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ABSTRACT
Motivation: Nanopore sequencers are emerging as promising
new platforms for high-throughput sequencing. As with other
technologies, sequencer errors pose a major challenge for their
effective use. In this paper, we present a novel information the-
oretic analysis of the impact of insertion-deletion (InDel) errors
in nanopore sequencers. In particular, we consider the follow-
ing problems: (i) for given InDel error characteristics and rate,
what is the probability of accurate reconstruction as a function of
sequence length; (ii) what is the number of ‘typical’ sequences
within the distortion bound induced by InDel errors; (iii) using re-
peated extrusion through the nanopore, what is the number of
repetitions needed to reduce the distortion bound so that only one
typical sequence exists within the distortion bound.
Results: Our results provide a number of important insights: (i)
the maximum length of a sequence that can be accurately recon-
structed in the presence of InDel errors is relatively small; (ii) the
number of typical sequences within the distortion bound is large;
and (iii) repeated extrusion is an effective technique for unique
reconstruction. In particular, we show that the number of repeats
is a slow function (logarithmic) of sequence length – implying that
through repeated extrusion, we can sequence large reads using
nanopore sequencers. InDel errors are the primary error mode
for nanopore sequencers. To this end, the results in this paper
can be viewed as (tight) bounds on reconstruction lengths and
repetitions for accurate reconstruction.
Contact: ayg@cs.purdue.edu

1 INTRODUCTION
The past few years have seen significant advances in sequenc-
ing technologies. Sequencing platforms from Illumina, Roche,
PacBio and other vendors are commonly available in labo-
ratories. Accompanying these hardware advances, significant
progress has been made in statistical methods, algorithms,
and software for tasks ranging from base calling to complete
assembly. Among the key distinguishing features of these se-
quencing platforms are their read lengths and error rates. Short
read lengths pose problems for sequencing high-repeat regions.
Higher error rates, on the other hand, require oversampling to
either correct, or discard erroneous reads without adversely
impacting sequencing/ mapping quality. Significant research
efforts have studied tradeoffs of read-length, error rates, and
sequencing complexity. An excellent survey of these efforts is
provided by Quail et al [9].

More recently, nanopores have been proposed as platforms
for sequencing. Nanopores are fabricated either using organic
channels (pore-forming proteins in a bilayer) or solid-state ma-
terial (silicon nitride or graphene). An ionic current is passed
through this nanopore by establishing an electrostatic potential.
When an analyte simultaneously passes through the nanopore,
the current flow is disrupted. This disruption of the current flow
is monitored, and used to characterize the analyte. This gen-
eral principle can be used to characterize nucleotides, small
molecules, and proteins. Complete solutions based on this tech-
nology are available from Oxford Nanopore Technologies [7].
In this platform, a DNA strand is extruded through a protein
channel in a membrane. The rate of extrusion must be slower
than current measurement (sampling) for characterizing each
base (or groups of small number of bases, up to four, in the
nanopore at any point of time).

In principle, nanopores have several attractive features – long
reads (beyond 100K bases) and minimal sample preparation.
However, there are potential challenges that must be over-
come – among them, the associated error rate. The extrusion
rate of a DNA strand through a protein channel is controlled
using an enzyme [8]. This rate is typically modeled as an ex-
ponential distribution. When a number of identical bases pass
through the nanopore, the observed (non-varying) signal must
be parsed to determine the precise number of bases. This results
in the dominant error mode for nanopore sequences. Specifi-
cally, insertion-deletion errors in such sequencers are reported
to be as high as 4% [8, 10].

The high InDel error rate can be handled using repeated reads
for de-novo assembly, or through algorithmic techniques us-
ing reference genomes. The Oxford Nanosequencer claims a
scalable matrix of pores and associated sensors using which re-
peats can be generated. Alternately, other technologies based
on bi-directional extrusion have been proposed. In either case,
two fundamental questions arise for de novo assembly: (i) for
single reads, what is the bound on read length that can be accu-
rately reconstructed using a nanopore sequencer with known
InDel rates; and (ii) what is the number of repeats needed
to accurately reconstruct the sequence with high probability
(analytically defined).

In this paper, we present a novel information theoretic anal-
ysis of the impact of InDel errors in nanopore sequencers. We
model the sequencer as a sticky insertion-deletion channel. The
DNA sequence is fed into this channel and the output of the
channel is used to reconstruct the input sequence. Using this
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model, we solve the following problems: (i) for given InDel er-
ror characteristics and rate, what is the probability of accurate
reconstruction as a function of sequence length; (ii) what is the
number of ‘typical’ sequences within the distortion bound in-
duced by InDels; and (iii) what is the number of repeats needed
to reduce the distortion bound so that only one typical sequence
exists within the distortion bound (unique reconstruction).

Our results provide a number of important insights: (i) the
maximum length of sequence that can be accurately recon-
structed in the presence of InDel errors is relatively small; (ii)
the number of typical sequences within the distortion bound
induced by InDels is large; and (iii) the number of repeats
required for unique reconstruction is a slow function (logarith-
mic) of the sequence length – implying that through repeated
extrusion, we can sequence large reads using nanopore se-
quencers. The bounds we derive are fundamental in nature
– i.e., they hold for any resequencing/ processing technique.
Furthermore, while InDels (deletion errors primarily) are the
dominant error mode in nanopore sequencers, substitution er-
rors may further limit their performance. In this sense, the
results in the paper can be viewed as bounds on reconstruction
lengths and repetitions.

2 APPROACH
In this section, we present our model and the underlying
concepts in information theory that provide the modeling sub-
strates. We define notions of a channel, reconstruction, an
insertion-deletion channel, and distortion bound. We then de-
scribe how these concepts are mapped to the problem of
sequence reconstruction in nanopore sequencers.

Our basic model for a nanopore sequencer is illustrated in
Figure 1. A DNA sequence is input to the nanopore sequencer.
This sequence is read and suitably processed to produce an out-
put sequence. We view the input sequence as a sequence of
blocks. Each block is comprised of a variable number (k) of
identical bases. The nanopore sequencer potentially introduces
errors into each block by altering the number of repeated bases.
If the output block sizek′ is not the same as the input block size
k, an InDel error occurs. Specifically,k′ < k corresponds to a
deletion error, andk′ > k to an insertion error. Please note that
this model does not account for substitution errors.

We model the sequencing process (both the sequencer and
the associated processing) as a channel. A channel in in-
formation theory is a model (traditionally for a storage or
communication device, but in our case, used more generally)
for information transfer with certain error characteristics. The
input sequence of blocks is sent into this channel. The error
characteristics of the channel transform a block ofk characters
into a block ofk′ characters. This transformation is modeled
as a distribution –k′ = G(k, p), whereG is the distribution
andp, the associated set of parameters tuned to the sequencing
platform. In typical scenarios, the distribution peaks atk and
decays rapidly on either side. The distribution may be asym-
metric aroundk depending on relative frequency of insertion
and deletion errors. We refer to such a channel as a sticky
channel.

Insertion-Deletion Channels In ideal communication systems,
one often assumes that senders and receivers are perfectly
synchronized – i.e., each sent bit is read by the receiver. How-
ever, in real systems, such perfect synchronization is often not
possible. This leads to sent bits missed by the receiver (a dele-
tion error), or read more than once (an insertion error). Such
communication systems are traditionally modeled as insertion-
deletion channels. Formally, an independent insertion channel
is one in which a single bit transmission is accompanied with
the insertion of a random bit with a probabilityp. An inde-
pendent deletion channel is one in which a transmitted bit can
be deleted (omitted from the output stream) with a probability
p′. An insertion-deletion channel contains both insertions and
deletions [3]. Please note that a number of basic characteristics
of insertion-deletion channels, such as their capacity, are as-yet
unknown in information theory literature as well.

We consider a variant of the independent insertion-deletion
model that is better suited to nanopore sequencers. In partic-
ular, we recognize the primary source of error in nanopore
sequencers is associated with disambiguating the exact number
of identical bases passing through the nanopore. We modify the
independent insertion-deletion channel to the sticky insertion-
deletion channel described above (Figure 1). Coincidentally,
the analysis of this block modification insertion-deletion chan-
nel is easier – as we demonstrate in this paper.

Typical Sequences. There are4n distinct nucleotide sequences
of n bases, each generated with a corresponding (idealized)
probability of4−n. For convenience, we can also view this as
probability as2−2n, with the understanding that if each base
is equally likely, we would need two bits for each base. How-
ever, from asymptotic equipartition property (AEP), we know
that there is atypical set such that the probability of generating
a sequence belonging to this set approaches 1. In other words,
while there may be sequences outside of this set whose indi-
vidual probability may be high, their number is small enough
that the total probability is dominated by the sequences in this
typical set. Furthermore, we know that the probability of draw-
ing a sequence of lengthn from this set is given by2−H(X)n,
whereH(X) is the entropy of the source. Comparing this ex-
pression with the sequence probability assuming each base is
equally likely (2−2n), we note the unsurprising conclusion that
for our idealized caseH(X) = 2. However, a number of stud-
ies have shown that the entropy of living DNA is in fact much
lower, as low as 1.7 or below [6]. This suggests that the num-
ber of typical sequences is in fact much less than the number
of total sequences. We use this notion of typical sequences and
thetypical set in our derivation of the performance bounds of a
nanopore channel.

Distortion Bound and Unique Reconstruction. Viewing a DNA
sequence passing through a nanopore as a point (in some very
high dimensional space), passing it through a sequencer in-
troduces an error. This error can be viewed as a hypersphere
around the original sequence. Each point in the hypersphere
corresponds to a possible input sequence with a probability that
can be analytically quantified. We refer to this hypersphere as
a distortion ball. Ideally, we want the radius of this distortion
ball to be as small as possible – containing only a single point.
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Figure 1. Overview of the proposed channel and its correspondence with a sequencer.

A weaker condition is that the distortion ball contains only a
single typical sequence. We refer to the former as an accurate
reconstruction and the latter as a unique reconstruction.

A single pass through the nanopore induces a distortion ball
whose probability profile can be quantified. We show that the
radius of this ball can be reduced by repeated extrusion through
the nanopore. One of the key contributions of this paper is that
the radius shrinks rapidly with the number of extrusions, thus
enabling accurate and/or unique reconstruction with relatively
small number of repeats.

3 METHODS

3.1 Notation and Theoretical Model
The input sequence to the channel/ sequencer is drawn from analpha-
betA. For DNA sequencing,A = {A, T,C,G}. The alphabet size
|A| is denoted bym. We assume that ann length input sequenceX
is independent and identically distributed (i.i.d.); i.e., each sequence
has the same probability distribution as the others and all sequences
are mutually independent. Mathematically, probabilityPr(xi = s) =
ps,

∑

s ps = 1.

3.1.1 Blocking Identical Symbols As mentioned, we view input
and output sequences as sequences of blocks, with each blockcom-
prised of one or more identical symbols. Ifsk denotesk ≥ 1 repeats
of symbols, we can write sequenceX as concatenation ofN ≤ n

blocks:X = sk1

1 . . . s
kN
N

, such thatki > 0, si+1 6= si. For exam-
ple, a sequenceX=“AATATTAA” is represented in the block form as
A2TAT 2A2.

We initiate our discussion by enumerating basic statisticalproperties
of block sequences. We see that:

Pr(si+1 = s′|si = s 6= s′) =
ps′

1− ps
. (1)

Since we have a block of symbolss, the block must start with at least
one appearance of symbols. The probability that the block will have
lengthk ≥ 1 is given by:

Psk := Pr(ki = k|si = s) = pk−1
s (1− ps) (2)

satisfying
∑

k≥1

Psk = 1.

The expected length a block of symbolss is given by:

ks :=
∑

k≥1

kPsk =
∑

k≥0

kpk−1
s (1− ps) =

1

1− ps
.

The expected number of symbolss in the entire sequence of lengthn
is nps. Therefore, the expected number of blocks of types, and of all
blocks is, respectively,

Ns := nps/ks = nps(1− ps), (3)

N :=
∑

s

Ns = n

(

1−
∑

s

p2s

)

. (4)

3.2 Sticky Insertion-Deletion Channel (InDel)
We model the sequencer using a sticky insertion-deletion channel.
In this channel, a block ofk consecutive identical symbols, with
probabilityqkl, is transformed into a block ofl copies of the symbol:

Pr(sl|sk) = qkl(s) where
∑

l

qkl(s) = 1. (5)

The term sticky is used to imply that the block structure remains un-
changed; i.e.,qk0(s) = q0l(s) = 0.
In this model,{qkl(s)} specifies the block length change probabili-
ties. We can assume that for givenk, qkl(s) has a maxima atl = k;
i.e., the probability that there is no error in a block exceeds any other
(erroneous) transformation. In Section 4, we consider two specific
choices for functionq: an exponential distribution and independent
insertion-deletions. In this model, the probability of observing an
output sequenceY from our InDel channel is given by:

Pr(Y = sl11 sl22 ...s
lN
N

|X = sk1

1 sk2

2 ...s
kN
N

) =

N
∏

i=1

qkili (si). (6)

For example, true sequenceX=“AAAATTAAA”= A4T 2A3 is read by
the sequencer asY =”AATTTAA”= A2T 3A2 with probabilityq42(A)·

q23(T ) · q31(A).
For simplicity, we assume thatq is identical for different symbolss:

qkl(s) ≡ qkl. (7)

This implies that insertion-deletion errors in sequencing are indepen-
dent of the bases. Please note that this assumption is not a limitation of
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our framework. Assumingqk0 = q0l = 0, the number of blocks and
their order remain the same while applying the channel. However, the
lengths of blocks may change. The sequencing problem can thenbe re-
duced to the following task: determine the original set of block counts
(ki)i=1..N from the following two cases under consideration: (i) the
single extrusion case – a single read sequenceY : (li)i=1..N ; and (ii)
the multiple extrusion case – each sequence is repeatedc ∈ N times:
(lji )i=1..N for j = 1, . . . c.

3.3 Accurate Reconstruction from Nanopore
Sequencers

We now consider the problem of constructing a true sequence (from
the channel or the sequencer) from an observed sequence (from the
ionic current measurement). This problem is one of reconstructing a
true block sequence from an observed block sequence at the output
of the sticky channel. Since we assume that the block structure is not
changed by the channel, this problem can be solved one block at a time.
Specifically, we observe a block at the output of the channel of length
l and we must infer the block length of the corresponding input,k. We
refer to this as the problem of finding the most probable reconstruction.

3.3.1 Single Run Estimation: Inferring k from a Single l In
the first instance of the problem, we do not consider any repeats – i.e.,
a single block passes through the channel (sequencer) only once. From
this single observation ofl, we must inferk. The probability that an
output block of lengthl was observed from an input block of lengthk
is given by:

Pr(sk|sl) =
Pskqkl

∑

k′ Psk′qk′l

(8)

wherePsk = Pr(ki = k|si = s) = pk−1
s (1− ps).

In this case, the most likely input block lengthk for observed output
block lengthl is the one that maximizespk−1

s qkl for given l. Let us
denote thisk by kl. We then have:

p
kl−1
s qkll

= max
k

pk−1
s qkl (9)

We would expect thatkl = l. However, for a general distributionq,
this is not necessarily the case. The natural condition forq, given by
maxk qkl = qll, turns out not to be sufficient for this purpose. Even
with this condition, a single input block lengthk may correspond to
multiple corresponding observed block lengthsl, and some input block
lengthsk might not have corresponding values ofl at all. Consequently,
we need a stronger condition. It is easy to see that:

∀l,i,s ql−i,l < (ps)
i · ql,l ⇒ kl = l (10)

We can now determine the probability that an observed block is
properly corrected as:

mk :=
∑

l:kl=k

qkl (0 if k cannot be obtained),

which reduces tomk = qkk if (10) is satisfied. The expected number
of blocks of symbols is Ns = nps(1 − ps). Their expected total
length isnps. Therefore, the probability that we accurately correct all
blocks is asymptotically given by:

∏

s

(

∑

k

Pskmk

)Ns

= 2n
∑

s ps(1−ps) lg(
∑

k Pskmk) (11)

It is easy to see that this probability decreases exponentially with the
length of the sequence. Stated otherwise, this result showsthat the
probability that we accurately reconstruct the entire sequence decreases
exponentially in the length of the sequence.

3.3.2 Multiple runs: estimating k from multiple l: We now in-
vestigate how reading the same block multiple times can help infer the

input block length. We assume that each block is readc times. This can
be done by extruding the same sequence through an array of nanopores.
In this case, we havec observed values ofli (the ith block length),
(lji )i=1..N for j = 1, . . . c. The probability that the corresponding
input block length isk is given by:

Pr(sk|sl
1

, .., sl
c

) =
Pskqkl1 ...qklc

∑

k′ Psk′qk′l1 ...qk′lc
. (12)

Let us analogously definekl1,..,lc as the input block lengthk that

maximizespk−1
s · qkl1 ...qklc , given by:

p
k
l1,..,lc

−1

s qk
l1,..,lc

l1 ...qkl1,..,lc
lc = max

k
pk−1
s qkl1 ...qklc .

(13)
The probability that input block lengthk is accurately determined is
given by:

mkc :=
∑

l1,..,lc:kl1,..,lc
=k

qkl1 ..qklc . (14)

As before, the probability that we accurately infer all block sizes
(accurate sequencing) in analogy to (11) decreases exponentially as:

2n
∑

s ps(1−ps) lg(
∑

k Pskmkc). (15)

Unfortunately the problem of findingkl1,..,lc is a complex estima-
tion procedure, and therefore finding the required number of repeats,
c, for unique reconstruction appears difficult. However, as we show
next, using tools from information theory, we can estimate this repeat
rate. More importantly, we show that this repeat rate is a slowfunction
of sequence length.

3.4 Fundamental Bounds for Unique
Reconstruction

We rely on an information theoretic approach to computing the min-
imum number of repeatsc required for accurate reconstruction. We
do this by modifying the original problem somewhat. Recall that the
noise model of the channel introduces a distortion ball around the out-
put sequence. It is possible that multiple input sequences belong in this
distortion ball – leading to the problem of identification ofthe most
probable reconstruction. However, if we could use repeatedextrusion
of blocks to shrink the distortion radius to the point where only one se-
quence belongs in the ball, we have unique reconstruction. We use this
principle to focus on the problem of number oftypical sequences that
belong in the distortion ball, and find the number of repeatsc for which
this number approaches one. Please note that this problem is slightly
distinct from the problem of most probable reconstruction.

3.4.1 Difference Between the Most Probable and Typical
Reconstruction We begin our discussion by highlighting the dif-
ferences between themost probable and typical reconstructions. To
gain an intuition about the difference between these two types of re-
constructions, let us briefly look at error correction of thebasic binary
symmetric channel (BSC): we sendN bits, each of them has in-
dependent probabilityǫ < 1/2 of being flipped. Observe that we
could write this in the formalism we have introduced for blocks as:
k, l ∈ {0, 1}, q00 = q11 = 1− ǫ, q01 = q10 = ǫ.

Obtaining from the output sequenceY ∈ {0, 1}N , the most
probable input sequenceX is simple – it is simplyX = Y . The
probability that this input sequenceX is the correct sequence is given
by: (1 − ǫ)N = 2N lg(1−ǫ). However, for largeN , we expect that
approximatelyǫN bits are flipped. There are

(N

ǫN

)

≈ 2Nh(ǫ)

(where h(p) = −p lg(p)− (1− p) lg(1− p))

different ways of doing it. These are alltypical corrections. In this case,
it is easy to see that relative entropyH(X|Y ) = N · h(ǫ). Having
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no additional information, all of these typical correctionsare equally
probable. Consequently, the probability of choosing the correct one is
given by2−H(X|Y ) = 2−Nh(ǫ). Conversely, the definition of the
channel says that the probability that a given typical correction (flipped
ǫN bits) is the correct one is asymptotically given by:

ǫNǫ · (1− ǫ)N(1−ǫ) = 2−Nh(ǫ) = 2−H(X|Y )

– exactly the same as before.
To summarize, typical corrections correspond to a Hamming sphere

S(Y, ǫN). The most probable correction corresponds to its center and
for unique reconstruction, this sphere should reduce to a point; i.e.,
H(X|Y ) ≈ 0.

3.4.2 Entropy in the Framework of Blocks of Identical Sym-
bols Returning to our original problem, by definition of a typical
sequence, the number of typical sequences of lengthn, Xn, grows
asymptotically asexp(H(Xn)), where

H(Xn) = nhx and hx := −
∑

s

ps ln(ps). (16)

We now derive this entropy formula in the block framework for the
asymptotic case (largen). This analysis is analogous to the result of
Mitzenmacher et al. [3], where the non-asymptotic case is presented.
We must deal with two additional considerations here: our alphabet is
not binary; and the distribution among input symbols is not necessarily
uniform.

The information contained in the input sequence in the block frame-
work: Xn = sk1

1 . . . s
kN
N

can be split into two parts – the sequence
of symbols (si), and corresponding block lengths(ki). H(Xn) is sum
of the two entropies. Using results from Section (3.1.1), the entropy of
selecting the symbol for succeeding block (si+1 6= si) is given by:

hs ≡ H(si+1|si = s) = −
∑

s′ 6=s

ps′

1− ps
ln

(

ps′

1− ps

)

=
1

1− ps

∑

s′ 6=s

ps′ (ln(1− ps)− ln(ps′ ))

=
1

1− ps
((1− ps) ln(1− ps) + hx + ps ln(ps))

=
hx − h(ps)

1− ps
. (17)

The entropy of choosing block length for symbols is given by:

hx
s ≡ H(ki|si = s) = −

∑

k≥1

Psk ln(Psk)

= −
∑

k≥1

pk−1
s (1− ps) ln

(

pk−1
s (1− ps)

)

= −
ps

1− ps
ln(ps)− ln(1− ps)

=
h(ps)

1− ps
. (18)

because
∑

k≥0 kz
k = z/(1− z)2.

We can now express (16) in the block framework. The source en-
tropy H(Xn) is the sum of entropy of symbol order (hs) and block
lengths (hx

s ):

H(Xn) =
∑

s

Ns(hs + hx
s ) = n

∑

s

ps(1− ps)
hx

1− ps

= nhx
∑

s

ps = nhx. (19)

3.4.3 InDel Channel with a Single Extrusion Assuming the
sticky insertion-deletion channel (InDel) described above, the sequence
of symbolssi is unmodified:Y n = sl11 . . . sN

lN . Only the block
lengths are changed in accordance with the noise model (ki → li).
Analogously, as in the previous section, we can determine theentropy
of joint distributionH(Xn, Y n) as:

H(Xn)+H(Y n|Xn) = H(Xn, Y n) =
∑

s

Ns(hs+hxy
s ) (20)

wherehxy
s is entropy of pair lengths for input (k) and output (l) types

blocks:

hxy
s = −

∑

k,l≥1

Pskqkl ln (Pskqkl)

= hx
s −

∑

k≥1

Psk

∑

l≥1

qkl ln(qkl)

= hx
s +

∑

k≥1

Pskh
q

k
(21)

andhq

k
:= −

∑

l≥1 qkl ln(qkl).
The entropy of output sequenceY and mutual information

I(Xn;Y n) = H(Xn) +H(Y n)−H(Xn, Y n) are given by:

H(Y n) =
∑

s

Ns(hs + hy
s )

for hy
s = −

∑

l≥1





∑

k≥1

Pskqkl



 ln





∑

k≥1

Pskqkl



 (22)

I(Xn;Y n) =
∑

s

Ns ((hs + hx
s ) + (hs + hy

s )− (hs + hxy
s ))

=
∑

s

Ns(hs + hx
s + hy

s − hxy
s ) (23)

H(Xn|Y n) = H(Xn)− I(Xn;Y n)

=
∑

s

Ns(h
xy
s − hy

s )

= n
∑

s

ps(1− ps)(h
xy
s − hy

s ). (24)

Asymptotically, the number of typical corrections is given by
2H(Xn|Y n), which grows exponentially in the length of the sequence
n. This directly implies the exponentially decreasing probability of
accurate reconstruction. We now discuss how the number of typical
corrections can be reduced (approaching 1) by reading the input se-
quence multiple times (c). The goal of this analysis is to estimate the
number of extrusions we should perform for unique reconstruction.

3.4.4 InDel Channel with Multiple Extrusions We consider
the case ofc repeats on each block:(lji )i=1..N for j = 1, . . . c. In

5



Jaroslaw Duda, Wojciech Szpankowski, and Ananth Grama

this case, we have:

hxyc
s = −

∑

k,l1,..,lc≥1

Pskqkl1 ..qklc ln (Pskqkl1 ..qklc )

= hx
s + c

∑

k≥1

Pskh
q

k

hyc
s =

−
∑

l1..lc≥1





∑

k≥1

Pskqkl1 · .. · qklc



 ln





∑

k≥1

Pskqkl1 · .. · qklc





hxyc
s − hyc

s =

∑

k≥1

Psk

∑

l1..lc≥1

qkl1 ..qklc ln

(

1 +

∑

k′ 6=k Psk′qk′l1 ..qk′lc

Pskqkl1 ..qklc

)

.

Groupingqki corresponding to the samei by assigning̃li = #{j :
lj = i}, usingn! ≈ (n/e)n, the distribution becomes (

∑

i l̃
i = c):

∑

l1..lc≥1

qkl1 ..qklc =
∑

l̃1,l̃2,...

( c

l̃1, l̃2, ...

)

∏

i≥1

ql̃
i

ki

≈
∑

l̃1,..

∏

i≥1

(

c

l̃i

)l̃i

q
l̃i
ki

=
∑

l̃1,..

exp



−c
∑

i≥1

l̃i

c
ln

(

l̃i/c

qki

)



 .

The sum in bracket is the Kullback-Leibler (asymmetric) distance:

DKL

({

l̃i/c
}

i
|| {qki}i

)

- the exponent is asymptotically (largec)

dominated bỹli/c = qki distribution. To find an approximation of the
formulahxyc

s − hyc
s , we focus only on these distributions:

hxyc
s − hyc

s ≈
∑

k≥1

Psk ln



1 +

∑

k′ 6=k Psk′

(

∏

l≥1 q
qkl

k′l

)c

Psk

(

∏

l≥1 q
qkl

kl

)c





≈
∑

k≥1

∑

k′ 6=k

Psk′





∏

l≥1

(

qk′l

qkl

)qkl





c

.

SinceH(X|Y ) = H(X,Y )−H(Y ) andPsk = pk−1
s (1− ps), we

can write:

H(Xn|Y nc) = n
∑

s

ps(1− ps)(h
xyc
s − hyc

s )

≈ n
∑

s

(1− ps)
2
∑

k≥1

∑

k′ 6=k

pk
′

s exp(−c · dkk′ )

=: n ·D(c) (25)

wheredkk′ is the Kullback-Leibler distance:

dkk′ := − ln





∏

l≥1

(

qk′l

qkl

)qkl





=
∑

l≥1

qkl ln

(

qkl

qk′l

)

= DKL

(

{qkl}l || {qk′l}l
)

andD(c) is asymptotically dominated by thed := mink′ 6=k dkk′ =
dk0k

′

0

term (if the minimum exists):

D(c) =
∑

s

(1− ps)
2
∑

k≥1

∑

k′ 6=k

pk
′

s exp(−c · dkk′ )

≈ exp(−c · d) ·
∑

s

(1− ps)
2p

k′

0
s

The distancedkk′ describes the similarity between the results of read-
ing blocks having original lengthsk andk′. It quantifies the likelihood
of mistakenly identifying ak length block as ak′ length block. The
smaller it is, the faster is the growth of number of typical corrections
(2H(Xn|Y nc)) with k erroneously replaced byk′. The smallest dis-
tance(d) corresponds to the most likely mistake, and it asymptotically
dominates the growth of typical corrections.

The use of multiple extrusions(c) allows us to reduce the expo-
nent in the number of typical corrections2H(Xn|Y nc). For unique
reconstruction, the number of typical corrections must approach 1.
Consequently, we choosec such thatn · exp(−c · d) is of order of
1. From this, we see that the number of extrusions should grow log-
arithmically in sequence length:c ≈ ln(n)/d. This important result
establishes the feasibility of low-overhead sequencing using nanopore
sequencers.

4 EXPERIMENTAL RESULTS
We present a simulation study of the implications of our anal-
ysis on real-world sequencing experiments. We consider two
models for our channel – the first model is a sticky channel
with exponential distribution and the second, an independent
insertion-deletion channel. In each case, we examine the bound
on length of sequence for accurate reconstruction, the number
of repeats needed for larger reconstructions, and the Kullback-
Leibler distance. The goal of these studies is to demonstrate
that for a wide class of channel characteristics: (i) the length of
sequence that can be accurately reconstructed in single read is
small; (ii) the number of required repeats for longer reconstruc-
tions is a slowly growing function (logarithmic); and (iii) even
in the presence of high InDel error rates, nanopore sequencers
can accurately reconstruct sequences with required number of
repeats.

We consider a binary equi-probable input –m = 2, p0 =
p1 = 1/2. The behavior of relative entropyH(X|Y ) is
primarily determined by theqks distribution. The results in
this section can be naturally generalized to any alphabet and
probability distribution.

Exponential Insertion-Deletion Error Model. We will first con-
sider a sticky channel with exponential distribution for the error
probabilities – for some0 < q < 1:

qkl = q|k−l| 1− q

1 + q − qk

The second term in the product is for normalizing the probabil-
ity.

We first consider the single run case. Equation 24 allows us
to calculate relative entropyH(Xn|Y n), describing the growth
in the number of typical corrections:2H(Xn|Y n). The left Panel
of Figure 2 presents values of relative entropy for various val-
ues ofq. Assuming correction procedure as taking a random
typical correction, the Right Panel of this figure presents the
probability of obtaining the right correction. This probability
drops exponentially with the length of the sequence, making a
single run approach impractical for longer sequences.

This limitation can be handled by performing multiple ex-
trusions of the same sequence. We use Equation (25) to find
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Figure 2. Left Panel: Relative entropy for single extrusion between input sequence (input to the nanopore sequencer) and the output sequence
(observed sequence). This is derived from Equation (24). Right Panel: The probability that we select the correct typical correction forq = 0.01 and
increasing value ofn.

k′ → 1 2 3 4 5 6 7
k ↓

1 0 0.223 0.665 1.123 1.857 2.512 3.194
2 0.193 0 0.234 0.694 1.270 1.905 2.568
3 0.567 0.220 0 0.233 0.696 1.274 1.909
4 1.054 0.644 0.227 0 0.232 0.695 1.273
5 1.621 1.181 0.671 0.229 0 0.232 0.694

Table 1. Kullback-Leibler distances forq = 0.5, exponential distribu-
tion, and various original block lengths:k, k′.

relative entropy in this case. This requires finding Kullback-
Leibler distances between{qkl}l distributions for different
original block lengthsk. Table 1 presents some of these values
for q = 0.5.

The minimal distance isd = d21 ≈ 0.193, and corresponds
to misinterpreting originalk = 2 sequence ask′ = 1. This
intuitively stronger overlap of the first two distribution can be
observed in the Left Panel of Figure 3, containing{qkl}l for
the first 15 values ofk. The distance between farther neighbor-
ing distributions is nearly the same; i.e., misreading a block of
length five nucleotides as six, is as likely as an input block of
100 nucleotides being read as 101.

The right panel of Figure 3 shows relative entropy as a func-
tion of number of repeatsc, for q = 0.5. There are important
observations drawn from this figure: (i) the nearly linear nature
of the curve shows that the number of repeats is almost logarith-
mic in the read length (H(Xn|Y n)/n asymptotically behaves
asexp(−c·d)); and (ii) for realistic reconstruction lengths (say,
100K bases), the number of repeats is relatively small (less than
60). These are important results that establish the feasibility of
nanopore sequencers for accurate low-cost construction of long
reads.

Independent Insertion-Deletion Channel Model. To demon-
strate the robustness of our results we now consider a different
channel model – the independent insertion-deletion channel. In
this model, for each nucleotide, there is probabilityǫ > 0,
that the symbol is deleted. There is also an identical probability
that the symbol is duplicated. It follows that there is a prob-
ability 1 − 2ǫ that the symbol is sequenced without an error.
For this model,qkl, for givenk, is the convolution ofk such

k′ → 1 2 3 4 5 6 7
k ↓
1 0 1.316 3.147 5.118 7.166 9.262 11.390
2 ∞ 0 0.896 2.445 4.212 6.094 8.050
3 ∞ ∞ 0 0.668 1.986 3.570 5.299
4 ∞ ∞ ∞ 0 0.527 1.666 3.094
5 ∞ ∞ ∞ ∞ 0 0.434 2.730

Table 2. Similarity of qkl for different values ofk for the independent
insertion-deletion channel.

random variables, additionally truncated to enforce that it is a
sticky channel; i.e.,qk0 = 0. For largek, qkl approaches the
Gaussian distribution with standard deviation

√
2ǫk.

Figure 4 shows the first 20 distributions (qkl) for this model.
It is illustrative to note that unlike the previous models, larger
block lengths have higher insertion-deletion error rates. Table 2
presents the approximated first values of similarities ofqkl for
different values ofk, for ǫ = 0.1. The infinite values in the ta-
ble correspond to difference in support (one of values is zero).
We note that the distributions become closer to their own neigh-
bors ask grows: limk→∞ dkk+1 = 0, the minimal nonzero
distanced does not exist. In other words, distinguishing be-
tweenk andk+1 becomes more difficult with increasingk, and
their difference vanishes asymptotically. Consequently, as we
can observe from the right panel of Figure 4, the required num-
ber of repeats grows slower than logarithm of sequence length.
Figure 4 shows the relative entropy of the input and output se-
quences for different numbers of repeats (c). long sequences
(100K nucleotides), we need even fewer repeats (less than 30,
in this case, compared to 60 for the exponential model).

5 RELATED RESEARCH
Technologies underlying nanopore sequencers have been
investigated for over a decade [2, 1]. Commercial platforms
based on these technologies have only recently been an-
nounced – with Oxford Nano being the leading platform.
An excellent introduction to this platform is available at:
https://www.nanoporetech.com/technology/
analytes-and-applications-dna-rna-proteins/
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Figure 3. Left Panel:{qkl}l distributions forq = 0.5 andk = 1 to 15. Right Panel: (25) approximation forq = 0.5 and different numbers of
copiesc.

dna-an-introduction-to-nanopore-sequencing.
There have been preliminary efforts aimed at characterizing
the performance of nanopore sequencing platforms in terms of
error rate, error classification, and run lengths [7, 8, 4, 10]. A
consensus emerges from these studies that the primary error
mode in nanopore sequencers is deletion errors and that the
error rate is approximately 4% with a read length of over 150K
bases. These studies provide important data that is used to
build our insertion-deletion channel.

Error characteristics and models for nanopore sequencers
have been recently studied by O’Donnell et al [8]. In this
study, the authors investigate error characteristics, and build
a statistical model for errors. They use this model to show,
through a simulation study, that repeated extrusion can be used
to improve error characteristics. In particular, they show that
using their model, it is possible to achieve 99.99% accuracy by
repeating the read 140 times. This empirical study provides ex-
cellent context for our analytical study, which provides rigorous
bounds and required repeat rates.

There has been significant work on different channels, their
capacities, and error characteristics over the past five decades
since the work of Shannon. Of particular relevance to our re-
sults is the work in deletion channels [5]. As mentioned, the
capacity of independent deletion channels is as-yet unknown.
There have been efforts aimed at error correction in insertion-
deletion channels in the context of communication, storage, and
RFID systems [11]. We are, however, unaware of any results
aimed at the use of insertion-deletion channels to establish fun-
damental bounds on performance of sequencers. Our channel

itself is novel, its analysis is new, and the associated bounds on
reconstruction length, and required repeat rates are presented
for the first time.

6 DISCUSSION AND CONCLUSION
In this paper, we present a novel modeling methodology based
on a channel representation of a nanopore sequencer. We use
this methodology to show a number of important results: (i) the
high deletion error rate of the nanopore sequencer limits the se-
quence length that can be accurately reconstructed; (ii) repeated
extrusion through the nanopore is an effective technique for in-
creasing the accurate reconstruction length; (iii) the number of
repeats is a slow function of the sequence length (logarithmic in
sequence length), enabling nanopore sequencers to accurately
reconstruct long sequences at low cost.

We demonstrate our results for a wide class of error models
and show that our analyses is robust. We note that our analyses
only considers insertion-deletion errors, and not substitution er-
rors. This is justified by the fact that deletion errors constitute
the primary error mode in nanopore sequencers. In the presence
of substitution errors, our analyses can be viewed as provid-
ing bounds on performance and required repeats for accurate
reconstruction.

Figure 4. Left Panel: The first 20q distributions forǫ = 0.1 for the independent insertion-deletion channel. Right Panel: Approximation of joint
entropy forǫ = 0.1 and different numbers of copiesc (from Equation (25).

8



REFERENCES
[1]T. Butler, M. Pavlenok, I. Derrington, M. Niederweis, and J. Gundlach.

Single-molecule dna detection with an engineered mspa protein nanopore.
Proceedings of the National Academy of Science, 105(52):20647–20652,
2008.

[2]D. Deamer and D. Branton. Characterization of nucleic acids by nanopore
analysis.Acc Chem Res, 35(10):817–825, 2002.

[3]E. Drinea and M. Mitzenmacher. Improved lower bounds for the capacity of
i.i.d. deletion and duplication channels.IEEE Transactions on Information
Theory, 53:8:2693–2714, 2007.

[4]E. Hayden. Nanopore genome sequencer makes its debut.Nature News,
Feb. 2012.

[5]Ian A. Kash, Michael Mitzenmacher, Justin Thaler, and Jonathan Ull-
man. On the zero-error capacity threshold for deletion channels.CoRR,
abs/1102.0040, 2011.

[6]J. Kevin Lanctot, Ming Li, and En-hui Yang. Estimating dna sequence
entropy. InProceedings of the Eleventh Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA ’00, pages 409–418, Philadelphia, PA, USA,
2000. Society for Industrial and Applied Mathematics.

[7]A. Mikheyev and M. Tin. A first look at the oxford nanopore minion
sequencer.Molecular Ecology Resources, 14(6):1097–1102, Nov. 2014.

[8]C. O’Donnell, H. Wang, and W. Dunbar. Error analysis of idealized
nanopore sequencing.Electrophoresis, 34(15):2137-44, 2013.

[9]M. Quail, M. Smith, P. Coupland, T. Otto, S. Harris, T. Connor, A.Bertoni,
H. Swerdlow, and Y. Gu. A tale of three next generation sequencing plat-
forms: comparison of ion torrent, pacific biosciences and illumina miseq
sequencers.BMC Genomics, 13:341, 2012.

[10]J. Schreiber, Z. Wescoe, R. Abu-Shumays, J. Vivian, B. Baatar, K. Karplus,
and Mark Akeson. Error rates for nanopore discrimination among cytosine,
methylcytosine, and hydroxymethylcytosine along individual dna strands.
Proceedings of the National Academy of Science, 110(47), Nov. 19, 2013.

[11]Guang Yang, Angela I. Barbero, Eirik Rosnes, and Yvind Ytrehus. Er-
ror correction on an insertion/deletion channel applying codes from rfid
standards.ITA, 2012.

9


