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Abstract

A PATRICIA trie is a trie in which non-branching paths are compressed. The external
profile Bn,k, defined to be the number of leaves at level k of a PATRICIA trie on n nodes, is
an important “summarizing” parameter, in terms of which several other parameters of interest
can be formulated. Here we derive precise asymptotics for the expected value and variance
of Bn,k, as well as a central limit theorem with error bound on the characteristic function,
for PATRICIA tries on n infinite binary strings generated by a memoryless source with bias
p > 1/2 for k ∼ α log n with α ∈ (1/ log(1/q) + ε, 1/ log(1/p) − ε) for any fixed ε > 0. In
this range, E[Bn,k] = Θ(Var[Bn,k]), and both are of the form Θ(nβ(α)/

√
log n), where the Θ

hides bounded, periodic functions in log n whose Fourier series we explicitly determine. The
compression property leads to extra terms in the Poisson functional equations for the profile
which are not seen in tries or digital search trees, resulting in Mellin transforms which are only
implicitly given in terms of the moments of Bm,j for various m and j. Thus, the proofs require
information about the profile outside the main range of interest. Our derivations rely on analytic
techniques, including Mellin transforms, analytic de-Poissonization, the saddle point method,
and careful bounding of complex functions.

Key Words: Digital trees, PATRICIA trie, tree profiles, analytic combinatorics, analysis of algo-
rithms, recurrences, generating functions, poissonization, Mellin transform, saddle point method.

1 Introduction

A digital tree is a fundamental data structure on words in which the storage and retrieval of a word
is based on its digits. Digital trees enjoy many important applications, including data compression
and distributed hashing [16, 22]. There are several variations of digital trees, two of the most
important being tries and digital search trees. Various parameters of random digital trees have
been defined and studied extensively, including height, size, and fill-up level [20, 2, 18, 13, 22].
Many of these can be rephrased in terms of external and internal profiles. The external profile
of a digital tree on n strings at level k, denoted by Bn,k, is the number of leaves at distance k
from the root. Study of profiles is motivated by the fact that distributional information about
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them implies information about many other parameters. For instance, the height Hn of a digital
tree is the maximum level k such that Bn,k > 0, and studying the distribution of Bn,k can give
precise asymptotics for the typical height. Moreover, the typical depth Dn, defined to be depth of
a randomly chosen leaf, has a distribution whose mass at any given level is exactly determined by
the expected value of the external profile at that level. Many other parameters can similiarly be
studied in terms of Bn,k.

This paper makes a large step in the completion of the project of analyzing the profiles of digital
trees under a Bernoulli source model; trie profiles were fully treated in [17], and the expected value
and variance of digital search tree profiles were studied in [5, 12]. We are concerned here with
a variant of tries called PATRICIA tries, which address an inefficiency in standard tries [13]. In
particular, in a standard trie, if many strings share long prefixes, the result is a tree having many
non-branching paths, which is a waste of space. In a PATRICIA trie, non-branching paths are
compressed ; that is, a non-branching path corresponding to symbols x1 . . . xm is replaced by a
single node whose parent edge is labeled with the string x1 . . . xm. (see Figure 1 for an illustration).
In addition to their use as data structures, PATRICIA tries also arise as combinatorial structures
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01 1

0
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1

Figure 1: A PATRICIA trie on n = 5 strings (s1 = 0010 . . . , s2 = 0011 . . . , s3 = 01 . . . , s4 = 10 . . . ,
s5 = 11 . . . ). Note the path compression involved in the representation of s1 and s2. The external
profile is given by B5,0 = B5,1 = 0, B5,2 = 3, B5,3 = 2.

which capture the behavior of various processes of interest in computer science and information
theory (e.g., in leader election processes without trivial splits [11] and in the solution to Rényi’s
problem on distinguishing members of a set [19, 2]).

Here we study the expected value E[Bn,k] = µn,k, variance Var[Bn,k] = Vn,k, and limiting
distributional behavior of the external profile of PATRICIA tries built from n strings generated by
a memoryless source with probability of a “1” equal to p > 1/2 and probability of a “0” equal to
q := 1 − p (extension of the analysis to any fixed alphabet size is relatively easy). At a very high
level, the derivations follow lines well trodden in the analyses of profiles of tries and digital search
trees: from the recurrence for the expected value, we derive a functional equation on its Poisson
transform, solve this using the Mellin transform, then invert using the saddle point method and
analytic de-Poissonization.

The mathematical novelty of the challenges arising in the PATRICIA case, which we solve here,
is the fact that, in order to solve the problem for the range of polynomial growth (where k grows
logarithmically with n), we must provide estimates for µm,j both to the left and to the right of
that range. This comes initially from the peculiar recurrence satisfied by the probability-generating
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function Qn,k(u) = E[uBn,k ] of the external profile at level k:

Qn,k(u) = (pn + qn)Qn,k(u) +
n−1∑
j=1

(
n

j

)
pjqn−jQj,k−1(u)Qn−j,k−1(u), (1)

with appropriate initial conditions. The added term (pn+qn)Qn,k(u) and the incompleteness of the
binomial sum are complications that do not arise in the analyses of tries and digital search trees
(see [21]). They lead to Mellin transforms that can only be written implicitly in terms of an infinite
series involving µm,j for m, j outside the range where the profile grows polynomially. Moreover,
in the Mellin inversion via the saddle point method, we find that we must handle infinitely many
saddle points along the line of integration. Both of these phenomena significantly complicate the
inversion of the Mellin transform in the expected value and variance cases and the bounding of
the remainder term in the expansion of the characteristic function in the proof of the limiting
distribution result.

More precisely, the Poisson transform G̃k(z) =
∑

m≥0 µm,k
zm

m! e
−m of the expected value sequence

(µn,k)n≥0 satisfies the functional equation

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + e−pz(G̃k − G̃k−1)(qz) + e−qz(G̃k − G̃k−1)(pz),

and the last two terms present the main challenge, since they do not have closed-form Mellin
transforms. We manage to derive a non-explicit formula for the Mellin transform G∗k(s) of G̃k(z):

G∗k(s) = (p−s + q−s)kΓ(s+ 1)Ak(s),

where Ak(s) is an infinite series given in terms of µm,j :

Ak(s) = 1 +
k∑
j=1

(p−s + q−s)−j
∑
m≥j

(pm + qm)(µm,j − µm,j−1)
Γ(m+ s)

Γ(s+ 1)Γ(m+ 1)
.

Thus, elucidating the analytic properties of G∗k(s) requires us to study the asymptotics of µm,j in
several ranges.

In contrast, the Poisson functional equations for the expected value in tries and digital search
trees, respectively, are

G̃k(z) = G̃k−1(pz) + G̃k−1(qz)

(see [17]) and
G̃k(z) + G̃′k(z) = G̃k−1(pz) + G̃k−1(qz)

(see [5]). Both of these result in (more or less) explicitly given Mellin transforms: for tries,

G∗k(s) = (p−s + q−s)kΓ(s+ 1)G∗0(s),

and for DSTs,
G∗k(s) = Γ(s)Fk(s),

where Fk(s) is a finite linear combination of functions of the form p−`1sq−`2s. Though the Mellin
transform in the case of DSTs is still quite complicated, it does not present the same challenges as
does the PATRICIA case.

The peculiarities of the recurrence (1) also result in significant challenges in the derivation
of the limiting distribution (wherein we appeal to the Lévy continuity theorem): considering the
exponential generating function Qk(u, z) =

∑∞
m=0Qm,k(u) z

m

m! of Qn,k(u), then taking its logarithm
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l̃k(u, z) = logQk(u, z), we study the asymptotic behavior of the Taylor expansion of l̃k(u, z) around
u = 1, with z → ∞. We require precise estimates of the first moments of Bn,k, and we further
need to show that the remainder term is negligible with respect to the first three; to do this, we
derive for it an integral representation which again involves quite complicated expressions in terms
of µm,j for various m and j. In this representation of the remainder term, we encounter a function

Qj(w, px)−Qj−1(w, px) +Qj(w, qx)−Qj−1(w, qx)

Qj−1(w, px)Qj−1(w, qx)
,

and in order to bound this, we find that we need to take into account the extensive cancellation
that occurs in the numerator, and we must derive precise lower bounds on |Qj−1(w, cx)| to handle
the denominator. In order to account for the cancellation in the numerator, we again need good
bounds for µm,j outside the range of polynomial growth.

In the end, we are able to derive precise asymptotic expansions for the expected value and
variance of Bn,k in the range of polynomial growth: n→∞ with k ∼ α log n, where, for any fixed
ε > 0, α ∈ (1/ log(1/q)+ε, 1/ log(1/p)−ε) (the left and right endpoints of this interval are associated
with the fillup level and height, respectively). Specifically, we show that both the mean and the
variance are of the same (explicit) polynomial order of growth (with respect to n), multiplied by
subpolynomial factors and bounded, oscillating functions whose Fourier series we can determine in
terms of the function Ak(s). The oscillations (which also arise in trie and DST profiles) come from
infinitely many regularly spaced saddle points that we observe when inverting the Mellin transform.
Moreover, we again find that the Fourier series are phrased in terms of µm,j−µm,j−1, which is a result
of the boundary conditions on the recurrences, structurally caused by the compression property of
PATRICIA tries. Finally, for the same range, we show that a central limit theorem (with error

bound on the characteristic function) holds for the normalized profile (Bn,k − G̃k(n))/
√
Ṽk(n),

where Vk(z) is the Poisson variance of Bn,k. Moreover, as a byproduct of our analyses, we get
estimates for µn,k outside the range of polynomial growth and analytic information about G∗k(s)
and the Mellin transform V ∗k (s) of Ṽk(z), all of which will play a key role in the precise analysis of
the height and other parameters (which we will tackle in a subsequent paper).

We do not consider in this paper the analysis of the internal profile, because it is a rather trivial
extension of that of the external case (one need only consider the residue associated with a simple
pole of the relevant Mellin transforms). We also do not handle the symmetric case analysis, for a
different reason: since the “saddle point range” which appears in the asymmetric case collapses to
the empty set, we expect qualitatively different challenges. We save this discussion for future work.
See also [14] for a discussion of the internal profile.

We now discuss the relevant literature about digital trees and their profiles, as well as related
parameters. Profiles of tries in both the asymmetric and symmetric cases were studied extensively in
[17]. The expected profiles of digital search trees in both cases were analyzed in [5], and the variance
for the asymmetric case was treated in [12]. Some aspects of trie and PATRICIA trie profiles (in
particular, the concentration of their distributions) were studied using probabilistic methods in
[4, 3]. The analyses in [11] and [9] feature trie recurrences involving incomplete binomial sums
with extra terms with similarly complicated Mellin transforms; our recurrence, in contrast with
these, is bivariate and features different additional terms, which complicates the analysis. For
other parameters of interest, see, e.g., [22, 6]. See also [8] for background on complex asymptotics.
In [15], we provided some preliminary analysis of the expected profile in the setting that we consider
here.

The plan of the paper is as follows. In Section 2, we introduce some notation, give a precise
formulation of the problem, present the main results in detail, and give the high-level ideas behind
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the proofs. In Section 3, we prove the main results.

2 Main Results

Here we give some notation that is used in the rest of the paper, present in detail the basic setup,
and then give our main theorems and some of the intuition behind their proofs. We then discuss
consequences and compare with similar results for other digital tree models. Throughout, the
function T (s) is given by

T (s) = p−s + q−s. (2)

All asymptotic notation is defined with n→∞ unless explicitly indicated otherwise.

2.1 Setup

Throughout this paper, we consider a random PATRICIA trie over n independently generated
strings, each an infinite sequence of i.i.d. Bernoulli random variables with probability p of taking
the value “1” and q = 1− p of taking the value “0”, with p > q. Define Bn,k to be the number of
external nodes at level k of such a tree.

The fundamental recurrence for Qn,k(u) = E[uBn,k ], the probability-generating function (PGF)
of the external profile, is

Qn,k(u) = (pn + qn)Qn,k(u) +

n−1∑
j=1

(
n

j

)
pjqn−jQj,k−1(u)Qn−j,k−1(u), (3)

for n ≥ 2 and k ≥ 1. This recurrence arises from conditioning on the number j of strings that
begin with a “1”. If 1 ≤ j ≤ n−1 strings start with “1”, then Qn,k(u) is a product of contributions
from the left and right subtrees. If, on the other hand, all strings start with the same symbol
(which happens with probability pn + qn), then the path compression property applies, and the
contribution is Qn,k(u).

The initial and boundary conditions are as follows:

Qn,k(u) =


1 n = 0

uδ[n=1] k = 0

uδ[k=0] n = 1

1 k ≥ n.

Now we state the main theorems.
Theorem 1 gives asymptotics for the expected value in the range of polynomial growth (which

is contained in the range where k = Θ(log n)). In particular, it says that the expected external
profile grows polynomially with respect to n (with subpolynomial factors), multiplied by a bounded
function which is 1-periodic in log n. We note that we can give a somewhat explicit expression (in
terms of µm,j , which can be computed using the recurrence) for the Fourier series of this oscillating
function.

We start by deriving a recurrence for µn,k: taking a derivative of Qn,k(u) and setting u = 1, we
get

µn,k = (pn + qn)µn,k +
n−1∑
j=1

(
n

j

)
pjqn−j(µj,k−1 + µn−j,k−1) (4)
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for n ≥ 2 and k ≥ 1, with initial/boundary conditions conditions

µn,k =


0 n = 0

δ[n = 1] k = 0

δ[k = 0] n = 1

0 k ≥ n.

The high-level steps of the solution of this recurrence (details are given in Section 3.1) are
similar to the analysis for other digital trees: we first derive a functional equation for the Poisson
transform G̃k(z) =

∑
m≥0 µm,k

zm

m! e
−z of µn,k, which gives

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + e−pz(G̃k − G̃k−1)(qz) + e−qz(G̃k − G̃k−1)(pz),

which we will write as
G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + W̃k,G(z),

and at this point the goal is to determine asymptotics for G̃k(z) as z → ∞ in a cone around
the positive real axis; later, de-Poissonization will allow us to directly transfer this asymptotic
expansion back to one for µn,k.

To convert this to an algebraic equation for which we can give a more explicit (though analyt-
ically complicated) solution, we use the Mellin transform [7], which, for a function f : R → R is
given by

f∗(s) =

∫ ∞
0

zs−1f(z) dz.

Using the Mellin transform identities, we end up with an expression for the Mellin transform G∗k(s)
of G̃k(z) of the form

G∗k(s) = Γ(s+ 1)Ak(s)T (s)k,

where Ak(s) is an infinite series whose terms involve µm,j − µm,j−1 for various m and j, and we
recall that T (s) = p−s + q−s. Locating and characterizing the singularities of G∗k(s) then becomes
important. We find that, for any k, Ak(s) is entire, with zeros at s ∈ Z∩ [−k,−1], so that G∗k(s) is
meromorphic, with possible simple poles at the negative integers less than −k. The fundamental
strip of G̃k(z) then contains (−k − 1,∞).

We then must asymptotically invert the Mellin transform to recover G̃k(z). The Mellin inversion
formula for G∗k(s) is given by

G̃k(z) =
1

2πi

∫ ρ+i∞

ρ−i∞
z−sG∗k(s) ds =

1

2πi

∫ ρ+i∞

ρ−i∞
z−sΓ(s+ 1)Ak(s)T (s)k ds,

where ρ is any real number inside the fundamental strip associated with G̃k(z). We evaluate this
integral via the saddle point method [22]. Examining z−sT (s)k and solving the associated saddle
point equation

d

ds
[k log T (s)− s log z] = 0,

we find an explicit formula (6) for ρ(α), the real-valued saddle point of our integrand. The mul-
tivaluedness of the logarithm then implies that there are infinitely many regularly spaced saddle
points on this vertical line, for which we must account (these lead directly to oscillations in the
Θ(1) factor in the final asymptotics for µn,k). The main challenge in completing the saddle point
analysis is then to elucidate the behavior of Γ(s+ 1)Ak(s) for s→∞ along vertical lines: it turns
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out that this function inherits the exponential decay of Γ(s+1) along vertical lines, and we prove it
by splitting the sum defining Ak(s) into two pieces, which decay exponentially for different reasons
(the first sum decays as a result of the superexponential decay of µm,j for m = Θ(j), which is
outside the main range of interest). We end up with an asymptotic expansion for G̃k(z) as z →∞
in terms of Ak(s).

Finally, we must analyze the convergence properties of Ak(s) as k → ∞. We find that it
converges uniformly on compact sets to a function A(s) (which is, because of the uniformity,
entire). We then apply Lebesgue’s dominated convergence theorem to conclude that we can replace
Ak(s) with A(s) in the final asymptotic expansion of G̃k(z). All of this yields the following theorem
(the proof is in Section 3.1).

Theorem 1 (Expected external profile for k ∼ α log n). Let ε > 0 be independent of n and k, and

fix α ∈
(

1
log(1/q) + ε, 1

log(1/p) − ε
)

. Then for k = kα,n ∼ α log n,

E[Bn,k] = H(ρ(α), logp/q(p
kn)) · nβ(α)√

2πκ∗(ρ(α))k

(
1 +O(k−1/2)

)
, (5)

where

ρ(α) = − 1

log(p/q)
log

(
α log(1/q)− 1

1− α log(1/p)

)
, (6)

β(α) = α log(T (ρ(α)))− ρ(α), (7)

κ∗(ρ) =
p−ρq−ρ(log(p/q))2

T (ρ)2
, (8)

and H(ρ, x) (see Figure 2) is a non-zero periodic function with period 1 in x given by

H(ρ, x) =
∑
j∈Z

A(ρ+ itj)Γ(ρ+ 1 + itj)e
−2jπix, (9)

where tj = 2πj/ log(p/q), and

A(s) = 1 +

∞∑
j=1

T (s)−j
∞∑
n=j

T (−n)(µn,j − µn,j−1)
φn(s)

n!
, (10)

where φn(s) =
∏n−1
j=1 (s + j) for n > 1 and φn(s) = 1 for n ≤ 1. Here, A(s) is an entire function

which is zero at the negative integers.
Moreover, we have the following superexponentially decaying upper bound on µn,k when k =

Θ(n): for any C > 0, there exist c1, c2 > 0 such that, for n large enough, whenever m ≥ Cn,

µn,m ≤ c1n!e−c2m
2

m = Θ(n). (11)

Moving to the variance Vn,k = σ2
n,k of the external profile, we start with the recurrence for the

second factorial moment cn,k = E[Bn,k(Bn,k − 1)], which is easily derived from that for Qn,k(u):

cn,k = (pn + qn)cn,k +

n−1∑
j=1

(
n

j

)
pjqn−j(cj,k−1 + cn−j,k−1 + 2µj,k−1µn−j,k−1), (12)
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Figure 2: Plots of H(ρ, x) for ρ = −0.5, 0, 0.5.

for n ≥ 2, k ≥ 1, with initial/boundary conditions

cn,k = 0 n < 2, k < 1, or k ≥ n.

To solve this, we define the Poisson variance Ṽk(z) as

Ṽk(z) = C̃k(z) + G̃k(z)− G̃k(z)2,

where C̃k(z) =
∑

m≥0 cm,k
zm

m! e
−z is the Poisson transform of cn,k. It turns out that Ṽk(z) satisfies

a recurrence reminiscent of that of G̃k(z):

Ṽk(z) = Ṽk−1(pz) + Ṽk−1(qz) + W̃k,V (z),

where W̃k,V (z) is analogous to W̃k,G(z) appearing in the expected value case (see the proof for its
definition).

The subsequent steps (Mellin transform, Mellin inversion via saddle point method, and de-
Poissonization) are very similar to those in the expected value case. The analytic challenges are
essentially the same (except for a detail in the de-Poissonization step, in which we must estimate
nG̃′k(n)2), and we have formulated the lemmas in the analysis of the expected value so that they
are readily applicable to the variance case. This results in the following theorem (the proof is given
in Section 3.2).

Theorem 2 (Variance). Let k be as in Theorem 1. Then

Var[Bn,k] = M(ρ(α), logp/q(p
kn)) · nβ(α)√

2πκ∗(ρ(α))k

(
1 +O(k−1/2)

)
= Θ(E[Bn,k]), (13)

where β(α) is as defined in (7), and, for every fixed ρ, M(ρ, x) is a nonzero periodic function with
period 1 in x, given by the Fourier series

M(ρ, x) =
∑
j∈Z

B(ρ+ itj)Γ(ρ+ 1 + itj)e
−2jπix, (14)

where

B(s) = 1− (s+ 1)2−(s+2) +
∞∑
j=1

T (s)−j
W ∗j,V (s)

Γ(s+ 1)
. (15)
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Here, W ∗j,V (s) is given by the expression (34). Note that B(s) shares many of the properties of
A(s): it is entire, with zeros at the negative integers.

Moreover, we have the following superexponentially decaying bound on the second factorial mo-
ment cn,k (and hence Vn,k) when k = Θ(n): for all C ∈ (0, 1], there exist positive constants C1, C2

such that, for all n and k ≥ Cn,

cn,k ≤ C1n!e−C2k2 k = Θ(n). (16)

Finally, we show that the normalized external profile satisfies a central limit theorem. The
proof uses the Lévy continuity theorem. Since this entails estimating the characteristic function of
(Bn,k − µn,k)/σn,k as n→∞, we naturally find ourselves studying Q̃k(u, z), the Poisson transform
of the probability-generating function Qn,k(u) of Bn,k. In fact, we take the logarithm and study
l̃k(u, z) = log(Qk(u, z)), which we find, using the Taylor series expansion of l̃k(u, z) with respect to
u→ 1 (we set u = eτ/σn,k , for τ = it, t ∈ R), is given by

l̃k(u, z) = z + G̃k(z)(u− 1) +
Ṽk(z)− G̃k(z)

2
(u− 1)2 +

(u− 1)3

3!
R[l̃]k(u, z), (17)

where R[l̃]k(u, z) is a remainder term which we must show to be negligible with respect to the other
two terms whenever u→ 1 quickly enough.

Everything said so far regarding the proof of the limiting distribution result is fairly standard
in the world of digital tree analysis. The new, challenging part of our analysis is showing that the
remainder term in the expansion of l̃k(u, z) is negligible. Using Cauchy’s integral formula, we are
able to give an exact formula for it:

1

3!
R[l̃]k(u, z) =

k∑
j=0

(
k

j

)
1

2πi

∮
C

log(1 + (w − 1)pjqk−jze−p
jqk−jz)

(w − 1)3(w − u)
dw

+
k∑
j=0

k−j∑
m=0

(
k − j
m

)
1

2πi

∮
C

h̃j(w, p
mqk−j−mz)

(w − 1)3(w − u)
dw,

where h̃k(u, z) is a function given in terms of Qk(u, z) and Qk−1(u, z) and C is a contour enclosing
both 1 and u. The first sum we bound by writing the jth summand as eν(j), for an explicitly
determined function ν, then taking derivatives to find the term which contributes maximally. As
a result, we find that the contribution of the first sum is O(nβ(α)). We bound the second, more
complicated summation by proving precise estimates of the asymptotics of Qj(u, x) and (Qj −
Qj−1)(w, x) (which exhibits a significant amount of cancellation) for various ranges of x and j. We
then split the summations appropriately and apply the asymptotic estimates to conclude that the
second sum is also O(nβ(α)). This establishes a central limit theorem in the Poisson model, and
we finally transfer the result to the Bernoulli model via a “bare-hands” de-Poissonization (i.e., a
saddle point evaluation of the Cauchy integral which gives the inverse Poisson transform of G̃k(z))
to conclude the following (the proof is given in Section 3.3).

Theorem 3 (Limiting distribution). For k as in Theorem 1 and σ2
n,k = Vn,k,

Bn,k − µn,k
σn,k

D−→ N (0, 1).

More precisely,

E

[
exp

(
τ
Bn,k − G̃k(n)

σn,k

)]
= exp

(
τ2

2
(1 +O(V

−1/2
n,k ))

)
,

uniformly for τ = it, t ∈ R.
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We note that, although G̃k(n) ∼ µn,k by de-Poissonization, the chosen normalization results in
a better relative error than if we had subtracted µn,k.

Comparing with the limiting distribution derivation for tries, we remark that the main difference
lies in the bounding of the error term in (17), where, again, we must work with the non-explicitly
known functions Qj(w, x) and their differences. A limiting distribution analysis for DST profiles
remains an open problem.

3 Proofs

For a sequence of functions fj : C→ C, j = 0, . . . , we define T [f ]k : C→ C, for k ≥ 1, by

T [f ]k(z) = e−pz(fk(qz)− fk−1(qz)) + e−qz(fk(pz)− fk−1(pz)).

We define L[f ]k : C→ C, for k ≥ 0, by

L[f ]k(z) = fk(pz) + fk(qz).

Both are trivially seen to be linear (where addition and scalar multiplication of sequences of func-
tions are defined componentwise), which is helpful in the calculations that follow.

For θ ∈ [0, π) We denote by C(θ) the cone around the positive real axis with angle θ; that is,

C(θ) = {z ∈ C : | arg(z)| ≤ θ},

and for any R > 0,
C(θ,R) = C(θ) ∩ {z ∈ C||z| ≤ R};

i.e., C(θ,R) is the truncated cone of radius R.

3.1 Proof of Theorem 1

In this section, we prove the estimate (5) of Theorem 1. We relegate the proof of (11) to Ap-
pendix 4.2.2.

Our starting point is the Poisson transform G̃k(z) = e−z
∑

n≥0 µn,k
zn

n! , which satisfies the re-
currence

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + W̃k,G(z), (18)

where

W̃k,G(z) = T [G̃]k(z), (19)

with initial condition G̃0(z) = ze−z. We then apply the Mellin transform [7]∫ ∞
0

zs−1G̃k(z) dz

to G̃k(z) to get a functional equation for G∗k(s):

G∗k(s) = T (s)G∗k−1(s) +W ∗k,G(s), (20)

with G∗0(s) = Γ(s+ 1), where the fundamental strip associated with G̃0(z) is <(s) ∈ (−1,∞).
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We define Ij = {s : <(s) ∈ (−j − 1,∞)}, so that the fundamental strip of G̃0(z) becomes I0.
In fact, we will show that the fundamental strip of each G̃k(z) contains Ik. It suffices to analyze
the growth of G̃k(z) as z → 0 and z →∞ on the real axis. For z → 0,

G̃k(z) = e−z(µk+1,k
zk+1

(k + 1)!
+O(zk+2)) = O(zk+1).

In order to bound the growth of G̃k(z) as z →∞ for each k, we use the following lemma.

Lemma 1 (Growth of G̃k(z) as z →∞, upper bounds). Fix any θ ∈ (0, π/2).

(i) For any ε > 0, there exist some R ∈ R+ and positive C = C(R) such that, for z ∈ C(θ) with
|z| > R,

|G̃k(z)| ≤ C|z|1+ε,

for any k ≥ 0.

(ii) For any fixed C > 0, there exists C ′ > 0 such that, for all j ≤ C, z ∈ C(θ), and ε > 0,

|G̃j(z)| ≤ C ′|z|1+εe−q
C |z| cos(θ).

The proof can be found in Appendix 4.2.1. Part (ii) implies that the right endpoint of the
fundamental strip of each G̃k(z) is ∞, so that each G̃k(z) is analytic at least in Ik, as claimed.

Now, in order to derive a formula for G∗k(s), we note that, for any s ∈
⋂∞
j=0 Ij = I0, we can

iterate the recurrence (20) to get

G∗k(s) = T (s)k

G∗0(s) +
k∑
j=1

T (s)−jW ∗j,G(s)

 .

It remains to determine W ∗j,G(s), which we do, for arbitrary j, by expressing e−(1−c)zG̃j(cz) as∑
m≥j+1

e−zµm,j
(cz)m

m!
,

then applying the Mellin transform to each term (the interchange of integrals may be justified by,
e.g., Tonelli’s theorem). Factoring out Γ(s+ 1) results in the expression

G∗k(s) = T (s)kAk(s)Γ(s+ 1),

where

Ak(s) = 1 +
k∑
j=1

T (s)−j
∞∑
n=j

T (−n)(µn,j − µn,j−1)
φn(s)

n!
,

with φn(s) as in the statement of Theorem 1:

φn(s) =

{∏n−1
j=1 (s+ j) n > 1

1 n ≤ 1.

Provided that we can show that this expression is analytic for any s ∈ Ik, we can then extend
this equality to Ik by analytic continuation.

In order to do this, we need a lemma to the effect that certain series (which appear in the
expression for Ak(s)) converge absolutely and are entire. This lemma will be stated in greater
generality than might appear immediately necessary; this is so that we can apply it later in a
similar situation in the variance analysis.
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Lemma 2 (Convergence and analyticity of a class of series). Let Fj(s) be given by

Fj(s) =
∞∑
n=j

e−g(n)φn(s)

n!
,

with g(n) = Ω(n). Then

(i) the sum defining Fj(s) converges absolutely for all s ∈ C, and

(ii) Fj(s) is entire.

The proof of this lemma can be found in Appendix 4.1.
We now demonstrate the existence and analyticity of Ak(s). Since the outer sum of Ak(s)

has a finite number of terms for any given k, showing existence boils down to showing that the
inner sum converges absolutely for all s ∈ C. For this, we can use Lemma 2, part (i). In the
case of Ak(s), we note that T (−n) ≤ pn + pn = 2pn, and µn,j − µn,j−1 ≤ n − 0 = n. This yields
T (−n)(µn,j − µn,j−1) = e−Θ(n), so that we can take g(n) = Θ(n), which satisfies the condition
required by Lemma 2. This establishes existence of Ak(s).

To show that Ak(s) is entire, it suffices to apply Lemma 2, part (ii). Then, since G∗k(s) and
T (s)kAk(s) are analytic at s = {−k,−k+1, · · ·−1} while Γ(s+1) is not, and T (s)k 6= 0, Ak(s) = 0
for these points.

We summarize the above derivation in the following theorem.

Theorem 4 (Exact formula, fundamental strip for G∗k(s)). For all k ≥ 1 and all s for which G∗k(s)
is holomorphic,

G∗k(s) = T (s)kAk(s)Γ(s+ 1), (21)

where Ak(s) is an entire function given by

Ak(s) = 1 +

k∑
j=1

T (s)−j
∞∑
n=j

T (−n)(µn,j − µn,j−1)
φn(s)

n!
,

with φn(s) as in the statement of Theorem 1:

φn(s) =

{∏n−1
j=1 (s+ j) n > 1

1 n ≤ 1.

Furthermore, Ak(s) = 0 for s = −1, . . . ,−k, so that G∗k(s) is analytically continuable everywhere,
except possibly at the negative integers less than −k. Thus, the fundamental strip of G∗k(s) contains
the strip <(s) ∈ (−k − 1,∞).

3.1.1 Further properties of Ak(s)

Here we prove some technical lemmas about Ak(s) that will play a role in the inversion of the Mellin
transform. For convenience, we write Xk(s) = Ak(s)Γ(s + 1). We will prove that Xk(s) converges
as k → ∞ to a function X(s) = A(s)Γ(s + 1) pointwise and uniformly on compact sets (so that
X(s) is entire). Then we will show that Xk(s) inherits the exponential decay of Γ(s + 1) along
vertical lines.
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Pointwise convergence of Xk(s) and related series

In the next lemma, we prove pointwise convergence of a class of series related to Ak(s). Com-
bining this with the upper bound (11) will give us a pointwise convergence result for Ak(s). In fact,
the convergence will turn out to be uniform for s in any compact set, which implies that Ak(s)
converges to a function A(s) which is entire.

Lemma 3 (Pointwise convergence of a class of series). Let

Uk(s) =
k∑

m=0

T (s)−m
∞∑

n′=m

e−Θ(n′)ηn′,m
Γ(n′ + s)

Γ(n′ + 1)
,

for any ηn′,m which satisfies

• Superexponential decay for n′ ≤ Cm: for any C > 0, there exists some function g(m) ≥ 0
satisfying g(m)� m such that, if n′ ≤ Cm and m is sufficiently large, then

|ηn′,m| ≤ e−g(m).

• Polynomial uniform upper bound: |ηn′,m| ≤ c1n
′c2 for some constants c1, c2 > 0 and all n′,m.

Let U(s) = U∞(s). Then U(s) is absolutely convergent for any fixed s = ρ + it ∈ C for which
|Uk(s)| <∞ for k large enough.

Proof. Define

bm(s) = T (s)−m
∞∑

n′=m

e−Θ(n′)ηn′,m
Γ(n′ + s)

Γ(n′ + 1)
.

I.e., bm(s) is the mth term of the series defining U(s). The plan is to show that |bm(s)| is upper
bounded by the tail of a convergent geometric series. Intuitively, for m = Θ(n′), the terms of the
sum are small because ηn′,m is. For larger n′, the same is true as a result of the smallness of e−Θ(n′).
More precisely, we have the following, for some c > 1 which we will choose later:

|bm(s)| ≤ |T (s)|−m
cm∑
n′=m

e−Θ(n′)|ηn′,m|
∣∣∣∣Γ(n′ + s)

Γ(n′ + 1)

∣∣∣∣+ |T (s)|−m
∞∑

n′=cm+1

e−Θ(n′)|ηn′,m|
∣∣∣∣Γ(n′ + s)

Γ(n′ + 1)

∣∣∣∣ .
Since s is fixed,

∣∣∣Γ(n′+s)
Γ(n′+1)

∣∣∣ ∼ n′ρ as n′ →∞ (which is the case when m→∞ [1]).

Upper bounding the first sum: Since c > 1, n′ ≤ cm implies m ≥ Cn′, with 0 < C < 1, so
that we can apply the superexponential decay of |ηn′,m|, which yields the following upper bound
for the first sum:

|T (s)|−me−Θ(m)e−g(m)Θ(mρ+1).

Since g(m)� m, provided m is sufficiently large, this can be upper bounded by any e−c∗m for any
c∗ > 0.

Upper bounding the second sum: For the second sum, by the uniform upper bound on |ηn′,m|,
we can upper bound

e−Θ(n′)

∣∣∣∣ηn′,mΓ(n′ + s)

Γ(n′ + 1)

∣∣∣∣
13



by e−Θ(n′)n′Θ(1) = e−Θ(n′), so that the sum is upper bounded by

e−cΘ(m),

which gives an upper bound of
e−m log |T (s)|−cΘ(m)

for the second term, where the Θ(·) hides constants depending only on the uniform bound on |ηn′,m|
and <(s). Since |T (s)| is fixed, so long as c is sufficiently large (dependent only on <(s)), this is
exponentially decaying to 0. Thus, |bm(s)| can be bounded by the mth tail of a convergent geometric
series, so that it is at least exponentially decaying in m, which implies absolute convergence of |U(s)|
by the ratio test.

In fact, for any compact domain Ω ⊂ C, the convergence is uniform for s ∈ Ω (this is a
trivial modification of the above proof). We also have the following classical fact about uniform
convergence of analytic functions [23]:

Theorem 5 (Uniform convergence of analytic functions). Let S be an open subset of C, and let
{fn}∞n=1 be a sequence of functions from S → C. If there is a function f : S → C such that, for
each compact subset D ⊆ S, {fn} converges uniformly for s ∈ D to f , then f is analytic on S.

Applying Theorem 5 and Lemma 3 to Ak(s)Γ(s + 1) (justified by the superexponential decay
property of µm,j when j = Θ(m), the upper bound µm,j ≤ m for all m, and the fact that Ak(s)Γ(s+
1) is analytic everywhere except possibly at the integers less than −k), we have the following
corollary.

Corollary 1 (Convergence of Ak(s)Γ(s+1)). Recall that Xk(s) = Ak(s)Γ(s+1). Then the sequence
{Xk} converges pointwise to an entire function X(s), uniformly on any compact set. Moreover, for
any s ∈ C,

|Xk(s)| ≤ |Γ(s+ 1)|+
∞∑
m=1

|T (s)|−m
∞∑
n=m

T (−n)|ηn,m|
∣∣∣∣Γ(n+ s)

Γ(n+ 1)

∣∣∣∣ .
Decay of Xk(s) along vertical lines
In this section, we analyze the decay of Xk(s) = Ak(s)Γ(s + 1) along vertical lines (that is, for
s = ρ + it, where ρ is fixed and |t| → ∞). This is a key ingredient in the justification of the
application of the saddle point method to the inverse Mellin integral.

It turns out that the decay is exponential. We will show this by proving a more general lemma,
from which the exponential decay of Xk(s) follows as a special case.

Lemma 4 (Decay of Xk(s) along vertical lines). Let Uk(s) be as in Lemma 3, with an additional
condition on ηn′,m: for any n′ and m with m ≥ n′, we stipulate that

ηn′,m = 0 m ≥ n′. (22)

Then for any ρ ∈ R, there exist constants γ, r > 0 such that, for s = ρ + it with |t| sufficiently
large, and for any k,

|Uk(s)| ≤ e−γ|t|
r
.

The same holds for U(s) in place of Uk(s).
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Proof. For the proof, we first recall a standard fact about the Γ function: there exists some positive
constant C such that, as z = ρ+ it→∞ in a cone |arg(z)| ≤ π − ε, for any fixed ε > 0,

|Γ(ρ+ it)| ≤ C|t|ρ−1/2e−π|t|/2. (23)

We start by upper bounding via the triangle inequality. Then we upper bound |T (s)|−m: noting
that, for any s = ρ+ it, T (s) 6= 0 and∣∣∣∣T (s+ i

2π

log(p/q)

)∣∣∣∣ = |T (s)|,

there exists some L(ρ) such that
|T (s)|−m ≤ |L(ρ)|−m.

The formula (23) immediately gives an exponentially decaying upper bound on Γ(s+ 1) which
holds for sufficiently large |t|.

In order to bound, for each m, the n′ sum, we split it into two pieces: an initial part, to be
bounded using (23), and a tail part, which we bound using the exponential decay of e−Θ(n′)ηn′,m.

More specifically, provided m ≤ d
√
|t|e, we split the n′ sum as follows:

∞∑
n′=m

e−Θ(n′)ηn′,m
Γ(n′ + s)

Γ(n′ + 1)
=

d
√
|t|e∑

n′=m

e−Θ(n′)ηn′,m
Γ(n′ + s)

Γ(n′ + 1)
+

∞∑
n′=d
√
|t|e+1

e−Θ(n′)ηn′,m
Γ(n′ + s)

Γ(n′ + 1)
.

(24)

Bounding the initial sum: To upper bound the initial sum of (24), we apply (23), which gives
us an upper bound of

C|t|d
√
|t|e+ρ−1/2e−π|t|/2

d
√
|t|e∑

n′=m

e−Θ(n′)|ηn′,m|
Γ(n′ + 1)

.

Since |ηn′,m| ≤ c1n
′c2 , we have that

d
√
|t|e∑

n′=m

e−Θ(n′)|ηn′,m|
Γ(n′ + 1)

≤
∞∑
n′=0

e−Θ(n′)

n′!
= Θ(1).

Furthermore,

|t|d
√
|t|e = ed

√
|t|e log |t| = eo(|t|),

so that, clearly, for sufficiently large |t|, the initial sum can be upper bounded by some e−γ1|t|

whenever m ≤ d
√
|t|e. For larger m, the initial sum is 0, by the property (22) of ηn′,m.

Bounding the tail sum: To upper bound the tail sum of (24), we note that e−Θ(n′)|ηn′,m| can
be upper bounded by e−g(n

′), for some g(n′) which is monotone increasing and which satisfies
g(n′) = Ω(n′). Then

e−g(n
′)/2 ≤ e−g(d

√
|t|e+1)/2,

by the fact that e−g(n
′) is monotone decreasing with respect to n′. Furthermore,

|Γ(n′ + s)| ≤ |Γ(n′ + ρ)|,
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noting that n′ is larger than −ρ provided that |t| is sufficiently large, so that |Γ(n′+ρ)| <∞. Thus,
we can upper bound the tail sum of (24) by

e−g(d
√
|t|e+1)/2 ·

∞∑
n′=d
√
|t|e+1

e−g(n
′)/2|ηn′,m|

∣∣∣∣Γ(n′ + ρ)

Γ(n′ + 1)

∣∣∣∣ .
Collecting the contribution of the tail sum over all m gives and upper bound of

e−g(d
√
|t|e+1)/2

∞∑
m=0

|T (s)|−m
∞∑

n′=d
√
|t|e+1

e−g(n
′)/2|ηn′,m|

∣∣∣∣Γ(n′ + ρ)

Γ(n′ + 1)

∣∣∣∣ .
As noted earlier, we can upper bound |T (s)|−m by |L(ρ)|−m. Furthermore, since ηn′,m = 0 when
m ≥ n′, we can replace the lower index of the n′ sum by m to get an upper bound, yielding

∞∑
m=0

|L(ρ)|−m
∞∑

n′=m

e−g(n
′)/2|ηn′,m|

∣∣∣∣Γ(n′ + ρ)

Γ(n′ + 1)

∣∣∣∣ ,
and by Lemma 3, this is less than ∞, so O(1) with respect to |t|. Thus, the total contribution of
the tail sum is at most

O(e−g(d
√
|t|e+1)/2).

As an immediate consequence (in particular because µm,j = 0 for j ≥ m), we see that there is
some r > 0 for which

|Xk(s)| ≤ e−γ|t|
r

(25)

as |t| → ∞ with s = ρ+ it.

3.1.2 Inverting the Mellin transform

To extract asymptotics for z →∞ of G̃k(z), we next evaluate the inverse Mellin transform of G∗k(s):

G̃k(z) =
1

2πi

∫ c+i∞

c−i∞
G∗k(s)z

−s ds =
1

2πi

∫ c+i∞

c−i∞
z−sΓ(s+ 1)Ak(s)T (s)k ds, (26)

where −k − 1 < c < ∞. When k is in the range specified by the theorem, the asymptotics of this
integral are dictated by the saddle points of the function s 7→ z−sT (s)k (note that both factors are
tending to infinity as |z| = n → ∞). Thus, we choose the line of integration to coincide with the
real solution ρ = ρ(α) of the saddle point equation

d

ds
[k log T (s)− s log z] = 0.

Solving this, we get s = ρ as defined in the statement of the theorem:

ρ(α) = − 1

log(p/q)
log

(
α log(1/q)− 1

1− α log(1/p)

)
.

Furthermore, since |T (ρ + itj)| = |T (ρ)| for all j ∈ Z, we find that the integrand has infinitely
many regularly spaced saddle points ρj with real part equal to ρ, which will turn out to lead to
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a fluctuating factor in G̃k(z). A fact about ρ should be noted here: as we vary α from 1
log(1/q) to

1
log(1/p) , ρ goes from ∞ to −∞, which corresponds to the boundaries for the range we consider: at
the left endpoint, the numerator inside the logarithm is 0, while at the right, the denominator is.

Our evaluation of (26) then proceeds as follows: we split the contour into two parts: the outer
tails, which we will show to be negligible, and the central region. By the negligibility of the outer
tails, we then need only consider the contribution of the finitely many saddle points in the central
region. Around each such saddle point, we consider a small region in which the tails are negligible,
and the central part is approximable by a Gaussian integral. Summing the contributions gives the
desired result. We note that we follow the high-level plan of [17], but the bounding of the tails and
the evaluation of the central regions crucially relies on the information that we have derived about
the behavior of Ak(s)Γ(s+ 1).

In what follows, we define

Jk(n, s) = n−sT (s)kAk(s)Γ(s+ 1).

Furthermore, we define the outer tails, the inner tails, and the central parts as, respectively,

CO = COn,k =
1

2π

∫
|t|≥
√

logn
Jk(n, ρ+ it) dt

CIOj = CIOn,k,j =
1

2π

∫
k−2/5≤|t−tj |≤ π

log(p/q)

Jk(n, ρ+ it) dt

CIIj = CIIn,k,j =
1

2π

∫
|t−tj |≤k−2/5

Jk(n, ρ+ it) dt.

We let j0 = Θ(
√

log n) denote the index of the furthest saddle point from the real axis in the
central region. Finally, we denote by CIj the contribution of the region around the jth saddle point,
including its center and tails:

CIj = CIOj + CIIj .

The choice of Θ(k−2/5) for the central region lengths is a result of the following heuristic: for the
application of the saddle point method to evaluating the contributions of the integral on the central
regions, in writing n−sT (s)k in the form edk(t) and applying the Taylor expansion of dk(t) around
t = tj , we want to ensure that the remainder term, which is O(k(t − tj)3), is negligible, while the

previous term,
d′′k(t)

2 (t − tj)2 = Θ(k(t − tj)2), is not. That is, if we assume that |t − tj | = O(k−δ),
for some δ, then it is natural to enforce the constraint that 1 − 2δ > 0 and 1 − 3δ < 0; that is,
δ ∈ (1/3, 1/2), and it is easy to check that δ = 2/5 satisfies these constraints.

Outer tails
First, we bound the outer tails. To be precise, we have the following claim.

Lemma 5 (Bound on CO). There exist positive constants γ, r such that

CO = O(n−ρT (ρ)ke−γ(logn)r/2),

uniformly in n and k.

In the proof, we will need the following elementary lemma about T (s) near the saddle points.

Lemma 6. For |t− tj | ≤ π
log(p/q) ,

|T (ρ+ it)| ≤ T (ρ)e−c0(t−tj)2 , (27)
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where c0 is given by

c0 =
2p−ρq−ρ log(p/q)2

π2(T (ρ))2
. (28)

We omit the proof, which can be found in [17].

Proof of Lemma 5. To bound |n−sT (s)k|, we apply Lemma 6 to conclude that

|n−sT (s)k| ≤ n−ρT (ρ)k.

Thus, we are left with the task of upper bounding∫
|t|≥
√

logn
|Xk(ρ+ it)| dt,

which we write as ∑
j:|tj |≥

√
logn

∫
|t−tj |≤ π

log(p/q)

|Xk(ρ+ it)| dt. (29)

Next, we apply (25) and the assumption that n → ∞ to conclude that (29) can be upper
bounded, for some positive constants γ and r, by

O

 ∑
j:|tj |≥

√
logn

e−γ|tj |
r

 = O(e−γ(logn)r/2).

Thus, ∫
|t|≥
√

logn
Jk(n, ρ+ it) dt = O(n−ρT (ρ)ke−γ(logn)r/2).

This completes the proof of Lemma 5 that the outer tails are negligible.

Inner tails
Now we move to the central region. We first show that the tails in the central region are negligible.

Lemma 7 (Inner tails are negligible). The total contribution of the inner tails is∑
|j|≤j0

CIOj = O(n−ρT (ρ)kk−1/10e−c0k
1/5

),

which is negligible compared to G̃k(n).

First, we recall a simple fact [22] bounding incomplete Gaussian integrals, which will be useful
when we apply Lemma 6 to handle the contribution of T (ρ+ it).

x ≥ 0 =⇒
∫ ∞
x

e−ct
2

dt ≤ 1

2cx
e−cx

2
. (30)
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Proof of Lemma 7. We will start by bounding the contribution of CIOj for an arbitrary j. Since

Xk(ρ+ it) is uniformly bounded above by a constant whenever |t| ≤
√

log(n) as a consequence of
(25), we can pull it out of the integral defining CIOj . Next, we use the equality |n−(ρ+it)| = n−ρ

and Lemma 6 to conclude that

CIOj = O

(
n−ρT (ρ)k

∫
k−2/5≤|t−tj |≤ π

log(p/q)

e−c0(t−tj)2k dt

)
.

Applying the substitution t 7→ t− tj in the above integral and extending the domain of integration
from [k−2/5, π

log(p/q) ] to [k−2/5,∞), we are left with the incomplete Gaussian integral∫ ∞
k−2/5

e−c0kt
2

dt.

Applying the inequality (30) then yields

CIOj = O(n−ρT (ρ)kk−3/5e−c0k
1/5

).

Since this bound is uniform in j for |j| ≤ j0, the total contribution of the inner tails is then given
by

O(n−ρT (ρ)kk−1/10e−c0k
1/5

);

that is, we multiplied by k1/2. Now, the factor k−1/10e−c0k
1/5

= o(k−1/2), so that the inner tails
are negligible compared to the entire integral.

Central region
We now show that a quadratic approximation to the integrand holds in the central region around
each saddle point.

Lemma 8 (Central region). We have, for each |j| ≤ j0,

CIIj = Γ(ρ+ 1 + itj)Ak(ρ+ itj)e
−itj log(pkn) n−ρT (ρ)k√

2πκ∗(ρ)k

(
1 +O(k−1/2)

)
.

Proof. Suppose that, for some j, |t− tj | ≤ k−2/5, and let s = ρ+ it and sj = ρ+ itj .
First, we develop the quadratic approximation to n−sT (s)k. Noting that n−ρ−itT (ρ + it)k =

e(−ρ−it) logn+k log(T (ρ+it)), we define

dk(t) = −(ρ+ it) log n+ k log T (ρ+ it).

We note that
n−ρ−it = n−ρ−i(t−tj)−itj = e−itj lognn−ρ−i(t−tj)

and

T (ρ+ it)k = T (ρ+ i(t− tj) + itj)
k

= (p−(ρ+i(t−tj))p−itj + q−(ρ+i(t−tj))q−itj )k

= p−itjk

(
p−(ρ+i(t−tj)) + q−(ρ+i(t−tj))

(
p

q

)itj)k
= p−itjkT (ρ+ i(t− tj))k,
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so that
dk(t) = −(ρ+ i(t− tj)) log n+ k log T (ρ+ i(t− tj))− itj log n(1 + α log p).

Then we have, by Taylor expanding dk(t) around tj ,

dk(t) = dk(tj) +
d′′k(tj)

2
(t− tj)2 + r

(3)
k (tj).

where we note that d′k(tj) = 0, since tj is a saddle point of dk(t), and r
(3)
k (tj) is the remainder

corresponding to the Taylor polynomial of degree 2. Taking derivatives, we have

d′′k(t) = k · T
′(ρ+ i(t− tj))2 − T (ρ+ i(t− tj))T ′′(ρ+ i(t− tj))

T (ρ+ i(t− tj))2
.

We also need d
(3)
k (t) for the analysis of the remainder term, and it can be similarly explicitly

computed, but it suffices to note that, since it is a function of t − tj , evaluating it at t = tj gives
a function which is a constant with respect to j and t. Thus, considering the Lagrange form of

r
(3)
k (tj) shows that it is O(k(t − tj)3) = O(k5/5−6/5) = O(k−1/5), so the remainder is negligible in

comparison to the first and second terms. Evaluating dk(tj) and d′′k(tj) gives

dk(tj) = −ρ log n+ k log T (ρ)− itj log(pkn)

and

d′′k(tj) = k
T ′(ρ)2 − T (ρ)T ′′(ρ)

T (ρ)2
,

which we will denote by kκ∗(ρ).
We consider separately the cases where |j| → ∞ arbitrarily slowly and where |j| remains

bounded.

j tending to ∞: First, we need to show that Γ(s+ 1)Ak(s) = Xk(s) ∼ Xk(sj) for s in this range
(recalling that tj = O(

√
log n) and |s− sj | = O(k−2/5)). Recall that Xk(s) is a double sum of the

form
k∑

m=0

T (s)−m
∑
n′≥m

T (−n′)(µn′,m − µn′,m−1)
Γ(n′ + s)

Γ(n′ + 1)
.

By the analysis in Lemma 3, we have that the mth term of this sum is O(e−Θ(m)), so that if
m� log k = Θ(log log n), then these terms are negligible (i.e., they decay superpolynomially in k).

It remains to handle the terms with m = O(log k). First, we note that, by the Taylor expansion
for T (s),

T (s)−m = T (sj)
−m(1 +O(T ′(sj)/T (sj)k

−2/5))−m

= T (sj)
−m(1 +O(k−2/5))−m

= T (sj)
−m(1 +O(k−2/5 log k))

∼ T (sj)
−m.

Now we must determine the contribution of the inner sum, indexed by n′. We split it into initial
and final parts:

n′′∑
n′=m

T (−n′)(µn′,m − µn′,m−1)
Γ(n′ + s)

Γ(n′ + 1)
+
∑
n′>n′′

T (−n′)(µn′,m − µn′,m−1)
Γ(n′ + s)

Γ(n′ + 1)
,

20



where n′′ is to be determined. We will handle the initial part using the Taylor expansion for the Γ
function, and the latter we show to be negligible thanks to the T (−n′) factor.

For the initial sum, we recall that the first-order Taylor polynomial for Γ(n′+ s) around n′+ sj
is given by

Γ(n′ + s) = Γ(n′ + sj) + Γ′(n′ + sj)(s− sj). (31)

Now, recall that, for any x for which Γ(x) is analytic,

Γ′(x) = Γ(x)ψ(x),

where ψ(x) is the digamma function (see [1]). Continuing the derivation in (31),

Γ(n′ + s) = Γ(n′ + sj)(1 + ψ(n′ + sj)(s− sj)),

and the second term in parentheses is o(1) if ψ(n′ + sj) = o(k2/5). We have that, as x → ∞ with
x bounded away from the negative real axis, ψ(x) ∼ log x, so that it suffices to note that (since
sj = O(

√
log n))

n′ = o(ek
2/5

) =⇒ |n′ + sj | = o(ek
2/5

).

Thus, we choose, say, n′′ = ek
1/5

to split the sum, and for the initial sum, we have

Γ(n′ + s) = Γ(n′ + sj)(1 +O(k−1/5)).

Because of the presence of T (−n), the final sum is O(e−Θ(ek
1/5

)). Putting all of this together, we
get that

Xk(s) ∼ Xk(sj),

as claimed.
Then we have

CIIj =
1

2πi

∫
|t−tj |≤k−2/5

Xk(ρ+ it)n−ρ−itT (ρ+ it)k dt

= (1 + o(1))Xk(ρ+ itj)
1

2πi

∫
|t−tj |≤k−2/5

edk(tj)+
d′′k (tj)

2
(t−tj)2+O(k−1/5) dt,

and invoking the saddle point method on the remaining integral gives a contribution of

CIIj = e−itj log(pkn)Xk(ρ+ itj)
n−ρT (ρ)k√

2πkκ∗(ρ)

(
1 +O(k−1/2)

)
(32)

for j tending to ∞ with j ≤ j0 = O(
√

log n).

|j| bounded: Meanwhile, for |j| bounded above by any fixed C, we have that Xk(s) ∼ Xk(sj), by
continuity. Invoking the saddle point method again on this integral gives the same contribution as
(32).
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Collecting estimates
To complete the computation, we add all of the contributions of the saddle points:

G̃k(n) =
∑
|j|≤j0

CIj +O(n−ρT (ρ)ke−
√

logn)

=
∑
|j|≤j0

Γ(ρ+ 1 + itj)Ak(ρ+ itj)e
−itj log(pkn) n−ρT (ρ)k√

2πκ∗(ρ)k

(
1 +O(k−1/2)

)
+O(n−ρT (ρ)ke−γ

√
logn)

= Hk(ρ, logp/q(p
kn))

n−ρT (ρ)k√
2πκ∗(ρn,k)k

(
1 +O(k−1/2)

)
,

where Hk(ρ, x) is given by

Hk(ρ, x) =
∑
j∈Z

Ak(ρ+ itj)Γ(ρ+ 1 + itj)e
−2jπix.

Note that we extended the limits of the j sum to ±∞ by virtue of the exponential decay of Xk(s)
on vertical lines.

The dependence of Hk(ρ, x) on k must now be analyzed. This is the content of the following
claim.

Lemma 9 (Convergence of Hk(ρ, x)). The limit

lim
k→∞

Hk(ρ, x)

exists and is equal to H(ρ, x). Furthermore, the convergence is uniform for (ρ, x) in any compact
set.

Proof. We can write

lim
k→∞

Hk(ρ, x) = lim
k→∞

lim
j′→∞

j′∑
j=−j′

Ak(ρ+ itj)Γ(ρ+ 1 + itj)e
−2πjix,

and our task is to show that the limits exist and can be interchanged. It suffices, by the dominated
convergence theorem (which holds when the functions to be dominated take values in a Banach
space), to show that Ak(s) converges pointwise for all s, and then that the sum∑

j∈Z
A(sj)Γ(sj + 1)e−2πijx (33)

converges absolutely for all ρ, x. Pointwise convergence of Ak(s) was already established in Corollary
1. The absolute convergence of (33) is a simple consequence of (25) and the ratio test. Note that,
implicitly, we’ve used ∑

j∈Z
|A(sj)Γ(sj + 1)|

as our bounding function.

To complete the derivation, we must recover asymptotics of µn,k from G̃k(z). See Appendix 4.3.1
for the justification of this step.
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3.2 Proof of Theorem 2

Here we prove (13) of Theorem 2. The proof of the superexponentially decaying bound (16) can be
found in Appendix 4.2.4. The derivation of asymptotics for the variance runs along lines very similar
to that of the expected value, and the technical machinery developed in the proof of Theorem 1 is
applicable here. The main difference lies in the de-Poissonization step, where we use Theorem 6
of [10]. The resulting expansion for Vn,k involves nG̃′k(n)2, which we must show to be negligible in
order to get the claimed result. This we can easily do via the Cauchy integral formula for derivatives
and our knowledge of the asymptotics of G̃k(n).

The Poisson variance is given by Ṽk(z) = C̃k(z) + G̃k(z)− (G̃k(z))
2, where C̃k(z) is the Poisson

transform of cn,k, the second factorial moment of Bn,k. Our first task is to derive functional
equations for C̃k(z) and Ṽk(z). We recall the recurrence for cn,k, which holds for n ≥ 2 and k ≥ 1:

cn,k = T (−n)cn,k +
n−1∑
j=1

(
n

j

)
pjqn−j(cj,k−1 + cn−j,k−1 + 2µj,k−1µn−j,k−1),

with cn,k = 0 whenever n < 2, k < 1, or k ≥ n. Introducing the exponential generating function
Ck(z) for the sequence cn,k, we get a functional equation:

Ck(z) =Ck−1(pz)eqz + Ck−1(qz)epz + 2Gk−1(pz)Gk−1(qz)

+ [Ck(pz)− Ck−1(pz)] + [Ck(qz)− Ck−1(qz)],

valid for k ≥ 1, with initial condition C0(z) = 0.
Multiplying by e−z on both sides to form the Poisson transform C̃k(z) of the sequence cn,k and

abbreviating using the linear operators L[·] and T [·], we get the following functional equation:

C̃k(z) = L[C̃]k−1(z) + T [C̃]k(z) + 2G̃k−1(pz)G̃k−1(qz),

with C̃0(z) = 0.
Now we derive a functional equation for Ṽk(z). Applying the equations for G̃k(z) and C̃k(z) to

the definition of Ṽk(z), we have

Ṽk(z) =L[C̃]k−1(z) + T [C̃]k(z) + 2G̃k−1(pz)G̃k−1(qz)

+ L[G̃]k−1(z) + T [G̃]k(z)− (L[G̃]k−1(z) + T [G̃]k(z))
2.

To handle the squared term in the previous equation, we need the following identity on L[·]:

(L[f ]k(z))
2 = L[f2]k(z) + 2fk(pz)fk(qz).

Now, expanding the squared term, we get

(L[G̃]k−1(z) + T [G̃]k(z))
2 = L[G̃]k−1(z)2 + 2L[G̃]k−1(z)T [G̃]k(z) + T [G̃]k(z)

2

= L[G̃2]k−1(z) + 2G̃k−1(pz)G̃k−1(qz) + 2L[G̃]k−1(z)T [G̃]k(z) + T [G̃]k(z)
2.

Substituting this last expression into the derivation of Ṽk(z) above gives, after noting the cancella-
tion of terms and applying linearity of L[·] and the definition of Ṽk−1(z),

Ṽk(z) = L[Ṽ ]k−1(z) + T [C̃ + G̃]k(z)− T [G]k(z)
2 − 2L[G̃]k−1(z)T [G̃]k(z).
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Adding and subtracting L[G̃]k−1(z)2 and applying the functional equation for G̃k(z), this reduces
to

Ṽk(z) = L[Ṽ ]k−1(z) + T [C̃ + G̃]k(x) + L[G̃]k−1(z)2 − G̃k(z)2 = L[Ṽ ]k−1(z) + W̃k,V (z),

where W̃k,V (z) is given by

W̃k,V (z) = T [C̃ + G̃]k(z) + L[G̃]k−1(z)2 − G̃k(z)2.

The above recurrence holds for k ≥ 1. To derive the initial condition, we write

Ṽ0(z) = C̃0(z) + G̃0(z)− (G̃0(z))2 = ze−z − z2e−2z.

Now, to solve this equation, the plan is again to apply the Mellin transform and invert using
the saddle point method. We have, by the same derivation as in the expected value case, V ∗k (s) =
T (s)kΓ(s+ 1)Bk(s), where we define

Bk(s) = 1− (s+ 1)2−(s+2) +
k∑
j=1

T (s)−j
W ∗j,V (s)

Γ(s+ 1)
,

with W ∗k,V (s), the Mellin transform of W̃k,V (z), given by

W ∗j,V (s) =
∑
n′≥j

Γ(s+ n′)

n′!

[
(cn′,j − cn′,j−1 + µn′,j − µn′,j−1)T (−n′) + T (s)2−(s+n′)

n′∑
m=0

µm,j−1µn′−m,j−1

(34)

+2

n′∑
m=0

µm,j−1µn′−m,j−1p
mqn

′−m − 2−(n′+s)
n′∑
m=0

µm,jµn′−m,j

]
. (35)

We have the following information about the singularities and zeros of V ∗k (s).

Theorem 6 (Special points of V ∗k (s)). The function Bk(s) is entire, with zeros at s = −1, . . . ,−k.
The function V ∗k (s) is analytic except possibly at the integers less than −k, so that its fundamental
strip contains Ik = {s ∈ C : <(s) ∈ (−k − 1,∞)}.

This is analogous to Theorem 4, and the proof is along similar lines. In particular, we can
demonstrate the claim about the fundamental strip corresponding to Ṽk(z) by estimates of Ṽk(z)
at z → 0 and z →∞, and the formula for V ∗k (s) throughout Ik is demonstrated, as in the expected
value case, by an analytic continuation argument.

We first need some bounds on C̃k(z) and Ṽk(z) as z →∞ inside a cone around the positive real
axis. The exponentially decaying upper bound on |Ṽk(z)| as z →∞ is analogous to Lemma 1, part
(ii).

Lemma 10 (Bounds on C̃k(z) and Ṽk(z) as z →∞). Let θ be as in Lemma 1. Then

(i) For every ε > 0, there are some R > 0 and C = C(R) > 0 such that, for |z| > R with
z ∈ C(θ),

|C̃k(z)| ≤ C|z|2+ε,

for any k ≥ 0.
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(ii) For any fixed C > 0, there exists a constant C ′ > 0 such that, for all j ≤ C and z ∈ C(θ),

|Ṽj(z)| ≤ C ′|z|3e−q
C |z| cos(θ).

The proof is in Appendix 4.2.3.
We now have enough to prove Theorem 6.

Proof of Theorem 6. Existence and entireness of Bk(s) follow easily from Lemma 2: we simply note
that the inequalities µm,j ≤ m for all m and cm,j ≤ m2 for all m imply the necessary bound on the
growth of the terms of the series.

Now we estimate the growth of Ṽk(z) as z → 0 and z → ∞ in order to establish the existence
of the Mellin transform in a nonempty strip. Applying Lemma 10, part (ii) gives a sufficient bound
as z → ∞. Next, recalling the definition of Ṽk(z) in terms of C̃k(z) and G̃k(z), it is sufficient
to determine the behavior of C̃k(z) as z → 0. By the initial conditions, cn,k = 0 for k ≥ n,
so that C̃k(z) = O(zk+1) as z → 0. This, in turn, implies the same estimate for Ṽk(z), since
G̃k(z)− (G̃k(z))

2 = O(zk+1). We have thus established the existence and analyticity of V ∗k (s), for
any k ≥ 0, in the strip Ik.

The rest of the proof is very similar to that in the expected value case, so we omit it.

3.2.1 Mellin inversion

The inversion of the Mellin transform V ∗k (s) runs along lines very similar to those in the expected
value case. In fact, the saddle point computation used to recover G̃k(z) generalizes in a straightfor-
ward manner to the variance case, provided that we can show that Lemma 4 applies with Bk(s) in
place of Ak(s). Finally, the application of the dominated convergence theorem is justified if we can
apply Lemma 3, with U(s) in the lemma corresponding to the sum in the definition of Γ(s+1)B(s).
All of this boils down to showing that each term inside the brackets in the definition of W ∗j,V (s) can

be written as a product of a function which is bounded along vertical lines, e−Ω(n′), and a number
ηn′,j satisfying the conditions required by Lemma 3, with ηn′,j = 0 when j ≥ n′. The uniform
boundedness condition on |ηn′,j | is easily verified using the fact that cn′,j ≤ n′2 and µn′,j ≤ n′ for
all n′ and j, and factors of the form ecs, for any constant c, are uniformly bounded on vertical lines:

(cn′,j − cn′,j−1 + µn′,j − µn′,j−1)T (−n) ≤ (n′2 + n′)e−Ω(n′)

2−n
′
n′∑
m=0

µm,j−1µn′−m,j−1 ≤ 2−n
′
(n′ + 1)n′2

n′∑
m=0

µm,j−1µn′−m,j−1p
mqn

′−m ≤ (n′ + 1)n′2pn
′
.

Moreover, ηn′,j = 0 for j ≥ n′ because of the same property for cn′,j and µn′,j .
In order to verify the superexponential decay condition required of ηn′,j , we apply (16) and the

analogous bound for µn,k. By the same analysis as in the expected value case, (16) then implies
that

Ṽk(n) = M(ρ(α), logp/q(p
kn)) · n

−ρ(α)T (ρ(α))k√
2πκ∗(ρ(α))k

(1 +O(k−1/2)).

The de-Poissonization step can be found in Appendix 4.3.2.
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3.3 Proof of Theorem 3

To prove the normal limit law, we apply Lévy’s continuity theorem:

Theorem 7 (Lévy). Let Xn be a sequence of discrete random variables with probability-generating
functions Gn(u) = E[uXn ], mean µn, and variance σ2

n > 0. If

lim
n→∞

eτµn/σnGn(eτ/σn) = eτ
2/2

for all τ = it and −∞ < t <∞ then

Xn − µn
σn

D−→ N (0, 1).

The goal, then, is to determine the behavior of Qn,k(u) for large n and u close to 1 (i.e.,
u = eτ/σn,k , where τ is any fixed imaginary number). To do this, we again use the Poisson
transform, defining

Qk(u, z) =
∑
m≥0

Qm,k(u)
zm

m!
, Q̃k(u, z) = e−zQk(u, z).

We then have the functional equation

Qj(u, x) = Qj−1(u, px)Qj−1(u, qx) + (Qj −Qj−1)(u, px) + (Qj −Qj−1)(u, qx),

with initial condition Q0(u, x) = ex − x(1− u).
Defining l̃k(u, z) = logQk(u, z) induces the functional equation (for j ≥ 1)

l̃j(u, x) = l̃j−1(u, px) + l̃j−1(u, qx) + h̃j(u, x), (36)

where

h̃j(u, x) = log

(
1 +

T [Q̃]j(u, x)

Q̃j−1(u, px)Q̃j−1(u, qx)

)
,

with initial condition l̃0(u, x) = x + log(1 + (u − 1)xe−x). Regarding well definedness of l̃k(u, z),
we must demonstrate that the logarithm which constitutes it is well defined for u in a bounded
neighborhood of 1 and z in a small enough cone around the positive real axis, for any k ≥ 0. It is
sufficient to show that Qk(u, z) is bounded away from 0. This follows easily from the argument of
Lemma 12 below (we note that, though this is stated and proven later, there is no circular logic
here, as the lemma’s proof does not depend on the existence of l̃k(u, z)), which can be extended
to require only that w be close enough to 1 but fixed (since we assume that w − 1→ 0 arbitrarily
slowly).

Now, since we are going to take u
n→∞−−−→ 1, we Taylor expand l̃k(u, z) with respect to u around

1, which gives

l̃k(u, z) = z + G̃k(z)(u− 1) +
Ṽk(z)− G̃k(z)

2
(u− 1)2 +

(u− 1)3

3!
R[l̃]k(u, z),

and the task now is to show that the last term is negligible with respect to the second two. Setting
u = eτ/σn,k with τ = it, with t ∈ R, we have

u− 1 =
τ

σn,k
+

τ2

2σ2
n,k

+O(σ−3
n,k),
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and after substituting this into the Taylor expansion for l̃k(u, z) and using the fact that G̃k(z) =
Θ(σ2

n,k) (valid for z →∞ inside a cone around the positive real axis), we get

l̃k(u, z) = z +
τ

σn,k
G̃k(z) +

τ2

2σ2
n,k

Ṽk(z) +O(σ−1
n,k) +

τ3

3!σ3
n,k

R[l̃]k(u, z). (37)

Since Vk(z) = Θ(σ2
n,k), the third term is Θ(1). Thus, the goal is to show that the last term is o(1)

(in fact, we prove that |R[l̃]k(u, z)| = O(nβ(α)) = O(σ2
n,k), so that the last term is O(σ−1

n,k) = o(1)).
In order to do this, the plan is to apply an exact formula for the remainder of a truncated

Taylor series, derived via Cauchy’s integral formula.

Lemma 11 (Integral representation of Taylor remainder formula). Suppose f(z) is a function which
is analytic in some region Ω containing the point ξ, and let j be some non-negative integer. Define
fj(z) to be the Taylor polynomial of degree j around ξ, and define
(z− ξ)j+1Rξ,j(z) = f(z)− fj(z) to be the corresponding remainder. Then, for any z inside the disc
of convergence of the Taylor series of f at ξ,

Rξ,j(z) =
1

2πi

∮
C

f(w)

(w − ξ)j+1(w − z)
dw,

where C is any circle inside Ω centered at ξ surrounding z.

Applying this to the Taylor series of l̃k(u, z) with j and ξ in the lemma set to 2 and 1, respectively,
we get

1

3!
R[l̃]k(u, z) =

1

2πi

∮
C

l̃k(w, z)

(w − 1)3(w − u)
dw. (38)

Here, we choose C to be a circle centered around 1 and such that |w − 1| � |u − 1|, so that,
in particular, u remains inside the region enclosed by C. We will require that |w − 1| tends to
0 sufficiently slowly. We next derive a useful representation for l̃k(w, z) in order to bound this
integral. Iterating the functional equation (36), we get

l̃k(w, z) =

k∑
j=0

(
k

j

)
(pjqk−jz + log(1 + (w − 1)pjqk−jze−p

jqk−jz)) +

k∑
j=1

k−j∑
m=0

(
k − j
m

)
h̃j(w, p

mqk−j−mz),

and plugging this into (38) finally gives 1
3!R[l̃]k(u, z) = R1,k(u, z) +R2,k(u, z), where we’ve defined

R1,k(u, z) =
k∑
j=0

(
k

j

)
1

2πi

∮
C

pjqk−jz + log(1 + (w − 1)pjqk−jze−p
jqk−jz)

(w − 1)3(w − u)
dw

R2,k(u, z) =
k∑
j=0

k−j∑
m=0

(
k − j
m

)
1

2πi

∮
C

h̃j(w, p
mqk−j−mz)

(w − 1)3(w − u)
dw.

We define

Sj(w, x) =
(Qj −Qj−1)(w, px) + (Qj −Qj−1)(w, qx)

Qj−1(w, px)Qj−1(w, qx)
,

so that we can write
h̃j(w, x) = log(1 + Sj(w, x)).
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We will show below that both R1,k(u, z) and R2,k(u, z) are O(nβ(α)), so that (u−1)3R[l̃]k(u, z)/3! =
O(σ−1

n,k), which is negligible with respect to the first three terms in the expansion (37) of l̃k(u, z).
This is sufficient to establish the central limit theorem in the Poisson model. In the subsections
corresponding to R1,k(u, z) and R2,k(u, z), respectively, we first give roadmaps of the proofs of the
bounds and then delve into the details of the derivations.

3.3.1 Bounding R1,k(u, z)

Roadmap of the bound on R1,k(u, z)
To bound R1,k(u, z), the idea is first to observe that the logarithm in the integrand of each term of
the summation is given by log(1+g(w, x)), where g(w, x) = o(1), so that a natural idea to evaluate
the integral is to use the residue theorem, and computing residues can by done via a Laurent
expansion around w = 1 (the contribution of the term outside the logarithm vanishes). This leaves
us with the task of bounding

k∑
j=0

(
k

j

)
(pjqk−jz)3e−3pjqk−jz.

We do this by writing the summand as eν(j), for some function ν, and using elementary calculus
to determine the maximum of ν(j) in the interval [0, k]. This tells us that the largest term is
β(α) log n(1 + o(1)), which concludes the bounding of R1,k(u, z).

Details of the derivation
First, the residue theorem tells us that the term∮

C

pjqk−jz

(w − 1)3(w − u)
dw

vanishes, and we need not consider it for the rest of the derivation. Now, note that the logarithm
in the jth term can be written as

log(1 + (w − 1)xk,j(z)e
−xk,j(z)), (39)

where we’ve defined xk,j(z) = pjqk−jz. Then

|w − 1||xk,j(z)e−xk,j(z)| = |w − 1|xk,j(|z|)e−xk,j(|z|) cos(arg(z)),

Since the function x 7→ xe−cx is bounded for real x, c ≥ 0 (which can be seen by elementary
calculus), and since |w− 1| n→∞−−−→ 0 and | arg(z)| is less than and bounded away from π/2, we have
that the above expression is O(|w−1|) = o(1), so that we can expand (39) as a Taylor series around
w = 1, which gives

log(1 + (w − 1)xk,je
−xk,j(z)) =

∞∑
`=1

(−1)`+1(w − 1)`(pjqk−jz)`e−`p
jqk−jz

Plugging this into the integral corresponding to the jth term of R1,k(u, z) and defining r(n) to be
the radius of C (and, hence, equal to |w − 1|) gives

(1 + r(n)−1(u− 1))
1

2πi

∮
C

∞∑
`=1

(−1)`+1(w − 1)`(pjqk−jz)`e−`p
jqk−jz

(w − 1)4
dw.
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Here, the (1+r(n)−1(u−1)) = 1+o(1) outside comes from approximating w−u in the denominator
of the integrand by w−1, which is valid since we’ve chosen u−1 = o(w−1). Applying the Cauchy
residue theorem to evaluate this integral gives

(1 + (u− 1)r(n)−1)(pjqk−jz)3e−3pjqk−jz.

Plugging this in as the jth term of R1,k(u, z) reduces the problem to bounding

k∑
j=0

(
k

j

)
(pjqk−jz)3e−3pjqk−jz.

Using Stirling’s formula for the binomial coefficient, we write the jth term as eν(j), where we define

ν(j) = k log k − j log j − (k − j) log(k − j)

+
1

2
(log k − log j − log(k − j)) + 3j log p+ 3(k − j) log q + 3 log z − 3pjqk−jz +O(1).

Our goal is to find j which maximizes this expression. We first observe that the terms for which
j = o(log n) or j = k(1 − o(1)) contribute negligibly: in such cases,

(
k
j

)
≤ kj

j! and
(
k
j

)
≤ kk−j

(k−j)! .

This results in an upper bound of eo(logn) = no(1) for
(
k
j

)
, and the factor (pjqk−jz)3e−3pjqk−jz is, as

previously mentioned, bounded. Thus, the contribution of such factors is no(1), so that it remains
to handle terms for which j = Θ(log n). Taking the derivative of ν with respect to j, we get

ν ′(j) = −1− log j − 1

2j
+

1

2(k − j)
+

k

k − j
+ log(k − j)− j

k − j
+ 3 log(p/q)− 3qkn log(p/q)(p/q)j

= log

(
k − j
j

)
+ 3 log(p/q)− 3qkn(p/q)j log(p/q) +O((log n)−1).

Setting j = K(α)k for K(α) ∈ (0, 1) to be determined under the conditions that ν ′(j) = 0 and
K(α) as a function of n remains bounded away from 0 and 1 (since j = Θ(k)), we find that the
first two terms of ν ′(j) are O(1), so that ν ′(j) = 0 only if the third term is also O(1). This boils
down to requiring

qkn(p/q)j = ek log q+logn+K(α)k log(p/q) = O(1).

Equivalently,

k log q + log n+K(α)k log(p/q) = logn(α log q + 1 +K(α)α log(p/q)) = O(1),

so that, in particular, we require

α log q + 1 +K(α)α log(p/q) = 0.

This gives

K(α) =
α log(1/q)− 1

α log(p/q)
.

It is easily checked by taking another derivative of ν that this gives a global maximum. We then
have that the maximum term in R1,k(u, z) is given by nχ(α), where χ(α) = α ·h(K(α)), with, again,
h(x) = x log(1/x) + (1 − x) log(1/(1 − x)). After some algebra, we see that χ(α) = β(α), so that
R1,k(u, z) = O(nβ(α)), which is negligible when multiplied by (u− 1)3.
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3.3.2 Bounding R2,k(u, z)

Roadmap of the bound on R2,k(u, z)
Handling R2,k(u, z) is more difficult. For this, we need good upper and lower bounds, respectively,
on the numerator and denominator of Sj(w, x). The plan is as follows. We split the outer sum into
three ranges, corresponding to j = o(log n), j = Ω(log n) and k − j = Ω(log n), and j ∼ k. The
first and third range can be handled via a somewhat crude (though still technically difficult) upper
bound (Corollary 2 below) on the terms of the m sum which reduces the analysis of the j sum in
those ranges to that of a sum similar to R1,k(u, z). The middle range, on the other hand, requires
more finesse. We split the inner sum into two parts: those terms for which pmqk−j−mz = O(log n)
and those for which it is� log n. For the former range, we find that we must refine the crude upper
bound on |Sj(w, x)| to account for the cancellation inherent in its definition, which requires that
we take advantage of the fact that j = Ω(log n) and that we have a superexponentially decaying
upper bound on µm,j for m = Θ(j). For the latter range, we can use the coarser upper bound.

Details of the derivation: Estimates on Qj(w, x) and Sj(w, x)
We first proceed to prove several facts about the growth of Qj(w, x), which will be useful in the
handling of the first and third ranges mentioned above. We start by giving a precise estimate of
|Qj(w, x)| which is uniform in j, in the case where |x| = O(1).

Lemma 12 (Uniform estimate of |Qj(w, x)| for bounded |x|). Suppose |x| ≤ C for some fixed

positive C, and w ∼ eit/g(n), where g(n)
n→∞−−−→∞ and t ∈ R. Then, uniformly for j ≤ k,

Qj(w, x) ∼ ex.

Proof. We split the series defining Qj(w, x) into two parts: for any function f(n) = o(g(n)) which
is also � 1,

Qj(w, x) =

f(n)∑
m=0

E[wBm,j ]
xm

m!
+

∑
m>f(n)

E[wBm,j ]
xm

m!
.

We will show that E[wBm,j ] = 1 + o(1) in the first sum and that the second sum is negligible. To
see the claim for the first sum, we note that since m ≤ f(n) and Bm,j ∈ [0,m],

wBm,j ∼ eitBm,j/g(n) = 1 +
itBm,j
g(n)

+O((f(n)/g(n))2) = 1 +O(f(n)/g(n)) = 1 + o(1),

where the o(·) is uniform in j.
To show the claim for the second sum, we upper bound its absolute value using the triangle

inequality, giving ∑
m>f(n)

E[|w|Bm,j ] |x|
m

m!
.

Next, we define ξ = 1 + |w − 1| > 1 and note that, since Bm,j ≤ m,

ξBm,j ≤ ξm.

Since |x| is bounded above by C, we get that this is the tail of a convergent series, and f(n)→ 0, so
that the second sum is o(1), so negligible with respect to the first, and this completes the proof.

Next we upper bound the differences |Qj(w, x)−Qj−1(w, x)|.
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Lemma 13 (Uniform upper bound on differences). Suppose |x| ≤ C for some fixed positive C, and
w ∼ eit/g(n), where g(n)

n→∞−−−→∞ and t ∈ R. Then, uniformly for j ≤ k,

(Qj −Qj−1)(w, x) = O(|x|e|x|/g(n)).

Proof. The idea of this proof is very similar to that of Lemma 12. We choose an appropriate
function f(n) such that 1 � f(n) � g(n) (for reasons to be seen below, we will also require that
g(n) = o(eΘ(f(n) log f(n)))), and we split the series defining (Qj−Qj−1)(w, x) into an initial and final
part:

(Qj −Qj−1)(w, x) =

f(n)∑
m=0

E[wBm,j − wBm,j−1 ]
xm

m!
+

∑
m>f(n)

E[wBm,j − wBm,j−1 ]
xm

m!
.

Bounding the initial sum: Again using the fact that 0 ≤ m ≤ f(n) = o(g(n)) as in the previous
lemma, we find that

E[wBm,j − wBm,j−1 ] = O(m/g(n)),

uniformly in j. Plugging this into the first sum, we get an upper bound of

O(g(n)−1)

f(n)∑
m=0

m
xm

m!
= O(g(n)−1|x|e|x|),

and, since |x| ≤ C, this is O(g(n)−1).

Bounding the final sum: It remains to bound the final sum. Recalling the definition of ξ in the
proof of the previous lemma, the second sum is upper bounded by

2
∑

m>f(n)

ξm|x|m

m!
.

Factoring out (ξ|x|)f(n)+1/(f(n) + 1)!, we get the expression

2
(ξ|x|)f(n)+1

(f(n) + 1)!

∑
m≥f(n)+1

(ξ|x|)m−f(n)−1

m(m− 1) · · · (f(n) + 2)
.

Noting that the denominator consists of m − (f(n) + 2) + 1 = m − f(n) − 1 factors greater than
f(n) + 1, we can lower bound it (thereby upper bounding the whole expression) by (m−f(n)−1)!,
so that the sum is upper bounded by eξ|x|. Thus, applying the assumed bound on |x|, the second
sum is upper bounded by

2(Cξ)f(n)+1

(f(n) + 1)!
eξC ,

which we note is upper bounded by
e−Θ(f(n) log f(n)),

due to the factorial in the denominator. Choosing f(n) to be, say, f(n) =
√
g(n), we see that this

is
o(e−Θ(

√
g(n) log g(n))),

so that the second sum is negligible compared to the first.
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Finally, we extend Lemma 12 to the case where x
n→∞−−−→ ∞. For the purposes of this lemma,

we restrict our attention to a cone around the positive real axis.

Lemma 14 (Uniform estimate of |Qj(w, x)| for unbounded |x| inside a cone). Let w ∼ eit/g(n) for

some g(n)
n→∞−−−→∞ and t ∈ R. Then there exists some θ0 ∈ (0, π/2) such that, for any θ ∈ (0, θ0),

uniformly for j ≤ k,
|Qj(w, x)| = e|x| cos(arg(x))(1+o(1)),

as x→∞ inside C(θ).

Proof. We will approach this by proving an upper and a lower bound on |Q̃j(w, x)|; that is, for
some functions a(x) and b(x) satisfying certain growth properties (to be explained), we will prove
that, for all sufficiently small positive constants ε, for large enough |x|,

eεb(|x|) ≤ |Q̃j(w, x)| ≤ eεa(|x|). (40)

Provided that a(|x|) and b(|x|) = O(|x|) as x→∞, we will then have

|Qj(w, x)| = |ex||Q̃j(w, x)| = e|x| cos(arg(x))|Q̃j(w, x)|,
e|x| cos(arg(x))+εb(|x|) ≤ |Qj(u, x)| ≤ e|x| cos(arg(x))+εa(|x|),

so that
|Qj(u, x)| = e|x| cos(arg(x))+o(|x|).

We propose

a(x) = x− 1 b(x) = −a(x),

As before, we derive a useful bound on |Q̃j(w, x)| by setting ξ = 1+ |w−1|, so that E[|w|Bm,j ] ≤
ξm, and plugging this into the definition of Q̃j(w, x) gives

|Q̃j(w, x)| ≤ e|x|(ξ−cos θ). (41)

We will use this inequality in what follows.
We now prove the claimed bounds on |Q̃j(w, x)|, for arbitrarily small fixed ε. We do this by

induction on j. The idea is as follows: we have, by Lemma 12, that Qj(w, x) ∼ ex, uniformly for
all j ≤ k, when x = O(1). This particularly implies that there is some large enough fixed x∗ in the
cone for which the claimed inequalities on Q̃j(w, x∗) hold. In particular, they hold for x inside the
cone with |x| ∈ (|x∗|, |x∗|/q], again for all j ≤ k. In order to prove the inequalities for the rest of
the cone (i.e., |x| ∈ (|x∗|/q,∞)), we then apply the recurrence and the inductive hypothesis.

Base case
Recall that Q̃0(w, x) = 1 − xe−x(1 − w) = 1 + o(1), where the o is with respect to x → ∞.
The claimed decay of the second term is because |xe−x| remains bounded inside the cone, while
1 − w n→∞−−−→ 0. Then, eεa(|x|) = eε(|x|−1) → ∞. Furthermore, eεb(|x|) = e−ε(|x|−1) → 0. Thus, for
sufficiently large |x| (depending on ε), the claimed inequality holds.

Inductive step
For the induction, we assume that the claim is true for all h < j, and we prove it for j. By the
observation above, the inequalities hold for Q̃j(w, x) when |x| ∈ (|x∗|, |x∗|/q], and it remains to
establish that they hold for larger |x|, so we assume from here onward that |x| ∈ (|x∗|/q,∞).
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Recall the recurrence for Q̃j(w, x), which holds for all j ≥ 1:

Q̃j(w, x) = Q̃j−1(w, px)Q̃j−1(w, qx) + e−qx(Q̃j − Q̃j−1)(w, px) + e−px(Q̃j − Q̃j−1)(w, qx).

Upper bound inductive step
We first handle the induction step for the upper bound. The first step is to upper bound |Q̃j(w, x)|
using the triangle inequality. Next, we handle the product: by the inductive hypothesis (applicable
here because |x∗| < |qx| < |px|), we have

|Q̃j−1(w, px)Q̃j−1(w, qx)| ≤ eε(a(p|x|)+a(q|x|)) = eεa(|x|)−ε,

where the equality is easy algebra based on the definition of a(x). To handle the terms of the form

|e−(1−c)x|(|Q̃j(w, cx)|+ |Q̃j−1(w, cx)|),

we apply the bound (41) to both terms. This gives

|e−(1−c)x|(|Q̃j(w, cx)|+ |Q̃j−1(w, cx)|) ≤ 2e|cx|(ξ−cos θ)−(1−c)|x| cos θ = 2e|x|(cξ−cos θ) ≤ 2e|x|(pξ−cos θ).

Provided |ξ− 1| is sufficiently small (with respect to cos θ) and |θ| sufficiently small with respect to
p, the quantity in the exponent is negative and bounded away from 0. This can be done by making
n sufficiently large.

Then,

|Q̃j(w, x)| ≤ eε(a(p|x|)+a(q|x|))
(

1 + 4e|x|(pξ−cos θ)−ε(a(p|x|)−a(q|x|))
)

≤ eε(a(p|x|)+a(q|x|))
(

1 + 4e|x|(pξ−cos θ)
)
,

where the second inequality is because a(c|x|) > 0 when |x| is large enough (depending only on c).
The factor in parentheses can be written as

elog(1+4e|x|(pξ−cos θ)) = e4e|x|(pξ−cos θ)(1+o(1))
,

since, by a previous observation, pξ − cos θ < 0. Thus, the upper bound becomes

eεa(|x|)−ε+4e|x|(pξ−cos θ)
.

Since the second term is a constant and the third term decays exponentially with respect to |x| → ∞,
we can further upper bound by eεa(|x|), provided |x| is sufficiently large. This concludes the proof
of the upper bound.

Lower bound inductive step
We now give the inductive step of the lower bound. First, we use the lower bound version of
the triangle inequality (and we note that, for c > 0, e−c|x| cos(arg(x)) ≤ e−c|x| cos θ, since cos θ ≤
cos(arg(x)) and the function y 7→ ey is monotone increasing with respect to y):

|Q̃j(w, x)| ≥ |Q̃j−1(w, px)Q̃j−1(w, qx)|
− e−p|x| cos θ|Q̃j − Q̃j−1|(w, qx)− e−q|x| cos θ|Q̃j − Q̃j−1|(w, px).

We apply the inductive hypothesis to the product (justified by the same reasoning as in the upper
bound proof) to get

|Q̃j−1(w, px)Q̃j−1(w, qx)| ≥ eε(b(p|x|)+b(q|x|)).
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For the other two terms, we require an upper bound on expressions of the form

e−(1−c)|x| cos θ|Q̃j − Q̃j−1|(w, cx).

Applying the triangle inequality and then the bound (41), we get that the above expression is upper
bounded by

2e−(1−c)|x| cos θec|x|(ξ−cos θ) = 2e|x|(cξ−cos θ) ≤ 2e|x|(pξ−cos θ).

Thus, we get
|Q̃j(w, x)| ≥ eε(b(p|x|)+b(q|x|))(1− 4e|x|(pξ−cos θ)−ε(b(p|x|)+b(q|x|))).

Provided 0 < ε < cos θ − pξ (which can hold if we choose θ close enough to 0), we can see by
substituting in the definition of b(x) that there exists a positive number τ (depending only on
ε, θ, p, ξ) such that

|Q̃j(w, x)| ≥ eε(b(p|x|)+b(q|x|)(1− 4e−τ |x|).

As in the inductive step for the upper bound, we rewrite the second factor:

(1− 4e−τ |x|) = e−4e−τ |x|(1+o(1)).

Then the bound becomes

|Q̃j(w, x)| ≥ eε(b(p|x|)+b(q|x|))−4e−τ |x|(1+o(1)). (42)

Now, by definition of b(x), b(p|x|) + b(q|x|) = −a(|x|) + 1. As in the upper bound proof, the
second term (i.e., ε) in the exponent of the right-hand side of (42) after applying this identity is
a constant, while the third term decays exponentially, so that the exponent can be lower bounded
by −a(|x|) = b(|x|). This concludes the proof.

These lemmas give us enough tools to bound |Sj(w, x)|:

Corollary 2 (Uniform bound on |Sj(w, x)| inside a cone). There exist some θ0 ∈ (0, π/2), x0, and
positive constants C and D such that, for sufficiently large n and for x ∈ C(θ) with |x| ≥ x0 and
|θ| ≤ θ0, for any j ≤ k,

|Sj(w, x)| ≤ D|x|e−C|x|.

Moreover, for |x| < x0,
|Sj(w, x)| ≤ D|w − 1||x|e−C|x|.

Proof. This is a combination of Lemmas 12, 13, and 14. We will first show that the claimed
inequality holds for sufficiently large x. We write, using the triangle inequality,

|Sj(w, x)| ≤ |Qj(w, px)|+ |Qj−1(w, px)|+ |Qj(w, qx)|+ |Qj−1(w, qx)|
|Qj−1(w, px)Qj−1(w, qx)|

.

Note that, by using the triangle inequality on the numerator, we have completely ignored the
cancellations in the differences Qj(w, cx)−Qj−1(w, cx). We will rectify this later.

Next, since we are assuming that x→∞, we apply Lemma 14 to conclude that the numerator
of the above upper bound is equal to

ep|x| cos(arg(x))(1+o(1)),

while the denominator becomes

ep|x| cos(arg(x))(1+o(1))+q|x| cos(arg(x))(1+o(1)) = e|x| cos(arg(x))(1+o(1)).
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This gives an asymptotic upper bound of

e−q|x| cos(arg(x))(1+o(1)),

which can certainly be upper bounded by

|x|e−q|x| cos(arg(x))(1+o(1)).

This implies that there is some specific x0 such that, provided |x| ≥ x0,

|Sj(w, x)| ≤ |x|e−C|x|,

for some positive C (here we have used the fact that x ∈ C(θ), which ensures that cos(arg(x)) is
not too small).

Now, we assume that |x| < x0. In this case, instead of applying the triangle inequality to the
differences to bound the numerator of |Sj(w, x)|, we apply Lemma 13, which gives an upper bound
of

O

(
|x|ep|x|

g(n)

)
= O(|w − 1||x|ep|x|)

for the numerator. For the denominator, we apply Lemma 12, which tells us that

Qj−1(w, px)Qj−1(w, qx) ∼ ex,

so that
|Qj−1(w, px)Qj−1(w, qx)| ∼ |ex| = e|x| cos(arg(x)).

Combining these estimates shows that

|Sj(w, x)| = O(|w − 1||x|ep|x|−|x| cos(arg(x))),

and, using the fact that |x| < x0, so that e|x|(p−cos(arg(x))) = O(1),

|Sj(w, x)| = O(|w − 1||x|e−C|x|),

for some positive C.

Now, provided that we choose w − 1 tending to 0 slowly enough with n (i.e., w − 1 = no(1)),
instead of evaluating the integrals in the definition of R2,k(u, z) via the residue theorem, we can
upper bound them trivially by the product of the maximum of the modulus of the integrand on C
and the length of C. Recalling that r(n) denotes the radius of the circle C, this gives∣∣∣∣∮

C

log(1 + Sj(w, x))

(w − 1)3(w − u)
dw

∣∣∣∣ ∼ ∣∣∣∣∮
C

Sj(w, x)

(w − 1)4
dw

∣∣∣∣ ≤ r(n)−O(1)D|x|e−C|x|, (43)

where we’ve applied Corollary 2 to establish the asymptotic equivalence and the inequality, and
we’ve used the fact that w − 1� u− 1, which implies that w − u ∼ w − 1.

Bounding the terms where j = o(log n) and j ∼ k
With this inequality in hand, we can start to bound R2,k(u, z). We first bound the contributions
of the ranges j = o(log n) and j ∼ k. We start by applying the bound (43) on the absolute value
of the integral, which gives, for any j, a contribution of

r(n)−O(1)D

k−j∑
m=0

(
k − j
m

)
pmqk−j−mne−Cp

mqk−j−mn
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to the outer sum of R2,k(u, z). Since the factor r(n)−O(1)D is insignificant to the analysis, we focus
on bounding the sum. For j = o(log n), the analysis is essentially the same as that of R1,k(u, z),
and we conclude that the sum is O(nβ(α)).

In the range where j ∼ k, we note that k − j = o(log n). This implies that, for any m,(
k − j
m

)
≤ eΘ(k−j) = eo(logn) = no(1),

where the inequality follows from the fact that the maximum value of a binomial coefficient
(
y
·
)

is

exponential in y. Combining this with the fact that pmqk−j−mne−Cp
mqk−j−mn = O(1), we get that

the contribution of j in this range is subpolynomial in n, so negligible.

Bounding the terms in the middle range: j, k − j = Θ(log n)
We now turn to the bounding of the middle range, where j, k − j = Θ(log n). We define xm,j =
x = pmqk−j−mz, for any j in the range under consideration, and we split the m sum into two parts:
those terms for which x� log n, where we can use the coarse upper bound on Sj(w, x) which does
not take into account cancellation, and those for which x = O(log n), which requires a more refined
estimate of Sj(w, x).

Bounding the terms where x = O(log n)
The first task is to more precisely bound Sj(w, x) by taking into account the significant cancellations
inherent in its definition. Writing Qj(w, x) and Qj−1(w, x) as power series and applying the initial
condition Q`,j(u) = 1 for ` ≤ j, we have

Qj(w, x)−Qj−1(w, x) =
∑
`≥j

E[wB`,j − wB`,j−1 ]
x`

`!
. (44)

Since j = Θ(log n), we have already identified a significant source of cancellation, but this is not
yet sufficient. Recalling that (11) of Theorem 1 gives a superexponentially decaying upper bound
on µ`,j for ` ≤ Cj, for any fixed C, we can get a tight bound on the remaining sum. The idea is to
determine a bound on E[wB`,j ] by conditioning on the value of B`,j , then using Markov’s inequality
and the bound on µ`,j to get a bound on the probabilities and conditional expectations that arise.

In what follows, we first restrict our attention to the initial terms of the sum (44); i.e., we
assume that ` ≤ Cj for some fixed C. Letting c1, c2 be the constants in (11) (which we can apply
because j = Θ(log n)→∞ and ` = Θ(j)), we have the bound

µ`,j ≤ c1`!e
−c2`2 .

Now, as promised, we compute E[wB`,j ] by conditioning on whether or not B`,j ≤ tµ`,t, for t which
we will pick later. This results in

E[wB`,j ] = E[wB`,j |B`,j ≤ tµ`,j ] Pr[B`,j ≤ tµ`,j ] + E[wB`,j |B`,j > tµ`,j ] Pr[B`,j > tµ`,j ]. (45)

Now, we claim that, for an appropriate choice of t, the first term is 1 + o(1), while the second is
o(1) (in fact, superexponentially decaying in `). Fix c3 ∈ (0, c2) and choose t = ec3`

2
(this choice

of t is motivated by the requirements that it should not be too small (or lower/upper bounding
the first/second probability becomes difficult) or too large (otherwise, upper bounding the second
expectation becomes difficult)). Then, by Markov’s inequality,

Pr[B`,j ≤ tµ`,j ] ≥ 1− e−c3`2 = 1− o(1).
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Conditioning on the event that B`,j ≤ tµ`,j = e−(c2−c3)`2 = o(1) and writing w = 1 + g(n), where
g(n) = o(1) (recall that this follows from our choice of integration contour such that |w−1| = o(1)),
gives

wB`,j = (1 + g(n))B`,j ∼ 1 + g(n)B`,j = 1 +O(g(n)e−Θ(`2)).

Noting that the last expression does not depend on B`,j , this implies

E[wB`,j |B`,j ≤ tµ`,j ] = 1 +O(g(n)e−Θ(`2)).

Thus, the first term of E[wB`,j ] (i.e., (45)) is 1 + o(1), as desired. Turning to the second term, the
probability is bounded above by e−Θ(`2), by Markov’s inequality, and we use the a priori upper
bound on the expectation; that is, we define ξ(w) = 1 + |w − 1| ≥ 1, and then the expectation is
bounded above by ξ(w)` (see the derivation of the inequality (41)). The entire term is then upper
bounded by e−Θ(`2), so that it is negligible with respect to the first. Thus, we have shown that
E[wB`,j ] = 1 + e−Θ(`2), where the Θ is uniform in j, but dependent on the C for which ` ≤ Cj.
This implies that

E[wB`,j − wB`,j−1 ] = e−Θ(`2).

Applying this estimate to the difference appearing in Sj(w, x), we get (suppressing ceiling functions
in the indices for convenience)

Qj(w, x)−Qj−1(w, x) =

Cj∑
`=j

e−Θ(`2)x
`

`!
+
∑
`>Cj

E[wB`,j − wB`,j−1 ]
x`

`!
.

Since x = O(log n), we can bound the first sum as follows:∣∣∣∣∣∣
Cj∑
`=j

e−Θ(`2)x
`

`!

∣∣∣∣∣∣ ≤ e−Θ((logn)2)+O(logn log logn) = e−Θ((logn)2),

using the fact that j = Θ(log n). Here, the `! in the denominator gives rise to e−Θ(logn log logn),
and the x` is upper bounded by eO(logn log logn), where the log log n comes from the fact that
x = O(log n), while the log n results from ` ≤ Cj = Θ(log n). The second sum can be bounded
using the a priori bound (again, see the derivation of the inequality (41)) to get

2
(ξ(w)|x|)Cj

(Cj)!
· e
|x|
Cj ,

and, again when x = O(log n), this becomes

eo(logn log logn)−Θ(logn log logn) = e−Θ(logn log logn).

Thus, overall, we have that

|Qj(w, x)−Qj−1(w, x)| ≤ e−Θ(logn log logn).

With these bounds in hand, we are ready to handle the relevant terms of R2,k(u, z). Our refined
upper bound on |Qj(w, x)−Qj−1(w, x)| implies

|Sj(w, x)| ≤ e−Θ(logn log logn)

|Qj−1(w, px)Qj−1(w, qx)|
,
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and, since Qj−1(w, cx) ∼ ecx, and |x| is at least e−O(logn), this shows that

|Sj(w, x)| ≤ e−Θ(logn log logn).

Then (
k − j
m

) ∣∣∣∣∮
C

log(1 + Sj(w, x))

(w − 1)4
dw

∣∣∣∣ ≤ r(n)−O(1)eO(logn)−Θ(logn log logn)

= r(n)−O(1)e−Θ(logn log logn)

= o(1).

Here, r(n)−O(1) comes from (w − 1)4 in the denominator of the integrand. The eO(logn) is a result
of upper bounding the binomial coefficient, since k − j = O(log n) and the binomial coefficient
is at most exponential in its top number. Finally, the e−Θ(logn log logn) comes from the bound on
|Sj(w, x)| and the Taylor expansion for the log.

Bounding the terms where x� log n
For x� log n, using the coarse upper bound on |Sj(w, x)| gives

(1 + o(1))

(
k − j
m

) ∣∣∣∣∮
C

log(1 + Sj(w, x))

(w − 1)4
dw

∣∣∣∣ ≤ (k − jm

)
r(n)−O(1)e−Θ(x)

≤ r(n)−O(1)eO(logn)−Θ(x)

= r(n)−O(1)e−Θ(x) = o(1),

so that these terms are negligible. Note that the eO(logn) comes from upper bounding the binomial
coefficient: it is at most eΘ(k) = eΘ(logn).

Since the contributions of all ranges have been shown to be either negligible or O(nβ(α)), this
completes the proof that R2,k(u, z) = O(nβ(α)). Having shown the remainder term 1

3!R[l̃]k(u, z) to
be negligible, we have thus established a central limit theorem for the (normalized) external profile
in the Poisson model.

We complete the proof by a bare-hands de-Poissonization to recover a central limit theorem for
the Bernoulli model. We relegate the details to Appendix 4.3.3.

4 Appendix

4.1 Well definedness and analyticity of series related to Ak(s)

Proof of Lemma 2. Proof of (i)
Without loss of generality, we can assume that g(n) = Cn, for some positive constant C, because
the assumption g(n) = Ω(n) implies that, for large enough n, g(n) ≥ Cn. Next, we apply the ratio
test, which gives∣∣∣∣e−(g(n+1))−g(n)) φn+1(s)n!

(n+ 1)!φn(s)

∣∣∣∣ =

∣∣∣∣n+ s

n+ 1

∣∣∣∣ e−(g(n+1)−g(n)) ∼ e−(g(n+1)−g(n)).

Now, using the assumption about the growth of g(n), we have that the ratio is asymptotically less
than 1, so that the series converges absolutely.

Proof of (ii)
If we can show that Fj(s) is analytic at s = 0, then the result follows, since a function defined by a
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power series at a given point is analytic at all points inside its disc of convergence. We’ll start by
looking at [sm]φn(s). Toward that end, define Sm to be the set of all subsets of size n − 1 −m of
the set [n− 1]. Then, noting that φn(s) is a product of n− 1 monomials, so that each choice of m
such monomials gives a contribution to [sm]φn(s), we have

[sm]φn(s) =
∑
X∈Sm

∏
x∈X

x. (46)

Since |Sm| =
(

n−1
n−1−m

)
=
(
n−1
m

)
and

∏
x∈X x ≤

(n−1)!
m! ,

[sm]φn(s) ≤ (n− 1)!

m!(n− 1−m)!
· (n− 1)!

m!
=

((n− 1)!)2

m!2(n− 1−m)!
. (47)

Now,

[sm]Fj(s) =
∑
n≥j

e−Ω(n)[sm]φn(s)
1

n!
, (48)

and ∣∣∣∣e−Ω(n)[sm]φn(s)
1

n!

∣∣∣∣ ≤ e−Ω(n) 1

n!

(n− 1)!2

m!2(n− 1−m)!
(49)

= e−Ω(n) (n− 1)!

nm!2(n− 1−m)!

n→∞∼ e−Ω(n)nm−1

m!2
. (50)

The series with these terms converges because of the exponential decay of e−Ω(n) as n→∞. This
implies that the series defining [sm]Fj(s) converges, so that Fj(s) is analytic at 0.

4.2 Rough upper bounds on µn,k, cn,k, G̃k(z), Ṽk(z)

4.2.1 Upper bounds on |G̃k(z)| as z →∞

Proof of Lemma 1. Proof of (i)
We proceed by induction on k, then on increasing domains.

Base case for induction on k
For k = 0, we have G̃0(z) = ze−z, so that

|G̃0(z)| = |z||e−z| = |z|e−<(z), (51)

which, for large enough |z| in the cone, is less than C|z|1+ε (and, in fact, any C|z|), for any choice
of C > 0.

Inductive step for k
We now assume that the claimed bound is true for 0 ≤ j < k, and we prove the claim for k via
induction on increasing domains.

Increasing domains base case
For the base case, observe that an upper bound on |G̃k(z)| that is uniform in k holds:

G̃k(z) = e−z
∑

n≥k+1

µn,k
zn

n!

= ze−z
∑

n≥k+1

µn,k
zn−1

n!

=⇒ |G̃k(z)| ≤ |z|e|z|−<(z),
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for any z, where we’ve used the fact that µn,k ≤ n. In particular, this applies in the truncated cone
C(θ,R). Since C(θ,R) is compact, and both the upper bound on |G̃k(z)| and |z|1+ε are continuous,
it has a maximum value in C(θ,R), so that there is some C = C(R) for which

|G̃k(z)| ≤ C|z|1+ε,

which establishes the base case.

Inductive step for increasing domains induction
For the inductive step, we start with the recurrence for G̃k(z):

|G̃k(z)| ≤ |e−qz||G̃k(zp)|+ |e−pz||G̃k(zq)|+ |G̃k−1(pz)||1− e−qz|+ |G̃k−1(qz)||1− e−pz|
≤ (|e−qz|+ |1− e−qz|)Cp1+ε|z|1+ε + (|e−pz|+ |1− e−pz|)Cq1+ε|z|1+ε

Now, for any positive c,
|e−cz|+ |1− e−cz| z→∞−−−→ 1

with z in the cone. Thus, we can choose |z| large enough (depending on ε) so that, simultaneously,

(|e−qz|+ |1− e−qz|)p1+ε < p

and
(|e−pz|+ |1− e−pz|)q1+ε < q,

which gives

|G̃k(z)| ≤ Cp|z|1+ε + Cq|z|1+ε ≤ C|z|1+ε.

Proof of (ii)
Recall the functional equation for G̃j(z).

G̃j(z) = L[G̃]j−1(z) + T [G̃]j(z).

Iterating this recurrence, we get

G̃j(z) = Lj [G̃]0(z) +

j−1∑
`=0

L`T [G̃]j−`(z), (52)

where, recall, G̃0(x) = xe−x. Applying the definition of L, the first term becomes

j∑
`=0

(
j

`

)
G̃0(p`qj−`z) =

j∑
`=0

(
j

`

)
p`qj−`ze−p

`qj−`z.

Now, for positive real z, we have
p`qj−`z ≥ qjz,

so that
e−p

`qj−`z ≤ e−qjz.

Taking the absolute value of the first sum, applying the triangle inequality and the observation just
made, and pulling the resulting exponential factor and |z| out of the summation gives an upper
bound of

|z|e−qj |z| cos(arg(z))
j∑
`=0

(
j

`

)
p`qj−` = |z|e−qj |z| cos(arg(z)).
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Turning to the second summation, we consider the `th term:

L`T [G̃]j−`(z) =
∑̀
r=0

(
`

r

)
T [G̃]j−`(p

rq`−rz). (53)

Now, we upper bound G̃j−`(x) and G̃j−`−1(x) by C ′|x|1+ε, for some C ′ independent of C, and an
arbitrarily small ε > 0. This we can do by part (i). This implies that

|T [G̃]j−`(x)| = |e−px(G̃j−`(qx)− G̃j−`−1(qx)) + e−qx(G̃j−`(px)− G̃j−`−1(px))|
≤ 4C ′pe−q|x| cos(arg(x))|x|1+ε.

Plugging this into (53) gives an upper bound of

4C ′p
∑̀
r=0

(
`

r

)
prq`−r|z|1+εe−p

rq`−r+1|z| cos(arg(z)) ≤ 4C ′p|z|1+εe−q
`+1|z| cos(arg(z)).

Here, we’ve used the fact that prq−r = (p/q)r ≥ 1r = 1 to upper bound the exponent. After this,
the only factor of the above expression which contain r is

∑̀
r=0

(
`

r

)
prq`−r = 1.

The resulting upper bound is maximized when ` = j − 1, so that the second sum of (52) is upper
bounded by

4C ′p|z|1+εje−q
j |z| cos(arg(z)).

Thus, we have an upper bound of

|G̃j(z)| ≤ |z|1+εe−q
j |z| cos(θ)(1 + 4C ′pj).

Now, since j ≤ C, we finally have

|G̃j(z)| ≤ |z|1+εe−q
C |z| cos(θ)(1 + 4CC ′p).

4.2.2 Superexponentially decaying bound on µn,k for k = Θ(n)

We now aim to prove (11) of Theorem 1. The natural way to do this is by induction on m and
using the recurrence for µm,j , but the inductive hypothesis cannot then be applied for all h < m:
there appear terms of the form µh,j−1 in the recurrence, and it is sometimes the case that

Ch > (j − 1),

which happens precisely when h > m − 1/C. Thus, we must first prove a similar lemma which
bounds µm,j whenever m− j < `, for any fixed ` ≥ 0.

Lemma 15. For any C > 1, there exist c1, c2 > 0 such that, for n large enough,

µn,m ≤ c1n!e−c2m
2

whenever m ≥ n− C.
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Proof. This is by induction on n.

Base case
For the base case, we show that, for any M ≥ 0, we can find c1 and c2 such that the claimed
inequality is satisfied whenever n ≤M . Given any M ≥ 0 and c2 > 0, we have, for n ≤M ,

µn,m ≤M,

and, provided that we take

c1 ≥
M

M !
ec2M

2
,

this implies that
µn,m ≤ c1n!e−c2m

2
,

for all n,m ≤M .

Inductive step
For the inductive step, we assume that, for appropriately chosen c1, c2, the claimed inequality holds
for µn′,m′ for any n′ < n with n > M , and for any m′. In what follows, we will derive a condition
on c2 which must (and can) be satisfied in order for the induction to work. Now, by the recurrence
for µn,m and the fact that m ≥ n− C,

(1− T (−n))µn,m =
n−1∑

j=n−C

(
n

j

)
pjqn−jµj,m−1,

and, since j ≤ n− 1, we have
m− 1 ≥ (n− 1)− C ≥ j − C,

so that the inductive hypothesis can be applied to each term in the sum:

(1− T (−n))µn,m ≤
n−1∑

j=n−C

(
n

j

)
pn · c1j!e

−c2(m−1)2 = c1n!pn
n−1∑

j=n−C

e−c2(m−1)2

(n− j)!

We can further upper bound this by

c1Cn!pne−c2(m−1)2 ,

and our goal is now to choose c2 such that

Cpne2c2m−c2/(1− T (−n)) ≤ 1− ε,

for some positive constant ε. We need

ec2(2m−1) ≤ (1− ε)(1− T (−n))

Cpn
.

Taking logarithms and dividing both sides by 2m− 1, we must have, equivalently,

c2 ≤
log(1− ε)− logC + n log(1/p) + log(1− T (−n))

2m− 1
.

The required upper bound is lower bounded by

log(1− ε)− logC + n log(1/p) + log(1− T (−n))

2n− 1
,
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which tends to log(1/p)/2 as n→∞. Thus, provided n is sufficiently large (depending only on C
and ε; this can be enforced by choosing a sufficiently large M), the required upper bound is clearly
positive, so that a c2 which satisfies it can be chosen. Then c1 can be chosen as dictated by the
base case, and we have

µn,m ≤ c1n!e−c2m
2
,

as desired.

We can now prove (11).

Proof of (11). Throughout, we suppress floor and ceiling functions, which are insignificant to the
analysis.

The proof is again by induction on n.

Base case
By the same argument as in the proof of Lemma 15, for anyM and c2, c1 can be chosen appropriately
so as to ensure that the claimed inequality holds for n,m ≤M .

Inductive step
We now proceed with the induction. Again using the recurrence and the fact that m ≥ Cn, we
have

(1− T (−n))µn,m ≤
n−1∑
j=Cn

(
n

j

)
pn(µj,m−1 + µn−j,m−1).

Now, we only know that m− 1 ≥ Cn− 1 = C(n− 1/C). That is, for some of the terms in the sum,
we cannot apply the induction hypothesis. To circumvent this problem, we split the sum into two
parts, one of which we handle by the induction hypothesis, and the other by Lemma 15. That is,
we will upper bound by

n−1/C∑
j=Cn

(
n

j

)
pn(µj,m−1 + µn−j,m−1) +

n−1∑
j=n−1/C+1

(
n

j

)
pn(µj,m−1 + µn−j,m−1).

We now upper bound the first sum: applying the induction hypothesis, we can upper bound it by

n!pnc1e
−c2(m−1)2

n−1/C∑
j=Cn

[
1

(n− j)!
+

1

j!

]
≤ c1n!pne−c2(m−1)2

[
1

(1/C)!
+

1

(Cn)!

]
n(1− C).

We thus require that
Dnpnec2(2m−1)/(1− T (−n)) ≤ 1− ε,

where D is some positive constant, and ε is any positive constant less than 1. Just as in the proof
of Lemma 15, we can choose c2 small enough so that this holds for any n sufficiently large.

The second sum is handled analogously, and we choose the minimum of the two resulting
constants for c2. We then choose c1 sufficiently large, and this completes the proof.

4.2.3 Bounds on |C̃k(z)| and |Ṽk(z)| as z →∞

Proof of Lemma 10. Proof of (i)
We will prove a slightly stronger claim, because it will help in the implementation of the induction.
In particular, we claim that the inequality holds for any z in the cone, regardless of magnitude.
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To establish the claim for z in a compact region of the cone including the origin, we prove the
following: the upper bound (uniform in k) of

|C̃k(z)| ≤ |z|2e|z|−<(z),

which holds for any z ∈ C, shows that there is some positive constant C for which the inequality
holds for any k whenever |z| ≤ R. The proof is as follows:

|e−z|

∣∣∣∣∣∣
∑
m≥0

cm,k
zm

m!

∣∣∣∣∣∣ ≤ e−|z| cos(arg(z))
∑
m≥0

|cm,k|
|z|m

m!

≤ e−|z| cos(arg(z))
∑
m≥0

m(m− 1)
|z|m

m!

≤ |z|2e|z|−|z| cos(arg(z)),

where we’ve used the fact that cm,k ≤ m(m− 1), itself a consequence of the bound

Bm,k ≤ m,

which holds for all m. The remaining task is to demonstrate the polynomial upper bound for
|z| > R.

Base case
For the base case, C0(z) = 0, and the inequality is trivially true throughout the cone.

Inductive step
We now assume that the claimed inequality holds for k− 1, and we demonstrate it for k. We have,
by the recurrence for C̃k(z) and the inductive hypothesis,

|C̃k(z)| ≤ (|e−qz + |1− e−qz|)Cp2+ε|z|2+ε + (|e−pz|+ |1− e−pz|)Cq2+ε|z|2+ε + C2p
2+ε|z|2+ε,

where C2 > 0 and we’ve used the fact that we can make R large enough so that

|G̃k−1(z)| ≤ C3|z|1+ε/2,

for some constant C3, by Lemma 1.
Provided that we choose C large enough, we have C2p

2+ε ≤ ε′C, for any positive ε′. The rest
of the proof is as in the expected value case, so we omit it.

Proof of (ii)
This follows from an easy modification of the proof of Lemma 1, part (ii), so we only sketch the
proof.

We note that, as a result of part (i), which gives a polynomial upper bound (in |z|) on the growth
of |C̃`(z)| for all ` ≤ C, and Lemma 1, part (ii), we can write, for some constants C ′, C ′′ > 0,

Ṽj(z) = L[Ṽ ]j−1(z) + C ′e−C
′′|z|,

and iterating the recurrence shows that Ṽj(z) is a sum of terms which are exponentially decaying
in |z|.
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4.2.4 Superexponentially decaying bound on cn,k for k = Θ(n)

Here we aim to prove (16) of Theorem 2. We start with the recurrence

cn,k(1− T (−n)) =

n−1∑
j=k

(
n

j

)
pjqn−j(cj,k−1 + cn−j,k−1 + 2µj,k−1µn−j,k−1) (54)

≤
n−1∑
j=k

(
n

j

)
pjqn−j(cj,k−1 + cn−j,k−1) + n

n−1∑
j=k

(
n

j

)
pjqn−j(µj,k−1 + µn−j,k−1 (55)

=
n−1∑
j=k

(
n

j

)
cj,k−1(pjqn−j + pn−jqj) + nµn,k(1− T (−n)), (56)

so that

cn,k ≤
2pn

∑n−1
j=k

(
n
j

)
cj,k−1

1− T (−n)
+ nµn,k. (57)

When n ≥ 2, we can upper bound T (−n) by

T (−n) ≤ 2p−n ≤ 2p−2 ≤ 21−2 = 1/2,

so that
1

1− T (−n)
≤ 2.

First, we will need a simpler lemma.

Lemma 16. For all fixed ` ∈ Z≥0, there exist positive constants C1, C2 such that, for all n and
k ≥ n− `,

cn,k ≤ C1n!e−C2k2 .

To prove this, we need another bound on µn,k.

Lemma 17. There exist positive constants C∗1 , C
∗
2 such that, for all fixed ` ∈ Z≥0, all n, and

k ≥ n− `,
nµn,k ≤ C∗1n!e−C

∗
2k

2
.

Proof. This is an easy consequence of (11).

Proof of Lemma 16. The proof is by induction on n.

Base case
By the initial conditions, cn,k ≤ n2 for any n, k. Thus, fixing some particular n∗ and considering
k < n∗, we can fix a sufficiently large C1 and a C2 > 0 for which the claimed inequality holds for
cn′,k, n

′ ≤ n∗.
Induction
Here we assume that the claim is true for n′ < n, with n ≥ n∗. We have

cn,k ≤ 4pn
n−1∑
j=k

n!

j!(n− j)!
C1j!e

−C2(k−1)2 + nµn,k (58)

≤ 4pn
n−1∑
j=k

n!

(n− j)!
C1e

−C2(k−1)2 + nµn,k. (59)
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We were able to apply the induction hypothesis because j − (k − 1) ≤ (n− 1)− (k − 1) ≤ ` for all
j over which the sum is taken.

To handle nµn,k, we apply Lemma 17. Now,

−C2(k − 1)2 = −C2k
2 + 2C2k − C2,

so we require that
4pn

(n− k)!
e2C2k−C2 +

1

2
≤ 1.

It is easy to see that C2 can be chosen to satisfy this inequality for all n, k ≥ n− `:

eC2(2k−1) ≤ (n− k)!

8pn
⇐⇒ C2 ≤

n log 1
p − log 8 + log((n− k)!)

2k − 1
. (60)

The first term of the numerator and the denominator are both Θ(n) as n → ∞, while the rest
are bounded above and below by constants, so that, at least asymptotically (i.e., provided we’ve
chosen n∗ large enough), they are the only two that matter. It is thus sufficient to have

C2 ≤
1

2
log(1/p) > 0.

Furthermore, if we choose C1 > 2C∗1 , we have the claimed inequality.

Now we begin the proof of (16) of Theorem 2.

Proof of (16) of Theorem 2. The proof is similar to that of the lemma. It is by induction on n.

Base case
The base case is exactly as in the proof of Lemma 16.

Inductive step
We now assume that the claim is true for n′ < n, with n ≥ n∗ ≥ 2, with n∗ as in the proof of
Lemma 16. Let k ≥ Cn. Then, by the inequality (57),

cn,k ≤ 4pn
n−1∑
j=k

(
n

j

)
cj,k−1 + nµn,k.

To upper bound the terms of the sum, we note that we can apply the inductive hypothesis for any
j such that k − 1 ≥ Cj. Since k ≥ Cn, this means that any j satisfying j ≤ n− 1/C is amenable
to this approach. This gives, for such j,

cj,k−1 ≤ C1j!e
−C2(k−1)2 .

For j ∈ {n−1/C, . . . , n−1}, we apply Lemma 16 to conclude that there exist C∗1 and C∗2 such that

cj,k−1 ≤ C∗1j!e−C
∗
2 (k−1)2 .

Provided that we choose C1 ≥ C∗1 and C2 ≤ C∗2 , we can replace C∗1 and C∗2 by C1 and C2 in the
above, so that the first sum is upper bounded by

4pn
n−1∑
j=k

(
n

j

)
C1j!e

−C2(k−1)2 .

Next, to upper bound nµn,k, we appeal to the superexponentially decaying bound (11), and the
rest of the proof proceeds as in that of Lemma 16.
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4.3 De-Poissonization

4.3.1 De-Poissonization of G̃k(z)

Here we recover the asymptotics of µn,k from G̃k(z). For this, we apply Theorem 1 of [10]. The
inner condition follows immediately from Lemma 1. The outer condition we capture in the following
claim.

Lemma 18. Let θ ∈ (0, π/2). Then there exist some φ < 1 and C > 0 such that, for z outside
C(θ) and any k ≥ 0,

|G̃k(z)ez| ≤ Ceφ|z|.

Proof. We start by recalling the uniform upper bound on |G̃k(z)|: for any k ≥ 0 and z ∈ C,

|G̃k(z)| ≤ |z|e|z|−<(z).

This implies that, for any fixed R > 0, we can choose a C > 0 such that the claimed inequality
holds whenever |z| ≤ R, for every k ≥ 0. It thus remains to check that it holds for |z| > R, z /∈ C(θ).
This we do by induction on k.

Base case
For k = 0, ezG̃0(z) = z, and, for any positive φ, an appropriate R can be chosen such that the
claimed inequality holds for |z| > R, z /∈ C(θ). More specifically, given φ, we choose R large enough
so that

|z| ≤ eφ|z|

whenever |z| > R. Next, we choose C > 1 and such that |z|e|z|−<(z) ≤ Ceφ|z| for |z| ≤ R. This
implies that |ezG̃0(z)| ≤ Ceφ|z| for any |z|, as required.

Inductive step
Now, assuming that the claimed inequality is true for 0 ≤ j < k, we demonstrate that it holds for
k. In fact, since the recurrence for G̃k(z) can be put in the form

G̃k(z) = γ1(z)G̃k(pz) + γ2(z)G̃k(qz) + t(z),

with

γ1(z) = e−qz, γ2(z) = e−pz, t(z) = G̃k−1(pz)(1− e−qz) + G̃k−1(qz)(1− e−pz),

it is sufficient to check the outer conditions required by Theorem 10 of [10]: in particular, we need
to show that, for |z| sufficiently large and some φ < 1,

|γ1(z)|eq<(z) ≤ 1

3
eφq|z|, |γ2(z)|ep<(z) ≤ 1

3
eφp|z|, |t(z)|e<(z) ≤ 1

3
eφ|z|. (61)

The first two inequalities easily hold: for c ∈ {p, q},

|e−cz|ec<(z) = e−c<(z)+c<(z) = 1,

and the claimed inequalities hold for any positive φ and sufficiently large z (in particular, any
|z| ≥ log 3

qφ suffices).
For the third inequality, we apply the induction hypothesis:

|t(z)|e<(z) ≤ Ceφp|z||eqz − 1|+ Ceφq|z||epz − 1|.
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Choosing φ = cos(θ) + ε, for any positive constant ε, we have, for any positive c,

|ecz| = ec<(z) = ec|z| cos(arg(z)) ≤ ec|z|(φ−ε),

since z /∈ C(θ). This implies that

|t(z)|e<(z) ≤ C
[
eφp|z|+φq|z|−q|z|ε + eφq|z|+φp|z|−p|z|ε + eφp|z| + eφq|z|

]
= Ce(φ−qε)|z|(1 + o(1)),

so that, for sufficiently large |z| (depending only on φ, p),

|t(z)|e<(z) ≤ 1

3
eφ|z|,

which completes the proof.

4.3.2 De-Poissonization of variance

We now de-Poissonize using the following theorem from [10] (rephrased in our notation and sim-
plified):

Theorem 8 (De-Poissonization of variance). Suppose that there is some θ ∈ (0, π/2) such that the
following conditions hold:

• There is some φ ∈ (0, 1) such that, for z outside the cone C(θ), ezG̃k(z) and ez(Ṽk(z)+G̃k(z)
2)

are both O(eφ|z|).

• There is some β ≤ 1 such that, for z inside C(θ), G̃k(z) and Ṽk(z) are both O(zβ).

Then
Vn,k = Ṽk(n)− n[G̃′k(n)]2 +O(max{nβ−1, n2β−2}).

Next we check that the hypotheses of this theorem are satisfied.

Conditions on G̃k(z)
The inner and outer conditions on G̃k(z) were already verified in the de-Poissonization in the
expected value case.

Outer condition on Ṽk(z) + G̃k(z)
2

We now demonstrate that the outer condition holds for Ṽk(z) + G̃k(z)
2 = C̃k(z) + G̃k(z). For this,

it is sufficient to show that the same outer condition holds for C̃k(z). We prove it by induction on
k.

Base case for outer condition on Ṽk(z) + G̃k(z)
2

The base case, k = 0, is trivial, since C̃0(z) = 0.

Inductive step for outer condition on Ṽk(z) + G̃k(z)
2

Now we assume that the claim holds for k − 1, and we prove it for k. A bound for ezC̃j(z) which
is uniform in j holds: in the proof of Lemma 10, we proved that, for all j ≥ 0 and z ∈ C,

|C̃j(z)| ≤ |z|2e|z|−<(z),

which immediately implies that
|ezC̃j(z)| ≤ |z|2e|z|.
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Thus, for a given R and φ ∈ (0, 1), there is some C > 0 such that, whenever |z| ≤ R, for any j ≥ 0,

|ezC̃j(z)| ≤ Ceφ|z|.

Now we demonstrate that the same bound holds for |z| > R. Recall that φ in the case of G̃k(z)
is given by cos(θ) + ε, for any small enough fixed positive ε > 0. We define φ̂ to be slightly smaller:

φ̂ = cos(θ) + ε/2,

and we note that the de-Poissonization result for G̃k(z) implies that there is some R̂ > 0 such that,
whenever z /∈ C(θ) and |z| > R̂, for any j ≥ 0,

|ezG̃j(z)| ≤ eφ̂|z|. (62)

We will use this fact in the induction step for Ck(z) as follows: we adopt the same approach as in
the expected value case, this time defining

γ1(z) = e−qz,

γ2(z) = e−pz,

t(z) = C̃k−1(pz)(1− e−qz) + C̃k−1(qz)(1− e−pz) + 2G̃k−1(pz)G̃k−1(qz).

The conditions required of γ1(z) and γ2(z) were already verified, so we proceed to show that

e<(z)|t(z)| ≤ 1

3
eφ|z|,

for |z| > R, for some R > 0 independent of k. We again choose φ = cos(θ) + ε, and applying the
induction hypothesis and inequality (62) gives

|ezt(z)| ≤ C
[
eφp|z||eqz − 1|+ eφq|z||epz − 1|+ C2e

φ̂|z|
]
.

The rest of the induction step goes exactly as in the expected value case, so we omit it.

Inner condition on Ṽk(z)
As for the inner conditions, both follow from the asymptotic expansions for G̃k(z) and Ṽk(z) derived
by inverting their respective Mellin transforms. Both derivations are readily extended to z → ∞
inside the cone.

Since all conditions of the theorem are satisfied, the remaining task is to show that n[G̃′k(n)]2 =
o(Ṽk(n)). This we do using the Cauchy integral formula for derivatives, followed by upper bounding
of the resulting integral expression (the main task will then be to choose an appropriate radius for
the integration contour): for a circle C of any radius R enclosing n,

G̃′k(n) =
1

2πi

∮
C

G̃k(ξ)

(ξ − n)2
dξ,

which implies

|G̃′k(n)| ≤ 2πR

2π

|G̃k(ξ∗)|
R2

≤ |G̃k(ξ∗)|/R,

where ξ∗ = argmaxx∈C |G̃k(x)|. Now, since G̃k(n) = O(nβ(α)/
√

log n), and ξ∗ is not too different
from n, we expect that G̃k(ξ∗) = O(nβ(α)/

√
log n) as well. Provided that we can show this, if we

choose
R = n∆/Ψ(n)
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for some ∆ > 0 and slowly growing function Ψ(n) which we will determine later, our bound becomes

nG̃′k(n)2 = O(n1+2β(α)−2∆Ψ(n)2/ log n),

and we would like to enforce the conditions

1 + 2β(α)− 2∆ ≤ β(α)

and
∆ ≤ 1,

along with
Ψ(n)2/ log n = o(1/

√
log n)

and Ψ(n)
n→∞−−−→ ∞ (so that, for any ∆, R = o(n)). Choosing Ψ(n) to satisfy these conditions is

easy: we simply require that

Ψ(n)2 = o(
√

log n) =⇒ Ψ(n) = o((log n)1/4),

so that we can choose, say, Ψ(n) = log log n. It is easy to see that, for any α, there exists some ∆
which satisfies both conditions simultaneously:

1 + 2β(α)− 2∆ ≤ β(α) ⇐⇒ 1 + β(α)

2
≤ ∆,

and
1 + β(α)

2
≤ 1 ⇐⇒ β(α) ≤ 1.

This last inequality is true for any α within the range under consideration. With these choices,

nG̃′k(n)2 = o(nβ(α)/
√

log n),

so nG̃′k(n)2 = o(Ṽk(n)), provided that we can show that G̃k(ξ∗) = O(G̃k(n)). To do this, the plan
is to show that we can apply Theorem 1 to derive asymptotics for G̃k(ξ∗). First, we verify that ξ∗
remains within a cone around the positive real axis. Fixing some θ ∈ (0, π/2) for the angle made
with respect to the positive real axis, let A denote the point of the form n + it, for some t ∈ R+,
which lies on the boundary of the cone. Furthermore, let B denote the point on the boundary of
the cone which lies above the real axis and is nearest to n. Then we have

|A− n| = t,

and
t

n
= tan(θ) =⇒ t = tan(θ)n = Θ(n).

Next, we note that the angle made between the line segment connecting n andB and that connecting
0 and B must be π/2, and we denote by φ the angle between the segments connecting 0 and n and
n and B. We have, easily, φ = π/2− θ, and it is trivial to see that the angle between the segments
n to B and n to A is θ. Thus, we have that the length of the segment connecting n and B (i.e.,
the radius of a ball centered at n with maximum volume contained in the cone) is given by

cos(θ) =
|B − n|
|A− n|

=⇒ |B − n| = |A− n| cos(θ) = Θ(n) cos(θ) = Θ(n),

so that, since R = o(n), ξ∗ must be inside the cone. We then examine the relationship between k
and ξ∗. Since n = ξ∗(1 + o(1)),

k ∼ α log n = α log(ξ∗(1 + o(1))) = α log ξ∗ + o(1),

so that k ∼ α log ξ∗. Applying Theorem 1 then shows that G̃k(ξ∗) = O(G̃k(n)).
This completes the proof.
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4.3.3 De-Poissonization for the central limit theorem

The final step of the proof is inversion of the Poisson transform to recover a central limit theorem
for the Bernoulli model. That is, knowing asymptotic information about Q̃k(u, z), our goal is to
recover Qn,k(u). The Cauchy integral formula gives

Qn,k(u) =
n!

2πi

∮
|z|=n

ezQ̃k(u, z)z
−n−1 dz, (63)

where the integration contour (we denote it by C) is the circle centered at 0 with radius n. The
evaluation of this integral will proceed in two stages. We expect that the main contribution will
come from a small arc around the positive real axis, so we fix a cone around the positive real axis,
and we show that the contribution outside the cone is negligible (by a lemma which we will soon
state). Next, we break the remaining part of the contour into inner tails and a central region. The
inner tails we show to be negligible using Lemma 14, the Taylor expansion for the cosine function
around 0, and a careful choice of the split into the inner tails and the central region. Finally, the
central region is evaluated using the expansion for Q̃k(u, z) derived above, as well as the fact that

1√
2π

∫ ∞
−∞

e−x
2

dx = 1.

Let θ be an angle in (0, π/2) for which

l̃k(u, z) = z + G̃k(z)
τ

σn,k
+ Ṽk(z)

τ2

2σ2
n,k

+R[l̃]k(u, z)
τ3

3!σ3
n,k

+O(σ−1
n,k),

with R[l̃]k(u, z) = O(nβ(α)). This θ is guaranteed to exist by the analysis in Section 3.3.
We require a final estimate on the growth of Qj(u, x) in order to upper bound the outer tails

of (63):

Lemma 19 (Growth of Qj(u, x) outside a cone). Let θ ∈ (0, π/2). Then there is some α ∈ (0, 1)
and x0 > 0 such that, provided x /∈ C(θ) and |x| ≥ x0,

|Qj(u, x)| ≤ eα|x|,

uniformly in j ≤ k.

Proof. We prove a slightly different claim: that, for each θ with |θ| ∈ (0, π/2), there is some α < 1
and x0 > 0 such that, for all j ≤ k, if x /∈ C(θ) and |x| ≥ x0, then

|Qj(u, x)| ≤ eα|x|−1.

Note the additional term of −1 in the exponent. This we prove by induction in j. To accomplish
this, for each j, we prove that the inequality holds for |x| ∈ [x′0, x0) with x′0 = qx0, and we then
use this and induction on increasing domains to prove that it holds for |x| ≥ x0.

Base case for j induction
For the base case, recall that Q0(u, x) = ex − x(1− u), so that

|Q0(u, x)| ≤ e|x| cos(arg(x)) + |x||1− u|.

For appropriately chosen α (say, cos(θ) + ε, for any small enough positive ε), |x| can be made large
enough so that this satisfies the claimed property. That is, there is some x′0 for which the stated
inequality holds whenever |x| ≥ x′0. We define x0 to be x′0/q.
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Induction on j, base case for increasing domains induction
For the induction on j, we assume that the claim holds for j − 1, and we aim to prove it for j. To
do this, we use induction on increasing domains. To verify the claim for |x| ∈ [x′0, x0), we apply
Lemma 12, which is justified because |x| < x0, to conclude that

Qj(u, x) ∼ ex,

so that
|Qj(u, x)| ∼ |ex| = e|x| cos(θ),

and, provided x0 is sufficiently large,

|Qj(u, x)| ≤ eα|x|−1,

which gives us the base case of the increasing domains induction.

Increasing domains inductive step
We now proceed to the inductive step. Applying the functional equation and the triangle inequality,
then the inductive hypotheses,

|Qj(u, x)| ≤ eα|x|−2 + 4eαp|x|−1 = eα|x|−2
(

1 + 4e−αq|x|+1
)

Next, note that, since e−αq|x|+1 = o(1) as |x| → ∞, the second factor in the above product satisfies

1 + 4e−αq|x|+1 ∼ e4e−αq|x|+1
= eo(1),

so that, provided we choose |x| large enough,

|Qj(u, x)| ≤ eα|x|−1,

which completes the proof.

Bounding the outer tails
The outer tails of (63) then become

n!

2πi

∫
| arg(z)|>θ

ezQ̃k(u, z)z
−n−1 dz ∼

√
2πnnne−n

2πi

∫
| arg(z)|>θ

ezQ̃k(u, z)z
−n−1 dz

=
nn+1/2e−n√

2πi

∫
| arg(z)|>θ

ezQ̃k(u, z)z
−n−1 dz,

where we used Stirling’s formula. Taking absolute values and applying Lemma 19 gives an upper
bound of

nn+1/2e−n+αn

√
2π

2πnn−n−1 = nO(1)e−n(1−α),

which is exponentially decaying in n, since α < 1.

Bounding the inner tails
Now we bound the inner tails. Specifically, we let ψ = n−δ, for some δ > 0 to be determined,
and the inner tails consist of that part of the contour where | arg(z)| ∈ (ψ, θ]. The choice of ψ is
dictated by two opposing forces: it must be large enough that the inner tails are negligible but
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small enough so that the central part is easy to estimate precisely. In the range of integration of
the inner tails, we have the estimate

|ezQ̃k(u, z)| = en cos(arg(z))(1+o(1)) ≤ en cos(ψ),

by Lemma 14. Taylor expanding cos(ψ) around 0 gives

exp

(
n(1− ψ2

2!
+O(ψ4))

)
.

We will require that nψ2 = n1−2δ n→∞−−−→∞, which translates to

1− 2δ > 0 =⇒ δ < 1/2.

Then we can upper bound the inner tails by

nn+1/2e−n√
2π

2πn|ezQ̃k(u, z)|n−n−1 ≤ nO(1)e−n+n(1−ψ
2

2!
+O(ψ4)) = nO(1)e−n

1−2δ(1+o(1)),

which is exponentially decaying in n, so negligible.

Estimating the central region
Now we estimate the central part. Inside the integral, letting φ denote arg(z), we can expand
ezz−n−1 as

ezz−n−1 = ene
iφ−(n+1) log(neiφ) = en(1+iφ−φ

2

2
+O(φ3))−(n+1) logn−iφ = enn−n−1e−

nφ2

2
(1+o(1)).

Multiplying by the e−nnn+1/2 outside the integral gives

1√
n
e−

nφ2

2
(1+o(1)).

Applying the analysis of Q̃k(u, z),

Q̃k(u, z) = exp

(
G̃k(z)

τ

σn,k
+
τ2

2
+O(σ−1

n,k)

)
= exp

(
G̃k(n)

τ

σn,k
+
τ2

2
+O(G̃′k(n)(z − n))

τ

σn,k
+O(σ−1

n,k)

)
,

where we note that G̃k(n) = Θ(nβ(α)/
√

log(n)), while G̃′k(n) = Õ(nβ(α)−1). Since β(α) − 1 ≤ 0
and z − n = O(ψ) = n−Ω(1), the third term is o(σ−1

n,k). That is,

Q̃k(u, z) = exp

(
G̃k(n)

τ

σn,k
+
τ2

2
+O(σ−1

n,k)

)
.

Putting these estimates together, we see that the contribution of the central region is given by

exp
(
G̃k(n) τ

σn,k
+ τ2

2 +O(σ−1
n,k)
)

√
2πn

∫ ψ

−ψ
e−

nφ2

2
(1+o(1)) dφ.

It is easy to see that we can complete the tails, and then we make the substitution x = n−1/2φ,
which gives

exp
(
G̃k(n) τ

σn,k
+ τ2

2 +O(σ−1
n,k)
)

√
2π

∫ ∞
−∞

e−x
2

dx.
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Since the integral, along with the factor 1√
2π

, becomes 1, we have, finally,

E[e
Bn,k

τ
σn,k ] = exp

(
G̃k(n)

τ

σn,k
+
τ2

2
+O(σ−1

n,k)

)
,

and applying the Lévy continuity theorem shows that the claimed central limit theorem holds for
properly normalized Bn,k.
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