” is used for observed data that is interesting, surprising, suspicious,

or—perhaps most importantly—meaningful. We classify a pattern as significant if it is un-

likely to occur fortuitously, that is, in a randomly generated instance of the problem. Thus,

we compare experimental data to the reference model, which in our case is the probabilistic

model developed in this paper.

Having this in mind, and using our large deviations results, we derive a threshold, Oth,

above which pattern occurrences will be classified as statistically significant. The threshold

is defined as the minimum Oth such that

P (On(Dn) ≥ Oth) ≤ αth,

where αth is a given probability threshold. From part (iii) of Theorem 2 we easily conclude

11



that for αth in the range of the large deviations domain, the threshold is Oth = nath, where

ath ≈ I−1(log(1/αth)/n)

and I−1(·) is the inverse function of I(a) defined in the theorem.

To set up our reference model, we need to fix the parameters d, k, and p. First we can

find d and k by observing the binary sequence (e.g., by finding the minimum and maximum

length of runs of zeros in the sequence). Then we can find p by solving the following

simultaneous equations with variables ρ and p:

B(ρ) = 1 and 1 − p =
1

ρB′(ρ)
.

Note that B(z) has a variable p in each of its coefficients. The second equation follows from

the fact that ρB′(ρ) captures the average length of symbols of Bd,k in a (d, k) sequence,

and thus its reciprocal represents q. In other words, we estimate p indirectly through the

estimation of d and k. One might be tempted to estimate p by just counting the total

number of 0’s and dividing it by the length of the sequence. But this could lead to a poor

estimate if a large portion of (d, k) sequence set is not typical.

In our experiment, we set the size of bin to 3 ms and obtained a (d, k) = (1, 6) sequence

of length 2193 with p = 0.752686. Figure 2 shows the number of occurrences for various

patterns w within a window of size 500; here we use a short-hand notation [i] for a pattern

0 · · · 0
︸ ︷︷ ︸

i−1

1. The three horizontal lines represent thresholds for αth = 10−6, 10−7, and 10−8,

respectively. As expected, the thresholds vary with the structure of w. If the number

of occurrences exceeds the threshold at some position, we claim the pattern occurrence is

statistically significant in that window. This observation can be used as a starting point for

interpretation of neural signals although there is still a huge gap between patterns of spike

trains and their meaning in a real nervous system. In passing we observe that one would

have obtained quite different threshold values, if constraints were ignored.

3 Analysis

In this section, we prove Theorems 1 and 2 of previous section. In Section 3.1, we asymp-

totically derive P (Dn) and the first two moments of On(Dn). In Sections 3.2–3.4, us-

ing our expression (13) for the bivariate generating function we estimate asymptotically

P (On(Dn) = r) for various ranges of r.

3.1 Moments

We first obtain asymptotic formulas for the mean and the variance of On(Dn). From (6)-

(13), we find

T (z, 1) =
1

1 − B(z)
, Tu(z, 1) =

zmP (w)

(1 − B(z))2
,

and

Tuu(z, 1) =
2zmP (w)M(z)

U(z)(1 − B(z))3
=

2zmP (w)D(z)

(1 − B(z))3
− 2zmP (w)

(1 − B(z))2
.

12



By Cauchy’s coefficient formula and Cauchy’s residue theorem [22] we immediately obtain

P (Dn) = [zn]T (z, 1) = [zn]
1

1 − B(z)
=

1

B′(ρ)
λn+1 + O(ωn),

where ρ is the unique positive real root of B(z) = 1, λ = 1/ρ, and ω < λ. In Lemma 2

of Appendix A we prove that there always exists a unique positive real root of B(z) = 1,

which is greater than 1, and its modulus is the smallest among all complex roots.

To find moments, we proceed as follows.

[zn]Tu(z, 1) = [zn]
zmP (w)

(1 − B(z))2

=
P (w)

B′(ρ)2

(

(n − m + 1)λ +
B′′(ρ)

B′(ρ)

)

λn−m+1 + O(ωn).

Thus

E[On(Dn)] =
[zn]Tu(z, 1)

[zn]T (z, 1)
=

(n − m + 1)P (w)

B′(ρ)
λ−m+1 + O(1).

Similarly,

Var[On(Dn)] =
[zn]Tuu(z, 1)

[zn]T (z, 1)
+ E[On(Dn)] − E[On(Dn)]2.

After some algebra, we establish the formula on the variance in (17).

3.2 Distribution for r = O(1)

We prove here part (i) of Theorem 2, that is, we estimate P (On(Dn) = r) for r = O(1). By

Cauchy’s coefficient formula and Cauchy’s residue theorem,

P (On = r,Dn) = [zn]Tr(z) = [zn−m]
P (w)(D(z) + B(z) − 1)r−1

D(z)r+1

=

r+1∑

j=1

(−1)jaj

(
n − m + j − 1

j − 1

)(
1

τ

)n−m+j

+ O(tn)

where τ < t−1 is the smallest positive real root of D(z) = 0, and ar+1 =
P (w)(B(τ) − 1)r−1

D′(τ)r+1 .

By Lemma 3 of Appendix B, we know that there exists at least one positive real root of

D(z) = 0, which is greater than ρ.

Finally, we find

P (On(Dn) = r) =
P (On = r,Dn)

P (Dn)

∼ P (w)B′(ρ)(1 − B(τ))r−1

D′(τ)r+1

(
n − m + r

r

)
ρn+1

τn−m+r+1

as desired for Theorem 2(i).
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3.3 Distribution for r = E[On(Dn)] + x
√

Var[On(Dn)]

We now establish the Central Limit Theorem, that is, part (ii) of Theorem 2. We estimate

P (On(Dn) = r) for r = E[On(Dn)] + x
√

Var[On(Dn)] with x = O(1). Define

Tn(u) = E[uOn(Dn)] =
[zn]T (z, u)

[zn]T (z, 1)
, (23)

and

µn = E[On(Dn)], σn =
√

Var[On(Dn)].

By Goncharov’s theorem [22], it suffices to prove the following

lim
n→∞

e−νµn/σnTn(eν/σn) = eν2/2

for all ν = it′ where −∞ < t′ < ∞. But we prove more generally for all complex ν.

Let ρ(u) be the smallest real root of 1−uM(z) = 0. We can easily find out that the pole

of T0(z) is always greater than ρ(u). Then, by Cauchy’s coefficient formula and Cauchy’s

residue theorem, from (13) we get

[zn]T (z, u) = c(u)λn+1(u) + O(ωn(u)), (24)

c(u) =
R(ρ(u))U(ρ(u))

M ′(ρ(u))
,

and λ(u) = 1/ρ(u) where |ω(u)| < λ(u). Thus, by (23),

P (Dn)Tn(u) = c(u)λn+1(u) + O(ωn(u)) (25)

since P (Dn) = [zn]T (z, 1).

Let u = et and t = ν/σn. Since t → 0 and u → 1 as n → ∞, using Taylor series around

t = 0 we get

λ(et) = λ(1) + λ′(1)t +
λ′′(1) + λ′(1)

2
t2 + O(t3). (26)

Now let us find λ′(1) and λ′′(1). From (14) and (24), we observe that

µn[zn]T (z, 1) = [zn]Tu(z, 1), (27)

and

[zn]Tu(z, 1) = [zn]
∂T (z, u)

∂u

∣
∣
∣
∣
u=1

= (n + 1)c(1)λn(1)λ′(1) + c′(1)λn+1(1) + O(nωn(1)). (28)

By (24),(27), and (28), we obtain

µn

(
c(1)λn+1(1) + O(ωn(1))

)
= (n + 1)c(1)λn(1)λ′(1) + c′(1)λn+1(1) + O(nωn(1)).

Thus, we get

λ′(1) =
µn

n + 1
λ(1) − c′(1)

(n + 1)c(1)
λ(1) + O (nξn(1)) (29)

14



where ξ(u) = ω(u)/λ(u). We note that |ξ(u)| < 1. Similarly,

[zn]Tuu(z, 1) = n(n + 1)c(1)λn−1(1)λ′2(1) + 2(n + 1)c′(1)λn(1)λ′(1)

+(n + 1)c(1)λn(1)λ′′(1) + c′′(1)λn+1(1) + O(n2ωn(1)).

Again, from (15) and (24), we observe that

(σ2
n + µ2

n − µn)[zn]T (z, 1) = [zn]Tuu(z, 1),

and from (29), after some algebra, we finally arrive at

λ′′(1) =

(
σ2

n − µn

n + 1
+

µ2
n

(n + 1)2

)

λ(1) + O

(
1

n

)

. (30)

Using (25),(26),(29), and (30) we get

P (Dn)Tn(et) = c(u)λn+1(u) + O(ωn(u))

= c(u)λn+1(u) · (1 + O(ξn(u)))

= c(u)

[

λ(1) + λ(1)

(
µn

n + 1
+ O

(
1

n

))

t

+
λ(1)

2

(
σ2

n

n + 1
+

µ2
n

(n + 1)2
+ O

(
1

n

))

t2 + O(t3)

]n+1

· (1 + O(ξn(u)))

= c(u)λn+1(1)

[

1 +
µn

n + 1
t +

1

2

(
σ2

n

n + 1
+

µ2
n

(n + 1)2

)

t2 + O(t3)

]n+1

· (1 + O(ξn(u))).

In the last equality we use the fact that t = O

(
1√
n

)

. Therefore,

e−νµn/σnP (Dn)Tn(eν/σn) =
(

e
−tµn
n+1

)n+1
· P (Dn)Tn(et)

=

(

1 − µn

n + 1
t +

µ2
n

2(n + 1)2
t2 + O(t3)

)n+1

·c(u)λn+1(1)

(

1 +
µn

n + 1
t +

1

2

(
σ2

n

n + 1
+

µ2
n

(n + 1)2

)

t2 + O(t3)

)n+1

· (1 + O(ξn(u)))

= c(u)λn+1(1)

(

1 +
σ2

n

2(n + 1)
t2 + O(t3)

)n+1

· (1 + O(ξn(u))),

and

lim
n→∞

e−νµn/σnTn(eν/σn) = lim
n→∞

e−νµn/σnP (Dn)Tn(eν/σn)

P (Dn)

= lim
n→∞

(

1 +
σ2

n

2(n + 1)
t2 + O(t3)

)n+1

= lim
n→∞

(

1 +
ν2

2(n + 1)
+ O(t3)

)n+1

.
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We find upper and lower bounds as follows:

lim
n→∞

(

1 +
ν2

2(n + 1)
+ O(t3)

)n+1

= lim
n→∞

exp

(

(n + 1) ln

(

1 +
ν2

2(n + 1)
+ O(t3)

))

≤ lim
n→∞

exp

(

(n + 1)

(
ν2

2(n + 1)
+ O(t3)

))

= lim
n→∞

exp

(
ν2

2
+ O

(
1√
n

))

= exp

(
ν2

2

)

,

lim
n→∞

(

1 +
ν2

2(n + 1)
+ O(t3)

)n+1

≥ lim
n→∞

(

1 +
ν2

2(n + 1)

)n+1

= exp

(
ν2

2

)

.

Therefore,

lim
n→∞

e−νµn/σnTn(eν/σn) = exp

(
ν2

2

)

,

as desired to establish Theorem 2(ii).

3.4 Distribution for r = (1 + δ)E[On(Dn)]

Finally we establish the large deviations results in part (iii) of Theorem 2, that is, we

compute P (On(Dn) = r) for r = (1 + δ)E[On(Dn)] for some δ > 0. Let a be a real constant

such that na = (1 + δ)E[On(Dn)], and we compute P (On(Dn) = na) asymptotically when

na is an integer. Clearly,

P (On(Dn) = na) = [una]Tn(u) =
[zn][una]T (z, u)

[zn]T (z, 1)
. (31)

By (13),

[una]T (z, u) = [una]

(

T0(z) + uR(z)U(z)

∞∑

i=0

(uM(z))i

)

= R(z)U(z)M(z)na−1

=
P (w)zm

D(z)2
M(z)na−1.

Hence, Cauchy’s coefficient formula leads to [22]

[zn][una]T (z, u) =
1

2πi

∮
P (w)zm

D(z)2
M(z)na−1 1

zn+1
dz,

where the integration is done along any contour around zero in the convergence circle.

In order to derive large deviation results, we need to apply the saddle point method [22].

Therefore, we define the function ha(z) of complex variable z as

ha(z) = a log M(z) − log z
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such that

[zn][una]T (z, u) =
1

2πi

∮

enha(z)g(z)dz

where

g(z) =
P (w)zm−1

D(z)2M(z)
.

In the lemma below, we characterize some properties of ha(z) that are needed to estimate

the integral. The proof can be found in Appendix C.

Lemma 1 (i) There exists a unique real root za of the equation h′
a(z) = 0 that satisfies

0 < za < ρ for some constant a described in Appendix C.

(ii) h′′
a(za) > 0.

(iii) ha(za) < − log ρ.

Let za be the unique positive real root of the equation h′
a(z) = 0. We evaluate the

integral on C = {z : |z| = za}, and we first split C into C0 and C1 where C0 = {z ∈ C :

|arg(z)| ≤ θ0} and C1 = {z ∈ C : |arg(z)| ≥ θ0} for some θ0. That is,

[zn][una]T (z, u) =
1

2πi

∫

C0

enha(z)g(z)dz +
1

2πi

∫

C1

enha(z)g(z)dz.

Let

I0 =
1

2πi

∫

C0

enha(z)g(z)dz

and

I1 =
1

2πi

∫

C1

enha(z)g(z)dz.

We will compute I0 first and we later show that |I1| is exponentially smaller than I0.

Now we set θ0 = n−2/5 and compute I0 with the change of variable z = zae
iθ,

I0 =
1

2π

∫ +θ0

−θ0

enha(zaeiθ)g(zae
iθ)zae

iθdθ

=
za

2π

∫ +θ0

−θ0

exp(nha(zae
iθ) + iθ)g(zae

iθ)dθ.

To simplify the notation, let us define some variables as follows:

τ2
a = h′′

a(za) (cf. part (ii) of Lemma 1),

βa =
h

(3)
a (za)

3!τ3
a

, and γa =
h

(4)
a (za)

4!τ4
a

.

Using Taylor series around θ = 0, we arrive at

ha(zae
iθ) = ha(za) −

τ2
az2

a

2
θ2 −

(

βaτ
3
az3

a +
τ2
az2

a

2

)

iθ3

+

(

γaτ
4
az4

a +
3

2
βaτ

3
az3

a +
7

24
τ2
az2

a

)

θ4 + O(θ5) (∵ h′
a(za) = 0).
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Similarly,

g(zae
iθ) = g(za) + g′(za)zaiθ − g′′(za)z

2
a + g′(za)za

2
θ2 + O(θ3).

When |θ| ≤ θ0, nθk → 0 (k ≥ 3) as n → ∞. Thus,

enha(zaeiθ)+iθ = exp

(

nha(za) −
τ2
az2

a

2
nθ2 + α(θ)

)

= exp

(

nha(za) −
τ2
az2

a

2
nθ2

)(

1 + α(θ) +
α(θ)2

2!
+

α(θ)3

3!
+ · · ·

)

where

α(θ) = iθ −
(

βaτ
3
az3

a +
τ2
az2

a

2

)

inθ3 +

(

γaτ
4
az4

a +
3

2
βaτ

3
az3

a +
7

24
τ2
az2

a

)

nθ4 + O(nθ5).

Therefore we have

I0 =
za

2π

∫ +θ0

−θ0

exp(nha(zae
iθ) + iθ)g(zae

iθ)dθ

=
zae

nha(za)

2π

∫ +θ0

−θ0

exp

(

−n
τ2
az2

a

2
θ2

)(

1 + α(θ) +
α(θ)2

2!
+

α(θ)3

3!
+ · · ·

)

g(zae
iθ)dθ.

With the change of variable θ = ω
τaza

√
n
, we rewrite

α(θ) = η(ω) =
iω

τaza
√

n
−
(

βa +
1

2τaza

)
iω3

√
n

+

(

γa +
3

2

βa

τaza
+

7

24

1

τ2
az2

a

)
ω4

n
+ O

(
ω5

n
√

n

)

,

g
(

zae
iω

τaza
√

n

)

= g(za) +
g′(za)

τa

iω√
n
−
(

g′′(za)

2τ2
a

+
g′(za)

2τ2
aza

)
ω2

n
+ O

(
ω3

n
√

n

)

,

and

I0 =
enha(za)

2πτa
√

n

∫ +ωo

−ωo

exp

(

−ω2

2

)(

1 + η(ω) +
η(ω)2

2!
+

η(ω)3

3!
+ · · ·

)

g
(

zae
iω

τaza
√

n

)

dω

where ωo = τazan
1
10 .

Each term of odd degree of ω in

[(

1 + η(ω) +
η(ω)2

2!
+

η(ω)3

3!
+ · · ·

)

g
(

zae
iω

τaza
√

n

)
]

contributes nothing to the integral. Thus

I0 =
enha(za)

2πτa
√

n

∫ +ωo

−ωo

exp

(

−ω2

2

)(

A + Bω2 + Cω4 + Dω6 + O

(
1

n2

))

dω

=
enha(za)

2πτa
√

n

[∫ +∞

−∞
exp

(

−ω2

2

)(

A + Bω2 + Cω4 + Dω6 + O

(
1

n2

))

dω + O
(

e−
1
2
ω2

o

)]
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where

A = g(za), B = − 1

n

(
g′′(za)

2τ2
a

+
3g′(za)

2τ2
aza

+
g(za)

2τ2
az2

a

)

,

C =
1

n

(

g′(za)

(
βa

τa
+

1

2τ2
aza

)

+ g(za)

(

γa +
5βa

2τaza
+

19

24τ2
az2

a

))

,

and

D = −g(za)

2n

(

βa +
1

2τaza

)2

.

Using the fact that
∫ +∞

−∞
e−

x2

2 x2k =
Γ(2k)

2k−1Γ(k)

√
2π,

we finally obtain

I0 =
enha(za)

τa

√
2πn

(

A + B + 3C + 15D + O

(
1

n2

)

+ O

(

e−
τ2
az2

a
2

n1/5

))

=
g(za)e

nha(za)

τa

√
2πn

[

1 +
1

n

(
3βag

′(za)

τag(za)
− g′′(za)

2τ2
ag(za)

+ 3γa −
15β2

a

2

)

+ O

(
1

n2

)]

.

It is easy to see that the main contribution to the large deviations comes from I0. Thus we

only need to show that I1 is small.

We compute a bound on |I1|, and we show that it is exponentially smaller than I0.

For this, we need to first consider M(z), the probability generating function of non-empty

language M. Clearly, all coefficients of M(z) are non-negative, and M(z) is aperiodic

by Lemma 4 in Appendix D. By the non-negativity of coefficients and aperiodicity, the

function |M(zae
iθ)| is uniquely maximum at θ = 0. It is also infinitely differentiable at

θ = 0. Consequently, there exists an angle θ1 ∈ (0, π) such that
∣
∣
∣M(zae

iθ)
∣
∣
∣ ≤

∣
∣
∣M(zae

iθ1)
∣
∣
∣ for θ ∈ [θ1, π],

and |M(zae
iθ)| is decreasing for θ ∈ [0, θ1]. Thus, for large n,

∣
∣
∣M(zae

iθ)
∣
∣
∣ ≤

∣
∣
∣M(zae

iθ0)
∣
∣
∣ for θ ∈ [θ0, π]

since θ0 = n−2/5 < θ1. Therefore, for θ ∈ [θ0, π],

∣
∣
∣enha(zaeiθ)

∣
∣
∣ =

∣
∣M(zae

iθ)
∣
∣
na

zn
a

≤
∣
∣M(zae

iθ0)
∣
∣
na

zn
a

=
∣
∣
∣enha(zaeiθ0 )

∣
∣
∣ ,

and this leads to

1

2π

∣
∣
∣
∣

∫ π

θ0

enha(zaeiθ)g(zae
iθ)zae

iθdθ

∣
∣
∣
∣

≤ za · max(g)

2π

∫ π

θ0

∣
∣
∣enha(zaeiθ)

∣
∣
∣ dθ

≤ za · max(g)

2π

∫ π

θ0

∣
∣
∣enha(zaeiθ0 )

∣
∣
∣ dθ

=
za(π − θ0) · max(g)

2π
· exp

(

nha(za) −
τ2
az2

a

2
n1/5 + O

(

n−1/5
))

= O
(

I0 · e−cn1/5
)
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where max(g) is the maximum of |g(zae
iθ)| for θ ∈ [θ0, π] and c is a positive constant.

Similarly,
1

2π

∣
∣
∣
∣

∫ −θ0

−π
enha(zaeiθ)g(zae

iθ)zae
iθdθ

∣
∣
∣
∣
= O

(

I0 · e−cn1/5
)

.

Thus,

|I1| ≤ 1

2π

∣
∣
∣
∣

∫ π

θ0

enha(zaeiθ)g(zae
iθ)zae

iθdθ

∣
∣
∣
∣
+

1

2π

∣
∣
∣
∣

∫ −θ0

−π
enha(zaeiθ)g(zae

iθ)zae
iθdθ

∣
∣
∣
∣

= O
(

I0 · e−cn1/5
)

,

that is, |I1| is exponentially smaller than I0.

Putting everything together, we obtain

[zn][una]T (z, u) = I0 + I1 = I0

(

1 + O
(

e−cn1/5
))

=
g(za)e

nha(za)

τa

√
2πn

[

1 +
1

n

(
3βag

′(za)

τag(za)
− g′′(za)

2τ2
ag(za)

+ 3γa −
15β2

a

2

)

+ O

(
1

n2

)]

.

Finally, we are ready to compute P (On(Dn) = na). By (16),(31), and the above,

P (On(Dn) = na) =
[zn][una]T (z, u)

[zn]T (z, 1)

=
ρB′(ρ)g(za)e−nI(a)

τa

√
2πn

[

1 +
1

n

(
3βag

′(za)

τag(za)
− g′′(za)

2τ2
ag(za)

+ 3γa − 15β2
a

2

)

+ O

(
1

n2

)]

(32)

where I(a) = − log ρ − ha(za), which is positive. This establishes part (iii) of Theorem 2,

where the constant c2 can be extracted from the above.

Appendix

A The Root of B(z) = 1

The lemma below shows that a unique positive real root of the equation B(z) = 1 has

the smallest modulus among all complex roots, which is needed to derive the asymptotic

formula for P (Dn) and the moments of On(Dn) in Section 3.1.

Lemma 2 The equation B(z) = 1 has one positive real root ρ that is greater than 1. All

other roots ρ′ satisfy |ρ′| > ρ.

Proof: By definition, B(z) := pdqzd+1 + pd+1qzd+2 + · · ·+ pkqzk+1. Let f(z) = 1−B(z).

Then, we observe that f(1) = 1 − B(1) > 0 and lim
z→∞

f(z) = −∞. We also see that

f ′(z) = −B′(z) < 0 for z > 0, that is, f(z) is a decreasing function. Therefore, f(z) = 0

has one real root on (1,∞).

Let ρ be the real root, and let h(z) = 1 and g(z) = −B(z). Now let’s consider a closed

contour C = {z : |z| = ρ − ǫ} where ǫ is an arbitrarily small positive constant. At points
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on C we have

|g(z)| ≤ pdq|z|d+1 + pd+1q|z|d+2 + · · · + pkq|z|k+1

= pdq(ρ − ǫ)d+1 + pd+1q(ρ − ǫ)d+2 + · · · + pkq(ρ − ǫ)k+1

< pdqρd+1 + pd+1qρd+2 + · · · + pkqρk+1

= 1

= |h(z)|.

Thus, by Rouché’s theorem [9] f(z) and h(z) have the same number of zeros inside C, that

is, f(z) has no root inside C. Therefore, All other complex roots ρ′ satisfy |ρ′| ≥ ρ.

Suppose that another complex root ρ′ satisfies |ρ′| = ρ, that is, ρ′ = ρeiθ for some θ.

Then

|1| = |B(ρ′)|
= |pdqρd+1ei(d+1)θ + pd+1qρd+2ei(d+2)θ + · · · + pkqρk+1ei(k+1)θ|
≤ pdqρd+1|ei(d+1)θ | + pd+1qρd+2|ei(d+2)θ | + · · · + pkqρk+1|ei(k+1)θ|
= pdqρd+1 + pd+1qρd+2 + · · · + pkqρk+1

= 1.

But, in the third line, the equality holds only when θ = 2πj for some integer j. Thus ρ′

must be a real root, which is ρ. Therefore, All other roots ρ′ satisfy |ρ′| > ρ.

B The Root of D(z) = 0

The lemma below shows the existence of the positive real root of the equation D(z) = 0

which is needed in the proof of Theorem 2(i).

Lemma 3 The equation D(z) = 0 has at least one positive real root τ , which is greater

than ρ.

Proof: For 0 ≤ z ≤ ρ, we observe that D(z) := S(z)(1 − B(z)) + zmP (w) > 0. It

follows from the fact that S(z) > 0 and 1 − B(z) > 0 (for 0 < z < ρ), D(0) = 1, and

D(ρ) = ρmP (w).

Now let us consider when z > ρ. Let m′ be the length of the pattern over the extended

alphabet Bd,k. Notice that d + 1 ≤ m
m′ ≤ k + 1. Firstly, let us assume m′ = 1, that is,

d + 1 ≤ m ≤ k + 1. Then, since S(z) = 1 and P (w) = pm−1q,

D(z) = 1 − B(z) + pm−1qzm.

Thus, D(z) → −∞ as z → ∞ because B(z) has at least two terms, and one term in B(z)

cancels out pm−1qzm. Therefore, there exists at least one real root on (ρ,∞).
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Now we can assume that m′ ≥ 2, and first consider when m
m′ is either d + 1 or k + 1,

that is, the pattern is periodic. If m
m′ = d + 1, then

D(z) = S(z)(1 − B(z)) + P (w)zm

= S(z)(1 − pdqzd+1) + P (w)zm − S(z)(B(z) − pdqzd+1)

=

(

1 + pdqzd+1 +
(

pdqzd+1
)2

+ · · · +
(

pdqzd+1
)m′−1

)

(1 − pdqzd+1) +
(

pdqzd+1
)m′

−S(z)(B(z) − pdqzd+1)

= 1 − S(z)(B(z) − pdqzd+1).

Thus, again D(z) → −∞ as z → ∞. The same is true when m
m′ = k + 1. Therefore, there

exists at least one real root.

Next, we consider when d + 1 < m
m′ < k + 1, and we show that D(zo) ≤ 0 for some

positive zo. Let us define two integers, ℓ and u. Let ℓ be the largest integer less than m
m′ .

Similarly, let u be the smallest integer larger than m
m′ .

D(z) ≤ 1 − B(z) + zmP (w)

= 1 − (pℓ−1qzℓ + pu−1qzu) + pm−m′
qm′

zm − (B(z) − pℓ−1qzℓ − pu−1qzu)

= (1 − pℓ−1qzℓ)(1 − pu−1qzu) − pℓ+u−2q2zℓ+u + pm−m′
qm′

zm − (B(z) − pℓ−1qzℓ − pu−1qzu).

If m = ℓ + u, then m′ must be 2. Thus,

D(z) ≤ (1 − pℓ−1qzℓ)(1 − pu−1qzu) − (B(z) − pℓ−1qzℓ − pu−1qzu),

and either zo =
(
pℓ−1q

)− 1
ℓ or zo =

(
pu−1q

)− 1
u makes D(zo) ≤ 0.

If m 6= ℓ+u, then we choose zo as the root of the equation pm−m′
qm′

zm = pℓ+u−2q2zℓ+u.

That is,

zo =
(

pℓ+u−2−m+m′
q2−m′

) 1
m−ℓ−u

.

Then,

pℓ−1qzℓ
o = pℓ−1q

(

pℓ+u−2−m+m′
q2−m′

) ℓ
m−ℓ−u

=

(
q

p

)m−ℓm′−(u−ℓ)
m−ℓ−u

.

Similarly,

pu−1qzu
o = pu−1q

(

pℓ+u−2−m+m′
q2−m′

) u
m−ℓ−u

=

(
p

q

)um′−m−(u−ℓ)
m−ℓ−u

.

Thus,

D(zo) ≤ (1 − pℓ−1qzℓ
o)(1 − pu−1qzu

o ) − (B(zo) − pℓ−1qzℓ
o − pu−1qzu

o )

≤ (1 − pℓ−1qzℓ
o)(1 − pu−1qzu

o )

=

(

1 −
(

q

p

)x)(

1 −
(

p

q

)y)

where x = m−ℓm′−(u−ℓ)
m−ℓ−u and y = um′−m−(u−ℓ)

m−ℓ−u . We can see that both numerators in x and

y are positive. Indeed, we consider two cases. First, if m
m′ is an integer, then ℓ = m

m′ − 1,
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u = m
m′ + 1, and u− ℓ = 2. Thus, m− ℓm′ − (u− ℓ) = m′ − 2 ≥ 0 and um′ −m− (u− ℓ) =

m′−2 ≥ 0. Otherwise, if m
m′ is not an integer, then m−ℓm′ ≥ 1, um′−m ≥ 1, and u−ℓ = 1.

Thus m− ℓm′− (u− ℓ) = m− ℓm′− 1 ≥ 0 and um′−m− (u− ℓ) = um′−m− 1 ≥ 0. Both

x and y have the same denominators, and consequently both have the same sign.

Let us assume that both x and y are positive. Then, D(zo) ≤ 0 because

1 −
(

q

p

)x

≤ 0 and 1 −
(

p

q

)y

≥ 0 if
q

p
≥ 1,

and

1 −
(

q

p

)x

≥ 0 and 1 −
(

p

q

)y

≤ 0 if
q

p
< 1.

Similarly, it is also true that D(zo) ≤ 0 when both x and y are negative.

Hence, there always exists a positive zo such that D(zo) ≤ 0, and consequently there

always exists at least one positive real root on (ρ, zo].

Therefore, there exists at least one positive real root, which is greater than ρ.

C Proof of Lemma 1

Here we present the proof of Lemma 1 used for the large deviations results of Section 3.4.

We first describe the conditions on a. It is clear that 0 ≤ a ≤ 1 since the number of

occurrences cannot be greater than n, the length of a text. More precisely, a must satisfy

one of the following conditions:

(i) the pattern is not self-overlapping and a < 1
m

(ii) the pattern is self-overlapping and a < 1
r

where m is the length of the pattern, and r is the length of the shortest nonempty word in

the autocorrelation set S.

Now we show the existence of the real root za. By the definition of ha(z),

h′
a(z) =

aM ′(z)

M(z)
− 1

z

=
−D(z)2 + (azB′(z) + 1 − B(z))D(z) + az(1 − B(z))D′(z)

zD(z)(D(z) − 1 + B(z))
.

We notice that the denominator is always positive for 0 < z < ρ.

Let us define fa(z), a function of a real variable z, as the numerator of h′
a(z), that is,

fa(z) = −D(z)2 + (azB′(z) + 1 − B(z))D(z) + az(1 − B(z))D′(z)

= {(1 − S(z))S(z) + azS′(z)}(1 − B(z))2

+zmP (w){azB′(z) + (1 − 2S(z) + am)(1 − B(z)) − zmP (w)}.

We find that

fa(ρ) = ρmP (w)
(
aρB′(ρ) − ρmP (w)

)
> 0 (33)
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since, for large n,

a = (1 + δ)
E[On(Dn)]

n
= (1 + δ)

ρm−1

B′(ρ)
P (w)

(

1 − O

(
1

n

))

>
ρm−1

B′(ρ)
P (w).

Firstly, we consider when the pattern is not self-overlapping, that is, S(z) ≡ 1. Then,

fa(z) = zmP (w){azB′(z) + (am − 1)(1 − B(z)) − zmP (w)}.

The term of the smallest degree in fa(z) is (am − 1)P (w)zm, and its coefficient is negative

since a < 1
m . Thus, there exists a sufficiently small ǫ > 0 such that fa(ǫ) < 0.

By (33) and above, fa(z) has at least one real root za between 0 and ρ. Therefore, there

exists a real root za of h′
a(z) = 0.

Secondly, we consider when the pattern is self-overlapping, that is, S(z) 6≡ 1. Then,

there exist non-constant terms in S(z). Let r (0 < r < m) be the smallest degree among

them. That is,

S(z) = 1 + crz
r + (higher order terms),

where cr is a positive constant. Then, the term of the smallest degree in fa(z) becomes

(ar−1)crz
r, and its coefficient is negative since a < 1

r . Similarly to the first case, we get the

same result. Therefore, there exists at least one real root between 0 and ρ. The uniqueness

comes from this result and part (ii) in the lemma because h′
a(z) is continuous on z ∈ [0, ρ].

Next, we prove part (ii) of Lemma 1. Let za be the real root of h′
a(z) = 0. Then, by

definition,

h′
a(za) =

aM ′(za)

M(za)
− 1

za
= 0,

and this leads to
M ′(za)

M(za)
=

1

aza
.

On the other hand, we can write M(z) =
∑

i≥0 piz
i with pi ≥ 0 since M(z) is the probability

generating function of language M. Then,

M ′(za)

M(za)
=

∑

i≥0 ipiz
i−1
a

∑

i≥0 pizi
a

=
1

za

∑

i≥0 ipiz
i
a

∑

i≥0 pizi
a

=
1

za

∑

i≥0

i
piz

i
a

∑

j≥0 pjz
j
a

=
1

za
E[X],

where X is a random variable which has the following distribution function:

Pr(X = i) =
piz

i
a

∑

j≥0 pjz
j
a

for i ≥ 0.

Therefore, in other words, za is the real value that makes E[X] = 1
a .
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Now let us compute h′′
a(za). We have

h′′
a(za) =

aM ′′(z)M(z) − aM ′(z)2

M(z)2
+

1

z2
a

=
aM ′′(z)

M(z)
− a

(
M ′(z)

M(z)

)2

+
1

z2
a

=
a

z2
a

E[X(X − 1)] − a

(
E[X]

za

)2

+
1

z2
a

=
a

z2
a

(

E[X2] − E[X]2
)

− a

z2
a

E[X] +
1

z2
a

=
a

z2
a

Var[X].

Therefore, h′′
a(za) > 0 because definitely the distribution is not concentrated at one value.

This proves part (ii) of Lemma 1.

Finally, we know that ha(ρ) = − log ρ and h′
a(z) > 0 for za < z ≤ ρ. Therefore

ha(za) < ha(ρ) = − log ρ. This completes the proof of Lemma 1.

D Aperiodicity of M(z)

The lemma below shows that the probability generating function of a language M is ape-

riodic, which is useful to derive the large deviations results in Section 3.4.

Lemma 4 M(z) is aperiodic if the length of the pattern w over the extended alphabet Bd,k

is greater than 1.

Proof: Let Bd,k = {βd, βd+1, · · · , βk} and ℓ be the length of w over Bd,k (ℓ ≥ 2). We

consider two cases - when some super-symbols of Bd,k do not appear in w and when all

symbols appear in w.

Let us prove the first case. Let βi be the symbol that does not appear in w. Then,

definitely both βiβdβiw and βiβd+1βiw are in M, and their difference in length is 1.

Now we prove the second case, that is, when all symbols of Bd,k do appear in w. For

this, we consider three sub cases and find two words in M, which differ by 1 in length for

each case:

Case (i) |Bd,k| ≥ 3:

Let u1 = βd · · · βd
︸ ︷︷ ︸

ℓ

βd βd · · · βd
︸ ︷︷ ︸

ℓ

w and u2 = βd · · · βd
︸ ︷︷ ︸

ℓ

βd+1 βd · · · βd
︸ ︷︷ ︸

ℓ

w. Then, w occurs in w · u1

only at the left and the right ends because the occurrence of w elsewhere implies that

w = βd · · · βd
︸ ︷︷ ︸

ℓ

, which contradicts the assumption that all symbols appear in w. Similarly, w

occurs in w · u2 only at the both ends. Otherwise, w must have only one or two kinds of

symbols, which contradicts the assumption. Thus, both u1 and u2 are in M.

Case (ii) |Bd,k| = 2 and ℓ ≥ 3:

Let βi be the symbol that appears more than once in w. Then, by the similar argument to
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the first case, βj · · · βj
︸ ︷︷ ︸

ℓ

βi βj · · · βj
︸ ︷︷ ︸

ℓ

w and βj · · · βj
︸ ︷︷ ︸

ℓ

βj βj · · · βj
︸ ︷︷ ︸

ℓ

w are in M, and their lengths

differ by 1 because βi and βj are the only symbols in Bd,k.

Case (iii) |Bd,k| = 2 and ℓ = 2:

There are only two cases. That is, w = βdβk or w = βkβd. Definitely, for both cases, βdw

and βkw are in M.

In summary, in M, there always exist two words whose lengths differ by 1. Therefore

M(z) is aperiodic.
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