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Abstract

We develop a framework using Hilbert spaces as a proxy to analyze PAC learning problems with

structural properties. We consider a joint Hilbert space incorporating the relation between the true label

and the predictor under a joint distribution D. We demonstrate that agnostic PAC learning with 0-1

loss is equivalent to an optimization in the Hilbert space domain. With our model, we revisit the PAC

learning problem using methods based on least-squares such as L2 polynomial regression and Linial’s

low-degree algorithm. We study learning with respect to several hypothesis classes such as half-spaces

and polynomial-approximated classes (i.e., functions approximated by a fixed-degree polynomial). We

prove that (under some distributional assumptions) such methods obtain generalization error up to 2Popt

with Popt being the optimal error of the class. Hence, we show the tightest bound on generalization error

when Popt ¤ 0.2.

I. INTRODUCTION

We study binary classification using polynomial regression from the agnostic PAC learning perspective

[1], [2]. In this problem, multiple training instances are generated IID according to an underlying

distribution D on the feature-label sets X � t�1, 1u. In addition, we are given a hypothesis class with

respect to which the learning process takes place. If Popt is the minimum error attained using the given

class, then the objective of the learning algorithm is to output, with high probability, a classifier whose

generalization error is not greater than Popt � ε.

To gain computational efficiency or analytical tractability, many conventional learning methods such

as support-vector machine (SVM) rely on intermediate loss functions other than the natural 0 � 1 loss.

Square loss is an example that is a basis for L2-polynomial regression or another variant of SVM known



as LS-SVM [3]. The well-known “low-degree” algorithm [4] is also known to be in this category of

algorithms [5]. Such methods have been analyzed for many PAC learning problems. Under the realizability

assumption where Popt � 0, the L2-polynomial regression and the low-degree algorithm are PAC learners

for a variety of hypothesis classes [6]–[8]. Under the agnostic setting where Popt ¡ 0, the current

results are not that promising. The best known results for L2-polynomial regression (and the low-degree

algorithm under the uniform distribution) are 8Popt and 1
4 �Poptp1�Poptq for classes such as half-spaces

or polynomial-approximated classes [2], [5].

In this paper, we develop a framework using Hilbert spaces as a proxy to analyze such problems. We

consider a joint Hilbert space incorporating the relation between the true label and the predictor under

the joint distribution D. This is unlike conventional analysis using Hilbert spaces that focus only on the

predictors with marginal Dx on the features. As a byproduct, we improve the above mentioned bounds

and show that the generalization error of L2-polynomial regression and the low-degree algorithm is less

than 2Popt. This bound the improves upon the previous bounds when Popt ¤ 0.2. We show that methods

based on square loss are suitable for learning classes with appropriate geometrical properties.

A. Our approach

We develop our framework by constructing two Hilbert spaces one with respect to the true underlying

distribution D and the other with respect to the empirical one. The first one is L2pDq, that is all real-

valued functions f on X � Y such that ErfpX, Y q2s   8. The second one is L2pD̂q with D̂ being

the empirical distribution of the training set. With this formulation, the true label Y and the training

labels are understood as a member of these spaces. With this formulation, the generalization error of any

classifier c equals 1
4‖Y �c‖2

2,D. Similarly, when the distance is calculated in the second Hilbert space, we

obtain a characterization of the empirical error. Hence, minimizing the generalization (or empirical) error

is equivalent to minimizing the distance between Y and the classifier c in the first (or second) Hilbert

space. We argue that the mentioned hypothesis classes have appropriate structures using that allows us to

drive lower bounds on its minimum error Popt. For instance, given k, the polynomial-approximated class

is characterized by the subspace of L2pDq spanned by polynomials of degree up to k. With this structure,

finding Popt is equivalent to finding the minimum distance of Y to the subspace spanned by polynomials

of degree up to k. As for the learning algorithms, we argue the low-degree algorithm and L2-polynomial

regression have suitable structures using which we drive our upper bounds on their generalization errors.

For instance, in the case of L2 polynomial regression, the error of any classifier of the form signrppxq�θs,
with θ chosen appropriately, is bounded from above by 1

2‖Y � p‖2
2. Hence, minimizing the squares-loss

as in L2-regression yields an error less than 2Popt.
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B. Summary of the Results

In this work, we first present a more general version of the low-degree algorithm incorporating non-

uniform but product probability distributions. We refer to this generalization as Fourier algorithm. With

our framework, we study learning with respect to three well-known hypothesis classes. The first class

is half-spaces consisting of all the Boolean-valued functions of the form cpxq � signr°d
j�1wjxj � θs.

The second class is called polynomial-approximated functions. Given a positive integer k and ε ¡ 0, it

consists of Boolean-valued functions that are approximated by a degree k polynomial with square error up

to ε2. The thirst class is a generalization of the second. We use our framework to analyze learning these

hypothesis classes using L2-polynomial regression and the Fourier algorithm. Below, is the summary of

our results:

1) The L2 polynomial regression with degree k outputs a hypothesis ĝ whose generalization error has

the following properties:


 For learning polynomial-approximated classes, it is less than 2Popt � 3ε (Theorem 1).


 For learning half-spaces, when the marginal Dx is uniform over the unit ball in Rd, it is less than

2Popt � 3ε (Theorem 3).


 For learning generalized concentrated classes , under any distribution, it is less than 2Popt � ε

(Theorem 4).

2) If the marginal Dx is a product probability distribution on t�1, 1ud, then with probability p1� δq,
the Fourier algorithm outputs a hypothesis such that its generalization error is less than 2Popt � 2ε for

learning polynomial-approximated classes.

C. Related Works

The low-degree algorithm is introduced by [4] with PAC learning guarantees under the uniform

distribution over t�1, 1ud. This algorithm which is based on the Fourier expansion on the Boolean

cube has been used for in various problems [6], [8], [9]. The L2 polynomial regression along with its L1

counterpart is introduced by [5] for learning with respect to polynomial-approximated classes, k-juntas,

and half-spaces. Learning with respect to such classes has been studied extensively in the literature [5],

[10]–[12]. Among such classes, learning with respect to half-spaces is the most challenging. In the case

of proper agnostic PAC learning, where the algorithm’s predictor must be a half-space, it is an NP-

hard problem [13], [14]. Even without the proper restriction, the problem is NP-hard. That said, under

distributional assumptions, polynomial time algorithms are introduced [5], [15], [16]. Among them are

the improper learning algorithms based on regression methods such as L1 or L2 polynomial regression
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[4], [5]. In particular, [5] proved that L1 polynomial regression learns a range of hypothesis classes such

as half-spaces (under distributional assumptions) and polynomial-approximated classes

II. PRELIMINARIES

Notation: The input set is denoted by X which is a subset of Rd for some positive integer d. The output

set is denoted by Y which is a subset of R. In binary classification Y � t�1, 1u. For shorthand, the

random vectors in Rd are denoted by X � pX1, X2, ..., Xdq. Further, for any ordered subset J � tj1,
j2, � � � , jmu, by XJ denote the random vector pXj1 , Xj2 , � � � , Xjmq. Similarly, by xJ denote the vector

pxj1 , xj2 , � � � , xjmq. For a pair of functions f, g on X , the notation f � g means that fpxq � gpxq for all

x P X . Lastly, for any natural number `, the set t1, 2, � � � , `u is denoted by r`s.

A. A Hilbert Space Representation

We first develop a Hilbert Space formulation for the binary classification problem. Let D be a joint

probability distribution on the input-output set X � Y . In this paper, it is assumed that the marginal Dx

of any joint distribution D on X � Y has finite moments. Consider a Hilbert space of all real-valued

functions f : X �Y ÞÑ R which are L2pDq, that is EDrfpX, Y q2s   8. The inner product between two

members f, g is defined as

xf, gy �∆ EDrfpX, Y qgpX, Y qs.

Given any integer p ¡ 0 and distribution D, the p-norm of a function f is defined as

‖f‖p,D �∆ �
EDrfpX, Y qps

�1{p
.

Given any training sample S � tpxi, yiq : i � 1, 2, ..., nu, let D̂ denote its empirical distribution, that

is a uniform distribution on S and zero outside of it. Associated with this distribution, we consider the

Hilbert space L2pD̂q with the inner product and norms defined based on the empirical distribution D̂.

We use this formulation to study the binary classification problem where Y � t�1, 1u. Therefore, the

generalization error of any predictor c : X ÞÑ t�1, 1u can be written in terms of the inner products as

PD
!
Y � cpXq

)
� 1

2
� 1

2
xY, cyD � 1

4
‖Y � c‖2

2,D, (1)

where, with slight abuse of notation, Y is understood as the mapping px, yq ÞÑ y and c is understood as

a mapping on X � Y which depends only on X . Similarly, the empirical error of c is equal to

P̂D̂
!
Y � cpXq

)
� 1

2
� 1

2
xY, cyD̂ � 1

4
‖Y � c‖2

2,D̂
.

The goal now is to derive bounds on the minimum generalization error when learning with respect to

various hypothesis classes. In Section III we describe L2-polynomial regression and the Fourier algorithm,
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in Section IV we study polynomial-approximated classes, and finally in Section V we discuss half-spaces,

and more general hypothesis classes that have structural properties.

III. PAC LEARNING WITH L2-POLYNOMIAL REGRESSION

We employ a PAC learning algorithm using L2-polynomial regression. Given a training set, the objective

of the polynomial regression is to minimize the empirical square loss over all polynomials of degree up

to k. This process can be implemented by stochastic gradient descent or by solving a linear system of

equations. We describe how this polynomial regression can be used for PAC learning. Let p̂ be the output

of the polynomial regression. The idea is to shift the polynomial p̂ by a threshold θ and take its sign.

This process is demonstrated as Algorithm 1.

Algorithm 1 PAC Learning with L2-Polynomial Regression
Input: Degree parameter k, and training samples tpxpiq, ypiqq, i P rnsu.

1: Find a polynomial p̂ of degree up to k that minimizes

1

n

¸
i

�
ypiq � ppxpiqq�2

.

2: Find θ P r�1, 1s such that the empirical error of signrp̂pxq � θs is minimized.

3: return ĝ � signrp̂� θs.

A. Fourier-Based Learning Algorithm

We present another variant of L2 polynomial regression, known as the low-degree (Fourier) algorithm

[4]. Although this algorithm is more efficient than the polynomial regression, it requires binary input set

X � t�1, 1ud. The low-degree algorithm was originally designed for uniform distribution on the Boolean

cube. In this paper, we present a more general version of it for incorporating non-uniform but product

probability distributions on t�1, 1ud [17]. In this approach, the objective is to find an estimate of the p�

polynomial that minimizes the square loss ‖Y �p�‖2,D under the true distribution. This method is based

on the Fourier expansion on the Boolean cube [18] and is summarized in the following.

Under product probability distribution on t�1, 1ud, any bounded real-valued functions can be written

as

fpxq �
¸

S�rds
fS ψSpxq,
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where fS’s are the Fourier coefficients and calculated as fS �∆ xf, ψSy for every subset S � rds. Further,

the parity ψS is a monomial defined as

ψSpxq �
¹
jPS

xj � µj
σj

,

with µj and σj being the mean and standard deviation of the Xj , respectively. As the distribution is

unknown, these quantities are estimated in the algorithm.

As a result, we can write the Fourier decomposition of the optimal polynomial p�. For that, we have

the following statement:

Fact 1. Let D be a probability distribution with the marginal Dx that is a product probability distribution

on t�1, 1ud. Then, the optimal polynomial p� admits the following Fourier decomposition

p� �
¸

S�rds:|S|¤k
xY, ψSy ψS .

With that decomposition, the idea behind the Fourier algorithm is to compute an empirical estimate

of xY, ψSy. This is demonstrated as Algorithm 2.

Algorithm 2 Fourier-Based Learning
Input: Training samples tpxpiq, ypiqq, i P rnsu.

1: Compute the empirical mean µ̂j and standard deviation σ̂j of each feature.

2: For every S � rds with |S| ¤ k, construct the empirical parity as pψSpxq �
±
jPS

xj�µ̂j
σ̂j

.

3: Compute the empirical Fourier coefficients aS , for every S with at most k elements, as

aS � 1

n

ņ

i�1

ypiq pψSpxpiqq.

4: Construct and return the function Π̂Y as

Π̂Y pxq �∆
¸

S:|S|¤k
aS pψSpxq.

In the following lemma which is proved in Appendix A, we derive bounds for estimating the optimal

polynomial p�.

Lemma 1. Let D be a probability distribution with the marginal Dx that is a product probability

distribution on t�1, 1ud. Given δ P p0, 1q, with probability at least p1�δq, the following inequality holds

‖p� � Π̂Y ‖2 ¤ O
�d dkck

pk � 1q!n log
4dk

pk � 1q!δ
	
, (2)

where ck �∆ maxS�rds,|S|¤k‖ψS‖28 and n is the number of samples.
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IV. POLYNOMIALLY APPROXIMATED CLASS

In this section, we study agnostic PAC learning with respect to concept classes whose members are

approximated by fixed-degree polynomials. We adopt the Hilbert space representation in Section II-A to

analyze PAC learning using Algorithm 1 and 2. We start with the following formulation:

Definition 1. Given ε P r0, 1s, k P N and any probability distribution DX on X , a concept class C of

functions c : X ÞÑ t�1, 1u is pε, kq-approximated if

sup
cPC

inf
pPPk

E
��
cpXq � ppXq�2� ¤ ε2,

where Pk is the set of all polynomials of degree up to k.

We consider agnostic PAC learning with respect to C and under the 0� 1 loss function. The minimum

generalization error and empirical error of C are, respectively, defined as

Popt �∆ min
cPC

PD
 
Y � cpXq(,

pPopt �∆ min
cPC

P̂D̂
 
Y � cpXq(.

We use the Hilbert space representation in Section II-A and provide a lower bound on Popt.

Lemma 2. The minimum generalization error attainable by any pε, kq concept class C is bounded from

below as

Popt ¥ 1

2
� 1

2
‖p�‖1,D � ε,

where p� � arg minpPPk ED
��
Y � ppXq�2�.

Proof. From (1) the 0 � 1 loss of any function c P C can be written as P
!
Y � cpXq

)
� 1

2 � 1
2xY, cy.

Let p P Pk be such that ‖c� p‖2,D ¤ ε. Then, by adding and subtracting p, we obtain that

xY, cy � xY, py � xY, pc� pqy

¤ xY, py � ‖Y ‖2‖c� p‖2 ¤ xY, py � ε, (3)

where the first inequality follows from Cauchy–Schwarz inequality and the second inequality follows

because ‖Y ‖2 � 1. Note that Pk, the set of all polynomials on X with degree upto k, is a (finite

dimensional) subspace inside the Hilbert space L2pDq. Therefore, it has an orthonormal basis denoted

by tΨ1,Ψ2, ...,Ψmu, where m is less than Opdkq. As a result, the polynomial p can be written as

p � °m
j�1xp,ΨjyΨj . Hence,

xY, py �
m̧

j�1

xp,Ψjy xY,Ψjy � xΠY , py,
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where ΠY � °m
j�1xY,ΨjyΨj is the projection of Y onto this subspace. Consequently, from the above

equality and (3), we obtain that

xY, cy ¤ xΠY , py � ε � xΠY , cy � xΠY , pp� cqy � ε

¤ xΠY , cy � ‖ΠY ‖2‖p� c‖2 � ε

¤ ‖ΠY ‖1 � ‖ΠY ‖2‖p� c‖2 � ε

¤ ‖ΠY ‖1 � 2ε,

where the second inequality follows from Cauchy–Schwarz inequality, the third one holds as |cpxq| � 1

and the last inequality follows from Bessel’s inequality, implying ‖ΠY ‖2 ¤ 1, and the assumption that

‖p� c‖2 ¤ ε. Next, we proceed with the following fact about the projection.

Fact 2. ΠY the projection of Y onto Pk is the polynomial minimizing E
��
Y � ppXq�2� over all p P Pk.

The proof is complete by the following fact implying that ΠY � p�.

We show in Section III-A that the lower-bound in Lemma 2 helps to prove our results for the low-degree

algorithm.

A. PAC Learning Bounds

Next, we analyze Algorithm 1 and 2 for this class and prove the first main result of the paper.

Theorem 1. Given ε ¡ 0 and k P N, the degree k L2 polynomial regression agnostically PAC learns

any pε, kq-approximated concept class with expected error up to

2Popt � 3ε�
c

2 dk�1

n
log

en

dk�1
,

where d is the number of input variables and n is the sample size.

Proof. To derive an upper bound on the empirical error of ĝ, we first consider a weaker version of the

algorithm. The idea is to select θ randomly instead of optimizing it as in the algorithm. For that, we

establish the following lemma.

Lemma 3. Suppose θ is a random variable with the probability density function fθptq � 1 � |t|, for

t P r�1, 1s. Then, the following bound holds for any polynomial p

Eθ
�
P̂
!
Y � signrppXq � θs

)�
¤ 1

2
‖Y � p‖2

2,D̂
.
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Proof. Note that y � signpppxq � θq, if θ is between y and ppxq. Hence, the expected empirical error of

signrppXq � θs with respect to the random θ equals to

Eθ
�
P̂
!
Y � signrppXq � θs

)�
� 1

n

¸
i

Eθ
�
1
 
yi � signpppxiq � θq(�

� 1

n

¸
i

P
!
θ P rppxiq, yis

� ryi, ppxiqs
)looooooooooooooooooomooooooooooooooooooon

Pi

. (4)

Next, we show that Pi ¤ 1
2pyi � ppxiqq2 for all pxi, yiq’s. Suppose yi � 1. If ppxiq ¡ 1, then Pi � 0 as

θ ¤ 1. If ppxiq P r0, 1s, then

Pi � P
!
θ P rppxiq, 1s

)
�

» 1

ppxiq
p1� tqdt

� 1

2

�
1� ppxiq

�2 � 1

2

�
yi � ppxiq

�2
.

If ppxiq P r�1, 0s, then

Pi � P
!
θ P rppxiq, 1s

)
�

» 1

ppxiq
1� |t|dt

� 1

2
�
» 0

ppxiq
p1� tqdt

� 1

2
� ppxiq � 1

2
pppxiqq2

¤ 1

2
p1� |ppxiq|q2 � 1

2
pyi � ppxiqq2.

Lastly, if ppxiq   �1, then Pi � 1 because θ ¥ �1. In this case also Pi ¤ 1
2pyi � ppxiqq2. The case for

yi � �1 follows by symmetricity. Hence, we obtain the following inequality

Eθ
�
P̂
!
Y � ĝpXq

)�
¤ 1

n

¸
i

1

2

�
yi � ppxiq

�2
.

The proof is complete by noting that the right-hand side equals to 1
2‖Y � p‖2

2,D̂
.

Consequently, from the lemma and due the fact that θ in the algorithm is selected to minimize the

empirical error, we obtain that

P̂
!
Y � ĝpXq

)
¤ 1

2
‖Y � p̂‖2

2,D̂
, (5)

where p̂ is the output of L2-polynomial regression and ĝ � signrp̂� θs, as in Algorithm 1. Let c� be the

predictor with minimum generalization error in the pε, kq-approximated concept class. Let p be a degree
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k polynomial such that ‖c�� p‖2 ¤ ε. Since p̂ minimizes the empirical 2-norm, then the right-hand side

of (5) satisfies

1

2
‖Y � p̂‖2

2,D̂
¤ 1

2
‖Y � p�‖2

2,D̂
. (6)

We proceed by taking the expected error of the empirical error with respect to the random training

samples. From (5) and (6) we obtain the following inequalities

E
�
P̂
!
Y � ĝpXq

)�
¤ 1

2
E
�
‖Y � p�‖2

2,D̂

�
� 1

2
‖Y � p�‖2

2,D

paq
¤ 1

2

�
‖Y � c�‖2,D � ‖p� � c�‖2,D

	2

¤ 1

2

�
‖Y � c�‖2,D � ε

	2

pbq
¤ 1

2

�
‖Y � c�‖2

2,D � 4ε� ε2
	

pcq
¤ 2Popt � 5

2
ε, (7)

where (a) holds from Minkowski’s inequality for 2-norm, (b) holds as ‖Y � c�‖2,D ¤ 2, and (c) holds

because of the second equality in (1) and that Popt � PtY � c�pXqu.
Next, we connect the empirical error of ĝ to its generalization error. Note that the Vapnik–Chervonenkis

(VC) dimension of all functions of the form signrps for some polynomial of degree upto k does not exceed

dk�1. Therefore, from VC theory ( See Corollary 3.19 in [19]) for any δ, with probability at least p1�δq,
the following inequality holds

P
!
Y � ĝpXq

)
¤ P̂

!
Y � ĝpXq

)
�
c

2 dk�1

n
log

en

dk�1

�
d

log 1
δ

2n
. (8)

Set δ � expt�1
2nε

2u. Therefore, the proof is complete by taking the expectation and combining it with

the last bound in (7).

PAC bounds for the Fourier algorithm: Next, we employ a low-degree (Fourier) algorithm (Algorithm

2) for PAC learning with respect to the polynomially approximated hypothesis class.

Theorem 2. Let D be a joint probability distribution with marginal DX that is a product probability

distribution on t�1, 1ud. Then, for any δ P r0, 1s, with probability at least 1 � δ, the Fourier-based

algorithm agnostically PAC learns any pε, kq-approximated concept class with generalization error up to

2Popt � 2ε�O
�d dkck

pk � 1q!n log
4dk

pk � 1q!δ
	
, (9)
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where ck �∆ maxS�rds,|S|¤k‖ψS‖28.

Proof. We prove the theorem by characterizing the effect of 2-norm estimation on the error probability.

Let

p� � arg min
pPPk

‖Y � p‖2
2,D.

From the second equality in (1), the generalization error of ĝ in Algorithm 2 satisfies

P
!
Y � ĝpXq

)
� 1

4
‖Y � ĝ‖2

2,D

¤ 1

4

�
‖Y � p�‖2,D � ‖p� � ĝ‖2,D

	2

¤ 1

2

�
‖Y � p�‖2

2,D � ‖p� � ĝ‖2
2,D

	
, (10)

where the inequality follows from Minkowski’s inequality for 2-norm. Observe that (10) is an upper

bound on the generalization error in terms of 2-norm quantities. Since p� minimizes the square loss, the

first term in (10) equals

‖Y � p�‖2
2,D � 1� ‖p�‖2

2.

We proceed by bounding the second term in (10). From Minkowski’s inequality for 2-norm and by adding

and subtracting Π̂Y as in Algorithm 2, we have that

‖p� � ĝ‖2
2 ¤ ‖p� � Π̂Y ‖2

2 � ‖Π̂Y � ĝ‖2
2

� 2‖p� � Π̂Y ‖2‖Π̂Y � ĝ‖2. (11)

The first term in (11) is bounded from Lemma 1. As a result, ‖p� � Π̂Y ‖2 � ε1n, where

ε1n � O
�d dkck

pk � 1q!n log
4dk

pk � 1q!δ
	
,

with probability at least p1�δq. As for the second term in (11), we use the identity |h�signrhs| � |1�|h||
for any function h. Therefore, as ĝ � signrΠ̂Y s, we obtain that

‖Π̂Y � ĝ‖2
2 � E

�
p1� |Π̂Y pXq|q2

�
� 1� ‖Π̂Y ‖2

2 � 2‖Π̂Y ‖1. (12)

Next, we show that the third term in (11) is less than 4ε1n. It suffices to show that ‖Π̂Y � ĝ‖2 ¤ 2. For

that, we use the equality in (12). By removing the last term in (12) and taking the square root we have

‖Π̂Y � ĝ‖2 ¤
b

1� ‖Π̂Y ‖2
2.
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From the Minkowski’s inequality we have that

‖Π̂Y ‖2 ¤ ‖p�‖2 � ‖p� � Π̂Y ‖2

¤ ‖p�‖2 � ε1n ¤ 1� ε1n.

Hence, we get the desired bound ‖Π̂Y � ĝ‖2 ¤
a

1� p1� ε1nq2 ¤ 2, assuming that ε1n ¤ 1{3. Combining

the bounds for each term in (11), we get

‖p� � ĝ‖2
2 ¤ ε1n

2 � 1� ‖Π̂Y ‖2
2 � 2‖Π̂Y ‖1 � 4ε1n

¤ 1� ‖Π̂Y ‖2
2 � 2‖Π̂Y ‖1 � 5ε1n.

We plug this inequality in (10). After rearranging the terms by adding and subtracting ‖p�‖1, we obtain

the following inequality

P
!
Y � ĝpXq

)
¤ 1

2

�
2� 2‖p�‖1 � 5ε1n

� 2
�
‖p�‖1 � ‖Π̂Y ‖1

�� �
‖Π̂Y ‖2

2 � ‖p�‖2
2

�	
¤ 2Popt � 2ε� 5ε1n,

where the last inequality follows from Lemma 2 and the following argument for bounding the last two

terms in the first inequality:

For the 1-norm difference, the Minkowski’s inequality for 1-norm gives

‖p�‖1 � ‖Π̂Y ‖1 ¤ ‖p� � Π̂Y ‖1 ¤ ‖p� � Π̂Y ‖2 � ε1n,

where the last inequality follows from the Jensen’s inequality implying that ‖�‖1 ¤ ‖�‖2.

For the difference of square of 2-norms, we apply the Minkowski’s inequality for 2-norm and obtain

‖Π̂Y ‖2
2 ¤ ‖p�‖2

2 � ‖p� � Π̂Y ‖2
2 � 2‖p�‖2‖p� � Π̂Y ‖2

¤ ‖p�‖2
2 � 3ε1n.

where the last inequality holds as ‖p�‖2 ¤ 1.

We end this section by presenting a simplified result of Theorem 2.

Corollary 1. If the expected value of each Xj satisfies |µj | ¤ 1� 1
k , then the generalization error of the

Fourier algorithm is upper bounded by

2Popt � 2ε�O
�d?

kpedqk
n

�
k log

ed

k
� log

2
?
k

δ

�	
.

12



Proof. From the definition of ck, we can write

ck � max
S:|S|¤k

max
xPt�1,1ud

|ψSpxq|2 ¤ max
S:|S|¤k

¹
jPS

p1� |µj |q2
σ2
j

� max
S:|S|¤k

¹
jPS

1

1� |µj | ,

where the first inequality is from the definition of ψS . The laste quality holds as σ2
j � 1�µ2

j . Therefore,

under the assumption that |µj | ¤ 1� 1
k , the following inequality holds

ck ¤ max
S:|S|¤k

¹
jPS

k ¤ kk

Hence,

ck
pk � 1q! ¤

kkk

k!
� 2pk�1q log2 k�log2 k!

From Stirling approximation log2 k! � k log2 k � k log2 e�Oplog2 kq. Hence,

ck
pk � 1q! ¤ 2k log2 e�Oplog2 kq � ek �Opkq.

Using the above inequality and Theorem 2 in the main text, we obtain the corollary.

V. LEARNING OTHER HYPOTHESIS CLASSES

In this section, we extend our results to two other type of concept classes. The first one is called

half-spaces and the other one is a generalized version of the concentrated hypothesis classes.

A. Half-spaces

In this section, we consider learning another class of functions called half-spaces. More precisely, a

half-space a Boolean-valued function of the form

cpxq � signra0 �
ḑ

j�1

ajxjqs, @x P Rd

where aj P R. We start with a lower-bound on the optimal classification error of the class.

Lemma 4. Let D be any joint probability distribution on Rd � t�1, 1u with marginal Dx that is the

uniform distribution on Sd�1 or jointly Gaussian on Rd. Then, for any ε ¡ 0, the minimum generalization

error of learning with respect to half-spaces satisfy the following lower bound

Popt ¥ 1

2
� 1

2
‖p�ε ‖1,DX � ε,

where p�ε is a polynomial of degree up to Op 1
ε4 q minimizing ‖Y � p‖2,D among all such polynomials.

13



The proof of the lemma follows from Lemma 2 and [5]’s result (Theorem 6) on the sign function.

This result is stated as

Lemma 5 ( [5]). Let X be a random variable with uniform distribution on Sd�1 or jointly Gaussian on Rd.

Then, for any ε ¡ 0, there exists a polynomial p of degree Op 1
ε4 q such that E

��
ppXq� signpXq�2

�
¤ ε2.

This lemma makes a connection between half-spaces and the polynomial-approximated class. That

said, in the following theorems we show our results for PAC learning using Algorithm 1.

Theorem 3. Let D be any joint probability distribution on Rd � t�1, 1u, with marginal DX that is

uniform on the unit sphere or jointly Gaussian. Then, L2-polynomial regression PAC learns half-spaces

with expected generalization error up to

2Popt � 3ε�
d
dOp

1

ε4
q

n
log

n

dOp
1

ε4
q .

B. Generalized approximated class

Lastly, we finish this paper by extending our results to a more general hypothesis class. Fix a set of

functions e1pxq, e2pxq, ..., empxq and let H be a Hilbert space spanned by a these functions. Let C be a

class of functions each of which approximated by elements of H with square error up to ε, that is,

inf
hPH

‖c� h‖2,D ¤ ε,

for any c P C. As a special case, suppose ei’s are all the functions of the form epxq �±
jPrds x

αj
j where

αj’s are non-negative integers adding up to k. Then C is a pk, εq-approximated class as in Section IV.

Theorem 4. Suppose A is any algorithm that given n training instances finds a function ĥ P H so

that the empirical loss ‖Y � h‖2,D̂ is minimized. Then, the predictor signrĥs learns C with expected

generalization error up to

2Popt � 3ε�O
�dVCpCq

n
log

n

VCpCq
	
,

where VCpCq is the VC dimension of C.
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APPENDIX A

PROOF OF LEMMA 1

a) Mean and variance estimations:: We first take into account the effect of the imperfections in

mean and variance estimation. For tractability of our analysis, we use a fraction of the training samples

just for the mean and variance estimations. As a measure of accuracy of the estimations, we require the

differences |µ̂j�µj | and |1� σ
σ̂ | to be sufficiently small with probability close to one. This is a deviation

from standard measures of estimations in which the variance of the differences are required to be small.

In the following lemma, we bound the estimation errors in terms of the number of the samples.

Lemma 6. Given ε0, δ0 P p0, 1q the following inequalities hold with probability at least p1� δ0q��µ̂j � µj
�� ¤ ε0,

��1� σj
σ̂j

�� ¤ 2ε0
σ2
j

, (13)

for all j P rds, provided that atleast n0pε0, δ0q � 2
ε20

log 2d
δ0

samples are available.

Proof. Form McDiarmid’s inequality, for each j P rds we have

Pt|µ̂j � µj | ¥ ε0u ¤ 2 expt�nε
2
0

2
u.

Therefore, applying the union bound gives

P
! d¤
j�1

 |µ̂j � µj | ¥ ε0
() ¤ 2d expt�nε

2
0

2
u.

Thus, the right-hand side of the above inequality is less than δ0, if n ¥ 2
ε20

logp2d
δ0
q. As a result we obtain

the inequalities for the estimation of µj’s. Next, we prove the inequalities for the estimation of σj’s.

For any fixed µ̂ P p�1, 1q, define the function hµ̂pxq �
?

1�x2?
1�µ̂2 . From Taylor’s theorem, there exists

ζ P p�1, 1q which is between x and µ̂ such that

hµ̂pxq � 1� ζpx� µ̂qa
p1� ζ2qp1� µ̂2q .

As a result,

|hµ̂pxq � 1| � |ζ||x� µ̂|a
p1� ζ2qp1� µ̂2q ¤

|x� µ̂|a
p1� pmaxtx, µ̂uq2qp1� µ̂2q .

Now by setting x � µj and that |µ̂j � µj | ¤ ε0, we have

|σj
σ̂j

� 1| � |hµ̂pµq � 1| ¤ ε0
σ̂mintσ̂, σu .

Note that, |µ̂j | ¤ |µj | � ε0. Therefore,

σ̂2
j ¥ 1� p|µj | � ε0q2 ¥ σ2

j � 2ε0|µj | � ε20 ¥ σ2
j � 3ε0.
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As a result,

|σj
σ̂j

� 1| ¤ ε0
σ2
j � 3ε0

¤ 2ε0
σ2
j

,

which completes the proof of the lemma.

Now we proceed with the proof of the lemma. Let Π̄Y denote the version of Π̂Y under the assumption

that µ̂j � µj and σ̂j � σj for all j P rds. Also, let B be the even that the inequalities in (13) hold. From

Minkowsky’s inequality, by adding and subtracting Π̄Y we have

‖ΠY � Π̂Y ‖2 ¤ ‖ΠY � Π̄Y ‖2loooooomoooooon
V

� ‖Π̄Y � Π̂Y ‖2loooooomoooooon
W

.

Let V and W denote the first and the second term above, respectively. We proceed by the following

lemmas.

Lemma 7. Given any δ ¡ 0, the inequality ‖ΠY � Π̄Y ‖2 ¤
b

2dkck
pk�1q!n log 2dk

pk�1q!δ holds with probability

p1� δq.

Proof. Recall that Π̄Y is defined as

Π̄Y pxdq �∆
¸

S:|S|¤k
f̄SψSpxdq,

where the Fourier-estimates f̄S are defined as f̄S �∆ 1
n

°
i Y piqψSpXpiqq. In addition, by definition of the

projection function ΠY , we have

ΠY pxq �
¸

S:|S|¤k
fS ψSpxq, @x P X d.

Therefore, from Parseval’s identity, the 2-norm factors as

‖ΠY � Π̄Y ‖2
2 �

¸
S:|S|¤k

|fS � f̄S |2.

In what follows, we show that |fS � f̄S | ¤ ε for all subsets S � rds with |S| ¤ k. Note that f̄S is a

function of the training random samples pXpiq, Y piqq, i � 1, 2, ..., n. Observe that Erf̄Ss � fS which

implies that f̄S is an unbiased estimation of fS . Since the samples are drawn independent and identically

distributed (i.i.d.), we apply McDiarmid’s inequality to bound the probability of the event |fS � f̄S | ¥ ε1.
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For that, fix i P rds and suppose pXpiq, Y piqq in the training set is replaced with an i.i.d. copy pX̃piq,
Ỹ piqq. With this replacement f̄S is changed to another random variable denoted by f̃S . Then

|f̄S � f̃S | � 1

n
|Y piqψSpXpiqq � Ỹ piqψSpX̃piqq|

¤ 1

n
|Y piqψSpXpiqq| � |Ỹ piqψSpX̃piqq|

¤ 1

n
|ψSpXpiqq| � |ψSpX̃piqq|

¤ 2

n
‖ψS‖8,

where ‖ψS‖8 � maxx |ψSpxq|. Let ck � maxS�rds,|S|¤k‖ψS‖28. Then, from McDiarmid’s inequality,

for any ε1 P p0, 1q

P
!

max
S:|S|¤k

��f̄S � fS
�� ¥ ε1

)
¤ 2

� ķ

m�0

�
d

m


�
exp

 � nε12

2ck

(
, (14)

where we also used the union bound. For k ¤ d{2, we obtain that

ķ

m�0

�
d

m



¤ k

dk

k!
.

As a result, with probability at least p1 � δq, maxS:|S|¤k
��f̄S � fS

�� ¤ b
2ck
n log 2dk

pk�1q!δ . Hence, we with

probability at least p1� δq

‖ΠY � Π̄Y ‖2
2 ¤

2dkck
pk � 1q!n log

2dk

pk � 1q!δ ,

and the proof is complete by taking the square root of both sides.

Lemma 8. Conditioned on B, the inequalities ‖Π̄Y �Π̂Y ‖8 ¤ λpεq hold, almost surely, for all k-element

subsets J � rds, where λ is a function satisfying λpε0q � Op kdkckpk�1q!ε0q as ε0 Ñ 0.

Recall that the function Π̄Y is defined as

Π̄Y pxdq �∆
¸

S:|S|¤k
f̄SψSpxdq,

where the Fourier-estimates f̄S are defined as

f̄S �∆ 1

n

¸
i

Y piqψSpXpiqq.

From triangle inequality for 8-norm and the definition of Π̂Y and Π̄Y we obtain

‖Π̂Y � Π̄Y ‖8 ¤
¸

S:|S|¤k
‖f̂S pψS � f̄S ψS‖8. (15)
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Again by triangle inequality and by adding and subtracting f̄S pψS , we obtain that

‖f̂S pψS � f̄S ψS‖8 ¤ ‖f̂S pψS � f̄S pψS‖8 � ‖f̄S pψS � f̄S ψS‖8

� |f̂S � f̄S | ‖ pψS‖8 � |f̄S | ‖ pψS � ψS‖8.

Next, note that from triangle inequality

|f̂S � f̄S | ¤ 1

n

¸
i

| pψSpxpiqq � ψSpxpiqq| ¤ ‖ψS � pψS‖8.

Therefore,

‖f̂S pψS � f̄S ψS‖8 ¤ �
‖ pψS‖8 � |f̄S |

�
‖ pψS � ψS‖8. (16)

We proceed by bounding each term above. As for the first term we have, that ‖ pψS‖8 ¤ ‖ψS‖8�‖ pψS �
ψS‖8. As for the second term, we have

f̄S � 1

n

¸
i

Y piqψSpXpiqq ¤ ‖ψS‖8.

Lastly, the third term is bounded using the following lemma.

Lemma 9. Conditioned on B, the inequality ‖ψS � pψS‖8 ¤ γpε0q holds, almost surely, where γ is a

function satisfying γpε0q � Opkε0?ckq as ε0 Ñ 0.

Before proving this lemma, we complete our argument. As a result of this lemma and using the triangle

inequality, we obtain from (16) that

‖f̂S pψS � f̄S ψS‖8 ¤ �
2‖ψS‖8 � ‖ pψS � ψS‖8

�
‖ pψS � ψS‖8

¤ �
2
?
ck � γpε0q

�
γpε0q.

Lastly, from (15) we get the following bound

‖Π̂Y � Π̄Y ‖8 ¤ λpε0q �∆ dk

pk � 1q!
�
2
?
ckγpε0q � γ2pε0q

�
.

It is not difficult to check that λpε0q � Op kdkckpk�1q!ε0q as ε0 Ñ 0. Now it remains to prove Lemma 9 which

is given below:

Proof of Lemma 9: We start with the triangle inequality for 8-norm by adding and subtracting bSψS :

‖ψS � pψS‖8 ¤ ‖ψS � bSψS‖8 � ‖bSψS � pψS‖8.
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Note that bSψS �
±
jPS

xj�µj
σ̂i

. Now, using the triangle inequality on the second term above, we have

‖bSψS � pψS‖8 � ‖bSψS �
�¸
lPS

¹
j¤l

xj � µ̂j
σ̂i

¹
r¡l

xr � µr
σ̂r

�� pψS‖8

¤
¸
lPS

|µl � µ̂l|
σ̂l

‖
¹
j l

pxj � µ̂jq
σ̂j

¹
r¡l

pxr � µrq
σ̂r

‖8

¤ ε

σmin

¸
lPS

‖
¹
j l

pxj � µ̂jq
σ̂j

¹
r¡l

pxr � µrq
σ̂r

‖8

¤ ε

σmin

¸
lPS

¹
j l

p1� |µ̂j |q
σ̂j

¹
r¡l

p1� |µr|q
σ̂r

paq
¤ ε

σmin

¸
lPS

¹
j l

p1� |µj |qp1� εq
σ̂j

¹
r¡l

p1� |µr|q
σ̂r

pbq
¤ ε

σmin
bS

¸
lPS

¹
jPS

p1� |µj |qp1� εq
σj

pcq
¤ kε

σmin
bSp1� εqk‖ψS‖8,

where paq follows from the inequality p1� |µ̂j |q ¤ p1� |µj |qp1� εq, and pbq follows from p1� |µj |q ¤
p1� |µj |qp1� εq. Lastly, pcq holds as |S| ¤ k and because ‖ψS‖8 �±

jPS
1�|µj |
σj

.

‖ψS � pψS‖8 ¤ |1� bS |‖ψS‖8 � kε

σmin
bSp1� εqk‖ψS‖8. (17)

From the assumption of the lemma and the definition of bS we obtain that

1� p1� εq|S| ¤ 1� bS ¤ 1� p1� εq|S|.

Since ε P p0, 1q and |S| ¤ k, then p1 � εq|S| ¥ 1 � kε. Also, from the fact that p1 � xq ¤ ex for all

x P R, we obtain

1� ekε ¤ 1� bS ¤ kε ¤ ekε � 1. (18)

Lastly, combining (17) and (18) gives the following inequality

‖ψS � pψS‖8 ¤ pekε � 1q‖ψS‖8 � kε

σmin
p1� εq2k‖ψS‖8.

The proof is complete by noting that ‖ψS‖8 ¤ ?
ck. �

From Lemma 8, we know that W is measurable with respect to B. In particular, conditioned on B,

W ¤ λpε0q. Therefore, from the above lemmas and using the inequality ‖�‖2 ¤ ‖�‖8, we have, with

probability p1� δ0qp1� δq that

‖ΠY � Π̄Y ‖2 ¤
d

2dkck
pk � 1q!n log

2dk

pk � 1q!δ � λpε0q.
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Now set ε0 �
b

2
n0

log 2d
δ with δ0 � δ. Then, with n0 � Opnq, we get with probability p1 � δq2 that

‖ΠY � Π̄Y ‖2 � O
�b

2dkck
pk�1q!n log 2dk

pk�1q!δ
	
. Now the proof is complete by changing δ to δ{2 and noting

that p1� δ{2q2 ¥ 1� δ.
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