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Abstract

We study sequential general online regression, known also as sequential probability
assignments, under logarithmic loss when compared against a broad class of
experts. We obtain tight, often matching, lower and upper bounds for sequential
minimax regret, which is defined as the excess loss incurred by the predictor over
the best expert in the class. After proving a general upper bound we consider some
specific classes of experts from Lipschitz class to bounded Hessian class and derive
matching lower and upper bounds with provably optimal constants. Our bounds
work for a wide range of values of the data dimension and the number of rounds.
To derive lower bounds, we use tools from information theory (e.g., Shtarkov sum),
and for upper bounds we resort to new “smooth truncated covering” of the class
of experts. This allows us to find constructive proofs by applying a simple and
novel truncated Bayesian algorithm. Our proofs are substantially simpler than the
existing ones and yet provide tighter (and often optimal) bounds.

1 Introduction

In online learning and sequential probability assignments arising in information theory, portfolio
optimization, and machine learning, the training algorithm consumes d dimensional data in rounds
t ∈ {1, 2, . . . , T} and predicts the label ŷt based on data received and labels observed so far. After
prediction, the true label yt is revealed and the loss ℓ(yt, ŷt) is incurred. The (pointwise) regret is
defined as the (excess) loss incurred by the algorithm over a class of experts, also called the hypothesis
class.

More precisely, in each round t ≥ 1 the learner obtains a d dimensional input/ feature vector xt ∈ Rd.
In addition to xt, the learner may use the past observations (xr, yr), r < t to make a prediction ŷt
of true label. Therefore, the prediction can be written as ŷt = ϕt(y

t−1,xt), where yt−1 represents
the labels in the past t− 1 rounds, xt represents the input vectors in t rounds, and ϕt represents the
strategy of the learner to obtain its prediction based on the past and current observations. Once a
prediction is made, nature reveals the true label yt and the learner incurs loss ℓ : Ŷ × Y → R, where
Ŷ and Y are the prediction and true label domains respectively. Hereafter, we assume throughout
Ŷ = [0, 1], Y = {0, 1} with logarithmic loss

ℓ(ŷt, yt) = −yt log(ŷt)− (1− yt) log(1− ŷt). (1)

In regret analysis, we are interested in comparing the accumulated loss of the learner with that of the
best strategy within a predefined class of predictors (experts) denoted by H. More precisely, H is
a collection of predicting functions h : Rd 7→ Ŷ with input being xt at time t. Therefore, given a
learner ϕt, t > 0 and (yt,xt)

T
t=1 after T rounds the pointwise regret is defined as

R(ϕT , yT ,H|xT ) =

T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt),
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where ŷt = ϕt(y
t−1,xt). Observe that the first term above represents the accumulated loss incurred

by the learning algorithm, while the second summation deals with the best prediction within H. We
highlight two useful perspectives on analyzing the regret next.

Fixed Design: This point of view studies the minimal regret for the worst realization of the label
with the feature vector xT known in advance. Suppose that the learner has a fixed strategy ϕt, t > 0.
Then, the fixed design minimax regret for a given xT is defined as

r∗T (H|xT ) = inf
ϕT

sup
yT

R(ϕT , yT ,H|xT ). (2)

Further, the fixed design maximal minimax regret is given by:

r∗T (H) = sup
xT

inf
ϕT

sup
yT

R(ϕT , yT ,H|xT ). (3)

Sequential Design: In this paper we mostly focus on the sequential or agnostic regret in which the
optimization on regret is performed at each time t without knowing in advance xT or yT . Then the
sequential (maximal) minimax regret is given by [24]:

raT (H) = sup
x1

inf
ŷ1

sup
y1

· · · sup
xT

inf
ŷT

sup
yT

R(ŷT , yT ,H|xT ). (4)

In [37] it is shown that raT (H) ≥ r∗T (H) for all H. We will use r∗T (H) as our tool to derive lower
bounds for raT (H).

Our main goal is to gain insights into the growth of sequential regret raT (H) for various classes H
and to show how the structure of H, as well as the relationship between d and T impact the precise
growth of the regret. To see this more clearly, we briefly review regret in universal source coding.

Regrets in Information Theory. In universal compression, the dependence between regret and the
reference class was intensively studied [10, 21, 27, 28, 32, 38, 39]. Here, there is no feature vector
xt, and the dimension d = 1. A sequence yT is generated by a source P that belongs to a class of
sources S , which can be viewed as the reference class H in online learning. The minimax regret for
the logarithmic loss is given by [9, 31, 10]:

r∗T (S) = min
Q

max
yT

[− logQ(yT ) + log sup
P∈S

P (yT )],

where Q is the universal probability assignment approximating the unknown P . The main question is
how the structure of S impacts the growth of the minimax regret. Let m denote the alphabet size (in
online learning, we only consider m = 2). It is known [10, 21, 27, 28, 32, 38, 39] that for Markov
sources of order r, regret grows as mr(m − 1)/2 log T for fixed m [27, 21, 28, 33], while in [33]
minimax regret was analyzed for all ranges of m and T . For non-Markovian sources, the growth is
super logarithmic. For example, for renewal sources of order r the regret is Θ(T r/(r+1)) [7] and the
precise constant in front of the leading term is know for r = 1 [11]. However, it should be pointed
out that [6, 1] studied the general classes of densities smoothly parameterized by a d-dimensional
data to obtain general results for minimax regret that can be phrased as an online regret.

Main Contributions. Our main results are summarized in Table 1. One of the main contributions
of this paper is the concept of a global sequential covering used to prove constructively general upper
bounds on regret (Theorem 1). We establish Theorem 1 via a novel smooth truncation approach
enabling us to find tight upper bounds that subsume the state-of-the-art results (e.g., [23, 3]) obtained
non-algorithmically. In fact, Algorithm 2 developed in this paper achieves these bounds. Moreover,
Theorem 1 provides optimal constants that are crucial to derive the best bounds in special cases
discussed next. For general Lipschitz parametric class H, in Theorem 2, we derive the upper bound
d log(T/d) + O(d) for T > d. In Theorem 3, we show that the leading constant 1 (in front of
d log(T/d)) is optimal for T ≫ d log(T ). Furthermore, we obtain the best constant for the leading
term d

2 log(T/d) when the Hessian of log f is bounded for any function f ∈ H (see Theorem 4).
Then, we show in Theorem 5 that the constant 1

2 in our bound is optimal for functions of the form
f(⟨w,x⟩), where w ∈ Rd is the parameter of the function, ⟨w,x⟩ is the inner product in Rd, w and
x are in a general ℓs-norm unite ball, and T ≫ d(s+2)/s. This result recovers all the lower bounds
in [29] obtained for logistic regression (however, the technique of [29] works for other functions with
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bounded second derivatives, like the probit function). Lastly, when d ≥ T , for a linear function of
the form |⟨w,x⟩| we show that the growth is at least Ω(T s/(s+1)) under ℓs ball and at most Õ(T 2/3)
for ℓ2 ball (see Theorem 6 and Example 2).

The main technique used in our paper (smooth truncation) is novel with other potential applications
(e.g., average minimax regret). Instead of the conventional approach for truncating only the values
close to {0, 1}, we truncate all values in [0, 1] in a smooth way (see Lemma 4). This allows us
to obtain an upper bound via a simple truncated Bayesian algorithm. Our proofs are substantially
simpler (cf. [3]) yet provide tighter and often optimal bounds.

In summary, our main contributions are: (i) constructive proofs through a new smooth truncated
Bayesian algorithm; (ii) the novel application of global sequential covering in the context of logarith-
mic loss; (iii) lower and upper bounds with optimal leading constants; and (iv) novel information-
theoretic techniques for the lower bounds.

Table 1: Summary of results

Constrains d v.s T Bounds Comment

General α cover Gα N.A. raT (H) ≤ inf
0<α<1

{2αT + log |Gα|} Theorem 1

General Lipschitz f Any raT (Hf ) ≤ d log
(
T
d + 1

)
+O(d) Theorem 2

under ℓs ball T ≫ d log T raT (Hf ) ≥ d log
(
T
d

)
−O(d log log T ) Theorem 3

Bounded Hessian
Any raT (Hf ) ≤

d

2
log

(
T

d
+ 1

)
+O(d) Theorem 4

of log f under ℓ2 ball

f(⟨w,x⟩) with f ′(0) ̸= 0
T ≫ d(s+2)/s raT (Hf ) ≥ d

2 log
(

T
d(s+2)/s

)
−O(d) Theorem 5

under ℓs ball

|⟨w,x⟩| under ℓs ball d ≥ T raT (Hf ) ≥ s+1
s·e T

s/(s+1) Theorem 6

|⟨w,x⟩| under ℓ2 ball d ≥ T Ω(T 2/3) ≤ raT (Hf ) ≤ Õ(T 2/3) Example 2

Related Work In this paper we study sequential minimax regret for general online regression
with logarithmic loss using tools of information theory, in particular universal source coding (lower
bounds) [1, 10, 18, 21, 26, 27, 28, 38] and sequential covering (upper bounds).

Most of the existing works in online regression deals with logistic regression. We first mention
the work of [13], who studied pointwise regret of logistic regression for the proper setting. Unlike
improper learning, studied in this paper, where feature xt at time t is also available to the learner,
[13] showed that pointwise regret is Θ(T 1/3) for d = 1 and O(

√
T ) for d > 1. Furthermore, [17]

demonstrates that regret for logistic regression grows as O(d log T/d). This was further generalized
in [12]. These results were strengthened in [29], which also provides matching lower bounds. Precise
asymptotics for the fixed design minimax regret were recently presented in [14, 15].

Regret bounds under logarithmic loss for general expert class H was first investigated by Vovk under
the framework of mixable losses [16, 34]. In particular, Vovk showed that for finite class H, the regret
growth is log |H| via the aggregating algorithm (i.e., the Bayesian algorithm that we will discuss
below). We refer the reader to [5, Chapter 3.5, 3.6] and the references therein for more results on
this topic. Cesa-Bianchi and Lugosi [5] were the first to investigate log-loss under general (infinite)
expert class H [5, Chapter 9.10, 9.11], where they derived a general upper bound using the concept
of covering number and a two-stage prediction scheme. In particular, Cesa-Bianchi and Lugosi
showed that for Lipschitz parametric classes with values bounded away from {0, 1}, one can achieve
a regret bound of the form d/2 log(T/d). When the values are close to {0, 1}, they used a hard
truncation approach, which gives a sub-optimal bound of the form 3/2d log(T/d) (i.e., this bound is
not explicitly shown in [5] but can be derived using their approach). Moreover, the approach of [5]
only works for fixed design regret (or simulatable in their context). In [23], the authors extended the
result of [5, Chapter 9.10] to the sequential case via the machinery of sequential covering that was
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established in [22]. However, [23] also used the same hard truncation as in [5] resulting in suboptimal
upper bounds. In [3], the authors obtained an upper bound similar to the upper bound presented in
Theorem 1 via the observation that the log function is self-concordant. In particular, this allows them
to resolve the tight bounds for non-parametric Lipschitz functions that map [0, 1]s → [0, 1]. However,
their bounds are proved non-constructively, i.e., the proof does not provide an algorithm that achieves
such bounds. In [4], the authors used a similar idea of smoothing for controlling the unboundedness
of log-loss, however, they are assumed that the features xT are presented i.i.d.. More importantly,
the results in [4] only holds for the average case regret.

2 Problem Formulation and Preliminaries

We denote X as the input feature space and H as the concept class, which is a set of functions mapping
X → [0, 1]. We use an auxiliary set W to index H. We say that a function g is sequential if it maps
X ∗ → [0, 1], where X ∗ is set of all finite sequences with elements in X . We denote G as a class of
sequential functions. If T is a time horizon, then for any t ∈ [T ], we write xt = {x1, · · · ,xt} and
yt = {y1, · · · , yt}. We use standard asymptotic notation f(t) = O(g(t)) if there exists a constant
C such that f(t) ≤ Cg(t) for sufficient large t ≥ 0, and f(t) ≪ g(t) if lim supt→∞ f(t)/g(t) = 0.
We assume the log function log(x) is the nature logarithm to the base of e.

The main objective of this paper is to study the growth of the sequential minimax regret raT (H) for
a large class of experts H. We accomplish this goal using two different techniques. For the lower
bound, we precisely estimate the fixed design minimax regret r∗T (H|xT ) using the Shtarkov sum
[31], discussed next. For the upper bound, we construct a global cover set G of H and design a new
(truncated) Bayesian algorithm to find precise bounds with constants that are provably optimal.

Lower Bounds. We investigate the lower bound of adversarial regret raT (H) by considering its
corresponding fixed design minimax regret r∗T (H|xT ) and r∗T (H) = maxxT r∗T (H|xT ). We are able
to do this due to the recent result [37], which we quote next.
Lemma 1 (Wu et al., 2022). Let H be any general hypothesis class and ℓ be any loss function. Then

raT (H) ≥ r∗T (H),

and the inequality is strict for certain H, and loss function ℓ.

We establish precise growth of r∗T (H) by estimating the Shtarkov sum that was intensively analyzed
in information theory [31, 10] and recently applied in online learning [30, 14]. For the logarithmic
loss, the Shtarkov sum (conditioned on xT ) is defined as follows 1

ST (H|xT )
def
=

∑
yT∈{0,1}T

sup
h∈H

Ph(y
T | xT ),

where Ph(y
T | xT ) =

∏T
t=1 h(xt)

yt(1− h(xt))
1−yt and we interpret h(xt) = P (yt = 1|xt). The

regret can be expressed in terms of the Shtarkov sum (see [14, Equation (6)] or [5, Theorem 9.1]) as

r∗T (H) = sup
xT

logST (H|xT ). (5)

It is known that the leading term in the Shtarkov sum for parametric classes H is often independent
of xT [29, 12, 14, 15]. Therefore, the Shtarkov sum often gives the leading growth of r∗T (H|xT )
independent of xT , which also suggests the leading growth of the agnostic regret raT (H).

Upper Bounds. We now discuss our constructive approach to upper bounds. In the next section,
we present our Smooth truncated Bayesian Algorithm (Algorithm 2) that provides a constructive and
often achievable upper bound. Here we focus on some, mostly known, preliminaries.

Let G ⊂ [0, 1]X
∗

be any reference class. Let W be an index set of G and µ be an arbitrary finite
measure over W . The standard Bayesian predictor with prior µ is presented in Algorithm 1. Based
on this algorithm, we have the following two lemmas that are used to establish most of the upper
bounds in this paper. See e.g., [19, Lemma 3] or [5, Chapter 3.3] for proofs.

1Note that the Starkov sum can be defined for any class of measures, however, here we only use the form for
product measures.
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Algorithm 1 Bayesian predictor
Input: Reference class G := {gw : w ∈ W} with index set W and prior µ over W

1: Set pw(y0 | x0) = 1 for all w ∈ W .
2: for t = 1, · · · , T do
3: Receive feature vector xt

4: Make prediction using the following equation:

ŷt =

∫
W gw(x

t)pw(y
t−1 | xt−1)dµ∫

W pw(yt−1 | xt−1)dµ
.

5: Receive label yt
6: For all w ∈ W , update: pw(y

t | xt) = e−ℓ(gw(xt),yt)pw(y
t−1 | xt−1).

7: end for

Lemma 2. Let G be a collection of functions gw : X ∗ → [0, 1], w ∈ W . Let ŷt be the Bayesian
prediction rule as in Step 4 of Algorithm 1 with prior µ. Then, for any xT and yT we have

T∑
t=1

ℓ(ŷt, yt) ≤ − log

∫
W pw(y

T | xT )dµ∫
W 1dµ

,

where pw(y
T | xT ) = e−

∑T
t=1 ℓ(gw(xt),yt) and ℓ is the log-loss as in equation (1).

The following lemma bounds the regret under log-loss of finite classes, which is well known.
Lemma 3. For any finite class of experts G, we have raT (G) ≤ log |G|.

3 Main Results

We start with a concept of covering set called the global sequential cover that was used implicitly
in [24, Section 6.1] for the Lipschitz losses and dated back to the ideas in [2].
Definition 1 (Global sequential covering). For any H ⊂ [0, 1]X , we say that class of sequential
functions G ⊂ [0, 1]X

∗
is a global sequential α-covering of H at scale T if for any xT ∈ X T and

h ∈ H, there exists g ∈ G such that ∀t ∈ [T ],

|h(xt)− g(xt)| ≤ α.

Throughout we assume that 0 ≤ α ≤ 1.

Note that the global sequential covering is different from the (local) sequential covering used in [3]
(originally from [24]), since our covering function does not depend on the underlying trees as in [24] 2.
This is crucial to apply our covering set directly in an algorithmic way (see Algorithm 2). Particularly,
it enables us to establish our lower and upper bounds for Lipschitz classes of functions with the
optimal constants on the leading term. We further improve these results for Lipschitz class with
bounded Hessian. Finally, we study cases when the data dimension d grows faster than T by bounding
the covering size through the sequential fat-shattering number. In particular, we prove matching (up
to poly log T factor) upper and lower bounds for the generalized linear functions.

General Results. We are now in the position to state our first main general finding.
Theorem 1. If for any α > 0 there exists a global sequential α-covering set Gα of H, then

raT (H) ≤ inf
0≤α≤1

{2αT + log |Gα|} , (6)

and this bound is achievable by Algorithm 2.

We should point out that Theorem 1 also improves the results of [3] by obtaining better constants in
front of both αT and log |Gα| (i.e., from (4, 4) to (2, 1)). The proof is based on the following key
lemma that is established in Appendix A.

2Note that the covering functions in Definition 1 can be viewed as the experts constructed in [24, Section 6.1]
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Algorithm 2 Smooth truncated Bayesian predictor
Input: Reference class G with index set W and prior µ over W , and truncation parameter α

1: Let pw(y0 | x0) = 1 for all w ∈ W
2: for t = 1, · · · , T do
3: Receive feature xt

4: For all w ∈ W , set

g̃w(x
t) =

gw(x
t) + α

1 + 2α

5: Make prediction

ŷt =

∫
W g̃w(x

t)pw(y
t−1 | xt−1)dµ∫

W pw(yt−1 | xt−1)dµ

6: Receive label yt
7: For all w ∈ W , update: pw(y

t | xt) = e−ℓ(g̃w(xt),yt)pw(y
t−1 | xt−1).

8: end for

Lemma 4. Suppose H has a global sequential α-covering set G for some α ∈ [0, 1]. Then, there
exists a truncated set G̃ of G with |G̃| = |G| such that for all xT , yT and h ∈ H there exists a g̃ ∈ G̃
satisfying

ph(y
T | xT )

pg̃(yT | xT )
≤ (1 + 2α)

T
, (7)

where

ph(y
T | xT ) =

T∏
t=1

h(xt)
yt(1− h(xt))

1−yt and pg̃(y
T | xT ) =

T∏
t=1

g̃(xt)yt(1− g̃(xt))1−yt .

Proof of Theorem 1. We show that for any 0 ≤ α ≤ 1 if an α-covering set Gα exists, then one can
achieve the claimed bound for such an α. To do so, we run the Smooth truncated Bayesian Algorithm
(Algorithm 2) on Gα with uniform prior and truncation parameter α. We denote by G̃α the truncated
class of Gα as in Lemma 4 (same as the step 4 of Algorithm 2). We now fix xT , yT . By Lemma 3
(with G being G̃α), we have

T∑
t=1

ℓ(ŷt, yt) ≤ inf
g̃∈G̃α

T∑
t=1

ℓ(g̃(xt), yt) + log |G̃α| = inf
g̃∈G̃α

T∑
t=1

ℓ(g̃(xt), yt) + log |Gα|,

the last equality follows from |Gα| = |G̃α|. Since
∑T

t=1 ℓ(f(x
t), yt) = − log pf (y

T | xT ) for any
function f , then by Lemma 4 we conclude that

inf
h∈H

T∑
t=1

ℓ(h(xt), yt) ≥ inf
g̃∈G̃α

T∑
t=1

ℓ(g̃(xt), yt)− T log (1 + 2α) .

The result follows by combining the inequalities and noticing that log(1+x) ≤ x for all x ≥ −1.

We further note that for any constant c1, c2 for which the bound raT (H) ≤ c1αT + c2 log |Gα| holds
universally we must have c1 ≥ 2 and c2 ≥ 1. Therefore, our bounds are optimal with respect to the
constants3. To see this, we let X = [T ] and define g to be the function that maps every t ∈ [T ] to 1

2 .
Let H be the class of functions that maps to [1/2− α, 1/2 + α]. Clearly, H is α-covered by g. By
noting that the maximum probability is (1/2 + α)T = (1 + 2α)T (1/2)T , we compute the Shtarkov
sum (5) to get:

raT (H) ≥ r∗T (H) ≥ log(1 + 2α)T ∼ 2αT,

where ∼ holds when α is sufficiently small. This implies that we must have c1 ≥ 2. The fact that
c2 ≥ 1 is due to the fact that mixability constant of log-loss is 1, which also follows from Theorem 3
below.

3Note that the optimally only shows that the constants in the form 2αT + log |Gα| cannot be improved.
However, it is quite possible that one can obtain better bounds with a different form.
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Lipschitz Parametric Class. We now consider a Lipschitz parametric function class. Given a
function f : W ×X → [0, 1], define the following class

Hf = {f(w, ·) ∈ [0, 1]X : w ∈ W},

where w ∈ W is often a vector in Rd.

We will assume that f(w,x) is L-Lipschitz on w for every x, where L ∈ R+. More formally,
∀w1,w2 ∈ W and x ∈ X we have

|f(w1,x)− f(w2,x)| ≤ L||w1 −w2||,

where || · || is some norm on W . For example, if we take W ⊂ Rd then the norm can be ℓ1, ℓ2 or ℓ∞
norm. For any specific norm || · ||, we write B(R) for the ball under such norm with radius R in W .
In particular, we denote by Bd

s (R) the ball in Rd of radius R under ℓs norm centered at the origin.

Theorem 2. Let f : Bd
s (R)× Rd → [0, 1] be a L-Lipschitz function under ℓs norm. Then

raT (Hf ) ≤ min

{
d log

(
2RLT

d
+ 1

)
+ 2d, T

}
. (8)

Proof. By L-Lipschitz condition, to find an α-covering in the sense of Definition 1, we only need to
find a covering of Bd

s (R) with radius α/L. By standard result (see e.g. Lemma 5.7 and Example 5.8
of [35]) we know that the covering size is upper bounded by(

2RL

α
+ 1

)d

.

By Theorem 1, we find

raT (Hf ) ≤ inf
0<α<1

{
2αT + d log

(
2RL

α
+ 1

)}
.

Taking α = d/T , we conclude

raT (Hf ) ≤ d log

(
2RLT

d
+ 1

)
+ 2d.

This completes the proof for T ≥ d. The upper bound T is achieved by predicting 1
2 every time.

Example 1. For logistic function f(w,x) = (1 + e−⟨w,x⟩)−1, and w ∈ Bd
2(R) with x ∈ Bd

2(1) our
result recovers those of [12], but with a better leading constant (the bound in [12] has a constant 5).
Note that, the result in [3] also provides a sub-optimal constant c ∼ 4. Moreover, our bounds have a
logarithmic dependency on Lipschitz constant L.

The question arises whether the factor in front of log T can be improved to d/2 instead of d as
discussed in some recent papers [29, 14, 15]. In Theorem 3 below, we show that, in general, it cannot
unless we further strengthen our assumption (see Theorem 4). For the ease of presentation, we only
consider the parameters restricted to ℓ2 norm. The proof can be found in Appendix B.
Theorem 3. For any d, T,R, L such that T ≫ d log(RLT ), there exists L-Lipschitz function
f : Bd

2(R)× Rd → [0, 1] such that

raT (Hf ) ≥ d log

(
RLT

d

)
− d log 64− d log log(RLT ). (9)

Lipschitz Class with Bounded Hessian. As we have demonstrated in Theorem 3 the leading
constant 1 of the regret for Lipschitz parametric classes can not be improved in general. We now show
that for some special function f one can improve the constant to 1

2 , as already noticed in [29, 14, 15].
For any function f : Rd×Rd → [0, 1], we say the Hessian of log f is uniformly bounded on X ⊂ Rd,
if there exists constant C such that for any w ∈ Rd and x ∈ X and y ∈ {0, 1} we have

sup
||u||2≤1

|uT∇2
w log f(w,x)y(1− f(w,x))1−yu| ≤ C,

where ∇2
w is the Hessian at w. The proof of the next theorem can be found in Appendix C.
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Theorem 4. Let f : Rd × Rd → [0, 1] be a function such that the Hessian of log f is uniformly
bounded by C on X . Let

Hf = {f(w,x) : w ∈ W,x ∈ X}
be such a class of f restricted to some compact set W ⊂ Rd. Then

raT (Hf ) ≤ log
Vol(W∗)

Vol(Bd
2(
√
d/CT ))

+ d/2 + log 2. (10)

where W∗ = {w + u | w ∈ W, u ∈ Bd
2(
√

d/CT )}, Vol(·) is volume under Lebesgue measure. In
particular, for W = Bd

2(R), we have

raT (Hf ) ≤
d

2
log

(
2CR2T

d
+ 2

)
+ d/2 + log 2.

Note that, Theorem 4 subsumes the results of [17, 29]4, where the authors considered functions of
form f(⟨w,x⟩) and requires that the second derivative of log f is bounded, see also [5, Chapter
11.10]. However, the KL-divergence-based argument of [17] can not be used directly in the setup of
Theorem 4 since we do not assume the function f has a linear structure. Our main proof technique of
Theorem 4 is a direct application of Lemma 2 and an estimation of the integrals via Taylor expansion;
see Appendix C for more details on the proof.

Finally, we complete this part with the following lower bound for generalized linear functions under
unit ℓs balls. See Appendix D for proof.
Theorem 5. Let f : R → [0, 1] be an arbitrary function such that there exists c1, c2 ∈ (0, 1) and for
all r > 0 we have [c1 − c2d

−r, c1 + c2d
−r] ⊂ f([−d−r, d−r]) for sufficiently large d. Let

Hf = {f(⟨w,x⟩) : w ∈ Bd
s (1),x ∈ Bd

s (1)}
where s > 0. Then

raT (Hf ) ≥
d

2
log

(
T

d(s+2)/s

)
−O(d) (11)

where O hides some absolute constant that is independent of d, T .

Note that for the logistic function f(x) = (1 + e−x)−1 Theorem 5 holds with c1 = 1
2 and c2 = 1

5 .
Therefore,
1. If s = 1, then

raT (Hf ) ≥
d

2
log

(
T

d3

)
−O(d).

2. If s = 2, then

raT (Hf ) ≥
d

2
log

(
T

d2

)
−O(d).

3. If s = ∞, then

raT (Hf ) ≥
d

2
log

(
T

d

)
−O(d).

This recovers all the lower bounds from [29]. We note that a simple sufficient condition for Theorem 5
to hold is to require f ′(0) ̸= 0 if f(x) is differentiable.

Large Growth. We now present some results for large d growing even faster than T . We will
show that the size of global sequential covering (Definition 1) of a class H can be bounded by the
sequential fat-shattering number of H in a similar fashion as in [24]. We first introduce the notion of
sequential fat-shattering number as in [24].

We denote {0, 1}d∗ to be the set of all binary sequences of length less than or equal to d. A binary
tree of depth d with labels in X is defined to be a map τ : {0, 1}d∗ → X . For any function class
H ⊂ [0, 1]X , we say H α-fat shatters tree τ if there exists [0, 1]-value tree s : {0, 1}d∗ → [0, 1] such
that for any binary sequence ϵd1 ∈ {0, 1}d∗ there exist h ∈ H such that for all t ∈ [d]:
1. If ϵt = 0, then h(τ(ϵt−1

1 )) ≤ s(ϵt−1
1 )− α;

2. If ϵt = 1, then h(τ(ϵt−1
1 )) ≥ s(ϵt−1

1 ) + α.

4To get the upper bounds in [29] one only needs to estimate the volume of ℓs balls, which is well known [36].
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Definition 2. The sequential α-fat shattering number of H is defined to be the maximum number
d(α) such that H α-fat shatters a tree τ of depth d := d(α).

In the lemma below, we present an upper bound for the cardinality of the global covering with
algorithmically constructed cover set Gα, see e.g., [24, Section 6.1]. We provide a proof in Appendix E
for completeness.
Lemma 5. Let H ⊂ [0, 1]X be any class and d(α) be the sequential α-fat shattering number of H.
Then there exists a global sequential α-covering set Gα of H as in Definition 1 such that

|Gα| ≤
d(α/3)∑
t=0

(
T

t

)⌈
3

2α

⌉t

≤
⌈
3T

2α

⌉d(α/3)+1

. (12)

Example 2. By [24] we know that the sequential α-fat shattering number of linear functions
f(w,x) = |⟨w,x⟩| with w,x ∈ Bd

2(1) is of order Õ(α−2) where in Õ we hide a polylog factor.
Lemma 5 implies that the global sequential α-covering number is upper bounded by⌈

(3T )

(2α)

⌉d(α/3)+1

.

By Theorem 1, we have

raT (Hf ) ≤ inf
0<α<1

{
2αT + Õ

(
1

α2

)}
≤ Õ(T 2/3),

by taking α = T−1/3. This bound is independent of the data dimension d.
Remark 1. Observe that for any class H with sequential fat-shattering number of order α−s one
can achieve a regret upper bound of order Õ(T s/s+1) by Theorem 1. We refer to [24, 25] for the
estimations of sequential fat-shattering number of a variety of classes.

Finally, we present the following general lower bound. See Appendix F for proof.
Theorem 6. For any s ≥ 1, we define

Ds =

{
p ∈ [0, 1]T :

T∑
t=1

pst ≤ 1

}
.

We can view the vectors in Ds as functions mapping [T ] → [0, 1]. Then

raT (Ds) ≥ r∗T (Ds) ≥ Ω(T s/s+1). (13)

To see why Theorem 6 implies a lower bound for f(w,x) = |⟨w,x⟩| with d ≥ T , as in Example 2,
we take w,x ∈ BT

2 (1) (i.e., with d = T ) and define xt = et with et being the standard base
of RT that takes value 1 at position t and zeros otherwise. Note that the functions of Hf with
f(w,x) = |⟨w,x⟩| restricted on xT is exactly D2. Then

raT (Hf ) ≥ r∗T (Hf ) ≥ r∗T (D2) ≥ Ω(T 2/3)

and this is a matching lower bound of Example 2. Note that, it is proved in [23] that for function
f(w,x) = ⟨w,x⟩+1

2 , one can achieve the regret of form Õ(
√
T )5. Example 2 implies that the

generalized linear functions of form f(⟨w,x⟩) can have different regrets with polynomial gap even
with a simple shift on the value (though they have the same covering number). It is therefore an
interesting open problem to investigate a tighter complexity measure (instead of a covering number
as in Definition 1) that captures this phenomenon.

4 Conclusion

In this paper, we presented best known lower and upper bounds on sequential online regret for a
large class of experts. We accomplish this by designing a new smooth truncated Bayesian algorithm,
together with the concept of global sequential covering, that achieves these upper bounds. For the
lower bound, we use a novel information-theoretic approach based on the Shtarkov sum. We expect
that these techniques can be generalized to a broader set of problems, e.g., when the features xT is
present stochastically. We leave these to the future investigations.

5A Ω̃(
√
T ) lower bound for d ≥

√
T can be derived from Theorem 5, recovering [23, Lemma 8].
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A Proof of Lemma 4

We construct the set G̃ as in Algorithm 2. For any g ∈ G we define a smooth truncated function g̃
such that for any xt ∈ X ∗

g̃(xt) =
g(xt) + α

1 + 2α
.

We introduce the following short-hand notation, for any function f we define

f(yt) = f(xt)yt(1− f(xt))1−yt .

For any xT , yT and h ∈ H, let g ∈ G be a α-covering of h and g̃ be the truncated function as defined
above. For any t, we consider two cases.

Case 1: If yt = 1, we have:

h(yt)

g̃(yt)
=

h(xt)

g̃(xt)
, since yt = 1 (14)

≤ g(xt) + α

g̃(xt)
, g is α cover of h (15)

=
g(xt) + α

(g(xt) + α)/(1 + 2α)
, definition of g̃ (16)

= 1 + 2α (17)

Case 2: If yt = 0, we have

h(yt)

g̃(yt)
=

1− h(xt)

1− g̃(xt)
(18)

≤ 1− g(xt) + α

1− g̃(xt)
, g is α cover of h (19)

=
1− g(xt) + α

1− (g(xt) + α)/(1 + 2α)
, definition of g̃ (20)

=
1− g(xt) + α

(1− g(xt) + α)/(1 + 2α)
(21)

= 1 + 2α, (22)

Now, combining the two cases, we have

ph(y
T | xT )

pg̃(yT | xT )
=

T∏
t=1

h(yt)

g̃(yt)
(23)

≤ (1 + 2α)
T
. (24)

This completes the proof of Lemma 4.

B Proof of Theorem 3

We need the following two lemmas, where the proofs are straightforward.

Lemma 6. Let P be a finite class of distributions over the same domain X . Denote

S =
∑
x∈X

max
p∈P

p(x)

be the Shtarkov sum. Then for any estimation rule Φ : X → P we have

S ≥ |P| ·
(
1−max

p∈P
Prx∼p [Φ(x) ̸= p]

)
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Lemma 7. For any M and T ≫ logM , there exist M vectors v1, v2, · · · , vM ∈ {0, 1}T such that
for any i ̸= j ∈ [M ] we have

T∑
t=1

1{vi[t] ̸= vj [t]} ≥ T/4.

Now we are in the position to prove Theorem 3. Let x1, · · · ,xT ∈ Rd be any distinct points. We
will construct a L-Lipschitz function f(w,x) such that the regret restricted only on xT is large. To
do so, we consider a maximum packing M of the parameter space Bd

2(R) of radius α/L > 0 (where
α is to be determined latter). Standard volume argument (see Chapter 5 of [35]) yields that

|M | ≥
(
LR

2α

)d

.

Now, we will define a L-Lipschitz functions f(w,x) only on w ∈ M and x ∈ {x1, · · · ,xT }. By
Lemma 7 (assume for now the conditions are satisfied), we can find |M | binary vectors V ⊂ {0, 1}T
such that any pair of the vectors has Hamming distance lower bounded by T/4. For each of the vector
v ∈ V , we define a vector u ∈ [0, 1]T in the following way, for all t ∈ [T ]

1. If v[t] = 0 then set u[t] = 0;
2. If v[t] = 1 then set u[t] = α.

Denote by U be the set of all such vectors u. Note that |U | = |M |. For any w ∈ M , we can associate
a unique u ∈ U such that for all t ∈ [T ]

f(w,xt) = u[t].

We now show that f is indeed L-Lipschitz restricted on M for all xt ∈ {x1, · · · ,xT }. This is
because for any w1 ̸= w2 ∈ M we have |f(w1,xt) − f(w2,xt)| ≤ α by definition of U and
||w1 −w2||2 ≥ α/L since M is a packing.

We now view the vectors in u ∈ U as a product of Bernoulli distributions with each coordinate t
independently sampled from Bern(u[t]). We show that the sources in U are identifiable. To see this,
we note that for any distinct pairs u1, u2 ∈ U , there exist a set I ∈ [T ] such that u1 and u2 differ on
I and |I| ≥ T/4. This further implies that there exist a set J ⊂ I with |J | ≥ T/8 such that u1 takes
all 0 on J and u2 takes all α on J (or vice versa). We can then distinguish u1, u2 by checking if the
samples on J are all 0s or not. The probability of making error is upper bounded by

(1− α)T/8 ≤ e−αT/8.

Since there are only |M |2 such pairs, we have the probability of wrongly identifying the source upper
bounded by

|M |2e−αT/8.

Taking α = 16d log(RLT )
T , the error probability is upper bounded by(

RLT

32d log(RLT )

)2d

e−2d log(RLT ) ≤
(

1

32d log(RLT )

)2d

≤ 1

2
,

for sufficient large d, T , where we have use the fact that |M | ≤ ( RLT
32d log(RLT ) )

d. Note that we only
showed a lower bound on |M | before, but this is not a problem since we can always remove some
points from M to make the upper bound holds as well.

By Lemma 6, we know that the Shtarkov sum of sources in U is lower bounded by |M |/2. Therefore,
we have

raT (Hf ) ≥ r∗T (Hf ) ≥ log(|M |/2) ≥ d log (RLT/d)− d log 64− d log log(RLT ).

Now, we have to extend the function to the whole set Bd
2(R) and keep the L-Lipschitz property. This

follows from a classical result in real analysis (see [20, Theorem 1]) by defining for all w ∈ Bd
2(R)

and xt ∈ {x1, · · · ,xT }
f(w,xt) = sup

w′∈M
{f(w′,xt)− L||w −w′||2}.
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For the x ̸∈ {x1, · · · ,xT }, we can simply let f(w,x) = 0 for all w.

Finally, we need to check that the condition of Lemma 7 holds for our choice of α, this is satisfied by
our assumption T ≫ d log(RLT ).

C Proof of Theorem 4

To make the proof more transparent, we only prove the case for W = Bd
2(R) since the proof for other

compact W follows similar path. Note that, for W = Bd
2(R), we have W∗ = Bd

2(R+
√
d/CT ).

The proof resembles that of [12] but running the Bayesian predictor (Algorithm 1) over W∗ instead
of W with G being Hf and µ being Lebesgue measure. Let xT , yT and ŷT be the feature, label and
predictions of the Bayesian predictor respectively. By Lemma 2

T∑
t=1

ℓ(ŷt, yt) ≤ − log

∫
Bd

2 (R+
√

d/CT )
pw(yT | xT )dµ∫

Bd
2 (R+

√
d/CT )

1dµ
, (25)

where µ is the Lebesgue measure and

pw(yT | xT ) =

T∏
t=1

f(w,xt)
yt(1− f(w,xt))

1−yt .

We now write ht(w)
def
= log f(w,xt)

yt(1− f(w,xt))
1−yt to simplify notation. It is easy to see that

ℓ(f(w,xt), yt) = −ht(w).

Let w∗ be the point in Bd
2(R) that maximizes

h(w)
def
=

T∑
t=1

ht(w).

Let u = ∇h(w∗) be the gradient of h at w∗. By Taylor theorem, we have for any w ∈ Bd
2(R +√

d/CT )

h(w) = h(w∗) + uT (w −w∗) +
1

2
(w −w∗)τ∇2

w′h(w′)(w −w∗),

where w′ is a convex combination of w and w∗ and uτ is the transpose of u.

Now, the key observation is that for any point w such that uτ (w −w∗) ≥ 0 we have

h(w) ≥ h(w∗) +
1

2
(w −w∗)τ∇2

w′h(w′)(w −w∗) ≥ h(w∗)− 1

2
CT ||w −w∗||22, (26)

where the last inequality follows from our assumption about the bounded Hessian of log f . Let B be
the half ball of radius

√
d/CT centered at w∗ such that for all w ∈ B we have uT (w −w∗) ≥ 0.

By (26), for all w ∈ B

h(w) ≥ h(w∗)− 1

2
CT (

√
d/CT )2 = h(w∗)− d/2. (27)

15



Note that B ⊂ Bd
2(R+

√
d/CT ). Then using above observations we arrive at

T∑
t=1

ℓ(ŷt, yt) ≤ − log

∫
Bd

2 (R+
√

d/CT )
pw(yT | xT )dµ∫

Bd
2 (R+

√
d/CT )

1dµ
(28)

≤ − log

∫
B
pw(yT | xT )dµ∫

Bd
2 (R+

√
d/CT )

1dµ
(29)

≤ − log
e−d/2

∫
B
pw∗(yT | xT )dµ∫

Bd
2 (R+

√
d/CT )

1dµ
(30)

= − log pw∗(yT | xT ) + d/2− log
Vol(B)

Vol(Bd
2(R+

√
d/CT ))

(31)

= − log pw∗(yT | xT ) + d/2− log

1
2

√
d

CT

d

(R+
√
d/CT )d

(32)

≤ − log pw∗(yT | xT ) + d/2 +
d

2
log

(
2CR2T

d
+ 2

)
+ log 2 (33)

=

T∑
t=1

ℓ(f(w∗,xt), yt) +
d

2
log

(
2CR2T

d
+ 2

)
+ d/2 + log 2. (34)

This completes the proof of Theorem 4.
Remark 2. When compared to the technique in [40], Theorem 4 does not assume that the gradient
critical point of the loss is zero (e.g., the minimum may occur on the boundary). This is why we need
to restrict to the half ball B in order to discard the linear term of Taylor expansion in Equation (27).
Moreover, in the proof we work directly on the continuous space instead of a discretized cover,
giving an efficient algorithm provided the posterior is efficiently samplable (by e.g., assuming some
log-concavity of f as in [12]).

D Proof of Theorem 5

We start with the following technical lemma.6

Lemma 8. The following inequality holds, for r > 0:∑
y∈{0,1}T/d

sup
w∈[c1−c2d−r,c1+c2d−r]

P (y | w) ≥ Ω(
√
T/d2r+1), (35)

where P (y | w) = wk(1− w)T/d−k with k being the number of 1s in y.

Proof. By Stirling approximation, for all k ∈ [T/d], there exists a constant C ∈ R+ such that

B(k, T/d)
def
=

(
T/d

k

)(
k

T/d

)k (
1− k

T/d

)T/d−k

≥ C

√
T/d

k(T/d− k)
.

Since P (y | w) achieves maximum at w = k ∗ d/T , we have

∑
y∈{0,1}T/d

sup
w∈[c1−c2d−r,c1+c2d−r]

p(y | w) ≥
c1T/d+c2T/dr+1∑

k=c1T/d−c2T/dr+1

B(k, T/d).

Therefore, for each k in the above summation, we have that
1√

k(T/d− k)
≥

√
(c1 + c2d−r)(1− c1 − c2d−r)d/T.

6A similar technique for ℓ2 ball appears in [37] recently, which is also developed independently by [19].
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Therefore, the LHS of (35) is lower bounded by

C
√
(c1 + c2d−r)(1− c1 − c2d−r)

√
T

d

2c2
dr

= Ω(
√
T/d2r+1)

for sufficient large d.

Now we are ready to prove Theorem 5. We choose a particular xT : We split the xT into d blocks
each with length of T/d. With that, the ith part of the inputs and the outputs are denoted by
x(i) = (x(T/d)∗(i−1)+1, · · · ,x(T/d)∗i) and y(i) = (y(T/d)∗(i−1)+1, · · · , y(T/d)∗i), respectively. We
define for any xt in the ith block x(i) equals ei the standard d base of Rd with 1 in position i and 0s
otherwise. Note that, with these choice of xts, we have ⟨w,xt⟩ = wi, where wi is the ith coordinate
of w and xt ∈ x(i).

We will lower bound r∗T (Hf | xT ), which will automatically give a lower bound on raT (Hf ). We
only need to compute the following Shtarkov sum

ST (Hf |xT ) =
∑

yT∈{0,1}T

sup
w∈Bd

s (1)

d∏
i=1

Pf (y(i)|wi), (36)

where Pf (y(i)|wi) = f(wi)
ki(1− f(wi))

T/d−ki with ki being the number of 1s in y(i). We observe

ST (Hf |xT ) ≥
∑

yT∈{0,1}T

d∏
i=1

sup
wi∈[−d−1/s,d−1/s]

Pf (y(i)|wi)

=

d∏
i=1

∑
y(i)∈{0,1}T/d

sup
wi∈[−d−1/s,d−1/s]

Pf (y(i)|wi)

=
( ∑

y∈{0,1}T/d

sup
w∈[−d−1/s,d−1/s]

Pf (y|w)
)d

≥

 ∑
y∈{T/d}

sup
w∈[c1−c2d−1/s,c1+c2d−1/s]

P (y | w)

d

where P (y | w) is as in Lemma 8 and the last inequality holds since [c1 − c2d
−1/s, c1 + c2d

−1/s] ⊂
f([d−1/s, d−1/s]) by the assumption. Now, Lemma 8 implies that

ST (Hf | xT ) ≥ cd
(

T

d(s+2)/s

)d/2

,

where c is some absolute constant that is independent of d, T . We conclude

raT (Hf ) ≥ r∗T (Hf ) ≥ logST (Hf |xT ) ≥ d

2
log

(
T

d(s+2)/s

)
−O(d)

which completes the proof.

E Proof of Lemma 5

We first introduce a discretized notion of fat-shattering number, which can be viewed as a misspecified
Littlestone dimension [2, 8], see also [25]. For any α > 0, we can choose K ≤ ⌈1/2α⌉ points
z1 < z2 · · · < zK in the interval [0, 1] such that any point in [0, 1] is α close to some zk and
zk+1 − zk = 2α for all k ∈ [K]. Now, we define a discretized class H′ for the [0, 1]-valued class H
in the following way. For any h ∈ H, we define function h′ ∈ H′ such that for any x ∈ X we have

h′(x) = arg min
zk∈{z1,··· ,zK}

|zk − h(x)|,

where we break ties arbitrarily.

17



Algorithm 3 M-SOA algorithm
Input: Hypothesis class H with functions map X → [K]

1: Let H∗ = H
2: for t = 1, · · · , T do
3: Receive feature xt

4: For k ∈ [K], let
H∗

(xt,k)
def
= {h ∈ H∗ | h(xt) = k}

5: Make prediction
ŷt = arg max

k∈[K]
FAT1(H∗

(xt,k)
)

(where we break ties arbitrarily and deal with empty classes as in Definition 3)
6: Receive label yt
7: If |ŷt − yt| ≥ 2, set

H∗ = H∗
(xt,yt)

8: If |ŷt − yt| < 2, set
H∗ = H∗

9: end for

We now view the functions in H′ as functions map X → [K] (i.e., we view each zk as its index k).
For any discretized class H′, we define the discretized 1-shattering as follows. For any X -valued tree
τ of depth d, we say H′ 1-shatters τ , if there exists [K]-valued tree s : {0, 1}d∗ → [K] such that for
any ϵd1 ∈ {0, 1}d∗ there exist h′ ∈ H′ such that for all t ∈ [d]:

1. If ϵt = 0, then h′(τ(ϵt−1
1 )) ≤ s(ϵt−1

1 )− 1.

2. if ϵt = 1, then h′(τ(ϵt−1
1 )) ≥ s(ϵt−1

1 ) + 1.

Definition 3. The discretized 1-shattering number of a discretized class H′ is defined to be the
maximum number d such that H′ 1-shatters some tree τ of depth d. This number is denoted as
FAT1(H′). If no such tree exists, we define the 1-shattering number to be 0 if H′ is non-empty and
−1 if H′ is empty.

The proof of Lemma 5 follows from the following three lemmas.
Lemma 9. The discretized 1-shattering number of H′ is upper bounded by the α-fat shattering
number of H where H′ is the discretized class of H at scale α.

Proof. Let τ be the tree of depth d that is shattered by H with a [K]-valued tee s. We define a
[0, 1]-valued tree s′ as follows for any ϵt1 ∈ {0, 1}d∗,

s′(ϵt−1
1 ) = zs(ϵt−1

1 ).

We now show that the τ and s′ are the desired pair that is α-shattered by H. This follows from the
fact that for any zk and zl with k ̸= l if some y ∈ [0, 1] is closer to zl , then

|y − zk| ≥ α

as easy to see.

For any discretized class H′, we say a class G of functions map X ∗ → [K] 1-covers H′ if for any
x1, · · · ,xT ∈ X and h′ ∈ H′ there exists g ∈ G such that for all t ∈ [T ]

|h′(xt)− g(xt)| ≤ 1.

The following result is crucial for our following analysis, which is an analogy of Lemma 12 of [2]
(see also [8, 24]).
Lemma 10. Suppose the discretized 1-shattering number of H′ is upper bounded by d, then there
exists a 1-covering set G of H′ such that

|G| ≤
d∑

t=0

(
T

t

)
Kt ≤ (TK)d+1.
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Proof. We now describe an algorithm that is similar to the SOA algorithm of [2], which we will call
it M-SOA (Algorithm 3)7. The algorithm goes as follows: it maintains a running hypothesis class
H∗, initially equals H′. Let (xt, yt) be the sample label pair received at round t. We will denote by
H∗

(xt,yt)
the functions in H∗ that is consistent with (xt, yt), i.e., for all h ∈ H∗

(xt,yt)
we have

h(xt) = yt.

At time step t, the algorithm M-SOA will predict k ∈ [K] such that FAT1(H∗
(xt,k)

) is maximum,
where we denote by FAT1(H∗

(xt,k)
) the discretised 1-shattering number of H∗

(xt,k)
and break ties

arbitrarily. After receiving the true label yt, the M-SOA algorithm will do the following. If |ŷt−yt| ≥
2, then it sets H∗ = H∗

(xt,yt)
. Else, it remains on the same H∗. We then continue the prediction

procedure for the next time step with the new H∗.

We say the algorithm M-SOA makes an error at time step t if |ŷt − yt| ≥ 2 where ŷt is the prediction
given by M-SOA at time step t. We claim that the M-SOA will make at most d errors if the samples
(xT , yT ) is consistent with some h ∈ H′.

To see this, we prove by induction on d and T (the base case for d = 0 or T = 0 is easy to check).
Suppose we have observed x1 at the first step. We show that there can not be two element k1, k2 ∈ [K]
such that |k1 − k2| ≥ 2 and both H′

(x1,k1)
and H′

(x1,k2)
has discretized 1-shattering number ≥ d.

Otherwise, we can concatenate the shattering tree of H′
(x1,k1)

and H′
(x1,k2)

with the root labeled by
x1 to form a depth d + 1 shattering tree of H′ (with s(ϕ) being any number ∈ (k1, k2)). This is a
contradiction, since the discretized 1-shattering number of H′ is upper bounded by d. This shows
that either we will make no error at the first step or the discretized 1-shattering number decreased
by at least 1 on the remaining consistent class of functions (after y1 has been revealed). For the first
case, by induction hypothesis for T − 1 we have the number of errors is at most d. For the second
case, we also have the number of errors upper bounded by d− 1 + 1 = d.

We now follow the idea from the proof of Lemma 12 of [2] to construct a covering set G. For any
subset I ⊂ [T ] of size |I| ≤ d and {kt}t∈I ∈ [K]|I|, we define a function g by running our M-SOA
algorithm by changing steps 7− 8 as follows. At each time step t ∈ [I], we update H∗ = H∗

(xt,kt)
.

Otherwise, for any t ̸∈ I , we remain on the same H∗. The values of g for each xt is given by the
output of M-SOA at time step t.

Since the M-SOA will make at most d errors if the sample-label pairs (xT , yT ) are consistent with
some function in H′, we know that any h ∈ H′ is 1-covered by the function generated by running
M-SOA with some I and {kt}t∈I in the above fashion. To complete we observe that by a simple
counting argument the number of such pairs I and {kt}t∈I is at most

d∑
t=0

(
T

t

)
Kt

which completes the proof.

Finally, we need the following lemma that relates 1-covering of H′ with global sequential α-covering
of H.
Lemma 11. Suppose there exist a 1-covering set G of H′, then there exists a global 3α-covering G′

of H such that |G| = |G′|, where H′ is the discretised class of H at scale α.

Proof. For any g ∈ G, we define a function g′ such that for all xt we have

g′(xt) = zg(xt).

The claim follows from the fact that any y that is closest to zk satisfies |y − zk| ≤ α and if some z
1-covers zk then we have |z − zk| ≤ 2α, by triangle inequality

|y − z| ≤ 3α

as needed.

The proof of Lemma 5 follows from Lemma 9, Lemma 10, and Lemma 11.
7The major difference with the standard SOA is steps 7-8 and where "M" stands for misspecified.
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F Proof of Theorem 6

It is sufficient to compute the Shtarkov sum as in (5). For any yT ∈ {0, 1}T with k 1s, we claim that

sup
p∈Ds

p(yT ) =
1

kk/s
,

where

p(yT ) =

T∏
t=1

pyt

t (1− pt)
1−yt .

To see this, we use a perturbation argument. Denote I be the positions in yT that takes value 1 such
that |I| = k. For any p such that p(yT ) is maximum, we must have pj = 0 for all j ̸∈ I . Suppose
otherwise, we then can move some probability mass on pj to some pi < 1 with i ∈ I , which will
increase the value of p(yT ), thus a contradiction. Now, we need to show that∏

i∈I

pi ≤
1

kk/s
,

this follows easily by AM-GM (i.e., arithmetic mean vs geometric mean) inequality since
∑

i∈I p
s
i ≤

1 and it takes equality when pi =
1

k1/s for all i ∈ I . Now, the Shtarkov sum can be written as

T∑
k=0

(
T

k

)
1

kk/s
. (37)

To find a lower bound, we only need to estimate the maximum term in the summation. We have

max
k

(
T

k

)
1

kk/s
≥ max

k

T k

k(1+1/s)k
≥ e

s+1
s·e T s/s+1

,

where the last inequality follows by taking k = 1
eT

s/s+1, and we also use the fact that(
T

k

)
≥ T k

kk
.

Therefore, we have

r∗T (Ds) ≥
s+ 1

s · e
T s/s+1 = Ω(T s/s+1)

which completes the proof.
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