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Fundamental Bounds for Sequence
Reconstruction from Nanopore Sequencers

Abram Magner, Jarosław Duda, Wojciech Szpankowski and Ananth Grama

Abstract—Nanopore sequencers are emerging as promis-
ing new platforms for high-throughput sequencing. As
with other technologies, sequencer errors pose a major
challenge for their effective use. In this paper, we present
a novel information theoretic analysis of the impact of
insertion-deletion (indel) errors in nanopore sequencers. In
particular, we consider the following problems: (i) for given
indel error characteristics and rate, what is the probability
of accurate reconstruction as a function of sequence length;
(ii) using replicated extrusion (the process of passing a
DNA strand through the nanopore), what is the number of
replicas needed to accurately reconstruct the true sequence
with high probability?

Our results provide a number of important insights: (i)
the maximum length of a sequence that can be accurately
reconstructed from a single sample in the presence of indel
errors is relatively small; and (ii) replicated extrusion is an
effective technique for accurate reconstruction. We show
that for typical distributions of indel errors, the required
number of replicas is a slow function (polylogarithmic)
of sequence length – implying that through replicated
extrusion, we can sequence large reads using nanopore
sequencers. Moreover, we show that in certain cases, the
required number of replicas can be related to information-
theoretic parameters of the indel error distributions.

I. INTRODUCTION

The past few years have seen significant advances
in sequencing technologies. Sequencing platforms from
Illumina, Roche, PacBio and other vendors are com-
monly available in laboratories. Accompanying these
hardware advances, significant progress has been made
in statistical methods, algorithms, and software for tasks
ranging from base calling to complete assembly. Among

A. Magner is with the Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign (e-mail: anmagner@illinois.edu).

J. Duda was with Department of Computer Science and Center for
Science of Information, Purdue University. He is now with the Institute
of Computer Science, Faculty of Mathematics and Computer Science
Jagiellonian University (e-mail: dudajar@gmail.com).

W. Szpankowski and A. Grama are with the Department of Com-
puter Science and Center for Science of Information, Purdue University
(e-mail: spa@cs.purdue.edu, ayg@cs.purdue.edu). W. Szpankowski is
also with the Faculty of Electronics, Telecommunications and Infor-
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the key distinguishing features of these sequencing
platforms are their read lengths and error rates. Short
read lengths pose problems for sequencing high-repeat
regions. Higher error rates, on the other hand, require
oversampling to either correct, or discard erroneous
reads without adversely impacting sequencing/ mapping
quality. Significant research efforts have studied tradeoffs
of read length, error rates, and sequencing complexity.
An excellent survey of these efforts is presented by Quail
et al. [21].

More recently, nanopores have been proposed as plat-
forms for sequencing. Nanopores are fabricated either
using organic channels (pore-forming proteins in a bi-
layer) or solid-state material (silicon nitride or graphene).
An ionic current is passed through this nanopore by
establishing an electrostatic potential. When an analyte
simultaneously passes through the nanopore, the current
flow is disrupted. This disruption of the current flow is
monitored, and used to characterize the analyte. This
general principle can be used to characterize nucleotides,
small molecules, and proteins. Complete solutions based
on this technology are available from Oxford Nanopore
Technologies [16]. In this platform, a DNA strand is
extruded through a protein channel in a membrane. The
rate of extrusion must be slower than current measure-
ment (sampling) for characterizing each base (or groups
of small number of bases, up to four, in the nanopore at
any point of time).

In principle, nanopores have several attractive features
– long reads (beyond 100K bases) and minimal sample
preparation. However, there are potential challenges that
must be overcome – among them, the associated error
rate. The extrusion rate of a DNA strand through a pro-
tein channel is controlled using an enzyme [19]. This rate
is typically modeled as an exponential distribution. When
a number of identical bases pass through the nanopore,
the observed signal must be parsed to determine the pre-
cise number of bases. This results in one of the dominant
error modes for nanopore sequencers. Insertion-deletion
errors in such sequencers are reported to range from 4%
by O’Donnell et al. [19], [23], approximately 13% in
addition to a 5% substitution error by Jain et al. [11],



and up to 38.2% by Laver et al. [15].

High error rate can be handled using replicated reads
for de-novo assembly, or through algorithmic techniques
using reference genomes. The Oxford Nanosequencer
claims a scalable matrix of pores and associated sen-
sors using which replicated reads can be generated.
Alternately, other technologies based on bi-directional
extrusion have been proposed. In either case, two fun-
damental questions arise for de novo assembly: (i) for
single reads, what is the bound on read length that can
be accurately reconstructed using a nanopore sequencer
with known error rates; and (ii) what is the number of
replicas needed to accurately reconstruct the sequence
with high probability (analytically defined). We provide
well characterized bounds for both of these questions
in this paper. For replicated reads, we assume that each
fragment is read multiple times. Since it is not currently
possible to exercise fine-grain control over the nanopore
to read the same sequence multiple times, we achieve
this using PCR amplification and resulting reads from
multiple copies. These reads are aligned to achieve the
same effect as reading individual fragments multiple
times. Note that the alignment problem is simpler in this
case, owing to longer reads.

We present a novel information theoretic analysis
of the impact of indel errors in nanopore sequencers.
We model the sequencer as a sticky insertion-deletion
channel. The DNA sequence is fed into this channel
and the output of the channel is used to reconstruct
the input sequence. Using this model, we solve the
following problems: (i) for given error characteristics and
rate, what is the probability of accurate reconstruction
as a function of sequence length; and (ii) what is the
number of replicas needed to exactly reconstruct the
input sequence with high probability?

Our results provide a number of important insights: (i)
the maximum length of sequence that can be accurately
reconstructed from a single sample in the presence of
indel errors is relatively small; and (ii) the number
of replicas required for accurate reconstruction is a
slow function (polylogarithmic) of the sequence length
– implying that through replicated extrusion, we can
sequence large reads using nanopore sequencers. The
bounds we derive are fundamental in nature – i.e.,
they hold for any re-sequencing/ processing technique.
Please note this this study does not model substitution
errors. However, our lower bounds (Theorems 1 and
2) on the number of replicas necessary for accurate
reconstruction carry over to models featuring substitution
errors in addition to indel errors. Modeling substitution
errors poses significant additional challenges within an

information theoretic framework, which are topics of
ongoing efforts.

II. APPROACH

In this section, we present our model and the under-
lying concepts in information theory that provide the
analytical substrates. We define notions of a channel, re-
construction, and an insertion-deletion channel. We then
describe how these concepts are mapped to the problem
of sequence reconstruction in nanopore sequencers.

Our basic model for a nanopore sequencer is illus-
trated in Figure 1. A DNA sequence is input to the
nanopore sequencer. This sequence is read and suitably
processed to produce an output sequence. We view the
input sequence as a sequence of blocks. Each block is
comprised of a variable number (k) of identical bases.
The nanopore sequencer potentially introduces errors
into each block by altering the number of repeated bases.
If the output block size k′ is not the same as the input
block size k, an indel error occurs. Specifically, k′ < k
corresponds to a deletion error, and k′ > k to an insertion
error (we emphasize that, though several insertions and
deletions may occur in the physical processing of a
block, our model is meant to capture the net effect of
these errors). Note that this model does not account for
substitution errors.

We model the sequencing process (both the sequencer
and the associated processing) as a channel. A channel
in information theory is a model (traditionally for a
storage or communication device, but in our case, used
more generally) for information transfer with certain
error characteristics. The input sequence of blocks is
sent into this channel. The error characteristics of the
channel transform a block of k > 0 characters into a
block of k′ characters. This transformation is modeled
as a probability distribution: k′∼G(k, P ), where G is the
distribution and P , the associated set of parameters tuned
to the sequencing platform. In typical scenarios, the
distribution peaks at k and decays rapidly on either side.
The distribution may be asymmetric around k depending
on relative frequency of insertion and deletion errors. We
refer to such a channel as a sticky channel if it maintains
the structure of blocks: k′ > 0.

a) Insertion-Deletion Channels: In ideal commu-
nication systems, one often assumes that senders and
receivers are perfectly synchronized – i.e., each sent bit is
read by the receiver. However, in real systems, such per-
fect synchronization is often not possible. This leads to
sent bits missed by the receiver (a deletion error), or read
more than once (an insertion error). Such communication
systems are traditionally modeled as insertion-deletion
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Figure 1: Overview of the proposed channel and its correspondence with a sequencer.

channels. Formally, an independent insertion channel is
one in which a single bit transmission is accompanied
with the insertion of a random bit with a probability
p. An independent deletion channel is one in which a
transmitted bit can be deleted (omitted from the output
stream) with a probability p′. An insertion-deletion chan-
nel contains both insertions and deletions [7]. Note that
a number of basic characteristics of insertion-deletion
channels, such as their capacity, are as yet unknown in
information theory literature as well.

We consider a variant of the independent insertion-
deletion model that is more general and better suited
to nanopore sequencers. In particular, we recognize
the primary source of error in nanopore sequencers
is associated with disambiguating the exact number of
identical bases in a block passing through the nanopore.
We modify the independent insertion-deletion channel
to the sticky insertion-deletion channel described above
(Figure 1). The key difference is that, whereas the inde-
pendent insertion-deletion channel operates on individual
symbols independently, our model operates on block
lengths independently.

Naturally, one expects that determining the capacity
of this channel should be more difficult than doing the
same for the independent insertion-deletion channel (as
stated above, this is an open problem). Nonetheless, we
are able to provide precise answers to our questions
because our goal of analysis of the number of samples
necessary for exact recovery is equivalent to analysis of
the performance of a particular repetition code (chosen
for us by the sequencing technology) for our channel, an
easier problem than determining the capacity.

b) Approach to Bounding Sample Complexity: To
obtain a bound on the number of samples needed for
exact recovery, we must, for a given number of samples,
prove a lower bound on the probability of error for any
estimator of the sequence. That is, we must find the
largest number of samples r for which we can prove that,
for any sequence estimator that uses r samples from the
channel, the probability that the estimator is not equal
to the input sequence is asymptotically positive as the
sequence length tends to ∞.

To do this, we can lower bound the probability of
error uniformly over any estimator via Fano’s inequality,
which relates the error probability to the conditional
entropy of the input sequence, given r output sequences.
Then bounds on this quantity yield corresponding sam-
ple complexity bounds. The intuition here is that the
conditional entropy measures the average amount of un-
certainty about the true input sequence if we observe the
output samples, so one naturally expects that one needs
enough samples to cause this measure of uncertainty to
tend to 0 in order to recover the input sequence. The
main challenge in lower bounding the sample complexity
is to formalize this intuition and to give a tight lower
bound on the conditional entropy in as general a setting
as possible.

To upper bound the sample complexity, we could
again tie it to the conditional entropy described above,
but this has the disadvantage that it does not immedi-
ately imply an algorithmically efficient method for exact
recovery. We instead prove an effective upper bound by
exhibiting an estimator for the input sequence and upper
bounding the number of samples necessary to ensure
correctness of this estimator with high probability.
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III. METHODS

A. Notation and Theoretical Model

The input sequence to the channel/sequencer is drawn
from an alphabet A of fixed, finite size |A|. For DNA
sequencing, for example, A = {A, T,C,G}.

In the next subsections, we describe the source and
noise models.

1) Source Model: We consider an independent, iden-
tically distributed sequence (i.e., a memoryless source)
of symbols X1, X2, . . . , where each Xi takes the value
α ∈ A with probability denoted by pα. From this
sequence, we take, in particular, the prefix X consisting
of the first N ∈ N blocks: a block is a maximal
contiguous substring consisting of repetitions of any
given symbol. We denote by Bi(X) and Si(X), i ∈ N,
the length of the ith block of X and the associated
symbol, respectively. Note that Bi(X) is supported on
the set of natural numbers N. We denote by ~B(X) the
sequence of N block lengths of X . For instance, in the
sequence X = “AAACTTCTG”, we have B1(X) = 3
and S1(X) = “A”.

An alternate model takes the first n symbols of the
source, instead of the first N blocks. The results remain
qualitatively the same in either model, as, with high
probability, n = Θ(N) as N →∞. Moreover, we make
our choice because doing so simplifies the presentation,
somewhat.

We highlight two features of the distributions of
block sizes in our model: first, for any block index j,
the jth block size of the input, when conditioned on
the block symbol being α, is geometrically distributed
with parameter (1 − pα) (this is not an assumption of
our model; rather, it is a simple consequence of the
assumption that the input sequence is memoryless); that
is,

Pr[Bj(X) = k|Sj(X) = α] = pkα(1− pα).

Since two consecutive blocks cannot correspond to the
same symbol, there is a Markov dependency between
blocks, both between consecutive block symbols and
between sizes: for any α, β ∈ A with pα, pβ > 0, α 6= β,
and any j > 0,

Pr[Sj+1(X) = β|Sj(X) = α] =
pβ

1− pα
.

Throughout, we assume that 0 < pα < 1 for all α ∈ A.
This implies that the Markov chain formed by the block
symbols is ergodic, which in turn implies that there exists
a stationary distribution π on A. We denote by πα the
probability that the stationary distribution assigns to α ∈
A.

2) Noise Model: Sticky Insertion-Deletion Channel:
The noise model that we consider is the sticky insertion-
deletion channel, which, given an input sequence, in-
creases or decreases the length of each block of symbols
according to some distribution, which is parameterized
by the original block length. The term sticky comes from
the fact that we insist that new blocks cannot be inserted,
nor can blocks be deleted.

More precisely, the channel is defined by a sequence
of block transformation distributions q1, q2, ... (see (1))
supported on the positive integers (so that qi,j denotes the
probability given to the integer j by the ith distribution).

The channel induced by these qi operates on the
blocks of X independently as follows: for a block in
X of any symbol α ∈ A of length i, the channel outputs
a block in Y of the same symbol, of length distributed
according to the distribution qi. That is, for arbitrary
j ∈ [N ] = {1, ..., N},

Pr[Bj(Y ) = k|Bj(X) = m] = qm,k,

∞∑
k=1

qm,k = 1.

(1)

The fact that the sum above starts at k = 1 is a symptom
of the fact that blocks are neither created nor deleted.

In what follows, instead of a single sample from the
channel with input X , symbol Y will denote a sequence
of r = r(N) independent samples, conditioned on X .
We then index the jth block of the ith sample by (j, i);
e.g., we denote the length of the jth block of the ith
sample by Bj,i(Y ), for j ∈ {1, ..., N} and i ∈ {1, ..., r}.
Then B(Y ) denotes an N × r matrix-valued random
variable whose (j, i)th entry is Bj,i(Y ). The vector of
samples for a particular block j will be denoted by
~Bj(Y ).

We are particularly interested in distributions qi for
which the expected output block lengths are a well
behaved function of the input block lengths, and for
which the deviation from this mean is sufficiently small.

B. Main Results: Upper and Lower Bounds on Accurate
Reconstruction from Nanopore Sequencers

Our main results address the task of exact recovery of
the input sequence X , given r samples of X corrupted by
the sticky insertion-deletion channel (collectively called
Y ). In particular, we give bounds on the number of
samples r = r(N) for which there exists an estimator
F (Y ) satisfying

Pr[F (Y ) 6= X]
N→∞−−−−→ 0

(note that r may tend to ∞ with N ).
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Our first result gives a fundamental lower bound on
the number of samples needed by any estimator for exact
recovery. We give a complete proof in Section III-C, but
we sketch the intuition here (suppressing some details
that are dealt with in the full proof). First, since a
single sample reveals the symbols associated with the
input blocks, the main challenge is in lower bounding
the sample complexity for estimators of the true block
sizes. For an arbitrary estimator, we express the total
probability of error pe in terms of a product of the error
probabilities {pej}Nj=1 of each block (after conditioning
under which the block error events are independent):

pe = 1−
N∏
j=1

(1− pej ).

To lower bound the probability of error pej for each
block j, we condition on the true block size not being
too large (i.e., less than or equal to some sufficiently
large constant m∗), and then we apply Fano’s inequality
[5]:

pej ≥
H(Bj(X)| ~Bj(Y ),F)− h(pej )

log(m∗ − 1)
,

where F denotes an appropriate σ-field (which captures
the conditioning needed to deal with the infinite support
of the block lengths), ~Bj(Y ) denotes the r samples of
the jth block size passed through the channel, and h(x)
denotes the binary entropy function: h(x) = −x log x−
(1−x) log(1−x). Convexity considerations allow us to
ignore the binary entropy on the right-hand side.

It thus remains to lower bound the conditional entropy
H(Bj(X)| ~Bj(Y ),F). Our Proposition 1 below yields

H(Bj(X)| ~Bj(Y ),F) ≥ e−Θ(r),

uniformly in j. This implies that

pej ≥ e−Θ(r)

=⇒ pe ≥ 1− (1− e−Θ(r))N = 1− e−Ne
−Θ(r)

.

For some small enough positive constant C and a large
enough positive constant D > C, we then have

pe ≥

{
Θ(1) r < C logN

o(1) r > D logN.

Note, in particular, that for a single sample (r = 1), the
probability of error converges exponentially to 1 as the
number of blocks increases.

This yields the following theorem.

Theorem 1 (Lower bound on the number of samples
necessary for exact reconstruction). Let X denote a

sequence generated by taking the first N runs of an
infinite sequence of i.i.d. samples from the distribution
{pα}α∈A. Suppose, further, that
• Nontrivial alphabet distribution: for all α ∈ A,
pα 6= 0.

• Nontrivial block transformation distributions: each
block transformation distribution q` has positive,
finite mean and variance.

• Shared support for block transformation distribu-
tions: supp(q`) = supp(qm) for all `,m ≥ 1.
Here, supp(·) denotes the support of a distribution
(i.e., for a discrete distribution such as q`, the set
of integers to which it assigns positive probability).

• Exponential tails for the block transformation dis-
tributions: the block transformation distributions
have at least exponentially decaying tails: There
are some fixed γ ≥ 0 and c > 0 such that, for a
random variable Z distributed according to qm, for
all τ > 0,

Pr[|Z − E[Z]| ≥ τmγ ] ≤ 2e−cτ .

In particular, this means that

Pr[|Bj,i(Y )−Bj(X)| ≥ τmγ

∣∣∣∣Bj(X) = m] ≤ 2e−cτ .

(2)

Then the number of samples r needed to recover X
exactly with high probability is at least r = Ω(logN).

We remark that this lower bound may be tightened in
many cases by a more careful analysis of the conditional
entropy described above.

It is of practical interest to relax the shared support
condition in Theorem 1 (in particular, all of our concrete
examples in Section IV require an extension). Our next
result does this, at the expense of a looser bound on the
constant hidden in the Ω(·).

Theorem 2. In the setting of Theorem 1, suppose that we
replace the shared support condition with the following
weaker condition:
• Overlapping support for block transformation distri-

butions: for all ` ≥ 1, supp(q`)∩ supp(q`+1) 6= ∅.
Then the number of samples r needed to recover X
exactly with high probability is at least r = Ω(logN).

The proof is a slight modification of that of Theo-
rem 1, so we relegate it to Appendix VII-B.

Our next main result gives an upper bound on the
number of samples needed for exact recovery, in terms of
the variance and tail behavior of the block transforming
distributions. We do this by exhibiting a natural estimator
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for block sizes, then proving an upper bound on the error
probability of this estimator.

In particular, under the hypothesis that the expected
value of each distribution q` is ` (to be relaxed in
Corollary 1), we choose as our estimator of the true
block length Bj(X), the closest integer to the sample
average of the observed block lengths:

B̂j(Y ) =

s
1

r

r∑
i=1

Bj,i(Y )

{
, B̃j(Y ) =

1

r

r∑
i=1

Bj,i(Y ).

(3)

Here, for any x ∈ R, JxK denotes the closest integer to
x.

Using a union bound over all blocks and the hypoth-
esis that the distributions q` have at least exponentially
decaying tails, we are able to upper bound the probability
of error of this estimator in terms of a constant γ ≥ 0
that is linearly increasing as a function of the polynomial
growth rate of the variance of q` as `→∞:

Pr[B̂(Y ) 6= ~B(X)] ≤
N∑
j=1

Pr[B̂j(Y ) 6= Bj(X)]

≤ N exp(−Θ(r
1

2γ+1 )).

Here, the second inequality follows from our Proposi-
tion 2. This upper bound on the total error probability
decays to 0 whenever r ≥ C log2γ+1N , for some large
enough constant C.

Theorem 3 (Upper bound on the number of samples nec-
essary for exact recovery). Let the block transformation
distributions q` and the alphabet distribution {pα}α∈A
satisfy the nontriviality and exponential tails properties
as in Theorem 1. Suppose, also, that for each `, the
expected value µ` of the q` distribution is µ` = `.

Then there exists a large enough constant C > 0 such
that, for X generated by a memoryless source with N
blocks, given r ≥ C log2γ+1N samples (where γ is as in
Theorem 1, in particular satisfying (2)), the probability
of error for the estimator B̂(Y ) of X (see (3)) tends to
0 as N →∞:

pe = Pr[B̂(Y ) 6= ~B(X)]
N→∞−−−−→ 0.

In particular, we note that if the variance of q` is Θ(1)
as ` → ∞ (i.e., γ = 0), then combining Theorems 1
and 3 shows that Θ(logN) samples are necessary and
sufficient for exact recovery.

Since the estimator is efficiently computable and the
required number of samples is polylogarithmic in N ,
where we recall that N is the number of blocks in the
input, this is an indication of the feasibility of nanopore
sequencing under a broad range of noise models.

For some noise models, the stipulation that the ex-
pected value of the q` distribution be ` is too restrictive.
It is thus worthwhile to have the following extension,
which generalizes the upper bound estimator to cases
where the expected value under q` is a nicely behaved
invertible function of `:

Corollary 1. In the setting of Theorem 3, suppose
that there is an invertible function F (`) for which the
expected value of each distribution q` is given by F (`),
such that F−1 is D-Lipschitz for a constant D > 0: that
is, for each ` and denoting by µ` the expected value of
the distribution q`,

µ` = F (`),

and, for all x, y in the domain of F−1,

|F−1(x)− F−1(y)| ≤ D|x− y|.

Then there exists an estimator B̂′(Y ) for which the
conclusion of Theorem 3 holds: that is, there exists a
large enough constant C > 0 such that, given r ≥
C log2γ+1N samples (where γ is as in Theorem 3), the
probability of error for B̂′(Y ) tends to 0 as N →∞:

pe = Pr[B̂′(Y ) 6= ~B(X)]
N→∞−−−−→ 0.

Proof: We propose the following estimator, based
on the empirical mean estimator:

B̂′j(Y ) =

s
F−1(B̃j(Y ))

{
,

where B̃j(Y ) is as in (3). Then, by the analysis in the
proof of Theorem 3, with high probability,

|B̃j(Y )− µBj(X)| ≤ 1/(3D).

Using the Lipschitz condition on F−1, this implies

|F−1(B̃j(Y ))−Bj(X)| ≤ D|B̃j(Y )− µBj(X)|
≤ D/(3D) = 1/3.

Applying the rounding shows that, with high probability,

B̂′(Y ) = ~B(X).

This completes the proof.
a) Extensions: Several extensions to these results

are easy modifications of our proofs. For example, the
extension of both bounds to Markov sources is trivial,
with similar results. One may also wish for approximate
results: how many samples are needed to recover the
original sequence within a certain error tolerance? The
upper bound analysis readily adapts to this, while the
lower bound requires more work. Finally, the model
may be tweaked by making the block transformation
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distributions q` dependent on the symbol associated to
the block. This also changes the analysis very little.

A more complicated extension may give a more pre-
cise upper bound on the necessary number of samples for
exact recovery: namely, Theorem 11 of [10] shows that
there exists an estimator (possibly difficult to compute)
for X using Y whose probability of error is upper
bounded by the conditional entropy H(Y |X). Thus, a
precise upper bound on the conditional entropy may
yield a tighter (in terms of number of samples) version
of Theorem 3.

b) Limitations: The main limitation of the present
analysis is that we do not consider noise models that
create or delete blocks, since we assumed that q`,0 = 0
for all `. Though natural estimators suggest themselves
for the upper bound, their analyses are quite complicated.
Intuitively, the complication comes from the fact that
a single observed sequence may arise from several
different patterns of block insertions and deletions. Thus,
we do not explore these variations in this paper. Note
further that substitutions can be modeled as insertions
followed by corresponding deletions (or vice-versa).

C. Proof of Theorem 1

Note, first, that only a single sample from the channel
is needed to recover the sequence of block symbols in
the input (since blocks cannot be created or erased in
our model). For a lower bound on the necessary number
of samples needed for exact recovery of the original
sequence X , we thus need to lower bound the number of
samples needed to recover the sequence of block sizes.

Consider any estimator B̂(Y ) of ~B(X). We denote by
pe its probability of error:

pe = Pr[B̂(Y ) 6= ~B(X)].

We want a lower bound on this. To do this, we consider
the number E of blocks whose sizes the estimator
determines incorrectly. This may be written as a sum
of indicators:

E =

N∑
i=1

Ei,

where Ei is the indicator that the estimator is erroneous
on block i. Then

pe = Pr[E > 0] = 1− Pr[E = 0].

Now, conditioning on the symbols of the blocks, the
Ei are independent random variables (more precisely, we

may without loss of generality consider an estimator for
which this is true):

Pr[E = 0] (4)

=
∑
s∈AN

Pr[~S(X) = s]

N∏
j=1

(1− Pr[Ej = 1|Sj(X) = sj ])

(5)

It is thus sufficient to lower bound Pr[Ej = 1|Sj(X) =
α], for arbitrary α ∈ A. To do this, we first condition on
the true block size Bj(X) not being too large: for some
m∗ > 0 that we will fix later,

Pr[Ej = 1|Sj(X) = α]

= Pr[B̂j(Y ) 6= Bj(X)|Sj(X) = α]

= Pr[B̂j(Y ) 6= Bj(X)|Bj(X) ≤ m∗, Sj(X) = α]

· Pr[Bj(X) ≤ m∗|Sj(X) = α]

+ Pr[B̂j(Y ) 6= Bj(X) ∩Bj(X) > m∗|Sj(X) = α]

≥ Pr[B̂j(Y ) 6= Bj(X)|Bj(X) ≤ m∗, Sj(X) = α]

Pr[Bj(X) ≤ m∗|Sj(X) = α].

Here, the inequality is by simply lower bounding
Pr[B̂j(Y ) 6= Bj(X) ∩ Bj(X) > m∗|Sj(X) = α] by
0. Since the support of Bj(X) under this conditioning
is finite, we may further lower bound by invoking Fano’s
inequality [5]:

Pr[B̂j(Y ) 6= Bj(X)|Bj(X) ≤ m∗, Sj(X) = α] (6)

≥ H(Bj(X)| ~Bj(Y ), Bj(X) ≤ m∗, Sj(X) = α)

log(m∗ − 1)
(7)

− h(Pr[B̂j(Y ) 6= Bj(X)|Bj(X) ≤ m∗, Sj(X) = α])

log(m∗ − 1)
.

(8)

Here, h(x) denotes the binary entropy function: h(x) =
−x log(x)− (1− x) log(1− x) for x ∈ [0, 1]. Note that
we have replaced the estimator B̂j(Y ) by the samples
~Bj(Y ). This is justified by the data processing inequality.

To upper bound the entropy h(Pr[B̂j(Y ) 6=
Bj(X)|Bj(X) ≤ m∗, Sj(X) = α]) of the error indi-
cator, we need the following lemma:

Lemma 1 (Upper bound on binary entropy). For any
x ∈ [0, 1],

h(x) ≤ 2
√
x.

For brevity, we omit the proof, which is by elementary
convexity considerations.
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Applying Lemma 1, the inequality (8) thus becomes

Pr[B̂j(Y ) 6= Bj(X)|Bj(X) ≤ m∗, Sj(X) = α] (9)

≥ H(Bj(X)| ~Bj(Y ), Bj(X) ≤ m∗, Sj(X) = α)

log(m∗ − 1)
(10)

−
2
√

Pr[B̂j(Y ) 6= Bj(X)|Bj(X) ≤ m∗, Sj(X) = α]

log(m∗ − 1)
.

(11)

1) Lower bounding the conditional entropy:
It remains to show a lower bound on
H(Bj(X)| ~Bj(Y ), Bj(X) ≤ m∗, Sj(X) = α).
The goal of this section is to show the following:

Proposition 1 (Lower bound on conditional entropy).
We have, for any j ∈ {1, ...,N}, and for m∗ = Θ(1)
and any α ∈ A,

H(Bj(X)| ~Bj(Y ), Bj(X) ≤ m∗, Sj(X) = α) ≥ e−Θ(r).

a) Useful notation, types: To proceed, we define
some useful notation: for ` ∈ N,

Pα,` = Pr[Bj(X) = `|Sj(X) = α,Bj(X) ≤ m∗].

For ~k a vector of non-negative integers of length r, we
denote by q`,~k the probability that r independent samples
of q` yield ~k:

q`,~k =

r∏
i=1

q`,ki . (12)

Observe that any permutation of the entries of ~k is
given the same probability. This motivates the following
definition [5]: the type of an r-dimensional vector ~k of
non-negative integers is the set of all vectors formed by
permuting the entries of ~k. Associated bijectively with
any type is an infinite-length sequence T = T (~k) whose
entries are defined as follows: for i ∈ N,

Ti = |{j ∈ {1, ..., r} : kj = i}|.

That is, the ith entry of T is the number of times i
appears in ~k. Note that the sequence so defined is the
same for any element of the corresponding type, so it
is well-defined. In what follows, we abuse notation and
refer to these sequences as types. We further define the
support supp(T ) as the set of i for which Ti 6= 0. We
denote the set of all possible types of r-sample vectors
by T. Finally, we denote by q`,T the probability assigned
by q` to any representative element of T :

q`,T =
∏

i∈supp(T )

qTi`,i. (13)

b) Proof of Proposition 1: By an elementary
derivation, it may be seen that the conditional entropy to
be lower bounded has the following equivalent expres-
sion:

H(Bj(X)| ~Bj(Y ), Bj(X) ≤ m∗, Sj(X) = α)

=

∞∑
`=1

Pα,`
∑
~k≥~1

q`,~k log

1 +
∑
m 6=`

Pα,mqm,~k
Pα,`q`,~k

 .

The existence of this conditional entropy is guaranteed
by the exponential tail assumption in the theorem.

Now, we observe that all vectors ~k in a given type
contribute the same amount in the inner sum. We thus
collect them together and replace the inner sum with a
sum over all possible types for r-vectors of samples:

H(Bj(X)| ~Bj(Y ), Bj(X) ≤ m∗, Sj(X) = α)

=

∞∑
`=1

Pα,`
∑
T∈T

(
r

T

)
q`,T log

1 +
∑
m6=`

Pα,mqm,T
Pα,`q`,T

 ,

(14)

where
(
r
T

)
is the multinomial coefficient:(

r

T

)
=

(
r

T1, T2, ...

)
(note that only finitely many elements of the sequence
T are nonzero).

To lower bound this sum, we start by approximating(
r
T

)
q`,T using Stirling’s formula [1]. We have

q`,T

(
r

T

)
= exp(

∑
t∈supp(T )

Tt log q`,Tt + r log r

− r +
1

2
log r +

1

2
log(2π) +O(1/r)

−
∑

t∈supp(T )

(Tt log Tt − Tt

+
1

2
log Tt +

1

2
log(2π) +O(1/Tt))

= exp(−r
∑

t∈supp(T )

Tt
r

log
Tt/r

q`,Tt

+
1

2
log

r∏
j Tj
− |supp(T )|

2
log(2π)

+O(
∑

t∈supp(T )

1

Tt
) +O(1))

= exp(−rD({Tt/r}t‖{q`}) +
1

2
log

r∏
j Tj

− |supp(T )|
2

log(2π) +O(
∑

t∈supp(T )

1

Tt
) +O(1))

8



If we restrict our attention to types T with bounded
support (i.e., |supp(T )| = Θ(1)), which yields a lower
bound because all terms of (14) are non-negative, then
this becomes

q`,T

(
r

T

)
= e−rD({Tt/r}t‖{q`})+O(log r). (15)

Here, we note that the entries of each type sum to r
(since there are r samples, so {Tt/r}t forms a distri-
bution). Furthermore, D({Tt/r}t‖{q`}) denotes the KL-
divergence of the two distributions. Terms for which this
KL-divergence are smaller contribute more, so we further
lower bound by restricting to only those types for which
it is small (in a sense to be made precise below).

Thus, we lower bound (14) by restricting as follows:
• In the outer sum, we restrict to ` ≤ `∗, for some

fixed positive `∗.
• In the inner sum, we restrict to T ∈ T(ε, t∗), where

we define T(ε, t∗), for some small ε = ε(r) and
arbitrary fixed positive t∗, to be the set of types T ∈
T with |supp(T )| ≤ t∗ and D({Tt/r}t‖{q`}) ≤ ε.
In order for the resulting bound to be nontrivial, we
must show the following:
Claim 1. The set T(ε, t∗) is nonempty for any given
ε, provided that t∗ is sufficiently large.
This is a consequence of the strong law of large
numbers and the fact that we have restricted to ` ≤
`∗ = O(1). We prove it in Appendix VII-A.

• In the innermost sum, inside the logarithm, we
restrict m to a single term m = ` + 1 for which
qm,T 6= 0 (this is nonzero because of the assump-
tion that supp(q`) = supp(q`+1) in the statement
of Theorem 1).

We now estimate the expression inside the logarithm in
the lower bound:

Pα,`+1q`+1,T

Pα,`q`,T
= Pα,`+1/Pα,` · exp(−r

∞∑
i=1

Ti
r

log
q`,i
q`+1,i

),

(16)

where we recall the definition of q`,T given by (13). Now,
using the definition of T(ε, t∗), we may approximate
Ti/r by q`,i as follows: we know that

D({Tt/r}‖q`) < ε.

To convert this to a bound on the L1 distance between
{Ti/r} and q`, we apply Pinsker’s inequality [5]:

Lemma 2 (Pinsker’s inequality). For two distributions
P and Q on the same probability space,

‖P −Q‖TV ≤
√

2 ·D(P‖Q)

Thus, we have

Ti/r = (Ti/r − q`,i) + q`,i = q`,i(1 +O(ε(r))/q`,i).

Now, since ` is bounded, and since Ti 6= 0 =⇒
q`,i 6= 0, we have that q`,i = Θ(1), so that we have
the asymptotic equivalence

Ti/r = q`,i(1 +O(ε(r))).

(Note that the O is not uniform in `.)
Plugging this approximation into (16), we have

Pα,`+1q`+1,T

Pα,`q`,T

= Pα,`+1/Pα,` · exp(−rD(q`‖q`+1)(1 +O(ε(r)))).

Plugging this into the logarithm (14), we get

log

1 +
∑
m 6=`

Pα,mqm,T
Pα,`q`,T

 ≥ log(1 +
Pα,mqm,T
Pα,`q`,T

)

∼ Pα,`+1

Pα,`
· exp(−rD(q`‖q`+1)(1 +O(ε(r)))), (17)

provided that dmin = Ω(1), where we define dmin to be

dmin = min
`,m∈{1,...,`∗}

D(q`‖qm).

We may, in any case, lower bound further by upper
bounding the KL-divergence in the exponent of (17) by
some constant. Thus, we have shown that the logarithm
in (14) is lower bounded by

log

1 +
∑
m6=`

Pα,mqm,T
Pα,`q`,T

 ≥ e−Θ(r), (18)

after noting that Pα,`+1

Pα,`
= Θ(1) if we choose `∗ < m∗.

Combining (18) with (15), we get as a lower bound
for (14)

H(Bj(X)| ~Bj(Y ), Bj(X) ≤ m∗, Sj(X) = α)

≥ exp(−r(ε+ Θ(1)) +O(log r)) = exp(−Θ(r)).

This completes the proof of Proposition 1.

2) Finishing the proof of Theorem 1: By Proposi-
tion 1, we may further lower bound (11), which yields

Pr[B̂j(Y ) 6= Bj(X)|Bj(X) ≤ m∗, Sj(X) = α]

≥ e−Θ(r)

log(m∗ − 1)

−
2
√

Pr[B̂j(Y ) 6= Bj(X)|Bj(X) ≤ m∗, Sj(X) = α]

log(m∗ − 1)
.

9



This in particular implies that

Pr[B̂j(Y ) 6= Bj(X)|Bj(X) ≤ m∗, Sj(X) = α]

≥ e−Θ(r).

Plugging this into (5), we get that

Pr[E = 0] ≤
∑
s∈AN

Pr[~S(X) = s]

N∏
j=1

(1− e−Θ(r))

=
∑
s∈AN

Pr[~S(X) = s](1− e−Θ(r))N

= (1− e−Θ(r))N

=⇒ pe ≥ 1− (1− e−Θ(r))N .

Finally, using the fact that

(1− e−Θ(r))N = e−Ne
−Θ(r)(1+o(1)),

we see that this lower bound is Θ(1) as long as r <
C logN , for some small enough positive constant C.
This completes the proof of Theorem 1.

D. Proof of Theorem 3

For an upper bound on the number of samples needed
for exact recovery of the original sequence X from r
samples Y , it is sufficient to exhibit an estimator and to
upper bound its error probability. Since a single sample
reveals all symbols with probability 1, the challenge lies
in determining the N original block sizes. We propose
the estimator B̂j(Y ) as in (3) for the jth block size, for
j ∈ {1, ..., N}.

Next, we analyze the error probability of this esti-
mator. By the union bound, we can upper bound the
probability of error pe as a sum over all blocks:

Pr[B̂(Y ) 6= ~B(X)] ≤
N∑
j=1

Pr[B̂j(Y ) 6= Bj(X)] (19)

=

N∑
j=1

∑
α∈A

Pr[Sj(X) = α] (20)

· Pr[B̂j(Y ) 6= Bj(X)|Sj(X) = α] (21)

=

N∑
j=1

∑
α∈A

Pr[Sj(X) = α] (22)

∞∑
m=2

Pr[Bj(X) = m|Sj(X) = α] (23)

Pr[B̂j(Y ) 6= Bj(X)|Bj(X) = m]. (24)

Here, the first equality is by conditioning on the symbol
of the jth block of X , and the second equality is by

conditioning on the input block size being m and by the
fact that B̂j(Y ) is conditionally independent of Sj(X)
given the input block size.

It remains to analyze the probability Pr[B̂j(Y ) 6=
Bj(X)|Bj(X) = m]. By definition of the closest integer
function, we have

Pr[B̂j(Y ) 6= Bj(X)|Bj(X) = m]

= Pr[|B̃j(Y )−Bj(X)| ≥ 1/2

∣∣∣∣Bj(X) = m].

Now, note that Bj,i(Y ), for i = 1, ..., r, under this
conditioning, is distributed according to the measure qm
and has mean m. Furthermore, all terms are independent.

At this point in the proof, we use the tail bound
assumed in the hypothesis. In particular, this implies
[22] that the random variables Bj,i(Y ) appearing in
the definition of the estimator are weakly sub-Gaussian,
defined as follows:

Definition 1 (Weakly sub-Gaussian). A random variable
M is said to be weakly sub-Gaussian (also called sub-
Exponential) with parameter λ if its centered version
M̂ = M − E[M ] satisfies

E[esM̂ ] ≤ es
2λ2/2

for all |s| ≤ 1/λ. We then write

M∼WeaklySubGaussian(λ).

Note that this differs from the definition of a sub-
Gaussian random variable in that the inequality on the
MGF is not required to hold for all s ∈ R. Thus, the
class of weakly sub-Gaussian random variables includes
as a proper subset sub-Gaussian random variables, as
well as random variables with only exponential tails.

Sums of i.i.d. weakly sub-Gaussian random variables
satisfy the following concentration result [22]:

Lemma 3 (Bernstein’s inequality). Let M1, . . . ,Mr

be independent random variables such that each
Mi∼WeaklySubGaussian(λ) and E[Mi] = 0. Define

M̄ =
1

r

r∑
i=1

Mi

(i.e., the empirical mean of the random variables Mi).
Then for any t > 0, we have

Pr[M̄ < t]∨ Pr[M̄ > t] ≤ exp

[
−r

2

(
t2

λ2
∧ t

λ

)]
.

Here, a∨ b denotes max{a, b}, and a∧ b denotes
min{a, b}.
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Applying this with Mi = Bj,i(Y ) − E[Bj,i(Y )] and
λ = const ·mγ , we get that

Pr[|B̃j(Y )− E[B̃j(Y )]| ≥ 1/2] ≤ 2e−Θ(r/m2γ).

Plugging this into (24) after recalling that we conditioned
on Bj(X) = m, this results in

Pr[B̂(Y ) 6= ~B(X)]

≤ 2

N∑
j=1

∑
α∈A

Pr[Sj(X) = α]

∞∑
m=2

Pr[Bj(X) = m|Sj(X) = α]e−Θ(r/m2γ)

= 2

N∑
j=1

∑
α∈A

Pr[Sj(X) = α]

∞∑
m=2

e−Θ(m)−Θ(r/m2γ).

Here, the equality comes from the fact that Pr[Bj(X) =
m|Sj(X) = α] is geometrically distributed with a
parameter that is Θ(1). To evaluate the m sum, we find
the largest term by taking the derivative of the exponent
with respect to m, setting it equal to 0, and solving. This
shows that the largest term comes from

m∗ =

{
2 γ = 0

Θ(r
1

2γ+1 ) γ > 0

and the maximum contribution is e−Θ(r
1

2γ+1 ) in either
case. Thus, it is easy to see that the m sum is given by

∞∑
m=2

exp(−Θ(m)−Θ(r/m2γ)) = e−Θ(r
1

2γ+1 ).

Since the α sum is over a constant number of indices,
and since Pr[Sj(X) = α] = Θ(1) for all α ∈ A, we
have thus shown the following proposition:

Proposition 2 (Upper bound on block errors). We have,
uniformly for j ∈ {1, ..., N}, for the estimator (3),

Pr[B̂j(Y ) 6= Bj(X)] ≤ exp(−Θ(r
1

2γ+1 )). (25)

This implies

Pr[B̂(Y ) 6= ~B(X)] ≤
N∑
j=1

e−Θ(r
1

2γ+1 ).

Finally, note that the Θ in the exponent above is uniform
in j, which yields the upper bound

Pr[B̂(Y ) 6= ~B(X)] ≤ Ne−Θ(r
1

2γ+1 ).

In order for this upper bound to tend to 0 as N → ∞
(so that the estimator is equal to the input sequence), it
is sufficient to have a number of samples r satisfying

r ≥ C log2γ+1N,

for a large enough constant C. This completes the proof
of the theorem.

IV. CONCRETE EXAMPLES AND EMPIRICAL RESULTS

In this section, we illustrate our upper bound results
empirically. For two different block transformation dis-
tributions, we pass a random sequence X through the
corresponding channels r times and use the estimators
guaranteed by Theorem 3 and Corollary 1 to calculate an
estimate Ŷ of X . We plot the resulting number of block
errors (averaged over 100 trials of the above experiment)
versus the number of samples.

For both examples, X has N = 10000 blocks, r ≤
200, and the alphabet distribution is given by

pα = 1/4, α ∈ {1, 2, 3, 4}.

A. Bounded Variance Distribution

The first distribution that we consider is defined as
follows: fixing any q ∈ (0, 1),

q`,k = qk−`(1− q),

for any k ≥ ` ≥ 1. After some easy calculation, we find
that the expected value of this distribution is given by

µ` = `+
q

1− q
.

Moreover, the variance is Θ(1) (so that the exponential
decay condition in Theorem 3 is satisfied with γ = 0).

Although only insertions are allowed under this dis-
tribution, it is easy to tweak it to support deletions, and
our theoretical results would still apply.

Thus, Corollary 1 suggests an estimator:

B̂′j(Y ) =

s
B̃j(Y )− q

1− q

{
.

The plot of the performance of this estimator is
given in Figure 2. The number of block errors, for a
single sample, is of the same order as the number of
blocks and decreases exponentially as a function of the
number of samples; thus, logarithmically many samples
(as a function of N ) are required for exact recovery.
This is empirically in agreement with the guarantees of
Corollary 1 and Theorem 2.

B. Independent Insertion-Deletion Distribution

To illustrate the robustness of our analysis, we
consider another distribution with (asymptotically)
higher variance: namely, what we call the independent
insertion-deletion distribution. It captures a transforma-
tion model in which, for each block, the first symbol
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Figure 2: Number of samples versus number of block
errors for the bounded variance model.

passes through untouched, while each subsequent sym-
bol is deleted or duplicated with probability 1/2 each.
That is, for any block j ≤ N and sample i ≤ r,

Bj,i(Y ) = 1 + 2 · Binomial(Bj(X)− 1, 1/2).

The expected value of the q` distribution is then

µ` = `,

while the variance is

σ2
` = (`− 1) = Θ(`).

That is, Theorem 3 applies with γ = 1, guaranteeing
an upper bound of Θ(log3N) samples. Since µ` = `,
the estimator prescribed by Theorem 3 suffices. By the
lower bound theorem, we see that at least Θ(logN)
samples are needed for exact recovery, as in the previous
example.

The plot of the performance of this estimator is given
in Figure 3.

V. RELATED RESEARCH

Technologies underlying nanopore sequencers
have been investigated for over a decade [6], [2].
Commercial platforms based on these technologies have
only recently been announced – with Oxford Nano being
the leading platform. An excellent introduction to this
platform is available at: https://www.nanoporetech.com/
technology/analytes-and-applications-dna-rna-proteins/
dna-an-introduction-to-nanopore-sequencing. There
have been preliminary efforts aimed at characterizing
the performance of nanopore sequencing platforms
in terms of error rate, error classification, and run
lengths [16], [19], [9], [23].

#
of

bl
oc

k
er

ro
rs

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

# of samples

Figure 3: Number of samples versus number of block
errors for the independent insertion-deletion model.

Churchill and Waterman [4] address similar questions
to ours for substitution channels. A key differentiating
aspect of their work is that they reconstruct a sequence
of read values for a given position as a consensus; i.e.,
the most frequent value across replicates. In contrast,
significantly different estimators are needed for recon-
struction in our model. Beyond this, a major difference
between our results and those of Churchill and Waterman
is that they provide bounds for a specific estimation
technique, whereas our bounds are fundamental – they
hold irrespective of the chosen estimator. Moreover, for
certain choices of model parameters, our lower bounds
contain Kullback-Leibler divergences between different
block transformation distributions corresponding to dif-
ferent input block lengths, which quantitatively describes
the difficulty of distinguishing them.

A historically important paper related to limits of
sequencing technologies by Lander and Waterman [14]
poses statistical questions about the performance of
shotgun sequencing and heuristically answers them. In
particular, they consider the following model: fix a DNA
string G of length n, which we would like to recover.
Samples from this string take the form of substrings
of a given fixed small size, taken uniformly at random
from G. That is, the randomness in this model is in
the location of the sampled substrings, and there are no
substitutions, insertions, or deletions. The authors define
the coverage depth of a set of samples as the average
number, over each position i in G, of samples that
include i. They then relate the expected coverage depth
to the expected number of “contigs” (i.e., contiguous
substrings of G assembled from overlapping samples),
in particular showing that the latter decays exponentially
as the expected coverage depth increases. They use this
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to conclude that, in order to recover G, the expected
coverage depth must be at least logarithmic in n. This
result differs from ours in several key ways: first, the
noise in our model takes the form of erroneous reads
of the entire sequence, whereas theirs is in the form
of noiseless reads of small portions of the sequence.
Second, the logarithmic lower bound in their case is in
terms of expected coverage depth, instead of samples.
Finally, we give an algorithmically efficient method for
reconstruction in our model, whereas they do not.

A more recent paper, by Motahari et al. [18], further
(and rigorously) studies DNA shotgun sequencing. In
particular, the authors give bounds on the number of
reads (which take the same form as in [14]) neces-
sary to reconstruct a given string, this time modeled
probabilistically. Moreover, they consider the case of
independent substitution errors, and they give algorithms
for reconstruction. The major contrast with our work is
again that the noise and read models are quite different,
leading to different challenges in analysis.

Error characteristics and models for nanopore se-
quencers have been recently studied by O’Donnell et
al [19]. In this study, the authors investigate error char-
acteristics, and build a statistical model for errors. They
use this model to show, through a simulation study,
that replicated extrusion can be used to improve error
characteristics. In particular, they show that using their
model, it is possible to achieve 99.99% accuracy by
replicating the read 140 times. This empirical study
provides excellent context for our analytical study, which
provides rigorous bounds and required replication rates.

There have been a number of efforts aimed at ana-
lyzing the error characteristics of current generation of
sequencing technologies, including the 454 and PacBio
sequencers [13], [3], [20]. These efforts are primarily
aimed at the problem of alignment of relatively short
fragments - of localizing their positions in a longer
sequence. In contrast, due to longer reads obtained by
nanopore sequencing, in this paper, we do not deal with
the issue of localizing positions of the fragments and
focus on the problem of correcting indel errors. These
considerations can be also used for improving accuracy
from multiple (aligned) reads of any sequencing tech-
nique. Our approach takes an information theoretic view
to the problem. In doing so, we are able to establish
fundamental bounds on the performance envelope of
the modeled nanopore sequencer. To the best of our
knowledge, this paper represents the first information
theoretic formulation of its kind.

There has been significant work on different channels,
their capacities, and error characteristics since the work

of Shannon. Of particular relevance to our results is
the work in deletion channels [12] (see also [17] for
a survey). As mentioned, the capacity of independent
insertion/deletion channels is as yet unknown, though
lower bounds have been proven in the form of explicit
distributional constructions and coding schemes [24].
There have been efforts aimed at error correction in
insertion-deletion channels in the context of communi-
cation, storage, and RFID systems [26]. A variant of
independent insertion-deletion channels appears in the
literature under the name “sticky channels”, with the key
contrast with our model being that individual symbols
are replicated (potentially several times) or deleted in-
dependently, whereas our sticky channel operates at the
block level. Moreover, the emphasis in the information
theory literature has been on determining bounds on the
capacity, whereas we have the qualitatively different task
of bounding the sample complexity.

Finally, we mention that in practical applications, if
one wishes to numerically compute estimates of the
bounds on the number of samples necessary for exact
recovery, one must at least know estimates of the dis-
tribution on the alphabet {pα}α∈A. Since the channel is
sticky, it is not utterly obvious how to do this. The paper
[8] gives heuristics for this problem in the per-symbol
sticky channel model.

VI. DISCUSSION AND CONCLUSION

In this paper, we present a novel modeling methodol-
ogy based on the abstraction of a nanopore sequencer as
an information theoretic channel. We use our method-
ology to show a number of important results: (i) the
indel error rate of the nanopore sequencer limits the
sequence length that can be accurately reconstructed
from a single sample; (ii) replicated extrusion through
the nanopore is an effective technique for increasing
the accurate reconstruction length; (iii) the necessary
number of replicas is a slowly growing function of the
sequence length (polylogarithmic in sequence length),
enabling nanopore sequencers to accurately reconstruct
long sequences. We demonstrate our results for a wide
class of error models and show that our analyses are
robust.
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VII. APPENDIX

A. Proof of Claim 1

We prove this by constructing a random type τ and
showing that it has the desired properties with positive
probability. Consider r independent random samples
{K1, ...,Kr} = ~K distributed according to q≤t∗` (the
distribution of a random variable distributed according
to q` under the conditioning that it is at most t∗), for
arbitrary ` ≤ `∗. Denote by τ the type T ( ~K) of these
samples. Then, trivially, because of the conditioning,
|supp(τ)| ≤ t∗, and

∑∞
i=1 τi = r because there are

exactly r samples. To show that D({τt}t‖q`) ≤ ε for
sufficiently large t∗, the plan is to first bound the L1

distance between the two distributions, then use a reverse
Pinkser-type inequality to transfer this to a bound on the
KL-divergence.

By the strong law of large numbers, with probability
1, for any ε′ > 0 and t∗, r can be made large enough so
that, for all i ∈ supp(τ),

|τi/r − q≤t∗`,i | ≤ ε
′/2.

In particular, we choose, for an arbitrary fixed ε′′ > 0,

ε′ = ε′′/t∗. (26)

Furthermore, we choose t∗ so that, for arbitrary i,

|q≤t∗`,i − q`,i| ≤ ε
′/2. (27)

This can be done because, letting W be a random
variable distributed according to q`,

|q≤t∗`,i − q`,i| ≤ q`,i|
1

1− Pr[W > t∗]
− 1|

= q`,i
Pr[W > t∗]

1− Pr[W > t∗]
,

which can be made arbitrarily small by taking t∗ large
enough.

Next, by the triangle inequality,

|τi/r − q`,i| ≤ |τi/r − q≤t∗`,i |+ |q
≤t∗
`,i − q`,i|

≤ ε′/2 + ε′/2 = ε′′/t∗.
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This implies that the L1 distance between the two
distributions is

‖{τi/r}i − {q`,i}i‖1 ≤ t∗ε′ = ε′′. (28)

We have thus shown that, for any fixed ε′′ > 0, we
may choose t∗ sufficiently large so that the L1 distance
between the empirical and true distributions is at most
ε′′.

To transfer this upper bound on the L1 distance to
an upper bound on the KL-divergence between the two
distributions, we need the following reverse Pinsker-type
inequality:

Lemma 4 ([25], Theorem 7). Let P and Q be distribu-
tions on a common probability space, taking values in
some set S, such that P is absolutely continuous with
respect to Q. Define β1 by β−1

1 = supa∈S
dP
dQ (a), where

dP
dQ denotes the Radon-Nikodym derivative of P with
respect to Q. Then

D(P‖Q) ≤ const√
β1

· ‖P −Q‖1.

Here, P in the lemma is the distribution
{τi/r}i∈supp(τ), and Q is q`. The absolute continuity
of the former with respect to the latter follows from
the definition of the conditional distribution q≤t∗` . The
Radon-Nikodym derivative dP

dQ , here, is simply the ratio
of the two probability mass functions.

Provided that we can show that the maximum of this
ratio over all i is at most a constant, we can then infer
that the KL-divergence is bounded. This is a simple
consequence of the Hoeffding bound, using the fact that
τi/r is a sum of r i.i.d. terms bounded by t∗/r in
absolute value: for any positive δ > 0,

Pr[|τi/r − q≤t∗`,i | ≥ δq
≤t∗
`,i ] ≤ exp(−δ2(q≤t∗`,i )2/(r · r−2))

= exp(−Θ(δ2r/t2∗)).

Union bounding with this probability over all i ≤
t∗, we have that, with probability at least 1 −
t∗ exp(−Θ(δ2r/t2∗)) = 1− exp(−Θ(δ2r/t2∗)),

max
i∈supp(τ)

|τi/r − q≤t∗`,i |
q≤t∗`,i

≤ δ.

This, in particular, implies that with high probability
as r →∞, we have

τi/r ≤ q≤t∗`,i (1 + δ).

for all i ∈ supp(τ). Thus,

β−1
1 = sup

i∈supp(τ)

τi/r

q`,i
= O(1). (29)

Applying Lemma 4, (29), and (28), we thus have

D({τi/r}i‖{q`,i}i) ≤ const · ε′′.

We can then set ε′′ so that this upper bound becomes ε.
Since we have proven that there is a positive proba-

bility that the random τ so chosen is in the set T(ε, t∗)
provided that we choose t∗ large enough, this implies
that T(ε, t∗) is nonempty, as desired.

B. Proof of Theorem 2

The proof is very similar to the proof of Theorem 1,
so we only highlight what needs to be changed to derive
the desired result. In particular, we need to prove Propo-
sition 1 under the weaker assumption of overlapping
distribution supports.

To do this, the challenge is again to lower bound
(14) by restricting to appropriate terms. In particular, we
restrict as follows:
• We restrict ` as before.
• We restrict to the following type T : for an arbitrary
i ∈ supp(q`) ∩ supp(q`+1),

Tj =

{
r i = j

0 i 6= j

We then easily have supp(T ) ⊆ supp(q`) ∩
supp(q`+1), |supp(T )| = 1, and

∑
i Ti = r.

• We restrict to m = `+ 1 as before.
Then the contribution to (14) of q`,T

(
r
T

)
becomes

q`,T

(
r

T

)
= e−rD({Tt/r}t‖{q`})+O(log r) ≥ e−rΘ(1).

This is a consequence of the fact that

D({Tt/r}t‖{q`}) = Ti/r log
Ti/r

q`,i
= log(1/q`,i) = Θ(1).

Applying Pinsker’s inequality, we see that this implies
that the L1 distance between the two distributions is
O(1).

To lower bound the expression inside the logarithm in
(14), we start with (16), which becomes

Pα,m/Pα,` · exp(−rD(q`‖qm)Θ(1)).

The rest of the proof is as in that of Theorem 1, and we
omit it.
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