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ABSTRACT

Motivation: Nanopore sequencers are emerging as promising
new platforms for high-throughput sequencing. As with other
technologies, sequencer errors pose a major challenge for their
effective use. In this paper, we present a novel information the-
oretic analysis of the impact of insertion-deletion (InDel) errors
in nanopore sequencers. In particular, we consider the follow-
ing problems: (i) for given InDel error characteristics and rate,
what is the probability of accurate reconstruction as a function of
sequence length; (ii) what is the number of ‘typical’ sequences
within the distortion bound induced by InDel errors; (iii) using re-
peated extrusion through the nanopore, what is the number of
repetitions needed to reduce the distortion bound so that only one
typical sequence exists within the distortion bound.

Results: Our results provide a number of important insights: (i)
the maximum length of a sequence that can be accurately recon-
structed in the presence of InDel errors is relatively small; (ii) the
number of typical sequences within the distortion bound is large;
and (iii) repeated extrusion is an effective technique for unique
reconstruction. In particular, we show that the number of repeats
is a slow function (logarithmic) of sequence length — implying that
through repeated extrusion, we can sequence large reads using
nanopore sequencers. InDel errors are the primary error mode
for nanopore sequencers. To this end, the results in this paper
can be viewed as (tight) bounds on reconstruction lengths and
repetitions for accurate reconstruction.

Contact: ayg@cs.purdue.edu

1 INTRODUCTION

More recently, nanopores have been proposed as platforms
for sequencing. Nanopores are fabricated either using organic
channels (pore-forming proteins in a bilayer) or solid-state ma-
terial (silicon nitride or graphene). An ionic current is passed
through this nanopore by establishing an electrostatic potential.
When an analyte simultaneously passes through the nanopore,
the current flow is disrupted. This disruption of the current flow
is monitored, and used to characterize the analyte. This gen-
eral principle can be used to characterize nucleotides, small
molecules, and proteins. Complete solutions based on this tech-
nology are available from Oxford Nanopore Technologies [7].
In this platform, a DNA strand is extruded through a protein
channel in a membrane. The rate of extrusion must be slower
than current measurement (sampling) for characterizing each
base (or groups of small number of bases, up to four, in the
nanopore at any point of time).

In principle, nanopores have several attractive features —long
reads (beyond 100K bases) and minimal sample preparation.
However, there are potential challenges that must be over-
come — among them, the associated error rate. The extrusion
rate of a DNA strand through a protein channel is controlled
using an enzyme [8]. This rate is typically modeled as an ex-
ponential distribution. When a number of identical bases pass
through the nanopore, the observed (non-varying) signal must
be parsed to determine the precise number of bases. This results
in the dominant error mode for nanopore sequences. Specifi-
cally, insertion-deletion errors in such sequencers are reported
to be as high as 4% [8, 10].

The high InDel error rate can be handled using repeated reads
for de-novo assembly, or through algorithmic techniques us-
ing reference genomes. The Oxford Nanosequencer claims a

The past few years have seen significant advances in sequengcalable matrix of pores and associated sensors using which re-
ing technologies. Sequencing platforms from lllumina, Roche,Peats can be generated. Alternately, other technologies based
PacBio and other vendors are commonly available in labo-on bi-directional extrusion have been proposed. In either case,
ratories. Accompanying these hardware advances, significariv0 fundamental questions arise for de novo assembly: (i) for
progress has been made in statistical methods, algorithmsingle reads, what is the bound on read length that can be accu-
and software for tasks ranging from base calling to completdately reconstructed using a nanopore sequencer with known
assembly. Among the key distinguishing features of these selnDel rates; and (ii) what is the number of repeats needed
guencing platforms are their read lengths and error rates. Shoff accurately reconstruct the sequence with high probability
read lengths pose problems for sequencing high-repeat regionganalytically defined).

Higher error rates, on the other hand, require oversampling to N this paper, we present a novel information theoretic anal-
either correct, or discard erroneous reads without adverselySis of the impact of InDel errors in nanopore sequencers. We
impacting sequencing/ mapping quality. Significant researcinodel the sequencer as a sticky insertion-deletion channel. The
efforts have studied tradeoffs of read-length, error rates, and®NA sequence is fed into this channel and the output of the
sequencing complexity. An excellent survey of these efforts ischannel is used to reconstruct the input sequence. Using this
provided by Quail et al [9].
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model, we solve the following problems: (i) for given InDel er- Insertion-Deletion Channels In ideal communication systems,
ror characteristics and rate, what is the probability of accurateone often assumes that senders and receivers are perfectly
reconstruction as a function of sequence length; (ii) what is thesynchronized — i.e., each sent bit is read by the receiver. How-
number of ‘typical’ sequences within the distortion bound in- ever, in real systems, such perfect synchronization is often not
duced by InDels; and (iii) what is the number of repeats needegossible. This leads to sent bits missed by the receiver (a dele-
to reduce the distortion bound so that only one typical sequencéon error), or read more than once (an insertion error). Such
exists within the distortion bound (unique reconstruction). communication systems are traditionally modeled as insertion-
Our results provide a number of important insights: (i) the deletion channels. Formally, an independent insertion channel
maximum length of sequence that can be accurately recornis one in which a single bit transmission is accompanied with
structed in the presence of InDel errors is relatively small; (ii) the insertion of a random bit with a probabilipy An inde-
the number of typical sequences within the distortion boundpendent deletion channel is one in which a transmitted bit can
induced by InDels is large; and (iii) the number of repeatsbe deleted (omitted from the output stream) with a probability
required for unique reconstruction is a slow function (logarith- »’. An insertion-deletion channel contains both insertions and
mic) of the sequence length — implying that through repeatedieletions [3]. Please note that a number of basic characteristics
extrusion, we can sequence large reads using nanopore sefinsertion-deletion channels, such as their capacity, are as-yet
quencers. The bounds we derive are fundamental in naturanknown in information theory literature as well.
— i.e., they hold for any resequencing/ processing technique. We consider a variant of the independent insertion-deletion
Furthermore, while InDels (deletion errors primarily) are the model that is better suited to nanopore sequencers. In partic-
dominant error mode in nanopore sequencers, substitution eular, we recognize the primary source of error in nanopore
rors may further limit their performance. In this sense, thesequencers is associated with disambiguating the exact number
results in the paper can be viewed as bounds on reconstructiasf identical bases passing through the nanopore. We modify the
lengths and repetitions. independent insertion-deletion channel to the sticky insertion-
deletion channel described above (Figure 1). Coincidentally,
the analysis of this block modification insertion-deletion chan-
nel is easier — as we demonstrate in this paper.

2 APPROACH Typical Sequences. There arel™ distinct nucleotide sequences
In this section, we present our model and the underlyingof n bases, each generated with a corresponding (idealized)
concepts in information theory that provide the modeling sub-probability of4~™. For convenience, we can also view this as
strates. We define notions of a channel, reconstruction, aprobability as2=2", with the understanding that if each base
insertion-deletion channel, and distortion bound. We then deis equally likely, we would need two bits for each base. How-
scribe how these concepts are mapped to the problem ofver, from asymptotic equipartition property (AEP), we know
sequence reconstruction in nanopore sequencers. that there is dypical set such that the probability of generating
Our basic model for a nanopore sequencer is illustrated ira sequence belonging to this set approaches 1. In other words,
Figure 1. A DNA sequence is input to the nanopore sequencewhile there may be sequences outside of this set whose indi-
This sequence is read and suitably processed to produce an owiidual probability may be high, their number is small enough
put sequence. We view the input sequence as a sequence thfat the total probability is dominated by the sequences in this
blocks. Each block is comprised of a variable numbgrdf typical set. Furthermore, we know that the probability of draw-
identical bases. The nanopore sequencer potentially introducésg a sequence of length from this set is given by~
errors into each block by altering the number of repeated basesvhere H (X) is the entropy of the source. Comparing this ex-
If the output block sizé’ is not the same as the input block size pression with the sequence probability assuming each base is
k, an InDel error occurs. Specifically, < k corresponds to a equally likely 22"), we note the unsurprising conclusion that
deletion error, and’ > k to an insertion error. Please note that for our idealized casé/ (X) = 2. However, a number of stud-
this model does not account for substitution errors. ies have shown that the entropy of living DNA is in fact much
We model the sequencing process (both the sequencer arddwer, as low as 1.7 or below [6]. This suggests that the num-
the associated processing) as a channel. A channel in inber of typical sequences is in fact much less than the number
formation theory is a model (traditionally for a storage or of total sequences. We use this notion of typical sequences and
communication device, but in our case, used more generally}hetypical set in our derivation of the performance bounds of a
for information transfer with certain error characteristics. The nanopore channel.
input sequence of blocks is sent into this channel. The erro
characteristics of the channel transform a block characters
into a block ofk’ characters. This transformation is modeled

l’Disiortion Bound and Unique Reconstruction. Viewing a DNA
sequence passing through a nanopore as a point (in some very
55 dsnbuton ° — G, where i e istuion 190 STIOTSONS) pace) passna 1 Grouh 3 scvercer
andp, the associated set of parameters tuned to the sequencir}jg u . o YPersp
ound the original sequence. Each point in the hypersphere

platform. In typical scenarios, the distribution peaks:and S . -
decays rapidly on either side. The distribution may be as’ym_corresponds to a possible input sequence with a probability that

metric aroundk depending on relative frequency of insertion gagi Eergnglf;ial:z qliﬁnt\;cle%:r\]/f t;]efer;gi) thlsfrzipe(rjsipth?trie r?s
and deletion errors. We refer to such a channel as a stic stortio - aeally, we € us ot this distortio

channel all to be as small as possible — containing only a single point.
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Figure 1. Overview of the proposed channel and its correspondentearsiequencer.

A weaker condition is that the distortion ball contains only a
single typical sequence. We refer to the former as an accurate

reconstruction and the latter as a unique reconstruction.

A single pass through the nanopore induces a distortion ball
whose probability profile can be quantified. We show that the
radius of this ball can be reduced by repeated extrusion through

satisfying > Py = 1.

E>1
The expected length a block of symbelss given by:

ko= kPy=» kpi'(1-ps)= :

k>1 k>0 L=ps

the nanopore. One of the key contributions of this paper is thafl € €xpected number of symbalsn the entire sequence of length

the radius shrinks rapidly with the number of extrusions, thus
enabling accurate and/or unique reconstruction with relativel

small number of repeats.

3 METHODS
3.1 Notation and Theoretical M odel

The input sequence to the channel/ sequencer is drawn fratpha-
bet.A. For DNA sequencingA = {A, T, C,G}. The alphabet size
| A| is denoted bymn. We assume that an length input sequenc&
is independent and identically distributed (i.i.d.); j.each sequence
has the same probability distribution as the others and gliesgces
are mutually independent. Mathematically, probabify(z; = s) =

DPs; Zsps =1

3.1.1 Blocking Identical Symbols As mentioned, we view input
and output sequences as sequences of blocks, with each ddatk
prised of one or more identical symbols.sff denotesk > 1 repeats
of symbols, we can write sequenc& as concatenation aV < n
blocks: X = s¥1 ... "N, such thate; > 0, 5,41 # s;. For exam-
ple, a sequenc& ="AATATTAA” is represented in the block form as
A2TAT? A2,

We initiate our discussion by enumerating basic statistioaperties
of block sequences. We see that:

Ps/
1- Ps
Since we have a block of symbaisthe block must start with at least

one appearance of symhel The probability that the block will have
lengthk > 1 is given by:

@

Pr(sit1 =s§'|si=s#5) =

Py, = Pr(k; = k|s; = s) = p"~1(1 — ps) 2

Yy

is nps. Therefore, the expected number of blocks of typand of all
blocks is, respectively,

Ns := nps/Es :nps(l_ps)7 (3)

N::Z;stn(lz:p?).

3.2 Sticky Insertion-Deletion Channel (InDel)

We model the sequencer using a sticky insertion-deletiomratia
In this channel, a block of consecutive identical symbols, with
probability ¢;;, is transformed into a block dfcopies of the symbol:

Pr(s'[s*) = gri(s) ~ where Y gu(s)=1.  (5)
l

4

The term sticky is used to imply that the block structure remain-
changed; i.eqxo(s) = qoi(s) = 0.

In this model,{qx;(s)} specifies the block length change probabili-
ties. We can assume that for givengy;(s) has a maxima at = k;
i.e., the probability that there is no error in a block exceady other
(erroneous) transformation. In Section 4, we consider tweci§ip
choices for functiong: an exponential distribution and independent
insertion-deletions. In this model, the probability of ohéeg an
output sequenc¥ from our InDel channel is given by:

IN |y — k1 gk
sy X =s71s5%.8

N

Pr(Y = si's5 .. N =TT awas (s0)- ()
i=1

For example, true sequende="AAAATTAAA = A*T2 A3 is read by

the sequencer as="AATTTAA"= A2T3 A2 with probability g4 (A)-

q23(T) - g31(A).

For simplicity, we assume thatis identical for different symbols:

ax1(s) = qrr- (7

This implies that insertion-deletion errors in sequencirgiadepen-
dent of the bases. Please note that this assumption is nottationiof
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our framework. Assumingx,o = qo; = 0, the number of blocks and
their order remain the same while applying the channel. Horyéve
lengths of blocks may change. The sequencing problem carbthes
duced to the following task: determine the original set othloounts
(ki)i=1..~ from the following two cases under consideration: (i) the
single extrusion case — a single read sequéfcé;);—1..n; and (i)
the multiple extrusion case — each sequence is repeated times:
(lg)izlnN fory=1,...c

3.3 Accurate Reconstruction from Nanopore
Sequencers

We now consider the problem of constructing a true sequefnom (
the channel or the sequencer) from an observed sequence i
ionic current measurement). This problem is one of reconstigia
true block sequence from an observed block sequence at thatou
of the sticky channel. Since we assume that the block streigsunot
changed by the channel, this problem can be solved one biedine.
Specifically, we observe a block at the output of the chanhigrmth

[ and we must infer the block length of the corresponding inputVe
refer to this as the problem of finding the most probable retcocison.

3.3.1 Single Run Estimation: Inferring k froma Single! In
the first instance of the problem, we do not consider any repeaeé.,
a single block passes through the channel (sequencer) noéy Brom
this single observation df we must inferk. The probability that an
output block of lengthi was observed from an input block of lendth
is given by:
Pr(st|s!) = Porqi
>k Porrawn

wherePg, = Pr(ki = k|si = S) = p§71(1 *ps).

In this case, the most likely input block lengtHor observed output
block lengthl is the one that maximiz%’sf*lqkl for given!. Let us
denote thisc by k;. We then have:

®)

k—1

kp—1 _
Qryl = MAX Py

Ps 9

We would expect thak; = . However, for a general distributiop
this is not necessarily the case. The natural conditionyfaiven by
maxyg qr; = qi1, turns out not to be sufficient for this purpose. Even
with this condition, a single input block lengthmay correspond to
multiple corresponding observed block lengthand some input block
lengthsk might not have corresponding valued at all. Consequently,
we need a stronger condition. It is easy to see that:

gkl

Viis @i—i < (Ps)' a1 = k=I (10)

input block length. We assume that each block is ketwhes. This can
be done by extruding the same sequence through an array qforaso
In this case, we have observed values df; (the ith block length),
(t1)i=1..n for j = 1,...c. The probability that the corresponding
input block length ist is given by:
oy = Pskqpi ke
Dok Powr @ - Qrie .

Let us analogously defink;: ;. as the input block lengttt that
maximizesp? = - g1 ...quie, given by:

k1

Pr(sk|sll,..,s

(12)

el _ k—1
Iy ok gele = MAXPs "Gt eehle-
(13)

The probability that input block length is accurately determined is

given by:
>

B

A

Mpe Qri1 -Gl (14)

As before, the probability that we accurately infer all Hosizes
(accurate sequencing) in analogy to (11) decreases expaheas:

on 2 ps(1=ps) 18(Xg Pskmie) (15)

Unfortunately the problem of finding;. . is a complex estima-
tion procedure, and therefore finding the required numbeepéats,
¢, for unique reconstruction appears difficult. However, asshow
next, using tools from information theory, we can estimate thpeat
rate. More importantly, we show that this repeat rate is a $lmation

of sequence length.

3.4 Fundamental Boundsfor Unique
Reconstruction

We rely on an information theoretic approach to computing the-mi
imum number of repeats required for accurate reconstruction. We
do this by modifying the original problem somewhat. Recalk tiha
noise model of the channel introduces a distortion ball addbe out-
put sequence. It is possible that multiple input sequendesigén this
distortion ball — leading to the problem of identification tbe most
probable reconstruction. However, if we could use repeataision
of blocks to shrink the distortion radius to the point whenéymne se-
guence belongs in the ball, we have unique reconstructienud# this
principle to focus on the problem of numbertgpical sequences that
belong in the distortion ball, and find the number of repedts which
this number approaches one. Please note that this probldightys
distinct from the problem of most probable reconstruction.

3.4.1 Difference Between the Most Probable and Typical

We can now determine the probability that an observed block iSReconstruction We begin our discussion by highlighting the dif-

properly corrected as:

my 1= Z Kl
k

Lk =

(Oif k cannot be obtained

which reduces tan;, = g if (10) is satisfied. The expected number
of blocks of symbols is N, nps(1 — ps). Their expected total
length isnps. Therefore, the probability that we accurately correct all
blocks is asymptotically given by:

Ns
H <Z Pskmk> — on 2 ps(1=ps)18(Xy Pskmi) (11)
s k

It is easy to see that this probability decreases exponigntiith the
length of the sequence. Stated otherwise, this result shioaisthe
probability that we accurately reconstruct the entire sege decreases
exponentially in the length of the sequence.

3.3.2 Multipleruns: estimating k£ frommultiplel: We now in-
vestigate how reading the same block multiple times can hedp the

ferences between th@ost probable and typical reconstructions. To
gain an intuition about the difference between these twedyqf re-
constructions, let us briefly look at error correction of basic binary
symmetric channel (BSC): we semd bits, each of them has in-
dependent probability < 1/2 of being flipped. Observe that we
could write this in the formalism we have introduced for blsds:
k,1 €{0,1}, goo = q11 =1 — ¢, qo1 = q10 = €.

Obtaining from the output sequendé < {0,1}", the most
probable input sequenc¥ is simple — it is simplyX = Y. The
probability that this input sequenck is the correct sequence is given
by: (1 — )V = 2N18(1=) However, for largeN, we expect that
approximately N bits are flipped. There are

C]V\/) ~ 9Nh(e)

(where h(p) = —plg(p) — (1 —p)lg(l —p))

different ways of doing it. These are &lpical corrections. In this case,
it is easy to see that relative entrop§(X|Y) = N - h(e). Having




no additional information, all of these typical correcticare equally
probable. Consequently, the probability of choosing theem one is
given by 2= H(XIY) — 9=Nh(e) Conversely, the definition of the
channel says that the probability that a given typical aioe (flipped
eN bits) is the correct one is asymptotically given by:

ENe . (1 _ E)N(lfe) _ 27Nh(e) _ 27H(X\Y)

— exactly the same as before.
To summarize, typical corrections correspond to a Hamming spher

3.4.3 InDel Channel with a Sngle Extrusion Assuming the
sticky insertion-deletion channel (InDel) described ahdkie sequence
of symbolss; is unmodified:Y"™ = 8111 ...sn'™. Only the block
lengths are changed in accordance with the noise mdgek¢ ;).
Analogously, as in the previous section, we can determinent®py
of joint distribution H(X™,Y™) as:

H(X™) 4+ H(Y"|X™) = H(X",Y™) = Ns(hs+hZ¥) (20)

S(Y, eN). The most probable correction corresponds to its center andvherehs? is entropy of pair lengths for inputj and output) type s

for unique reconstruction, this sphere should reduce toiat;poe.,
H(X|Y) = 0.

3.4.2 Entropy in the Framework of Blocks of Identical Sym-
bols Returning to our original problem, by definition of a typical
sequence, the number of typical sequences of lengtiX ™, grows
asymptotically agxp(H (X™)), where

H(X™) = nh® and A" :=- psln(ps). (16)
S

We now derive this entropy formula in the block framework foe th
asymptotic case (large). This analysis is analogous to the result of
Mitzenmacher et al. [3], where the non-asymptotic case isepites.
We must deal with two additional considerations here: ounabet is
not binary; and the distribution among input symbols is noessarily
uniform.

The information contained in the input sequence in the bloainé-
work: X™ = s’l"l . .s’fVN can be split into two parts — the sequence
of symbols §;), and corresponding block lengtts). H(X™) is sum
of the two entropies. Using results from Section (3.1.19,ehtropy of
selecting the symbol for succeeding blosk (1 # s;) is given by:

Zm ()

> py(In(l = ps) — In(pyr))
s'#s

Ps’
1- Ps

DPs’
1- Ps

hs = H(Si+1|8i = ,3) = —

_ 1
17ps

((1 = ps) In(1 — ps) + h® + ps In(ps))

1- Ps
_ h® — h(ps)

=1 o

The entropy of choosing block length for symbdk given by:

(kilsi = s) = = > Po In(Ps)
k>1

== > =) (PEN (1 = b))

k>1

(€3]

hr=H

S

Ds
1-p

ln(ps) - 1n(1 - ps)

s

_ h(ps)

- 1— Ps '
becaus&_, -, k2" = z/(1 — 2)2.
We can now express (16) in the block framework. The source en
tropy H(X™) is the sum of entropy of symbol ordet ) and block
lengths &7):

(18)

x

H(X") = ZNS(hs +hi) = "ZPS(l _pS)l — s

=nh® ps =nh". (19)
S

blocks:
hZY = — > PupgriIn (Pakgrr)
ki>1
=hZ =" Py > arnIn(qu)
k>1 0 1>t
=hI+ > Puhi (21)
k>1

andh] := — >i>1 ke Inqrr).-

The entropy of output sequenc¥ and mutual information
I(X™Y™) = H(X")+ H(Y™) — H(X™, Y") are given by:
H(Y™) =" Ny(hs +hY)

() =

I(X™Y™) =Y Ns ((hs + hE) + (hs + hY) = (hs + hTY))

for

we

> Peraw

E>1

-2

>1

> Parawl

E>1

= 3" No(hs +hE +hY — h3¥) (23)
H(X™[Y™) = H(X™) — I(X™Y™)
= SO N.(hEY — hY)
(24)

=1 ps(l —ps)(hi¥ — hY).

Asymptotically, the number of typical corrections is given by
2HX™IY™) which grows exponentially in the length of the sequence
n. This directly implies the exponentially decreasing praligbof
accurate reconstruction. We now discuss how the number afalyp
corrections can be reduced (approaching 1) by reading e se-
quence multiple timescf. The goal of this analysis is to estimate the
number of extrusions we should perform for unique reconstmc

3.4.4 InDel Channel with Multiple Extrusions We consider
the case ot repeats on each bIocKi{)izlnN fory =1,...c. In
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this case, we have:

h:yc = Z F’squll--le‘: In (Psqu.ll..qklc)
kb, 0e>1
=hI+cy  Pyhf
E>1
hY¢ =
n Z Z PSqull “et Qe | In Z Psqull c ot gkle
toge>1 \k=1 E>1
hZYe — Y =
22k P Gt - airie
D P D qu-areln (14 7; .

k=1 1.e>1 skl --dkic

Groupingqy; corresponding to the samieby assigning’ = #{j :
I =4}, usingn! & (n/e)™, the distribution become${, I* = ¢):

Z it --9kic = Z (ZI[Z)H‘IZZ
2 [ i>1

1t.ge>1 iz,

l’i
=SI(5)
~ Z’L Qi

i, i>1

The sum in bracket is the Kullback-Leibler (asymmetric) dist
Dk ({ﬁ/c}_ Il {Qki}i> - the exponent is asymptotically (largg
7

dominated b)ii/c = qy; distribution. To find an approximation of the
formulah$¥c — h¥°, we focus only on these distributions:

C
e P (i1 a5
B2V — b~ S Pyln |14 A =1 k1
qKl
k>1 Py, <H121 di )

-y (l(e)”)

k>1 k' £k

SinceH(X|Y) = H(X,Y) — H(Y) and Py, = p*~1(1 — ps), we
can write:

H(X™Y™) =ny " ps(1 = ps)(hEY° — hY)
S
~ nZ(l —ps)? Z Z p];, exp(—c-dpps)
s k>1k/ £k
=:n-D(c) (25)

whered,,;. is the Kullback-Leibler distance:

9kl
d = —In | [T (M>
i1\ Kkl

:qulln(%z)

=1 i’

= Dkr ({a}y |l {an )

and D(c) is asymptotically dominated by the:= mings zp, i =
dko% term (if the minimum exists):

D)= (1-p)2 > 3 pF exp(—c- dyy)

s E>1k £k

/
~ exp(—c-d) - > (1 - ps)?ps°

S
The distancel,;, describes the similarity between the results of read-
ing blocks having original lengthisand’. It quantifies the likelihood
of mistakenly identifying a length block as &’ length block. The
smaller it is, the faster is the growth of number of typical ections
(2HX™IY™)y with k erroneously replaced bi. The smallest dis-
tance(d) corresponds to the most likely mistake, and it asymptotically
dominates the growth of typical corrections.

The use of multiple extrusion&:) allows us to reduce the expo-
nent in the number of typical correctiod? (X" 1Y) For unique
reconstruction, the number of typical corrections must aggnol.
Consequently, we choosesuch thatn - exp(—c - d) is of order of
1. From this, we see that the number of extrusions should gogw |
arithmically in sequence length: ~ In(n)/d. This important result
establishes the feasibility of low-overhead sequencirggusanopore
sequencers.

4 EXPERIMENTAL RESULTS

We present a simulation study of the implications of our anal-
ysis on real-world sequencing experiments. We consider two
models for our channel — the first model is a sticky channel
with exponential distribution and the second, an independent
insertion-deletion channel. In each case, we examine the bound
on length of sequence for accurate reconstruction, the number
of repeats needed for larger reconstructions, and the Kullback-
Leibler distance. The goal of these studies is to demonstrate
that for a wide class of channel characteristics: (i) the length of
sequence that can be accurately reconstructed in single read is
small; (ii) the number of required repeats for longer reconstruc-
tions is a slowly growing function (logarithmic); and (iii) even
in the presence of high InDel error rates, nanopore sequencers
can accurately reconstruct sequences with required number of
repeats.

We consider a binary equi-probable inputr-= 2, po =
p1 = 1/2. The behavior of relative entropyZ(X|Y) is
primarily determined by they, distribution. The results in
this section can be naturally generalized to any alphabet and
probability distribution.

Exponential Insertion-Deletion Error Model. We will first con-
sider a sticky channel with exponential distribution for the error
probabilities — for somé < ¢ < 1:

l—gq
1+q—g*

_ 4kl
qrt = 4

The second term in the product is for normalizing the probabil-
ity.

We first consider the single run case. Equation 24 allows us
to calculate relative entrop§/ (X" |Y™), describing the growth
in the number of typical correctiong” (X" 1) The left Panel
of Figure 2 presents values of relative entropy for various val-
ues ofg. Assuming correction procedure as taking a random
typical correction, the Right Panel of this figure presents the
probability of obtaining the right correction. This probability
drops exponentially with the length of the sequence, making a
single run approach impractical for longer sequences.

This limitation can be handled by performing multiple ex-
trusions of the same sequence. We use Equation (25) to find
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Figure 2. Left Panel: Relative entropy for single extrusion betwegput sequence (input to the nanopore sequencer) and thet setpuence
(observed sequence). This is derived from Equation (24htanel: The probability that we select the correct tyioarection forg = 0.01 and
increasing value of.

E—] 1 2 3 4 5 6 7 | 2 3 4 5 6 7

kl kl

1 0(1)93 0-2023 8-225’1 éégi 12% igég gégg 1 | 0 1316 3.147 5118 7.166 9.262 11.390
2 10 : : : : : 2 |ooc 0 0896 2445 4212 6.094 8.050
3 | 0567 0220 0 0233 0696 1.274 1.909 3 0 0668 Lo86 3570 5299
4 | 1054 0644 0227 0 0232 0.695 1.273 o 0 : : : :

5 |1621 1.181 0671 0229 0 0232 0.69 4 oo o0 o0 0 0527 1666 3.094

5 00 00 00 00 0 0.434 2.730

Table 1. Kullback-Leibler distances fay = 0.5, exponential distribu-
tion, and various 0rigina| block |engthkY k. Table2. Slmllarlty of qrl for different values of: for the independent
insertion-deletion channel.

relative entropy in this case. This requires finding Kullback- random variables, additionally truncated to enforce that it is a
Leibler distances betweefigy; }; distributions for different  sticky channel; i.e.qro = 0. For largek, gr; approaches the
original block lengths:. Table 1 presents some of these values Gaussian distribution with standard deviatigek.
for ¢ = 0.5. Figure 4 shows the first 20 distributiong.() for this model.
The minimal distance id = da; =~ 0.193, and corresponds It is illustrative to note that unlike the previous models, larger
to misinterpreting originak = 2 sequence at’ = 1. This block lengths have higher insertion-deletion error rates. Table 2
intuitively stronger overlap of the first two distribution can be presents the approximated first values of similaritieg@ffor
observed in the Left Panel of Figure 3, containifig, }; for different values ok, for e = 0.1. The infinite values in the ta-
the first 15 values of. The distance between farther neighbor- ble correspond to difference in support (one of values is zero).
ing distributions is nearly the same; i.e., misreading a block ofWe note that the distributions become closer to their own neigh-
length five nucleotides as six, is as likely as an input block ofbors ask grows: limy_, dxk+1 = 0, the minimal nonzero
100 nucleotides being read as 101. distanced does not exist. In other words, distinguishing be-
The right panel of Figure 3 shows relative entropy as a func-tweenk andk+1 becomes more difficult with increasihgand
tion of number of repeats, for ¢ = 0.5. There are important their difference vanishes asymptotically. Consequently, as we
observations drawn from this figure: (i) the nearly linear naturecan observe from the right panel of Figure 4, the required num-
of the curve shows that the number of repeats is almost logarithber of repeats grows slower than logarithm of sequence length.
mic in the read length# (X™|Y™)/n asymptotically behaves Figure 4 shows the relative entropy of the input and output se-
asexp(—c-d)); and (ii) for realistic reconstruction lengths (say, quences for different numbers of repeats (ong sequences
100K bases), the number of repeats is relatively small (less thafilOOK nucleotides), we need even fewer repeats (less than 30,
60). These are important results that establish the feasibility ofn this case, compared to 60 for the exponential model).
nanopore sequencers for accurate low-cost construction of long
reads.

Independent Insertion-Deletion Channel Model. To demon- 5 RELATED RESEARCH

strate the robustness of our results we now consider a differenfechnologies underlying nanopore sequencers have been
channel model — the independent insertion-deletion channel. imvestigated for over a decade [2, 1]. Commercial platforms
this model, for each nucleotide, there is probability> 0, based on these technologies have only recently been an-
that the symbol is deleted. There is also an identical probabilitynounced — with Oxford Nano being the leading platform.
that the symbol is duplicated. It follows that there is a prob- An excellent introduction to this platform is available at:
ability 1 — 2¢ that the symbol is sequenced without an error. ht t ps: / / www. nanopor et ech. com t echnol ogy/

For this model,gx;, for givenk, is the convolution ofc such  anal yt es- and- appl i cati ons- dna-r na- prot ei ns/
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Figure 3. Left Panel:{gx;}; distributions forg = 0.5 andk = 1 to 15. Right Panel: (25) approximation for= 0.5 and different numbers of
copiesc.

dna- an-i ntroducti on-to- nanopor e- sequenci ng. itselfis novel, its analysis is new, and the associated bounds on
There have been preliminary efforts aimed at characterizingeconstruction length, and required repeat rates are presented
the performance of nanopore sequencing platforms in terms ofor the first time.
error rate, error classification, and run lengths [7, 8, 4, 10]. A
consensus emerges from these studies that the primary error
mode in nanopore sequencers is deletion errors and that the
error rate is approximately 4% with a read length of over 150K
bases. These studies provide important data that is used to
build our insertion-deletion channel.
Error characteristics and models for nanopore sequencers

have been recently studied by O’Donnell et al [8]. In this g DISCUSSION AND CONCLUSION

study, the authors investigate error characteristics, and buil(iin this paper, we present a novel modeling methodology based
a statistical_ mod(_al for errors. They use this model o ShOW'o a channeyl representation of a nanopore sequencer. We use
through a simulation study, that repeated extrusion can be useﬁﬂs methodology to show a number of important results: (i) the

to improve eror characteristics. In particular, they show thathigh deletion error rate of the nanopore sequencer limits the se-

using t_he|r model, itis pqssmle tc_n achley(_a 99.99% accuracy byquence length that can be accurately reconstructed; (ii) repeated
repeating the read 140 times. This empirical study provides ex-

llent context f Wtical studv. which des ri extrusion through the nanopore is an effective technique for in-
ceflent contextior our analytical Study, which provides rlgorouscreasing the accurate reconstruction length; (i) the number of
bounds and required repeat rates.

There has been sianificant work on different channels. th irrepeats. is a slow function of the sequence length (logarithmic in
ere has been significant work o ere ineis, e sequence length), enabling nanopore sequencers to accurately
capacities, and error characteristics over the past five decad

since the work of Shannon. Of particular relevance to our re?gconstruct long sequences at low cost.
) p We demonstrate our results for a wide class of error models

sults '.St thef _wgrk n glelettl(;)nl c;_hannﬁls [5]|' A.S mentltoneg, theand show that our analyses is robust. We note that our analyses
.T_?]p?mg 0 IS er[:er;f er? .?ne (ljontc rzrinrne S;rls ?snygn .l:]n r:t(?wn”omy considers insertion-deletion errors, and not substitution er-

ere have been eflorts aimed at error correction In NSErionz, o 1y jg justified by the fact that deletion errors constitute
deletion channels in the context of communication, storage, an

e primary error mode in nanopore sequencers. In the presence
RFID systems [11]. We are, however, unaware of any results P y P q P

aimed at the use of insertion-deletion channels to establish funmc substitution errors, our analyses can be viewed as provid-
ing bounds on performance and required repeats for accurate
damental bounds on performance of sequencers. Our chann

Fconstruction.

" Ty ak  HX"Y™)/n

1073 100 k base pairs

04

Figure 4. Left Panel: The first 2@ distributions fore = 0.1 for the independent insertion-deletion channel. RighteRakpproximation of joint
entropy fore = 0.1 and different numbers of copiegfrom Equation (25).
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