
MOBILVIDEO: A Framework for Self-Manipulating Video
Streams

Ananth Grama, Wojciech Szpankowski, and Vernon Rego

Department of Computer Sciences,
Purdue University, W. Lafayette, IN 47907

fayg, spa, regog@cs.purdue.edu�

ABSTRACT
As handheld computing devices and cell phones become common-
place, streaming media to these devices becomes a challenging

problem. This is a result of severe bandwidth, processing, and
memory constraints imposed by these devices. Bandwidth lim-

itations necessitate effective compression strategies while mem-

ory and processing constraints require inexpensive decompression
techniques. This need for highly asymmetric compression and de-

compression techniques is not well addressed by conventional stan-
dards such as MPEG. In the absence of a universally accepted stan-

dard, it is highly desirable to bundle lean media handlers with the

media itself. Advances in infrastructure for mobile code (fast vir-
tual machines, embedded device support) have enabled develop-

ment of such active streams - media streams capable of self manip-
ulation. In this paper, we describe a highly asymmetric compres-

sion/ decompression technique, called 2D-PMC and an associated

mobile decompressor called MOBILVIDEO. We demonstrate that
the overhead of using mobile code in our framework is minimal,

the compression comparable to MPEG2, and decompression pos-

sible in real time at320 � 240 resolution (the display resolution
of an iPAQ 3870) and 20 FPS even on 206 MHz StrongARM class

processors.

1. INTRODUCTION
Dramatic growth in networking technology has fueled new research,
standards, and products for multimedia compression and decom-

�This work was supported by NSF Grants CCR-9804760 and CCR-
0208709, EIA-9806741, ACI-9875899, and ACI-9872101, and
contracts from sponsors of CERIAS at Purdue. Computing equip-
ment used for this work is supported by the Intel Corp.

pression. As networking technologies evolve, new challenges are
being posed for compression technologies. Thin clients relying on

wireless networking emphasize asymmetric compression schemes

that are amenable to extremely lean decompression while yielding
good compression ratios. Streaming media broadcasts over poten-

tially contested networks require novel and powerful multimedia
compression schemes (e.g., [1, 4, 7, 8, 3, 13]). In [1] we pro-

posed novel multimedia compression schemes based on approxi-

mate pattern matching that are lossy extensions of the well-known
Lempel-Ziv schemes. The central theme of a lossy extension of

Lempel-Ziv algorithm is the notion of approximate repetitiveness.

If a portion of data recurs in an approximate sense, then subsequent
occurrences can be stored as direct or indirect references to the first

occurrence.

A highly desirable feature of our scheme is that the associated de-
compressor is extremely fast and simple. This enables implemen-

tation in mobile code that can be shipped along with the media
with little communication overhead. Furthermore, even on rel-

atively outdated machines (Pentium, 350MHz), our mobile code

achieves real time performance at 25 frames/second on frames of
size360�288 with high motion. We report here, the theoretical ba-

sis for our 2D-PMC compression scheme along with experimental
results from the MOBILVIDEO decoder. Our experimental results

indicate that the 2D-PMC decoder is an order of magnitude faster

than an MPEG2 decoder and similarly faster than other stream-
ing video decoders such as VIVOACTIVE, REALSYSTEM G2, and

JSTREAMING in native form (machine code). This enables imple-
mentation of our decompressor in mobile code (bytecode) while

achieving real-time performance.

The implementation of both the 2D-PMC compressor and MOBIL-
VIDEO decoder are challenging problems from the algorithmic and

programming standpoints. Finding an efficient data structure for

approximatesearch of multidimensional sets in a huge multidimen-
sional database, is an interesting problem in itself. We use a set of

modifiedk-d trees enhanced by generalized run length coding for
approximate search. A key issue for high quality image and video



compression is the design of an adaptive distortion measure that au-
tomatically adjusts its maximum distortion to produce perceptually

high quality results. These findings were partially reported in [1].
For the MOBILVIDEO decoder, we have developed a highly op-

timized multithreaded implementation that is optimized for small

footprint as well as real-time performance.

2. THEORETICAL UNDERPINNINGS
We review and extend here some theoretical results of [1]. Con-

sider a source sequence(Xk) taking values from a finite alphabetA
(e.g.,jAj = 256), wherek = (k1; k2; : : : ; kd) is ad-dimensional

index. That is,Xk : S ! A whereS is a two-dimensional area
(e.g., for imagesS is anN �N square of pixels). To simplify the

presentation, we writeXn
m to denote contiguous block ofn�m+1

elements (e.g.,Xn
m = Xr;s

k=1;l=1 such thatn �m + 1 = r � s).
We formally should work withrandom fields(e.g., Markov random

fields), however, we leave this precise formulation of the problem
to an extended version of the paper (the interested reader is refer-

eed to [8] for precise formulation in terms of random fields). Fur-

thermore, we letP (xn1 ) denote the probability ofXn
1 = xn1 . We

encode the source sequenceXn
1 into a compression code and the

decoder produces an estimatêXn
1 of Xn

1 . More precisely, a code

Cn is a mappingCn : An ! f0; 1g�, and we writeCn(xn1 ) for
the compression code ofxn1 , where lower-case letters represent re-

alizations of a stochastic process. Let`(Cn(x
n
1 )) be the length of

a code (in bits) representingxn1 . Then, thebit rate is defined as

r(xn1 ) = `(Cn(x
n
1 ))=n and theaveragebit rate is defined as

E[r(Xn
1 )] = E[`(Cn(X

n
1 ))]=n:

In passing we recall that the dimensiond is “buried” under our no-

tation sincen denotes the total volume in ad-dimensional space;
for example, ifXn would denote a sub-block of ad-dimensional

cube, then the above expression would have beenE[r(Xn)] =

E[`(Cn(X
n))]=nd. We only considersingle-letter fidelitydistor-

tion measuresd : A� Â ! R+ such that

d(xn1 ; x̂
n
1 ) =

1

n

nX

i=1

d(xi; x̂i):

Our implementation of pattern matching video compression is well

modeled by thefixed database model[12]. In this model, the de-
coder and the encoder both have access to the common database

sequencêXn
1 (e.g., the first image in the video stream that could be

viewed as a three-dimensional data) generated according to the dis-

tribution P̂ . The source sequenceXM
1 (e.g.,M = N2 for N �N

images) is partitioned according to�n into variable length phrases
(i.e., rectangles)Z1; Z2; : : : ; Zj�nj of volumesL1n; : : : ; L

j�nj
n ,

respectively. More precisely, for given fixed compression bound

D > 0 we define

L1n = maxfk : d(Xk
1 ; X̂

i+k�1
i ) � D; 1 � i � n� k + 1g;

Z1 = X
L1
n

1

This implies that the first partition comprises of the largestd di-
mensional rectangle of the sourceXM

1 that matches a rectangle in

the databasêXn
1 to the specified tolerance. For example, for 2D

data, the strinĝZ1 recovered by the decoder is therefore given by:

Ẑ1 = X̂i1+k1�1;i2+k2�1
i1;i2

;

wherek1 � k2 = L1n. In a similar fashion (cf. [1]) we define a
sequence of subsequent partitions�n of volumesLmn such that the

source dataXM
1 is parsed asXM

1 = Z1Z2 : : : Zj�nj, while the de-

coder recoverŝZ1Ẑ2 : : : Ẑj�nj, which is within distortionD from
XM
1 . We represent eacĥZi by a pointerptr to the database and

its lengths. Therefore, its description costslog n + O(d log(Lin))

bits. The total compressed code length is

`n(X
M
1 ) =

j�njX

i=1

log n+�(d logLin);

and the bit rate (e.g., in bits per pixel) is given by

rn(X
M
1 ) =

1

M

j�njX

i=1

log n+�(d logLin): (1)

To formulate our main result, we introduce the generalized Shan-
non entropŷr0(D) defined as:

r̂0(D) = lim
n!1

EP [� log P̂ (BD(X
n
1 ))]

n
; (2)

whereBD(x
n
1 ) = fyn1 : d(yn1 ; x

n
1 ) � Dg is ad-dimensional ball

of radiusD with centerxn1 , andEP denotes the expectation with

respect toP . Our main theoretical result is as follows:

THEOREM 1. Let us consider the fixed database video model

using our 2D-PMC scheme with the databaseX̂n
1 generated by

a Markovian sourceP̂ , and the sourceXM
1 emitted by an inde-

pendent memoryless sourceP . Then the average bit rate attains,

asymptotically, the following bounds

r̂0(D) � lim
n!1

lim
M!1

EP�P̂ [rn(X
M
1 )] � 2r̂0(D): (3)

Proof. Detailed proofs can be found in an extended version of the

paper [1] focusing on 2D-PMC compression.

Remark. Our experiments indicate that the l.h.s. is indeed an ac-
curate estimate of the bit rate.

We should point out that̂r0(D) � R(D) whereR(D) is the op-

timal rate distortion function. We observe, at least for memoryless
sources, that̂r0(D) andR(D) do not differ by much for moder-

ate values ofD. For an optimal pattern matching compression the

reader is referred to [7]. Armed with this theoretical understand-
ing, we have developed a pattern matching compression scheme

that relies on approximate matching to yield excellent compression
ratios.



3. REVIEW OF PMC VIDEO SCHEME
In this section we review algorithmic and implementation issues of

the 2D-PMC video compression scheme. 2D-PMC video compres-

sion relies on a range of techniques centered around 2-D pattern
matching used in conjunction with variable adaptive distortion and

enhanced run-length encoding.

Two dimensional pattern matching is the most efficient and compu-
tationally expensive way of compressing images (frames) among

the methods used in 2D-PMC. The basic idea is to find a two-
dimensional region (rectangle) in the uncompressed part of the im-

age (e.g., the first frame in a group of pictures) that occurs approxi-

mately in the compressed part (i.e., database), and to store a pointer
to it along with the width and the length of the repeated rectangle.

Since the objective is to search for thelargest such area, a brute
force search algorithm is too time consuming. Consequently, we

usek-d trees for accelerating search.

Run-length encoding (RLE) of images identifies regions of the im-
age with constant pixel values. We enhance RLE by giving it the

capability of coding regions in which pixel values can be (approx-

imately) modeled by a planar function. We call this techniqueen-

hanced run-length encoding(ERLE). ERLE approximates in the

least-squared error sense a given gridm � n of pixels by a pla-

nar surface. The coefficients of the planar surface are computed
by solving a system of normal equations associated with the least-

squared error procedure. Once the planar surface is determined,
a sub-segment of them � n grid that is within the distortion dis-

tance is identified and coded using ERLE. We observe that this is

particularly useful for synthetic images typically found on the Web.

For lossless encoding we use a custom-designed arithmetic encoder.

However, to simplify and speed up the decompressor, the arithmetic

coder is disabled in the MOBILVIDEO decoder. It is our expecta-
tion that as decoders’ computational capabilities improve, we can

enable arithmetic coding in MOBILVIDEO without losing real-time
performance.

These three coding techniques in 2D-PMC (pattern matching, en-

hanced RLE, and lossless coding) are applied to progressively code
images. Assuming that a part of an image (frame) has been previ-

ously encoded, the key task is to encode the pixels located to the

right of and below a point we call theanchor point. The selection
of the next anchor point is based on agrowing heuristic(cf. [3]).

The growing heuristic we adopt is the “wave–front” scheme. This
scheme sweeps the image from top to bottom and left to right.

Other heuristics grow regions in a circular manner from a center

of the image or expand from the main diagonal. These heuristics
have been observed to yield similar results [3]. Once the anchor

point has been identified, the partial image is coded using either
2-D pattern matching, ERLE, or lossless coding. We observe that

for all our growing heuristics individually coded subimages do not

overlap more than twice.

Our video compression scheme uses a (decompressed) representa-

tion of the previous frame that has been compressed in our frame-

work as the database to compress current frame. We refer to this
decompressed representation as a lossy image. The reason for us-

ing the lossy image as a database is that we want the decompressed
image at the client side to be within a constant distortion bound

from the original image. Since the decompressor only knows the

compressed frame (in its compressed and uncompressed form), this
must be used as the database for pattern matching compression. In

contrast, if the original previous frame was used as the database,

this database is not available at the decompressor. Consequently,
errors propagate quickly through subsequent frames during decom-

pression. Since the previous compressed frame (in its uncompressed
form) forms a static database, the compression process is modeled

well by our analytical framework of Section 2.

4. REAL-TIME DECOMPRESSION USING
MOBILE CODE - MOBILVIDEO

A key advantage of 2D-PMC is its highly asymmetric nature. While

the computational cost associated with compression is higher due
to exhaustive search, the associated decompression cost is much

lower since there are no floating point operations. In typical video
samples, we observe that compression time is an order of mag-

nitude higher and decompression time is an order of magnitude

lower. This low decompression time enables implementation of
the decoder in mobile code while achieving real-time performance.

This is in contrast to conventional schemes like MPEG that rely on

frequency domain transforms defined over fixed size blocks. The
associated decompression schemes tend to be expensive and their

implementation on conventional java virtual machines (JVMs) ren-
ders real-time performance difficult for meaningful frame sizes.

A 2D-PMC compressed file is stored as a script. The three in-

structions corresponding to pattern matching, enhanced run-length
encoding, and lossless coding are stored as two bit instructions fol-

lowed by their arguments. These are eventually coded using arith-

metic coding. Theentire decompressor method is shown in the
listing below. It is evident that the method is extremely lean. In

addition to thedecompressPMC method, the only other signif-
icant methods arereadHeader andreadBuffer , which read

the header of the stream and stream segments in chunks of pro-

grammable size (we typically use 2KB segments). A detailed demon-
stration of the mobile decompressor is available athttp://www.

cs.purdue.edu/homes/ayg/Video/Videos and the de-
compressor code itself is available athttp://www.cs.pur-

due.edu/homes/ayg/Video/Videos/Player-0.99/ .

public void decompressPMC() {

Date dStart = new Date();



Date dEnd;

int iMin, iSec;

int loop;

while (numOps != 0) {

dStart = new Date();

if (readIn == 0 &&

byteOffset >= LEFT_BUFFER) {

readBuffer(0, LEFT_BUFFER);

readIn = 1;

}

switch (getByteSeg(SIZE_OF_OP)) {

case 0 :

writePixel_BW(getByteSeg(SIZE_OF_LX));

break;

case 1 :

writeRLE_BW(getByteSeg(SIZE_OF_LX),

getByteSeg(SIZE_OF_LY),

getByteSeg(SIZE_OF_C0)-256,

getByteSeg(SIZE_OF_CX)-256,

getByteSeg(SIZE_OF_CY)-256);

break;

case 2 :

writePattern_BW(getByteSeg(SIZE_OF_LX),

getByteSeg(SIZE_OF_LY),

getByteSeg(SIZE_OF_WID)-512,

getByteSeg(SIZE_OF_HI) -512);

break;

}

numOps--;

if (pos >= MAX_POS) {

drawImage();

dEnd = new Date();

if ((dEnd.getTime() - dStart.getTime())

< 40) {

loop = 4000;

while(loop > 0) { loop--; }

}

}

}

dEnd = new Date();

iMin = dEnd.getMinutes()-dStart.getMinutes();

iSec = dEnd.getSeconds()-dStart.getSeconds();

if (iMin < 0)

iMin += 59;

if (iSec < 0) {

iMin++;

iSec += 59;

}

graph.setColor(Color.white);

graph.drawString("mm:ss " + iMin + ":"

+ iSec, 0, 120);

iSec = (int)(dEnd.getTime() -

dStart.getTime());

graph.drawString("Milli " + iSec, 0, 140);

}

Figure 1: Screenshot of theMOBILVIDEO decompressor illus-
trating video without plugins with excellent compression and
decompressor performance.

The MOBILVIDEO decompressor for 2D-PMC is fashioned as a
Java applet that communicates the image or video segment, de-

compresses it, and renders it. To optimize the performance of
MOBILVIDEO, its functionality is implemented in three threads -

reader , decompressor , andrender . These threads commu-

nicate via synchronized (mutually exclusive) operations on shared
buffers. The reader and decompressor threads communicate via

the input (in) buffer and decompressor and render threads commu-
nicate via the display buffer. Compressed data is copied into the

input buffer in (programmable) chunks of size 2KB. The size of

this chunk is selected to optimize network latency, buffer manage-
ment overheads, and compressed image sizes. Decompressed data

is copied into the display buffer one frame at a time. A screenshot
of the MOBILVIDEO decompressor is illustrated in Figure 1.

The reader thread reads a parcel of data and places it in the input

buffer if space is available, otherwise it yields (condition waits).
The decompressor reads in data from the input buffer as it becomes

available. If there is no data in the input buffer, it yields as well. If

there is data, it attempts to decompress the data and place it into the
display buffer when an entire frame has been decompressed. If the

display buffer is full, the decompress thread yields as well. The ren-
der thread reads in frames from the display buffer as they become



available and renders them at programmed intervals. Threads are
programmed to maximize concurrency and minimize synchroniza-

tion overheads. Buffer sizes are selected to optimize serialization
overheads as well as for latency tolerance.

5. EXPERIMENTAL RESULTS
In this section, we present detailed experimental results correspond-

ing to compression ratios, compression time, and decompression
time. The objective of this exercise is to demonstrate that 2D-PMC

achieves compression rates similar to MPEG2 while supporting de-
compression rates roughly an order of magnitude higher. The cor-

responding compression rates are roughly an order of magnitude

lower for 2D-PMC. We demonstrate these in the context of a vari-
ety of video segments.

Our experimental demonstrations are based on five video segments,

each with distinct characteristics. Samples Claire and Missa corre-
spond to news broadcasts. The background is static and the mo-

tion is limited. Consequently, most compression techniques yield

excellent compression for these video segments. Segments Foot-
ball, PomPom, and Ping-Pong (Figure 2) have significant motion

in them and some scene changes. Segment Train (Figure 3) cor-
responds to a cartoon clip. This segment is selected to demon-

strate the superior characteristics of 2D-PMC for synthetic video

segments.

5.1 Compression Rates for MPEG2 and 2D-
PMC

Our first experiment compared the compression rates achieved from

MPEG2 and 2D-PMC. We selected a group of pictures to cor-

respond to ten frames in each case. Data rates were computed
from the sizes of each group of pictures. The parameters in 2D-

PMC were selected to ensure that video quality is comparable to
or better than that of MPEG2. For a full demonstration, we direct

the reader tohttp://www.cs.purdue.edu/homes/ayg/

Video/ . We observe from Table 1 that the performance of MPEG2
and 2D-PMC is comparable for a wide range of segments with vari-

ation from 7.9% worse (in case of Claire) to 31.3% better (in case
of synthetic video segment Train).

2D-PMC has a number of programmable parameters such as search

region, number of seed points, number of templates, etc., that allow
tradeoffs between compression time, video quality, and compres-

sion ratios. The results presented in Table 1 are selected as the best

compromise between image quality and compression time. If a bet-
ter compression ratio is desired, it is easy to change the parameters

of the compression script to explore better matches at the expense
of increased compression time.

Figure 2: Sample video Ping Pong – original (left) and PMC
compressed (right) for illustration.



Figure 3: Sample video Train – original (left) and PMC com-
pressed (right) for illustration.

Sample MPG PMC Comp. Time Decomp. Time
MPG PMC MPG PMC

Claire 17.7 19.1 2 26 0.36 0.05
Football 111.9 90.9 3 29 0.34 0.09
Missa 20.4 20.2 9 23 0.32 0.03
PomPom 187.1 174.6 7 34 0.35 0.07
PingPong 113.8 104.9 8 39 0.35 0.03
Train 202.8 139.3 9 25 0.35 0.04

Table 1: Comparison of data rates (KB/s), compression, and de-
compresion times (in seconds on a Pentium, 350MHz, 128MB)
from five different samples illustrating that 2DPMC yields
performance ranging from 7.9% worse to 31.3% better than
MPEG2. The sizes of samples Claire, Football, Missa, Pom-
Pom, Ping Pong, and Train are360�288, 360�243, 360�288,
352 � 288, 360 � 256, and 352 � 288 pixels respectively. The
platform is intentionally chosen to be a computationally weak
one (the weakest we could find in our lab) to demonstrate the
highly assymmetric nature of 2D-PMC.

5.2 Compression Times for MPEG2 and 2D-
PMC

The compression times for MPEG2 and 2D-PMC are presented in

Table 1. The compressors are implemented in native code as op-
posed to mobile code. This is motivated by the assumption that

servers are likely to have significant computational resources. We

observe that 2D-PMC is 3- to 10-times slower than MPEG2 in
terms of compression time. The best performance for 2D-PMC

is for synthetic segments (e.g., Train).

The significant time premium of 2D-PMC can be attributed to its
more exhaustive search. This search time is a sensitive function of

various parameters - the number of seed templates, search region
for seed points, and number of seed points. In general, significant

improvements in compression times can be achieved with minimal

degradation in compression ratios.

5.3 Decompression Rates for MPEG2 and 2D-
PMC

Decompression times represent the most significant advantage of

2D-PMC over existing compression standards. Since decompres-

sion in 2D-PMC is simply a set of pointer lookups or increment
operations in case of ERLE, it is extremely fast. In Table 1, we

compare the decompression times for MPEG2 and 2D-PMC. The
times correspond to total decompression time for a group of ten

pictures using native (machine) code instead of mobile code. This

is because a mobile decompressor for MPEG2 was unavailable for
comparison, therefore, for a fair comparison, native code was used

in both cases. It is evident from the table that MPEG2 decompres-
sion takes about 34ms/frame on an average whereas 2D-PMC takes



roughly 4 ms/frame. This implies that our mobile implementation
of a 2D-PMC decompressor easily achieves real-time performance

even on older platforms such as a Pentium 266/Windows platform.

5.4 Discussion of Performance and Related Sys-
tems

There have been other efforts at developing mobile decompres-
sors for a variety of compression techniques. The closest in terms

of project objectives is theJSTREAMING H263 decoder from the

Multimedia Communications Research Lab at the University of Ot-
tawa (http://www2.mcrlab.uottawa.ca/ j̃auvane/

H263Decoder/JDK1.1/ ). Being a H263 decoder, it is suited
for low bit-rate low-motion video. Similar products are also avail-

able from EMBLAZE (http://www.emblaze.com ). There have

also been efforts at mobile MPEG2 decoders. However, the perfor-
mance of these decoders is far from real-time for higher quality

video.

6. REFERENCES
[1] M. Alzina, W. Szpankowski and A. Grama, 2D-Pattern Matching

Image and Video Compression,IEEE Trans. on Image Processing,
11, 318-331, 2002.

[2] G. Conklin, G. Greenbaum, K. Lilevold, A. Lippman, and Y. Reznik,
Video Coding for Streaming Media Delivery on the Internet,IEEE
Transactions on Circuits and Systems for Video Technology, 2001, to
appear.

[3] C. Constantinescu and J. A. Storer, Improved Techniques for
Single-Pass Adaptive Vector Quantization,Proc. IEEE, 82, 933-939,
1994

[4] W. Finamore, M. Carvalho, and J. Kieffer, Lossy Compression with
the Lempel-Ziv Algorithm,11th Brasilian Telecommunication
Conference, 141-146, 1993.

[5] J. Gibson, T. Berger, T. Lookabaugh, R. BakerMultimedia
Compression: Applications & Standards, Morgan Kaufmann
Publishers 1998.

[6] JSTREAMING - H263 Video Decoder 1.8.

[7] I. Kontoyiannis, An Implementable Lossy Version of the
Lempel-Ziv Algorithm– Part I: Optimality for Memoryless Sources,
IEEE Trans. Information Theory, 45, 2285-2292, 1999.

[8] I. Kontoyiannis, Pattern Matching and Lossy Data Compression on
Random Fields, preprint 2002.

[9] T. Łuczak and W. Szpankowski, A Suboptimal Lossy Data
Compression Based in Approximate Pattern Matching,IEEE Trans.
Information Theory, 43, 1439–1451, 1997.

[10] W. Szpankowski,Average Case Analysis of Algorithms on
Sequences, John Wiley & Sons, New York, 2001.

[11] Vivo Software, VIVOACTIVE software documentation,http://

www.vivo.com .

[12] A.J. Wyner, The Redundancy and Distribution of the Phrase Lengths
of the Fixed-Database Lempel-Ziv Algorithm,IEEE Trans.
Information Theory, 43, 1439–1465, 1997.

[13] E.H. Yang, and J. Kieffer, On the Performance of Data Compression
Algorithms Based upon String Matching,IEEE Trans. Information
Theory, 44, 47-65, 1998.

[14] Z. Zhang and V. Wei, An On-Line Universal Lossy Data
Compression Algorithm via Continuous Codebook Refinement –
Part I: Basic Results,IEEE Trans. Information Theory, 42, 803-821,
1996.


