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Abstract

Gradient estimation is a central challenge in training parameterized quantum cir-
cuits (PQCs) for hybrid quantum-classical optimization and learning problems.
This difficulty arises from several factors, including the exponential dimension-
ality of the Hilbert spaces and the information loss in quantum measurements.
Existing estimators, such as finite difference and the parameter shift rule, often
fail to adequately address these challenges for certain classes of PQCs. In this
work, we propose a novel gradient estimation framework that leverages the un-
derlying Lie algebraic structure of PQCs, combined with the Hadamard test. By
analyzing the differential of the matrix exponential in Lie algebras, we derive an
expression for the gradient as a linear combination of expectation values obtained
via Hadamard tests. The coefficients in this decomposition depend solely on the
circuit’s parameterization and can be computed efficiently. Furthermore, these
expectation values can be estimated using state-of-the-art shadow tomography
techniques. Our approach enables efficient gradient estimation, requiring a number
of measurement shots that scales logarithmically with the number of parameters,
and with polynomial classical and quantum time. This is an exponential reduction
in the measurement cost and a polynomial speed-up in time compared to existing
works.

1 Introduction

Hybrid quantum-classical strategies have emerged as a leading approach for quantum optimization and
learning [BLSF19, CAB+21], and have been extensively studied across a broad range of domains,
including optimization [FGG14], quantum chemistry [JEM+19, AWGP21, GEBM19, DAJ+21],
and quantum machine learning from classical and quantum data [FN18, SK19, MNKF18, LW18,
HCT+19, HPS21, HS24, HS23, HBM+21]. Variational quantum algorithm (VQA) particularly has
been a promising paradigm for quantum learning and inference, where a PQC (a.k.a ansatz) is trained
in a classical-quantum loop. Gradient-based training methods have gained significant attention in
the literature [HN21, SWM+20, SBG+18, FGG14, FN18, SK19, MNKF18] and have demonstrated
significant advantages in convergence rates compared to gradient-free methods.

However, estimation of the gradient can be computationally challenging due to several factors
including the exponential dimensionality of the Hilbert spaces, the no-cloning, information loss of
quantum measurements, and non-commutativity of Hamiltonian terms. Therefore, each gradient
estimation can have an exponential sample complexity leading to a high overhead and hence a
bottleneck for the scalability of gradient-based VQAs.

Several approaches have been introduced to estimate the gradient [FN18, MNKF18, SWM+20,
HGS22, HN21, SBG+18, MKF19, WLW+24, SKP24]; but they often yield suboptimal gradient
circuits for certain PQCs. Methods based on finite differences evaluate the objective function in
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the neighborhood of the parameters. They can be applied to general PQCs, but suffer from a slow
convergence rate [HN21]. The well-known parameter shift rule (PSR) [SBG+18, MNKF18] relies
on the Hadamard test with Pauli operators to estimate the partial derivatives. The Hadamard test is
an efficient method that directly measures the partial derivatives and does not have the numerical
instability of indirect methods such as finite differences. However, PSR with Hadamard test is
restricted to ansätze with two distinct eigenvalues. It can be adapted for more complex circuits
via backpropagation, but it comes with high computational costs in terms of gate decomposition.
Other existing methods often apply to more general circuits but have high overhead due to the
extensive use of the ansatz with repeated measurements, and exponential classical computation
[BC21, WIWL22, The23].

Lie algebraic structures in PQCs have been increasingly important in analysis and design of hybrid
quantum-classical strategies. Ansätze that have dynamical Lie algebra (DLA) with polynomial
dimensionality may not exhibit any Barren plateaus, which are flat regions in the parameter landscape
[CSV+21, FHC+23, MBS+18]. Moreover, such Lie algebraic symmetries have be used for classical
simulation of quantum models [GLC+23]. In this work, we build upon the Lie algebraic characteri-
zations and we develop an efficient gradient estimation for general circuits based on the Hadamard
test followed by post-processing steps. With that, we enable efficient applicability of the Hadamard
test to generic PQCs without the need to change the ansatz structure and with low classical overhead.

1.1 Summary of the main results

We analytically derive an explicit expression for the gradient of generic PQCs in terms of a the
expectation values of Hadamard tests corresponding to a set of Pauli strings. Then, we develop a
gradient estimation method using a series of Hadamard tests at the output of the ansatz followed
by classical post-processing techniques including classical shadow tomography (CST) [HKP20]. A
generic PQC on n qubits can be represented as U(−→a ) = eiA(−→a ), where A is the parameterized
Hamiltonian with −→a = (a1, · · · , ap) as the vector of parameters. Typically, the Hamiltonian is written
in term of Pauli strings as A(−→a ) =

∑p
i=1 aiPi, where ai ∈ R and Pi’s are tensor products of Pauli

operators. This formulation includes multi-layered PQCs (e.g., the hardware-efficient ansatz) and
appears in a wide range of setups including quantum approximate optimization algorithm (QAOA),
many-body quantum systems (e.g., Ising model), and adiabatic evolutions. In a typical VQA, one
aims at minimizing a loss function L(−→a ) depending on the parameterization of the PQC, the input
state, and the measurement observable.

We present a binary encoding of Pauli strings to capture the structural properties of their commutation
relations. Similar techniques have been used before in the context of the stabilizer formulation
in quantum error correction [CRSS96, Got97]. Then, we make a connection between this binary
encoding and the differential of the matrix exponential map, studied in Lie algebra [Ros06]. We write
the partial derivatives of the PQC as an infinite-length linear combination of expectation values of
Hadamard tests for various Pauli strings. We show that when the Pauli strings in A(−→a ) are closed
under the commutation, the infinite-length linear combination collapses to a finite number of terms
that can be computed efficiently using the binary encoding. Such terms are written as the expectation
value of a set of observables that can be estimated using CST, as an estimation procedure to estimate
several observables with minimal sample complexity [HKP20].

When the closedness condition is not directly satisfied, one can consider the sub algebra generated
by Pi terms in A(−→a ) and apply the proposed gradient estimation method. In that case, the sample
complexity and running time depend on the dimensionality of this sub-algebra. Therefore, the
proposed estimation is efficient when the dimensionality is polynomial with n. The polynomial size
assumption is already satisfied for several well-known Hamiltonian models, including variants of
2-local Ising model (e.g., the transverse-field) and Kitaev chain [WKKB23] used to model molecular
dynamics. In addition, the polynomial dimensionality is an essential component to avoid the barren
plateaus [LCS+22, FHC+23, MBS+18, CSV+21] which are flat regions in the parameters landscape
that have exponentially small gradients. This stems from the fact that the variance of the gradient is
inversely proportional to the dimension of the DLA [FHC+23].

Existing simulation methods such as g-sim [GLC+23] can efficiently simulate a quantum system
and hence compute the gradient, under the assumption that both the Hamiltonian A(−→a ) and the
observable O have polynomial Lie dimensionality. In contrast, we only require A(−→a ) to have
polynomial Lie dimensionality.
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Circuit Changes Sample Complexity Running Time*

SPSR[BC21, WIWL22] p O(p) O(na+b)
NPSR[The23] Õ(p∥A∥) Õ(p∥A∥) O(na+b)
SU (N)[WLW+24] p O(p) exp(Θ(n))
[AKH+23] - O(log2 p) p exp

(
Õ(n)

)
This work (bounded shadow norm) 0 O(logp) Õ(nb + n3a)

Table 1: Rough comparison of various methods for estimating the gradient of a PQC with p parameters
and DLA based on Pauli strings with poly(n) dimensionality. *For presentation convenience of the
runtime, it is assumed that p = Θ(na) and that each use of the ansatz takes Θ(nb) quantum time,
where a and b are arbitrary constants. Also, the detailed dependencies on 1

ϵ and ∥O∥∞ are ignored.

A more specific summary of our contributions is give below:

• The gradient of the loss function can be written as ∇L =
−→
D(I − eV )V −1, where

−→
D is

the vector of the expectation values of Hadamard tests for a set of Pauli strings, and V is a
matrix constructed based on the parameters −→a (see Theorem 2).

• An algorithm that estimates ∇L(−→a ) using Õ(p) Hadamard tests and O(p3 + pn) classical
time.

• When the shadow norm of the observable is bounded, the gradient can be estimated with
O(log p) copies and poly(n) time (see Section 3.3).

• An approximation method for the general case where the Pauli terms are not closed under
commutation (see Theorem 5).

1.2 Comparison with related methods

We consider the three complexity measures: (1) sample complexity, (2) the classical post-processing
time, and (3) the number of distinct circuits that need to be evaluated to obtain all the partial
derivatives. Although this measure is less restrictive, it is important to ensure it scales polynomially
with the number of qubits. Table 1 demonstrates a simplified comparison with existing works for
gradient estimation. For a more intuitive comparison, it is assumed that the PQC acts on n qubits
with gate complexity Θ(nb) and p = Θ(na) parameters, where a and b are arbitrary constants. The
table shows that our approach provides an exponential advantage in terms of the copy complexity
and a polynomial speed-up in classical running time. Below, we highlight some of the most relevant
approaches for comparison to our work.

Stochastic PSR: This method is a generalization of PSR [BC21, WIWL22], where each partial
derivative is written as an integral, and a Monte Carlo strategy is used to estimate it. David et al.
[WIWL22] also presented a generalization of the PSR using the Discrete Fourier series. Here, the
parameters are jointly shifted depending on the spectrum of the ansatz. This method is efficient when
the Hamiltonian A is promised to have equidistant eigenvalues. However, for a generic PQC one first
needs to compute the spectral decomposition of A to find the pattern of the parameter shifts. This
process in general takes exp{Θ(n)} classical time as A is an exponentially large matrix.

Nyquist PSR: Recently [The23] proposed a shift rule for PQCs where only the parameters are
shifted without any other modifications of the ansatz. The method relies on a beautiful connection
between the Nyquist-Shannon Sampling theorem and the Fourier series that was observed earlier in
[WIWL22, VT18]. The number of unique circuits for this estimation scales with p and the difference
between the maximum and minimum eigenvalues of A — a quantity bounded by the operator norm
∥A∥. As the authors reported, this method has low approximation error when the parameter value is
large enough. More precisely, the approximation error is O( 1

c2 ) as long as θ = (1− Ω(1))c, where c
is the maximum magnitude of a parameter value.

Lie algebraic approach: This is another approach [WLW+24] based on Lie algebra and a nice
connection to the geometry of SU(2n) matrices and the adjoint operator. The gradient is calculated
by finding the Jacobian matrix of the matrix representation of PQC. As a result, the classical running
time scales as p2Θ(n).
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Shadow tomography: A recent work [AKH+23] proposes a quantum backpropagation method for
PQC of the form U(−→a ) =

∏p
j=1 e

iajPjUj , where Uj are fixed unitaries and Pj are fixed Pauli words.
Leveraging the shadow tomography of [Aar18], the method achieves a sample complexity scaling as
log2 p, but with the cost of an exponential classical memory requirement of p2Õ(n).

Classical simulatability: When the ansatz has a constrained underlying Lie-algebraic structure, one
can use classical simultability results such as [GLC+23] to estimate the gradient. Such an approach
can be efficient under two conditions: the observable O and input state ρ are classically simulatable.
Assuming both ρ and O are efficiently classically simulatable, our work and that of [GLC+23]
have time complexity scaling polynomially with the dimension of the Lie algebra. Our work is
complementary to [GLC+23] and offers distinct advantages when ρ and/or O are not classically
simulatable. This arises, for example, when O does not lie in a Lie algebra of polynomial dimension,
and ρ is a physical quantum state obtained via an external process (e.g., quantum sensing) or generated
by a unitary that does not have polynomial Lie dimensionality.

While [GLC+23] relies on computing expectation values of the Lie algebra basis elements (B(λ)
α

in the reference) under ρ, this is only efficient when certain classes of ρ including product states or
stabilizer states. In more general setting, such expectation values must be estimated in a quantum
computer and the sample complexity of the estimation may not be polynomial in n.

Furthermore, even when ρ is classically simulatable, we expect significant (possibly exponential)
separation from [GLC+23] when the observable does not have polynomial Lie dimensionality while
it can be implemented in polynomial quantum time on a quantum device and has bounded shadow
norm. For example, in fidelity estimation, O = |ϕ⟩⟨ϕ|, where |ϕ⟩ = eiH |0⟩ and H is a Hamiltonian
not admitting a polynomial Lie decomposition. Here, O is a low-rank observable with bounded
shadow norm, but exponential Lie dimensionality. Hence, classical simulation runs exponentially in
time.

2 Preliminaries and Model

2.1 General Framework

A VQA minimizes a cost function defined as

L(−→a ) := tr
{
O U(−→a )ρU(−→a )†

}
, (1)

where O is a fixed observable, ρ is the initial (mixed) state, and U(−→a ) is a parameterized quantum
circuit with −→a = (a1, · · · , ap) as the vector of parameters. As U is unitary, we can always write
U(−→a ) = eiA(−→a ) for some Hamiltonian matrix A. To ensure computational tractability, it is assumed
that the number of parameters p = poly(n), with n being the number of qubits. With this notion, the
objective is to find min−→a L(−→a ).
Making iterative progress in the direction of the steepest descent is one of the most popular optimiza-
tion techniques in VQAs, as it has been in classical problems. Ideally, a gradient descent optimizer
applies the following update rule at each iteration t:

−→a (t+1) = −→a (t) − ηt∇L(−→a (t)), (2)

where ηt ∈ R is the learning rate at iteration t. The above update rule is not realistic as the
objective function L(−→a ) is an expectation value, and the characteristics of ρ are either unknown or
computationally intractable. Hence, one needs gradient estimation — an extensively studied topic in
the literature.

2.2 Pauli Group

The Pauli gates are fundamental quantum gates that correspond to rotations around the respective
axes of the Bloch sphere and form the basis for many quantum algorithms. Together with the identity,
they are denoted as {σ0, σ1, σ2, σ3} with

σ0 = I =

(
1 0
0 1

)
σ1 = X =

(
0 1
1 0

)
, σ2 = Y =

(
0 −i
i 0

)
, σ3 = Z =

(
1 0
0 −1

)
.
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The single-qubit Pauli group P1 is the 16 element set {cσs : s = 0, 1, 2, 3, c = ±1,±i}. The
product of the Pauli operators is governed by the identities XY Z = iI and X2 = Y 2 = Z2 = I .

For n qubit systems, the Pauli tensor products are denoted as σs := σs1 ⊗σs2 ⊗ · · ·⊗σsd , for all
s ∈ {0, 1, 2, 3}n. The n-qubit Pauli group Pn is then defined as the group generated by n-fold tensor
products of the Pauli matrices:

Pn = {cσs : s ∈ {0, 1, 2, 3}n, c = ±1,±i} .
This group has 4d+1 elements and spans any operator on the space of n qubits:
Fact 1. Any bounded operator A on n qubits can be uniquely written as A =

∑
s∈{0,1,2,3}n as σ

s,

where as = 1
2n tr

{
Aσs

}
.

In light of this statement, we can assume that the parameterized circuit of the ansatz is of the form
U(−→a ) = exp{iA(−→a )}, where A(−→a ) =

∑
s∈S asσ

s for some S ⊆ {0, 1, 2, 3}n.

2.3 Hadamard Test

Given a unitary U , the Hadamard test, which is a special case of the phase estimation, is a quantum
circuit that we can use to estimate the real or imaginary value of ⟨ψ|U |ψ⟩ for some state |psi⟩. The
circuit consists of two Hadamard gates and a controlled version of U .

When the ansatz has a simple form U(θ) = eiθσ
s

its derivative can be directly estimated via a
Hadamard test [MNKF18] giving the following quantity

Ds := i tr
{
O[σs, ρout]

}
, (3)

where ρout = U(−→a )ρU(−→a )† is the output of the ansatz on input ρ. The above equation is based
on the fact that dU

dθ = iσsU(θ). Estimating the gradient through the Hadamard test can enhance
computing efficiency, and allows for the use of measurement optimization techniques. Moreover, it
can be used to compute higher-order partial derivatives used in higher-order optimization algorithms
[LDO+24].

2.4 Differential of The Matrix Exponential

The matrix exponential is defined as

exp(X) = eX =

∞∑
k=0

Xk

k!
,

where X is a square matrix. Due to non-commutativity of matrix product, the differential of the
exponential map has a more complex formula compared to the exponential function. Suppose X(τ)
is a differentiable matrix (linear operator) as a function of the variable τ ∈ R. The adjoint map is
defined as the mapping adX(Y ) = [X,Y ] = XY −Y X for square n×nmatrixesX,Y ∈ GL(n,C).
Then, for any k = 0, 1, ..., we can define

adkX(Y ) = [X, · · · , [X,Y ] · · · ].

The exponential map and the adjoint are fundamental concepts in the theory of Lie groups and Lie
algebras, describing how a Lie group or Lie algebra acts on its own Lie algebra by conjugation (a
standard text book on this topic is [Ros06]). The adjoint operator is connected to the derivative of the
matrix exponential.
Theorem 1 ([Ros06]). Suppose X(τ) is a differentiable (linear) operator with respect to a variable
τ ∈ R. Then, the differential of the matrix exponential is given by

d exp{X(τ)}
dτ

= exp{X(τ)}1− exp{−adX}
adX

dX(τ)

dτ
. (4)

3 Main Results

We introduce an approach for estimating the gradient of the loss for a generic ansatz. We show that
the Hadamard test followed by classical post-processing leads to an approximation of gradient. We
start with a binary encoding of the Pauli matrices.
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3.1 Binary Encoding of Pauli Operators

We provide an explicit representation of the Pauli group with binary strings, which we use to develop
an efficient algorithm for gradient estimation. It is well-known that the Pauli group Pn is isomorphic
to the semi direct product of Z4 and Z2n

2 . In this work, we present an explicit form of such a mapping.
This binary representation allows us to write the partial derivatives of L(−→a ) as linear combination of
terms related to the Hadamard tests applied to the ansatz output.

Note that the phase scalar c ∈ {±1,±i} in Pn can be written as ia, where a ∈ Z4, the
modulo-four group. As for the Pauli operators, consider the binary vector group Z2 × Z2 =
{(0|0), (0|1), (1|0), (1|1)} with the element-wise modulo two addition:

(a0|a1) + (b0|b1) = (a0 ⊕ b0|a1 ⊕ b1),

where ⊕ is the binary addition. We use (·|·) to distinguish between the first and the second components
of elements of Z2 × Z2. We associate the identity and each Pauli operator with elements of Z2 × Z2

as
σ0 → (0|0), σ1 → (0|1), σ2 → (1|0), σ3 → (1|1).

Extending to n-qubits, (Z2 × Z2)
n is defined as the set of all (a0|a1) for binary strings a0,a1 ∈ Zn

2
with the element-wise addition:

(a0|a1) + (b0|b1) = (a0 ⊕ b0|a1 ⊕ b1).

We sometimes write Z2n
2 to denote this group for more compactly. Moreover, any Pauli string

σs, s ∈ {0, 1, 2, 3}n is associated with (s0|s1) where s0 = (s01, · · · , s0d), s1 = (s11, · · · , s1d) are binary
strings.
Example 1. The Pauli string X ⊗Y ⊗X which is associated with σs with s = (1, 2, 1) has the
following binary encoding: ((0, 1, 0)|(1, 0, 1)).
Definition 1. Any element of Pn, written as iaσs, is represented as (a, s) where a ∈ Z4 and s ∈ Z2n

2 .
Such a representation is defined by the mapping ϕ : Pn → Z4 × Z2n

2 , that sends ϕ(iaσs) = (a, s).

The above mapping can be used to encode the product of the Pauli matrices.

Encoding the products of Pauli words. Inspired by the Levi-Civita symbol, we define a sign
function on i, j ∈ Z4

δ(i, j) :=


−1 if (i, j) = (1, 3), (2, 1), (3, 2)

1 if (i, j) = (1, 2), (2, 3), (3, 1)

0 otherwise.
(5)

For vectors u,v, define δ(u,v) =
∑

j δ(uj , vj).

Lemma 1. The product of any pair of Pauli strings σs, σr equals σsσr = iδ(s,r)σs⊕r.

Proof. Starting from single qubit products, let a ̸= b ̸= c be distinct elements of {1, 2, 3}. Without
loss of generality suppose a < b. Then, it is not difficult to verify the lemma for single qubit case.
For general d > 1, with the tensor product, we have that

σsσr =
⊗
j

σsjσrj =
⊗
j

iδ(sj ,rj)σsj⊕rj = i
∑

j δ(sj ,rj)
⊗
j

σsj⊕rj = i
∑

j δ(sj ,rj)σs⊕r.

With this result, and by adding the phase scalars, for any pair aσs and bσr from the Pauli group Pn,
the product is characterized by the ϕ map in Definition 1 as

(aσs)(bσr) 7→ (mod4(a+ b+ δ(s, r)), s⊕ r).

Example 2. Consider P1 = iX ⊗Y ⊗X and P2 = Z ⊗X ⊗Y that are encoded to
(1, ((010)|(101))) and (0, ((101)|(110))), respectively. Then, P1P2 is associated the binary en-
coding (0, ((111)|(011))) which represents Y ⊗Z ⊗Z.

This binary representation is used to characterize the commutation relations between Pauli strings.
Lemma 2. The commutator of any pair of Pauli strings σs, σr is given by [σs, σr] = 2iδ(s,r)σs⊕r.
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3.2 Gradient Estimation

Recall the objective function L(−→a ) in (1) and the expectation values Ds in (3) that can be estimated
using Hadamard test. In what follows, we show how the gradient of L can be evaluated in terms ofDs

quantities. Recall the Hamiltonian Pauli decomposition: A(−→a ) =
∑

s∈S asσ
s. We first assume that

the set of Pauli strings σs, s ∈ S appearing in this decomposition is closed under the commutation,
that is for any pair s, t ∈ S the commutator [σs, σr] also appears in the above decomposition. The
more general case where the Pauli terms are not closed under the commutation is also considered in a
more complete version of the paper [HMS24].

We consider a geometric representation of the gradient in terms of Ds terms. Let S = {s1, · · · , sp},
where p is the number of parameters. Let e1 = (1, 0, · · · , 0)T , · · · , ep = (0, · · · , 0, 1)T be the
canonical basis vectors in Rp. We associate each sj with ej which is also denoted by e(sj). Now

consider the vector of the expectation terms
−→
D = (Ds1 , · · · , Dsp) as a row vector in Rp. Then, we

expresses the gradient as a vector derived from
−→
D .

Theorem 2. For the ansatz U(−→a ) = exp{iA(−→a )}, with A(−→a ) =
∑

s∈S asσ
s, where S is closed

under Pauli commutations, the gradient satisfies ∇L =
−→
D(I − eV )V −1, where V is the p× p matrix

with the ith column given by

vj := 2i
∑
s∈S

asi
δ(s,sj) e(s⊕sj). (6)

The proof outline is given in Section 4.2. This representation is the key to the efficient computation
of the gradient from the estimation of Ds, s ∈ S, summarized as Algorithm 1.

Algorithm 1 Gradient Estimation
Input: S

1: procedure GRADIENT ESTIMATION
2: Estimate Ds, s ∈ S with Hadamard tests.
3: Compute the matrix V where the column i is computed as in (6).
4: Compute the matrix B = (I − e−V )V −1, where V −1 is the generalized inverse of V .

5: Return ∇̂L =
−→
D̂B.

Theorem 3. Suppose the Hamiltonian parameter set S is closed under commutation. Then, Algorithm
1 computes ∇L in O(p3 + pn) time with O(p) use of the Hadamard tests.

Proof. With Theorem 2, the runtime of the algorithm is O(p3 + pn) because each column vi is
computed in O(pn) time and, and the matrix B can be computed in O(p3) time with a proper matrix
exponentiation algorithm.

A simple example of a Hamiltonian closed under commutation is A = a1X
⊗n + a2Y

⊗n + a3Z
⊗n.

The gradient in this case can be computed by a 3 × 3 matrix and 3 Hadamard tests, irrespective
of the dimensionality of the quantum system. Another class is K-junta Hamiltonians, that acting
non-trivially on k qubits. In that case, all the Pauli strings σs, s ∈ S, will be of the form σs

k ⊗ In−k,
the set S will be closed under commutation.
Remark 1. When the closedness condition is not directly satisfied, one can apply Theorem 3 to
the DLA generated by the terms in A(−→a ). When the dimensionality of the DLA is m, Algorithm 1
computes ∇L in O(m3 + dm) time with O(m) use of the Hadamard tests.

Hence, Algorithm 1 is efficient when the DLA has dimensionality polynomial in n.
Example 3. The following Hamiltonian has a DLA with dimensionality O(n2):

H =

n∑
i=1

ZiZi+1 +Xi,

where Xi, Zi are the corresponding Pauli operators. In this case, applying Theorem 3 to the DLA
generated by H , Algorithm 1 computes ∇L in O(n6) time with O(n2) use of the Hadamard tests.

As a sanity check, Appendix A present an explicit derivation of the gradient in the single qubit case.
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3.3 Efficient Estimation with Classical Shadow Tomography

Turning the gradient estimation to a series of Hadamard tests has another benefit that can further
reduce the number of shots to O(log p). This can be done using shadow tomography [Aar18, HKP20,
HBM+21, CGY24, KGKB25]. With our approach, the components of the gradient ∇L correspond
to p observables that only depend on ρout without any reconfigurations. In that case, having several
copies of ρout we can efficiently estimate all the components of the gradient. Based on Theorem
3, the observables are p different Hadamard tests denoted by Hsj , j ∈ [p] for measuring Dsj , as
appearing in the partial derivative formulation of Theorem 5. The following lemma gives an explicit
characterization of these observables.

Lemma 3. It holds that Ds = tr{Hsρ
out}, where ρout is the ansatz output state and Hs =

R†
s,−ORs,− −R†

s,+ORs,+, with Rs,± = exp
{
−i±π

4 σ
s
}

for Pauli string σs.

Proof. Recall that Ds = i tr{O[σs, ρout]}. Moreover, note from [MNKF18] the following property
of the commutator for any operator B:

[σs, B] = i
(
Rs(

π

2
)BRs(

π

2
)† −Rs(−

π

2
)BRs(−

π

2
)†
)
,

where Rs(θ) := e−i θ
2σ

s

. With this observation, we obtain

Ds = − tr
{
O
(
Rs(

π

2
)ρoutRs(

π

2
)† −Rs(−

π

2
)ρoutRs(−

π

2
)†
)}

= − tr
{
Rs(

π

2
)†ORs(

π

2
)ρout

}
+ tr

{
Rs(−

π

2
)†ORs(−

π

2
)ρout

}
,

where we used the cyclic property of the trace. The last equation gives the expression for Hs.

In order to estimate the gradient, one needs to estimate all the expectation values o±s :=

tr
{
R†

s,±ORs,±ρ
out
}

for s ∈ S. We use CST to exponentially reduce the measurement shots
for the gradient estimation.

Theorem 4 ([HKP20]). Given an observable O, state ρout, and a set S ⊆ {0, 1, 2, 3}n, the ex-

pectation values o±s := tr
{
R†

s,±ORs,±ρ
out
}

for s ∈ S can be estimated with ϵ additive error
using

N = O

(
1
ϵ2 log |S|max

s∈S

∥∥∥R†
s,±ORs,±

∥∥∥2
shadow

)
copies of ρout, where ∥·∥shadow is the shadow norm.

The shadow norm (Definition 2 in Appendix B) is closely related to the variance of the observable
and the set of the unitary transformation used for taking the classical shadows. For random Clifford
measurements, it is bounded by the Hilbert-Schmidt norm; whereas for random Pauli measurements,
it is bounded by 4k, where k is the the locality of the observable, not the actual number of qubits
[HKP20]. For completeness, a brief summary of CST is provided in Appendix B.

4 Proofs Overview

4.1 Master’s Theorem

We prove a master’s theorem for the partial derivatives of an ansatz with generic subset S that is not
necessarily closed under the commutations. This result can be used as is for generic PQCs and as a
step to prove our main results.

Theorem 5. For the ansatz U(−→a ) = exp{iA(−→a )} with A(−→a ) =
∑

s∈S asσ
s for some generic

subset S ⊆ {0, 1, 2, 3}n, the partial derivative with respect to ar is given by

∂L(−→a )
∂ar

=

∞∑
k=0

(2i)k

(k + 1)!

∑
s1∈S

· · ·
∑
sk∈S

( k∏
j=1

asj i
δ(sj ,s1⊕···⊕sj−1⊕r)

)
Ds1⊕···⊕sk⊕r. (7)

8



Proof outline. Noting that ρout := UρU†, the partial derivative of the loss with respect to as is
∂L
∂as

= tr
{
O ∂

∂as
ρout

}
, where

∂ρout

∂as
=
∂U

∂as

(
ρU†)+ (Uρ)

∂U†

∂as
, (8)

and we used the fact that ρout is Fréchet differentiable with respect to as. Based on Theorem 1, we
prove a slightly different expression of the differential of the matrix exponential.

Lemma 4. Suppose U = exp{iA(τ)}, where A(τ) is differentiable. Then, dU
dτ =

− 1−exp{iadA}
adA

(dA(τ)
dτ )U.

Proof. First note that for any operator X

(adX)† = adX† .

We can write U = (e−iH(τ))†. Therefore, given that dX†

dτ = (dXdτ )
†, from (4) we can write

dU

dτ
=

(
de−iH(τ)

dτ

)†

=

(
exp{−iH(τ)}1− exp{−ad−iH}

ad−iH

d(−iH(τ))

dτ

)†

(
exp{−iH(τ)}1− exp{+iadH}

adH

dH(τ)

dτ

)†

=

(
1− exp{+iadH}

adH

dH(τ)

dτ

)†

U.

Note that for any H ∈ g we have the following equality by its convergent power series:

1− exp{−adH}
adH

=

∞∑
k=0

(−1)k

(k + 1)!
(adH)k. (9)

Therefore, applying this equation for the operator 1−eiadH
adH

, the derivative equals to the following(
−i

∞∑
k=0

(i)k

(k + 1)!
(adH)k(

dH

dτ
)

)†

U = i

∞∑
k=0

(−i)k

(k + 1)!

(
(adH)k(

dH

dτ
)

)†

U.

Note that for any X,Y ∈ g, (adX(Y ))† = −ad†X(Y †). Therefore,

dU

dτ
= i

∞∑
k=0

(i)k

(k + 1)!
(adH)k(

dH

dτ
)U = −1− exp{+iadH}

adH
(
dH

dτ
)U.

This is the desired expression.

From this lemma, we obtain the first part of (8):

∂ρout

∂as
= −1− exp{iadA}

adA
(
∂A

∂as
)
(
UρU†)+ (Uρ)

∂U†

∂as
.

Next, from Theorem 1 and (4), the partial derivative of U† can be written as ∂U†

∂as
=

U† 1−exp{+iadA}
adA

( ∂A
∂as

), where we used the fact that A is Hermitian. Therefore, the partial derivative
of ρout equals to

∂ρout

∂as
=

1− exp{−iadA}
adA

(
∂A

∂as
)ρout + ρout

1− exp{+iadA}
adA

(
∂A

∂as
).

By simplifying the terms in the right-hand side, the partial derivative can be written as the commutator:

∂L
∂as

= tr
{
O

∂

∂as
ρout

}
= tr

{
O
[
ρout,

1− exp{iadA}
adA

(
∂A

∂as
)
]}
. (10)

9



Next, based on the Taylor expansion of the matrix exponential and from the fact that ∂A
∂as

= σs, the
above quantity decomposes as

∂L
∂as

= −i
∞∑
k=0

(i)k

(k + 1)!
tr
{
O
[
ρout, (adA)

k(σs)
]}
. (11)

Then, building on the binary encoding of Pauli operators, and Lemma 2, we can write the adjoint
operator as below.

Lemma 5. For any A,B, adA(B) = 2
∑

r,s asbri
δ(s,r)σs⊕r, where as := 1

2n tr{Aσs} and br :=
1
2n tr{Bσr} are the Pauli coefficients of A and B, respectively.

Therefore, omitting the details, we can write the series decomposition of adkA(σ
r), appearing in (11),

and as the partial derivative in the statement of Theorem 5.

4.2 Proof of Theorem 2

Proof outline. The proof of this results is based on the master theorem. Since the Pauli terms σs,
s ∈ S are closed under commutation, then per Lemma 2, S is closed under the “⊕" operation, that is
s ⊕ t ∈ S for any pair s, t ∈ S. Hence, each term s1 ⊕ · · · ⊕ sk ⊕ r in (7) in Theorem 5 remains
in S. As a result the infinite-length sum in Theorem 5 reduces to a linear combination with finite
terms as ∂L

∂ar
=
∑

s∈S gs(r)Ds, where gs(r) ∈ R are some coefficients. This means that the partial
derivative is always a linear combination of Ds, s ∈ S terms. However, the challenge is in computing
the coefficients gs(r) that are coming from an infinite-length sum. We present a method to address
this issue.

Recall that V is the p× p matrix with the ith column given by vi := 2i
∑

s∈S asi
δ(s,si) e(s⊕si), By

an induction argument, and from the definition of the matrix exponential, it is not difficult to check
that

(I − eV )V −1e(r) =

∞∑
k=0

(2i)k

(k + 1)!

∑
s1∈S

· · ·
∑
sk∈S

( k∏
j=1

asj i
δ(sj ,s1⊕···⊕sj−1⊕r)

)
es1⊕···⊕sk⊕r.

If one replaces es with Ds for any s, the we obtain (7) for the partial derivative of L. Omitting some
details, the gradient is then calculated by ∇L =

−→
D(I − eV )V −1.

5 Discussion and Conclusion

This paper provides a framework to estimate the gradient of generic PQCs via Hadamard tests for
Pauli operators followed by classical post-processing. It is shown that the proposed approach is
polynomial in classical and quantum resources when the DLA of the associated Hamiltonian of
the PQC has a dimensionality polynomial in the number of qubits. Moreover, this method does
not change the ansatz structure and can be used to reduce the measurement shot complexity to
scale logarithmically with the number of parameters. The results would be beneficial in various
optimization or learning quantum algorithms that rely on the estimation of the gradient.

One limitation of this work is when the Hamiltonian has exponentially many Pauli terms. In that
case, we can only approximate the gradient by truncation of the nested summations in Theorem 5
to a fixed number of terms. However, this will be a biased approximation. As future work, one can
extend the proposed framework to the estimation of higher-order derivatives. Deriving lower bounds
on the classical and quantum resources needed to estimate the gradient or higher-order derivatives is
another important direction.

Acknowledgments and Disclosure of Funding

This work is partially supported by the NSF Center for Science of Information (CSoI) Grant CCF-
0939370, and also by NSF Grants CCF-2006440 and and CCF-2211423.

10



References
[Aar18] Scott Aaronson. Shadow tomography of quantum states. In Proceedings of the 50th

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, page 325–338,
New York, NY, USA, 2018. Association for Computing Machinery.

[AKH+23] Amira Abbas, Robbie King, Hsin-Yuan Huang, William J. Huggins, Ramis Movassagh,
Dar Gilboa, and Jarrod McClean. On quantum backpropagation, information reuse,
and cheating measurement collapse. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems,
volume 36, pages 44792–44819. Curran Associates, Inc., 2023.

[AWGP21] Gian-Luca R Anselmetti, David Wierichs, Christian Gogolin, and Robert M Parrish.
Local, expressive, quantum-number-preserving vqe ansätze for fermionic systems. New
Journal of Physics, 23(11):113010, November 2021.

[BC21] Leonardo Banchi and Gavin E. Crooks. Measuring analytic gradients of general quantum
evolution with the stochastic parameter shift rule. Quantum, 5:386, January 2021.

[BLSF19] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized
quantum circuits as machine learning models. Quantum Science and Technology,
4(4):043001, 2019.

[CAB+21] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo,
Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and
Patrick J. Coles. Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644,
aug 2021.

[CGY24] Sitan Chen, Weiyuan Gong, and Qi Ye. Optimal tradeoffs for estimating pauli observ-
ables. In 2024 IEEE 65th Annual Symposium on Foundations of Computer Science
(FOCS), pages 1086–1105. IEEE, October 2024.

[CRSS96] A. R. Calderbank, E. M Rains, P. W. Shor, and N. J. A. Sloane. Quantum error correction
via codes over gf(4). August 1996.

[CSV+21] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles. Cost
function dependent barren plateaus in shallow parametrized quantum circuits. Nature
Communications, 12(1), March 2021.

[DAJ+21] Alain Delgado, Juan Miguel Arrazola, Soran Jahangiri, Zeyue Niu, Josh Izaac, Chase
Roberts, and Nathan Killoran. Variational quantum algorithm for molecular geometry
optimization. Physical Review A, 104(5):052402, November 2021.

[FGG14] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimiza-
tion algorithm, 2014.

[FHC+23] Enrico Fontana, Dylan Herman, Shouvanik Chakrabarti, Niraj Kumar, Romina Yalovet-
zky, Jamie Heredge, Shree Hari Sureshbabu, and Marco Pistoia. The adjoint is all you
need: Characterizing barren plateaus in quantum ansätze. September 2023.

[FN18] Edward Farhi and Hartmut Neven. Classification with quantum neural networks on near
term processors. February 2018.

[GEBM19] Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall. An
adaptive variational algorithm for exact molecular simulations on a quantum computer.
Nature Communications, 10(1), July 2019.

[GLC+23] Matthew L. Goh, Martin Larocca, Lukasz Cincio, M. Cerezo, and Frédéric Sauvage.
Lie-algebraic classical simulations for quantum computing. arXiv:2308.01432, August
2023.

[Got97] Daniel Gottesman. Stabilizer codes and quantum error correction. California Institute
of Technology, 1997.

11



[HBM+21] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo,
Hartmut Neven, and Jarrod R. McClean. Power of data in quantum machine learning.
Nature Communications, 12(1), May 2021.
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A Derivation of The Gradient for Single Qubit PQC

Consider a general single-qubit unitary of the form

U(−→a ) = exp
{
i(a1σ

1 + a2σ
2 + a3σ

3)
}
.

Let O be a generic observable and consider the associated loss L(−→a ) as in (1). As an example,
consider taking the partial derivative of L with respect to a1 at the point a1 = 0 and a3 = 0.

Closed form expression based on Theorem 5. In the context of Theorem 5, let Dj be the result
of the Hadamard test with Pauli σj , where j = 1, 2, 3. Then, (7) in Theorem 5 simplifies to the
following:

∂L
∂a1

(−→a = (0, a2, 0)) =

∞∑
k=0

(2i)k

(k + 1)!

 k∏
j=1

a2i

δ(2,(2⊕ · · · ⊕ 2︸ ︷︷ ︸
j−1 times

⊕1))
D(2⊕ · · · ⊕ 2︸ ︷︷ ︸

k times

⊕1),

where we used the fact that only terms with sj = 2 are surviving. Because a1 = a3 = 0. Note that
for even j we have 2⊕ · · · ⊕ 2︸ ︷︷ ︸

j−1 times

⊕1 = 3, and for odd j it is equal to 0⊕ 1 = 1. Therefore,

δ(2, (2⊕ · · · ⊕ 2︸ ︷︷ ︸
j−1 times

⊕1)) =

{
δ(2, 3) = 1 even k
δ(2, 1) = −1 odd k
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where we used (5). Plugging it in the first equation, we have

k∏
j=1

a2

iδ(2,(2⊕ · · · ⊕ 2︸ ︷︷ ︸
k−1 times

⊕1))
 = ak2(−i)× i× (−i)× · · · =

{
(a2i)

k(−1)k/2 even k
(a2i)

k(−1)(k+1)/2 odd k.

As a result, the partial derivative simplifies to

∂L
∂a1

(−→a = (0, a2, 0)) =

∞∑
p=0

(−2)2p

(2p+ 1)!
a2p2 (−1)pD1 +

∞∑
q=0

(−2)2q+1

(2q + 2)!
a2q+1
2 (−1)q+1D3.

Hence, one needs to measureD1 andD3 to compute the above partial derivative. Next, by simplifying
the summations, it is not difficult to show that

∂L
∂a1

(−→a = (0, a2, 0)) =
−1

2a2

(∑
p

(−2a2)
2p+1

(2p+ 1)!
(−1)p

)
D1 +

−1

2a2

(∑
q

(−2a2)
2q+2

(2q + 2)!
(−1)q+1

)
D3

=
−1

2a2

(
sin(−2a2)D1 + (cos (−2a2)− 1)D3

)
=

1

2a2

(
sin(2a2)D1 + (1− cos (2a2))D3

)
.

Notice the presence of D3 which relates to the Pauli σ3 and not appear in the ansatz expression. One
can verify that this is indeed equal to the analytic gradient of this ansatz.

Direct derivation. Note that from (8) the partial derivative of the objective function can be written
as

∂L
∂as

= tr

{
O

(
∂U

∂as

(
ρU†)+ (Uρ)

∂U†

∂as

)}
,

Given that ∂U†

∂as
= ( ∂U

∂as
)†. Then, by denoting Ũ = ∂U

∂as
we have that

∂L
∂as

= tr
{
OŨρU† + UρŨ†

}
.

Next, as UU† = I , we have

∂L
∂as

= tr
{
O
(
ŨU†(UρU†) + (UρU†)UŨ†

)}
= tr

{
O
(
ŨU†ρout + ρout(ŨU†)†

)}
,

where ρout is the ansatz output. Note that the single qubit ansatz can also be written as

U(−→a ) = I cos θ + i
(∑

âsσ
s
)
sin θ, (12)

where θ =
√∑

a2s is a normalizing parameter and âs = as

θ . Now, we can differentiate U with
respect to a single parameter as appearing in the sum:

∂U(−→a )
∂as

= (−as
θ

sin θ)I + i

∑
s′ ̸=s

−asas′
θ3

σs′ +
θ2 − a2s
θ3

σs

 sin θ

+ i

(
as cos θ

θ

∑
s′

âs′σ
s′

)
.

(13)

Using (12) to find U† and (13) for Ũ , we can analytically find the derivative of the loss function at
each point. To better visualize how we converge to the true derivative, consider the example where

U(−→a ) = exp
{
i(a1σ

1 + a2σ
2)
}

(14)
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We will analytically find the derivative at a1 = 0. The equations yield

ŨU† = i
sin a2
a2

(
cos a2σ

1 + sin a2σ
3
)

Which when plugged into the derivative expression gives

∂L

∂a1

∣∣∣∣
a1=0

=
sin a2
a2

(cos a2D1 + sin a2D3) .

Now, we will derive the same expression using Theorem 5. Looking at individual terms in the
summation, we have the following:

∂L

∂a1

∣∣∣∣
a1=0

= D1 + a2D3 −
4

6
a22D1 −

8

24
a32D3 + . . .

Note the repeating nature of the Dis. We then rearrange the terms:

∂L

∂a1

∣∣∣∣
a1=0

= D1

(
1− 4

6
a22 + . . .

)
+D3

(
a2 −

8

24
a32 + . . .

)
= D1

1

a2

(∑
p

(−1)p

(2p+ 1)!
(2a2)

2p+1

)
+D3

1

a2

(∑
p

(−1)p

(2p+ 2)!
(2a2)

2p+2

)

=
1

2a2
(D1 sin 2a2 +D3(1− cos 2a2))

=
sin a2
a2

(cos a2D1 + sin a2D3) .

Which is exactly the expression we got analytically. In this example, we can see how our method
is akin to approximating a function with a series expansion. The power of this approach lies in the
group structure of the Pauli matrices, which produces predictable patterns. Thus, we are dealing
with a repeating structure that makes use of a subset of Di terms, allowing us to have a closed form
expression of the derivative.

B Classical Shadow Tomography

For completeness, in this section we briefly describe the classical shadow tomography procedure. For
more details see [HKP20]. Classical shadow tomography is a technique used in quantum computing
to efficiently learn properties of a quantum state using only a few measurements. It was introduced to
extract useful information from quantum states without requiring a full quantum state tomography,
which is costly in terms of the number of measurements and computational resources.

More precisely, let Oj , j ∈ [M ] be a set of observables. The goal is to estimate the expectation value
of these observable for measuring an unknown state ρ in a Hilbert space H. For that, several copies
of ρ are provided. CST is a procedure with minimal sample (copy) complexity.
Theorem 6 ([HKP20]). Suppose the observables Oj , j ∈ M are traceless, then the expectation
values tr{Ojρ}, j ∈ [M ] can be approximated up to an additive error ϵ with probability (1− δ) with

O

(
1

ϵ2
log

M

δ
max

j
∥O∥2shadow

)
copies of ρ.

The shadow norm is a measure that resembles the variance in the worst case state.

In what follows we describe the steps in this procedure for a generic state ρ in a Hilbert space H..

First, generate a unitary operator U randomly from a class of choices U to be determined. Apply
U on the input state resulting in the state U†ρU . Measure the resulted state in the canonical basis
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|j⟩ , j ∈ [dimH]. From Born’s rule the probability of getting the output j is pj = ⟨j|U†ρU |j⟩.
Given an outcome j, define ωj = U |j⟩⟨j|U†. The expectation E∼(J,U)[ωJ ] over the measurement
randomness (pj) and the choice of U equals to M[ρ], where M is a mapping defined as

M[O] := EU

[ ∑
j∈[dimH]

⟨j|U†OU |j⟩ U |j⟩⟨j|U†
]
, (15)

for any operator O on H. Observe that M is a linear mapping on B(H) and hence has an inverse
denoted by M−1. We note that M−1 is the shadow channel M−1 introduced in [HKP20]. We apply
M−1 on ωj resulting in the so called shadow

ρ̂ := M−1
[
U |j⟩⟨j|U†]. (16)

Note that ρ̂ is a classical matrix and hence can be copied several times. Moreover, ρ̂ is not a valid
density operator as it is not necessarily a positive semi-definite matrix. However, it is an unbiased
estimate of the original state.

When U is tomographically complete, the classical shadow ρ̂ is unbiased, that is EU,J [ρ̂] = ρ.
Definition 2. The shadow norm of any operator O on H is

∥O∥shadow := max
σ∈D[H]

( ∑
j∈[dimH]

⟨j|U†σU |j⟩ ⟨j|UM−1[O]U†|j⟩2
)1/2

.

B.1 CST with Pauli Measurements

Shadow tomography with Pauli measurements. Suppose the observable Oj act non trivially on at
most k qubits. For that V in CST is the tensor product of randomly chosen Pauli operators:

V = V1 ⊗ · · ·⊗Vd ∈ CL(2)⊗ d,

where each Vj is chosen randomly and uniformly from the Clifford group CL(2). In this case,
U = CL(2)⊗ d. Moreover, the shadow matrix is computed as

ρ̂ :=

d⊗
j=1

(
3V †

j

∣∣∣b̂j〉〈b̂j∣∣∣Vj − I
)
.

In that case, the shadow norm is bounded by the locality of the observables as

∥Oj∥shadow ≤ 2k∥Oj∥∞
As a result the sample complexity of CST is given by

n = O

(
4k

ϵ2
logmmax

j
∥Oj∥2∞

)
.

The CST algorithm runs in Õ
(
2Θ(k)m logm

)
classical time.

B.2 CST with Clifford Measurements

The Clifford group is a set of unitary operations that map Pauli operators to other Pauli operators
under conjugation. For a system of d qubits, the Clifford group Cd consists of unitaries U such that
for any Pauli string P :

UPU† = P ′,

where P ′ is another Pauli operator.

Clifford circuits are particularly useful because they can be efficiently simulated classically, and
their structure allows for easy manipulation of Pauli observables, making them useful for shadow
tomography. In that case, V is chosen randomly from the Clifford group. The shadow norm is
bounded as

∥Oj∥shadow ≤
√

3 tr{O2},
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when tr
{
O2
}
<∞. The shadow matrix is given by

ρ̂ = (2d + 1)V †
∣∣∣b̂〉〈b̂∣∣∣V − I.

As a result the sample complexity of CST is bounded as

n = O

(
1

ϵ2
logmmax

j
tr
{
O2

j

})
,

and the CST algorithm runs Õ
(
2Θ(d)m logm

)
classical time.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the introduction give a brief overview of the main results of
the paper, their implications and the approach.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We added a clear discussion the limitations of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The assumptions are stated in the theorem statements. We have provided proof
overviews. The complete proofs are available in the appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: We do not have experiments for the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: the paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: the paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: the paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe this research is within NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: there is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: the paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

22

paperswithcode.com/datasets


Answer: [NA]

Justification: the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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