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Abstract

Background: Molecular interaction data plays an important role in understanding biological processes at a

modular level by providing a framework for understanding cellular organization, functional hierarchy, and

evolutionary conservation. As the quality and quantity of network and interaction data increases rapidly,

the problem of effectively analyzing this data becomes significant. Graph theoretic formalisms, commonly

used for these analysis tasks, often lead to computationally hard problems due to their relation to subgraph

isomorphism.

Methods: This paper presents an innovative new algorithm, MULE, for detecting frequently occurring

patterns and modules in biological networks. Using an innovative graph simplification technique based on

ortholog contraction, which is ideally suited to biological networks, our algorithm renders these problems

computationally tractable and scalable to large numbers of networks.

Results: We show, experimentally, that our algorithm can extract frequently occurring patterns in metabolic

pathways and protein interaction networks from the KEGG, DIP, and BIND databases within seconds.

When compared to existing approaches, our graph simplification technique can be viewed either as a

pruning heuristic, or a closely related, but computationally simpler task. When used as a pruning heuristic,

we show that our technique reduces effective graph sizes significantly, accelerating existing techniques by

several orders of magnitude! Indeed, for most of the test cases, existing techniques could not even be

applied without our pruning step. When used as a stand-alone analysis technique, MULE is shown to

convey significant biological insights at near-interactive rates.

Conclusions: Using tools presented in this paper, comparative analysis of biological networks at near

interactive rates is now feasible.

Background

Increasing availability of experimental data relating to biological sequences, coupled with efficient tools such as

BLAST and CLUSTAL have contributed to fundamental understanding of a variety of biological processes [1,2].

These tools are used for discovering common subsequences and motifs, which convey functional, structural, and

evolutionary information. Recent developments in molecular biology have resulted in a new generation of
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experimental data that bear relationships and interactions between biomolecules [3,4]. Biomolecular interaction data,

generally referred to as biological or cellular networks, are frequently abstracted using graph models. Although vast

amounts of high-quality data is becoming available, efficient analysis counterparts to BLAST and CLUSTAL are not

readily available for such abstractions.

It is possible to model biological networks using various graph theoretic formalisms [5]. As is the case with

sequences, two key problems on graphs derived from biomolecular interactions correspond to aligning multiple

graphs and finding frequently occurring subgraphs in a collection of graphs. Solutions to these problems provide

understanding of several interesting concepts such as common motifs of molecular interactions, evolutionary

relationships and differences among cellular network structures of different organisms, organization of functional

modules, relationships and interactions between sequences, and patterns of gene regulation.

In this paper, we address the problem of finding frequently occurring molecular interaction patterns among different

organisms,i.e., mining a collection of biological networks for frequent subgraphs. This problem, generally referred

to as graph mining, is particularly challenging because it relates to the NP-hard subgraph isomorphism problem.

Consequently, domain-specific abstractions are necessaryin order to simplify the problem. We use here an

abstraction based on contraction of nodes that correspond to orthologous biomolecules. We show that this simplifies

the graph mining problem considerably, while being able to capture the underlying biological information accurately.

Furthermore, we reinterpret the mining problem in the context of cross-species analysis of molecular interaction data

to identify not only frequently occurring patterns of molecular interactions but also sets of organisms that share

common interaction patterns. This facilitates phylogenetic analysis of modularity in cellular networks.

We devise an efficient algorithm, MULE, which is based on frequent itemset extraction to discover frequent

subgraphs among these graphs taking into account the natureof molecular interaction data. This is in contrast to

existing formulations of frequent subgraph extraction based on a-priori like approaches that suffer from exponential

explosion of problem size (in addition to the NP hardness of solving the problem).

Using the proposed algorithm, we mine protein-protein interaction networks derived from DIP, BIND, and KEGG

databases. We show that MULE is able to discover biologically meaningful patterns within seconds. In the results

section, we discuss a selection of interesting patterns in detail. We also compare the computational efficiency of

MULE with existing graph mining algorithms. As a stand-alone analysis technique, MULE conveys significant

biological insights at rates several orders of magnitude faster than isomorphism-based graph mining algorithms. We

also establish our graph simplification technique as a pruning heuristic, which may be used to discover contracted

patterns to filter the data to be mined for isomorphic patterns. When used as a pruning heuristic, MULE reduces

effective graph sizes significantly, accelerating existing techniques by several orders of magnitude.
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Before presenting the ortholog-contraction based mining algorithm for molecular interaction networks, we briefly

introduce graph-theoretic formalisms for the analysis of biological networks and discuss existing literature on the

comparative analysis of molecular interactions through these abstractions. We then discuss existing graph mining

algorithms and challenges associated with graph-structured data.

Graph-Theoretic Formalisms for Molecular Interaction Net works

In the multi-layered organization of living organisms, cellular interactions form the bridge between individual

molecules (e.g., genes, mRNA, proteins and metabolites) and large-scale organization of the cell through functional

modules [4,5]. Common abstractions for cellular interactions include protein interaction networks, gene regulatory

networks, metabolic pathways, and signaling pathways.

Protein Interaction Networks

Protein interaction networks are comprised of groups of interacting proteins.These networks provide the

experimental basis for understanding modular organization of cells, as well as useful information for predicting the

biological function of individual proteins. Common methods of obtaining protein interaction data include two-hybrid

experiments [6], mass spectrometry experiments [7], tandem affinity purification (TAP) [8], and phage-display [9].

Recently, there have been several efforts aimed at organizing protein interaction networks into publicly available

databases such as BIND [10] and DIP [11]. This experimental data reveals either pairwise interactions, as in

two-hybrid experiments, or multi-way interactions between a set of proteins, as in mass spectrometry experiments.

Pairwise interactions are conveniently modeled by simple undirected graphs in which nodes represent proteins and an

edge between two nodes represents the interaction between the corresponding proteins. Multi-way interactions are

modeled using hyperedges that represent interactions between various proteins in a hypergraph [5].

Gene Regulatory Networks

Gene regulatory networks, also referred to as genetic networks, represent regulatory interactions between pairs of

genes and are generally inferred from gene expression data through microarray experiments [12]. A simple and

frequently used mathematical model for gene regulatory networks is a boolean network model. In this model, nodes

correspond to genes and a directed edge from one gene to the other represents the regulatory effect of the first gene

on the second. The edge is labeled by either a + or - sign to represent up- or down-regulation, respectively. More

sophisticated models that capture the degree of regulationthrough weighted graphs and/or differential equations have

also been proposed.
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Metabolic and Signaling Pathways

Metabolic pathways characterize the process of chemical reactions that, together, perform a particular metabolic

function. With recent progress in application of computational methods to cell biology, there have been successful

attempts at modeling, synthesizing and organizing metabolic pathways into public databases such as KEGG [13–15].

Metabolic pathways are chains of reactions linked to each other by chemical compounds (metabolites) through

product-substrate relationships. A natural mathematicalmodel for metabolic pathways is a directed hypergraph in

which each node corresponds to a compound, and each hyperedge corresponds to a reaction (or equivalently

enzyme) [15]. The direction of a pin of a hyperedge indicateswhether the compound is a substrate or a product of the

reaction. This representation is illustrated in Figure 1(a). It is possible to replace this model by a simpler directed

graph if, for instance, we are only interested in relations between enzymes. In such a model, enzymes correspond to

nodes of the graph and a directed edge from one enzyme to another indicates that a product of the first enzyme is a

substrate of the second. This representation is illustrated in Figure 1(b). Indeed, metabolic pathways are represented

in terms of various binary relations in KEGG [13]. Furthermore, edges may be labeled by the compound that relates

the two corresponding enzymes.

Much like metabolic pathways and gene regulatory networks,signaling pathways can also be modeled by directed

graphs [16].

Comparative Analysis of Molecular Interaction Networks

Graph alignment and graph mining provide various opportunities for cross-species analysis of biological networks.

An interesting approach to understanding evolutionary conservation of interactions is the investigation of common

topological motifs in molecular interaction networks [17–19]. These studies reveal that more complex graph

structures such as relatively large cliques or cycles are significantly conserved in the nature, compared to simple

motifs. Furthermore, proteins that are organized in cohesive patterns tend to be conserved to a higher degree. These

results motivate the investigation of conserved interaction patterns among evolutionarily related proteins.

Recently, several algorithms have been proposed for the alignment of protein interaction networks to understand the

conservation of pathways, complexes, and modules among different organisms [20–23]. While comparing two

networks that belong to two separate species, these methodsgenerally construct alignment graphs by creating

super-nodes from any pair of potentially orthologous proteins and search for heavy subgraphs or pathways in these

graphs. A similar approach is adapted to the alignment of networks that belong to multiple species, and is shown to

provide significant insight on the conservation of a number of biological processes [24]. One major problem

associated with large-scale application of these approaches in the comparative analysis of growing number of
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interaction networks is computational scalability. Sincethe number of nodes in the alignment graph is exponential

with respect to the number of organisms, direct applicationof these approaches is infeasible, as interaction data for

more organisms becomes available. In this study, we focus ona graph-mining approach for comparative analysis of

biological networks. Since graph mining algorithms are designed for analyzing a large number of graphs, our

approach is well suited to comprehensive analysis of a largecollection of networks that belong to various species. By

taking advantage of the nature of biological networks, we devise algorithms that render the graph mining problem

tractable through contraction of orthologous nodes. Whilethe focus here is on discovering any frequent subgraph that

is connected, the method can be extended relatively easily to particular target topological structures such as linear

chains (pathways) or dense subgraphs (complexes or modules) [25].

Overview of Graph Mining Algorithms

There have been significant efforts aimed at developing efficient algorithms for mining graph structured datasets in

recent years [26]. Given a collection of graphs in which nodes correspond to data items and edges to their underlying

relations, we can define the graph mining problem as one of finding frequent isomorphic substructures, mapped to

each other consistently with the labeling of nodes and edges.

Computational Challenges in Graph Mining

Most graph mining algorithms in literature are based on the well-studied association rule mining, or more generally,

the frequent itemset problem [27]. This problem can be defined as follows. Given a set of itemsS = {i1, i2, ..., in}

and a set of transactionsT = {T1, T2, ..., Tm} overS, i.e., Ti ⊂ S for all i, find all subsetst of S such that

σ(t) = |{Ti∈T :t⊂Ti}|
|T | ≥ σ∗. Here,σ(t) is the support of itemsett andσ∗ is the prescribed threshold on support,

signifying the desired frequency of patterns to be mined. Frequent itemset mining algorithms are generally based on

the lattice or downward closure property of support. This property states that an itemset cannot be frequent if even

one of its subsets is not frequent [28]. Taking advantage of this property, frequent itemset mining algorithms

enumerate all potentially frequent itemsets by effectively pruning the search space. In terms of graph mining,

downward closure translates to the fact that a subgraph is frequent only if all of its subgraphs are frequent.

Not surprisingly, most existing graph mining algorithms generalize state-of-the-art frequent itemset mining

algorithms to structured data. However, this generalization poses significant challenges for the following reasons:

• Subgraph Isomorphism: While counting frequencies of subgraphs in the graph database, one must verify

whether a given structure is a subgraph of a graph in the database [26]. This requires solution of the

NP-complete subgraph isomorphism problem [29] at all explored points of the solution space.
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• Canonical Labeling: Frequent itemset mining algorithms dictate a lexicographic order on items and represent

itemsets as ordered sets to ensure that no itemset is considered more than once. However such an ordering of

nodes and/or edges in graphs is not trivial. Furthermore, computing canonical labels for graphs in order to sort

them in a unique and deterministic manner is equivalent to testing isomorphism between graphs [30].

Therefore, graph mining algorithms generally aim to minimize redundancy caused by duplicate consideration

of subgraphs [31].

• Connectivity: While taking advantage of the downward closure property in frequent itemset mining, candidate

itemsets are generated in a bottom-up fashion by extending itemsets with addition of items one by one. In the

case of graph mining, extension of subgraphs is not trivial since it is necessary to maintain connectivity of

candidate subgraphs, since the target frequent patterns are desired to be connected, in general.

Existing Graph Mining Algorithms

One of the earliest graph mining algorithms, Subdue [32], isbased on recursively finding a subgraph that provides the

best compression based on the Minimum Description Length (MDL) principle. At each step of the algorithm, the

subgraph that provides maximal compression, hence is most frequent, is discovered via a beam search heuristic and

replaced by a single node. This mining process is carried on recursively. In contrast to this greedy algorithm, other

existing graph mining algorithms are aimed at discovering all frequent patterns, searching the entire space of

subgraphs.

Another early graph mining algorithm, AGM [33], adapts the well-known a-priori algorithm [28] to mining vertex

sets that induce frequent subgraphs in a graph database. Themain feature of this algorithm is that it provides a

canonical labeling for graphs based on an adjacency-matrixrepresentation. This might be computationally infeasible

for applications involving large graphs as in our case. FSG [30], on the other hand, provides a canonical

representation based on sparse adjacency list data structure and adopts a breadth-first enumeration algorithm for

discovering frequent subgraphs. Recent graph mining techniques are aimed at improving these algorithms by

developing more efficient canonical representations that reduce redundancy in candidate generation along with

several optimization techniques to help prune the search space more efficiently.

gSpan [34] reduces the overhead introduced by the problems discussed in the previous section through a DFS-based

canonical representation of graphs and enumerates the search space in a depth-first manner to achieve significant

speed-up over earlier algorithms such as FSG. CloseGraph [31] is an extension of gSpan designed to discover only

those subgraphs that do not have a supergraph of same supportto avoid redundancy in the output. FFSM [35]
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improves upon gSpan by reducing redundant candidate generation through a vertical search scheme based on an

algebraic graph framework. A recent algorithm, SPIN [36], further speeds up graph mining by splitting the process

into two independent tasks of mining subtrees and extendingthese subtrees to frequent subgraphs. This is based on

the observation that major problems in graph mining are caused by the existence of cycles and a majority of these

problems can be handled efficiently by avoiding cycles. GASTON [37] relies on the same idea to generate frequent

substructures hierarchically by starting from paths, extending frequent paths to trees, and further extending frequent

trees to graphs.

Ghazizadeh and Chawate [38] present an alternate approach for pruning the search space using summaries. In this

method, graphs are summarized by superposing identically-labeled nodes and assigning weights to edges based on

this superposition. Observing that the edges of a frequent subgraph must have weights greater than the frequency

threshold (ξ∗ = σ∗|T |), it is possible to prune out many subgraphs immediately by simply evaluating the weights of

the edges. Our approach in this paper also relies on the idea of contracting identically-labeled nodes, however, our

algorithm is fundamentally different from existing graph-mining approaches in the sense that it totally avoids the

subgraph isomorphism problem.

Methods

We first define the graph mining problem in the context of molecular interaction networks. We then introduce the

idea of contracting orthologous nodes and discuss the validity and interpretability of the idea in the context of protein

interaction networks and metabolic pathways. Finally, we explore strategies for adapting frequent itemset mining

algorithms to mining frequent edge sets and develop an efficient algorithm [39], MULE, for frequent subgraph

discovery in biological networks along these lines.

Graph Mining Problem

This paper addresses the graph mining problem in the contextof biological networks. The input to the problem is a

set of graphs in which nodes correspond to biomolecules and edges correspond to interactions between these

molecules. Over this set of graphs, we are looking for frequent subgraphs that are connected and isomorphic to each

other. In the general setting for graph mining, isomorphismis defined with respect to the labeling of nodes. In the

context of biological networks, labeling is based on the assessment of functional correspondence, as suggested by

sequence homology or more comprehensive methods of functional annotation. For metabolic pathways, the

hierarchical classification of enzymes provides a means forlabeling nodes. In the context of protein interaction

networks, proteins of different species are functionally associated through ortholog clustering. Without loss of
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generality, in the following discussion, we refer to nodes as proteins, and label these nodes based on the assignment

of these proteins into ortholog groups. Assessment of functional correspondence between biomolecules is discussed

in detail in the next section. In the following, we do not consider edge labels (e.g., compounds for metabolic

pathways) for simplicity since it is relatively straightforward to extend typical graph mining algorithms to this case.

We also assume that the graphs are directed, since some molecular interactions are directed (e.g., enzyme-enzyme

interactions) and any undirected graph may be represented as a directed graph.

Definition 1 Interaction network . Given a set of biomoleculesV in one particular organism, a set of interactions

E between these molecules, and a many-to-many mapping of these biomolecules into a set of ortholog groups

L = {l1, l2, ..., ln}, the corresponding interaction network is modeled by a labeled graphG = (V, E,L). Each

v ∈ V (G) is associated with a set of ortholog groupsL(v) ⊆ L. Each edgeuv ∈ E(G) represents an interaction

betweenu andv.

We define node labeling flexibly to allow proteins to be associated with more than one ortholog group. This is

motivated by the fact that some proteins may be involved in more than one cellular process. Specifically, if domain

families [40,41] are used to relate proteins, multi-label nodes are necessary for handling multi-domain proteins.

Furthermore, since observed interaction networks represent a superposition of dynamically organized interactions in

spatial and temporal dimensions [42], this model accurately captures the dynamic and complex modular organization

of cellular processes.

Definition 2 Subgraph of an interaction network. A graphS is a subgraph of interaction networkG, i.e.,S ⊑ G

if there is an injective mappingφ : V (S)→ V (G) such that for allv ∈ V (S), L(v) ⊆ L(φ(v)) and for all

uv ∈ E(S), φ(u)φ(v) ∈ E(G).

A subgraphS is connected if and only if for any subsetU ⊂ V (S), ∃ u ∈ U andv ∈ V (S) \ U such thatuv ∈ E(S)

or vu ∈ E(S). In molecular interaction networks, a connected graph may be interpreted as a set of interactions

related to each other through at least one molecule. Therefore, interactions that are related to a particular cellular

process are expected to form a connected subgraph. Such subgraphs may also be connected to each other as a

reflection of crosstalk between different processes. For this reason, we define the graph mining problem as one of

identifying all connected subgraphs that exist in at least adesired number of organisms. This allows us to understand

the conservation and divergence of functional modules in different organisms and identify conserved links between

different cellular processes.

Definition 3 Closed frequent subgraph discovery.

9



Input: A set of interaction networksG = {G1 = (V1, E1,L), G2 = (V2, E2,L), ..., Gm = (Vm, Em,L)}, each

belonging to a different organism, and a support thresholdσ∗.

Problem: LetH(S) = {Gi : S ⊑ Gi} be the occurrence set of graphS. Find all connected subgraphsS such that

ξ(S) = |H(S)| ≥ σ∗|G|, i.e.,S is a frequent subgraph inG and for allS′ ⊐ S, H(S) 6= H(S′), i.e.,S is closed.

In this framework, one is interested in discovering all subgraphs that are frequent and closed. A closed subgraph is a

frequent subgraph such that none of its supersets occur in the same set of organisms as itself. This property ensures

maximality of discovered patterns. Note that, in traditional mining algorithms, a closed subgraph is defined as a

frequent subgraph such that none of its supergraphs is as frequent as itself. For mining biological networks, we use a

generalized definition of a closed subgraph that takes into account the occurrence set of a subgraph rather than its

cardinality. This allows us to identify conserved patternsfor any subset of organisms, facilitating phylogenetic

analysis of modularity in molecular interaction networks.This approach may also be viewed as a symmetric mining

problem, where not only the subgraphs that occur in many networks but also the organisms that share many

interactions or subgraphs are of interest.

As can be inferred from the definition of a subgraph, our graphmining problem requires repeated solutions to the

subgraph isomorphism problem. In typical applications of mining biological networks, it is necessary to run repeated

queries interactively with different parameters until a satisfactory set of results is obtained. This is clearly not feasible

in the current problem setting. It is important to note that there exist many proteins in an organism that are

homologous to each other. This translates to the repetitionof each label in a single interaction network. This is the

underlying source of the subgraph isomorphism problem. As we shall now show, if all orthologous nodes are

contracted into a single node, the underlying problem can beconsiderably simplifiedwhile the underlying biological

information is preserved.

Ortholog Contraction

We propose an alternate setting for graph mining based on contraction of orthologous nodes. While simplifying the

graph mining problem significantly, ortholog contraction maintains not only the correctness by preserving the

underlying frequent subgraphs in the graph database, but also the biological relevance and interpretability of the

discovered patterns. The fact that the underlying frequentsubgraphs in the database are preserved is formally shown,

and is particularly important to note. There isno loss of informationresulting from our ortholog clustering technique.

Definition 4 Ortholog-contracted graph. Given interaction networkG = (V, E,L) the ortholog-contracted

representation ofG, Υ(G) = Ḡ = (V̄ , Ē,L) is constructed as follows. For1 ≤ i ≤ |L|, there exists uniquēv ∈ V̄
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such thatL(v̄) = {li}. For eachuv ∈ E and for all li ∈ L(u), lj ∈ L(v), there exists̄uv̄ ∈ Ē such thatL(ū) = {li}

andL(v̄) = {lj}.

A sample interaction network and its ortholog-contracted representation are shown in Figure 2. Observe that the

ortholog-contracted graph of an interaction network is unique while the reverse is not necessarily true. However, all

subgraphs of an interaction network are preserved in its ortholog-contracted representation, as the

ortholog-contracted representations of all subgraphs ofG are subgraphs of̄G, as stated in the following theorem.

Theorem 1 Preservation of subgraphs. Given interaction networkG = (V, E,L), let Υ(G) = Ḡ = (V̄ , Ē,L) be

its ortholog-contracted representation. Then for anyS ⊑ G, Υ(S) ⊑ Ḡ.

Proof. Take anyS ⊑ G. Let S̄ = Υ(S) andφ be the appropriate mapping fromV (S) to V (G). For eachv ∈ V (S)

andli ∈ L(v), there exists a uniquēv ∈ V (S̄) such thatL(v̄) = {li}. SinceL(v) ⊆ L(φ(v)), li ∈ L(φ(v)).

Therefore, there also exists a uniqueφ(v) ∈ V (Ḡ) such thatL(φ(v)) = {li}. Then, there is a unique injective

mappingφ̄ : V (S̄)→ V (Ḡ), whereφ̄(v̄) = φ(v) for anyv ∈ V (S). Hence, for anȳuv̄ ∈ E(S̄) that results from

uv ∈ E(S), since∃ φ(u)φ(v) ∈ E(G), there exists̄φ(ū)φ̄(v̄) = φ(u) φ(v) ∈ E(Ḡ). Therefore,̄S ⊑ Ḡ. �

In Figure 2, the ortholog-contracted representation of thebold subgraph ofG is also shown in bold inΥ(G).

Corollary 1 Preservation of frequent subgraphs. For a set of interaction networksG = {G1, G2, ..., Gm}, let

Ḡ = {Υ(G1), Υ(G2), ..., Υ(Gm)} be the corresponding set of ortholog-contracted graphs. IfS is a frequent

subgraph inG, thenΥ(S) is a frequent subgraph in̄G.

We can interpret this result as follows. If we mine the set of ortholog-contracted graphs instead of the original set of

interaction networks, we will discover asupersetof the frequent subgraphs of the original set. In other words, we do

not missany frequent patterns that exist in the dataset. Therefore,it is always possible to recover the actual frequent

subgraphs from the set of frequent ortholog-contracted subgraphs using an isomorphism-based graph mining

algorithm. This is significantly more efficient than runningthe isomorphism-based algorithm on the original dataset,

since mining the ortholog-contracted graph prunes out mostof the infrequent substructures, thus the resulting set is

significantly smaller both in terms of graph size and number of graphs. Furthermore, the idea of ortholog-contraction

does not conflict with the purpose of mining molecular interaction data; as we shall show, it is very useful by itself.

We elaborate on this point in the context of metabolic pathways and protein interaction networks.

Ortholog Contraction in Protein Interaction Networks

Recent studies on the evolution of protein interaction networks suggest that orthologous proteins that result from

recent duplications are likely to share common interactions [43]. In other words, conservation of interactions between
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orthologous proteins translates into conservation of function. Therefore, while mining protein interaction networks

for common network patterns among different species, proteins in different organisms must be related to each other

through orthology.

Since proteins that are evolutionarily or functionally related show significant sequence homology, a reasonable way

of detecting protein families relies on sequence clustering [44,45]. A problem with inter-species protein sequence

clustering is that out-paralogs, which have no functional or evolutionary relationship since they predate the split of

species, are also clustered together along with orthologs and in-paralogs [46].

Recently, ortholog families have been identified through more comprehensivein-silico analysis and organized into

several databases, such as COG [47] and Homologene [48]. There has been relevant efforts to comprehensively

identify domain families as well, including PFAM [40] and ADDA [41]. However, in order to avoid over-populating

the contracted network, interacting domains should be considered while relating nodes in the interaction network

through domain families.

Node contraction in protein interaction networks reduces interactions between proteins into those between ortholog

groups. This is illustrated in Figure 3. A 5-node portion ofS. Cerevisiaeprotein interaction network is shown in

Figure 3(a). In this figure, the common names of each protein are shown in the oval representing that protein. The

nodes are labeled by their COG clusters. As a result of ortholog contraction, 3’5’ exoribonuclease (Mtr3) and 3’5’

phosphorolytic exoribonuclease (Ski6), which belong to the same COG family, are contracted into single node, as

shown in Figure 3(b). Therefore, the interaction of these proteins with Csl4 is represented as a single interaction

between ortholog groups KOG1068 and KOG3409.

Ortholog Contraction in Metabolic Pathways

In the directed graph model for metabolic pathways, node labels correspond to enzymes that catalyze the respective

reactions. Although the biochemical properties of enzymesdiffer from organism to organism, enzymes are classified

based on metabolic functions and protein orthologies. Currently, there exists a comprehensive enzyme nomenclature

that provides hierarchical classification of enzymes basedon biochemical function [49]. In this enzyme nomenclature

system, each enzyme is identified by its Enzyme Commission (EC) number. The numbers in the squares that

represent reactions in Figure 1(a) are the EC numbers of the enzymes that catalyze these reactions.

An enzyme may catalyze multiple reactions in a particular pathway. Therefore, an enzyme class may be attached to

more than one node in the corresponding graph model. However, since the edges in the directed graph model signify

the producer-consumer relation between two enzymes, contracting nodes corresponding to the orthologous enzymes

(i.e., enzymes that belong to the same class) preserves this information. The ortholog-contracted representation of the
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metabolic pathway graph of Figure 1 is shown in Figure 3(a). In this representation, although the node that

corresponds to enzyme EC:2.7.1.2 is contracted, we do not lose the information that this enzyme not only consumes

the product of EC:5.1.3.3, but also produces a compound thatis consumed by the same enzyme. The only information

that is hidden by this model is the fact that these two interactions between this pair of enzymes are derived from two

successive reactions, which may be extracted by post-processing, as theoretically shown in the previous section.

Mining Ortholog-Contracted Graphs for Frequent Edgesets

Once we contract orthologs into a single node for each graph,the frequent subgraph discovery problem is reduced to

a generalized form of frequent itemset mining. We elaborateon this point in the following lemma.

Lemma 1 Equivalence of ortholog-contracted graphs to edge sets.For ortholog contracted graph̄G, define edge

setẼ(Ḡ) = {(li, lj) : ∃uv ∈ E(Ḡ) such that L(u) = {li}, L(v) = {lj}}. If S̄ is also an ortholog-contracted

graph, thenS̄ ⊑ Ḡ if and only ifẼ(S̄) ⊆ Ẽ(Ḡ).

Proof. It is straightforward to see that if̄S ⊑ Ḡ, thenẼ(S̄) ⊆ Ẽ(Ḡ). Now assume that̃E(S̄) ⊆ Ẽ(Ḡ). For any

(li, lj) ∈ Ẽ(S̄), there exist uniqueu, v ∈ V (S̄) such thatL(u) = {li}, L(v) = {lj}, anduv ∈ E(S̄). Furthermore,

(li, lj) ∈ Ẽ(Ḡ). Therefore, there exist uniqueu′, v′ ∈ V (Ḡ) such thatL(u′) = {li}, L(v′) = {lj}, andu′v′ ∈ E(Ḡ).

Lettingφ(u) = u′ andφ(v) = v′, we haveS̄ ⊑ Ḡ. �

We can generalize this lemma to conclude that an ortholog-contracted graph is uniquely determined by the set of its

edges. Therefore, mining frequent subgraphs in a collection of ortholog-contracted graphs is equivalent to mining

frequent edgesets in a collection of graphs that are uniquely determined by the set of their edges. Since we are

interested only in connected subgraphs, we define an edgesetto be the set of label pairs that correspond to the edges

of a connected graph.

Definition 5 Edgeset.Given a set of ortholog labelsL = {l1, l2, ..., ln}, an edgesetF = {e1, e2, ..., ek} is a set of

ordered pairsei = {ls, lt}, where for any subsetF ′ ⊂ F , there existsei ∈ F ′, ej ∈ F \ F ′ such thatei ∩ ej 6= ∅.

Definition 6 Closed frequent edgeset discovery.

Input: Set of ortholog contracted graphs̄G = {Ḡ1, Ḡ2, ..., Ḡm} and a support thresholdσ∗.

Problem: For edgesetF , let H(F ) = {Ḡi : F ⊆ Ẽ(Ḡi)} be the occurrence set ofF . Find all closed edgesetsF that

are frequent inḠ, i.e.,ξ(F ) = |H(F )| ≥ σ∗|Ḡ| and for allF ′ ⊃ F , H(F ′) 6= H(F ).

Observe that this problem is a generalized version of the frequent itemset mining problem. Indeed, frequent itemset

mining is a special case in which the underlying graph is a clique. Therefore, a simple approach to solving this
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problem is to remove the connectivity constraint, and find all frequent subgraphs using a frequent itemset mining

algorithm. The connected components of all frequent subgraphs provide the set of all frequent connected subgraphs.

However, this approach has two drawbacks. First, although it ensures that all frequent edgesets will be discovered, it

does not ensure that the discovered edgesets will be closed.Second, since the number of connected subgraphs of a

clique is much larger than that of a sparse graph, this relaxation will enlarge the search space significantly, degrading

computational efficiency. Therefore, a specialized algorithm for this problem, which takes into account the

connectivity and maximality constraints, along with the nature of data that is derived from molecular interactions is

necessary.

Adapting Itemset Mining to Edgeset Mining

Since the frequent edgeset mining algorithm is closely related to the frequent itemset mining problem, we base our

algorithm design on existing itemset mining algorithms taking into account the specific characteristics of biological

networks.

As discussed in the previous section, frequent itemset mining algorithms enumerate the space of possible itemsets,

exploiting the downward closure property to prune out the search space. Starting from the smallest itemsets, the

occurrence of each itemset in the input transaction set is counted. Smaller frequent itemsets are extended with other

frequent itemsets to generate larger itemsets that are potentially frequent. Repetitions are avoided by inducing a

lexicographic ordering of items.

Two major design choices for frequent itemset mining algorithms are, the order of traversal of the enumeration tree

and the method for determining the support of each itemset [50]. It is possible to traverse the itemset tree in

depth-first or breadth-first fashion. Breadth-first traversal, which generates the nodes of the tree level by level, is

efficient in the sense that it eliminates the maximum number infrequent itemsets at each level. However, it requires a

larger memory since it stores all nodes at each level of the tree. Therefore, breadth-first traversal becomes inefficient

as the tree gets deeper. Depth-first traversal, on the other hand, expands a node immediately after its itemset is

discovered to be frequent, keeping the storage requirementto a minimum, at the expense of exploring extra

itemsets [27].

There are two possible methods for computing the support of each itemset as well. One approach is the set counting

method, which makes a pass over the transaction set at each node to count the number of transactions that contain the

corresponding itemset. This approach is memory-efficient and well-suited to breadth-first traversal. Set intersection,

on the other hand, stores the identifiers of all transactionsthat contain each itemset and computes the intersection of

identifier sets while extending an itemset. This approach minimizes the number of passes over the transaction set at
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the expense of additional memory for storing the identifier sets. This method is more appropriate for depth-first

traversals.

Most closed frequent itemset mining algorithms use a depth-first traversal along with set intersection, since

depth-first traversal provides the opportunity of decidingwhether an itemset is closed upon its expansion [51,52].

This combination is also appropriate for the closed frequent edgeset mining problem in biological networks for the

following reasons:

• Occurrence of subgraphs. In contrast to association rule mining, in mining biological networks, the identity

of organisms that contain the particular subgraph is of interest as well as its frequency. This is because, this set

of organisms provides considerable information about the conservation of pathways, modules, and complexes,

evolutionary relations between species, and the functional annotation of discovered interaction patterns.

Therefore, for each edgeset explored by the algorithm, it isnecessary to store the identifiers of organisms that

contain this edgeset.

• Graph size vs database size.In biological applications, the size of the graphs is largerthan the size of typical

transactions in association rule mining. For instance, a protein interaction network generally contains

thousands of edges. This is also true for the cardinality of identified patterns. On the other hand, while typical

data mining applications involve millions of transactions, the number of biological networks to be mined is

smaller. Therefore, in mining biological networks, the enumeration tree is wider and deeper, while the data to

be processed at each enumeration node is smaller. This makesdepth-first enumeration along with set

intersection feasible and memory efficient.

MULE: An Efficient Algorithm for Maximal Frequent Edgeset Mining

The key difference between frequent edgeset mining and frequent itemset mining is that in the former, we are only

interested in connected subgraphs. In order to generate allconnected subgraphs in the database, we perform

depth-first search on the graph constructed from all frequent edges. To avoid repetitions, we induce a lexicographic

order on the edges and remember previously visited edges at each enumeration node. Assume, at any stage of the

algorithm, that we have a frequent edgeset ofk edges, denoted byFk. We define the candidate setCk to be the set of

edges that are connected to the edges inFk, but have not been previously visited. The set of edges previously visited

by the depth-first enumeration algorithm is denoted byDk. For any candidate edgec ∈ Ck, we extendFk as follows:

Fk+1 = Fk ∪ c Dk+1 = Dk = Dk ∪ c,
N(c) = {e ∈ F : e ∩ c 6= ∅} Ck+1 = (Ck ∪N(c)) \Dk.
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Here,F denotes the set of all frequent edges in the graph database.

The resulting algorithm forM ining Unique-LabeledEdgesets (MULE) is shown in Algorithm 1 and 2.

Algorithm 1 Main procedure for mining ortholog-contracted graphs.

procedure M INEORTHOLOGCONTRACTEDGRAPHS (G, σ∗)
⊲Input G: Set of ortholog-contracted graphs
⊲Input σ∗: Support threshold
⊲Output MFS: Set of closed frequent subgraphs
ξ∗ ← σ∗|G|
E ← {e = {ls, lt} : ∃ G ∈ G s.t. u, v ∈ V (G), uv ∈ E(G), L(u) = ls, L(v) = lt}
for eache = {ls, lt} ∈ E do

H(e) ← {G ∈ G : ∃ u, v ∈ V (G) s.t. uv ∈ E(G), L(u) = ls, L(v) = lt}
F ← {e ∈ E : |H(e)| ≥ ξ∗}
MFS ← ∅
for eachei ∈ F do

N(ei) ← {ej ∈ F : ej ∩ ei 6= ∅}
EXTENDFREQUENTEDGESET(F , ξ∗, MFS, {ei}, N(ei), {e1, e2, ..., ei−1})

return MFS

The main procedure, MINEORTHOLOGCONTRACTEDGRAPHSperforms pre-processing by determining the set of

frequent edges in the input graph set. It then generates eachportion of the frequent edgeset tree rooted at each

frequent edge by calling EXTENDFREQUENTEDGESET. Upon each invocation, EXTENDFREQUENTEDGESETtries

to extend the edgeset (subgraph) by all edges in the candidate set, one by one. If the extended edgeset is frequent,

then the procedure is invoked again for the extended edgeset. The algorithm stops whenever an edgeset cannot be

further extended. This edgeset is then recorded, if it is notsubsumed by any other recorded frequent edgeset. Upon

invocation, EXTENDFREQUENTEDGESETchecks whether the current frequent tree is already subsumed by other

closed frequent edgesets that have previously been discovered, if so, it stops the search process. This optimization

helps prune out the search space in chunks.MFS is empty on first invocation of EXTENDFREQUENTEDGESET, and

is input to the procedure at each subsequent invocation, wherein it is extended with newly discovered frequent

subgraphs.

Consider the input graph set of Figure 4(a). These graphs have 6 edges in all,ab, ac, bd, ce, de, andea. Figure 4(b)

shows the frequent edgeset tree for mining subgraphs that exist in at least 3 of the input graphs. Procedure

EXTENDFREQUENTEDGESETis invoked forab, ac, de, andea, since these are the only frequent edges. The edgeset

F , candidate setC, and the setH of identifiers of graphs that contain this edgeset are shown at each node of the

edgeset tree. The sets of visited edges (D) label the branches of the tree, since these sets are shared by parent and

children. At any instant, setD for a node is the one at its right-most branch. On first invocation, the algorithm starts

with edgeset{ab}, whose candidate set isN(ab) = {ac, ea} and extends it with edgeac since the edgeset{ab, ac} is
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Algorithm 2 Recursive procedure for extending a frequent edgeset.

procedure EXTENDFREQUENTEDGESET(F , ξ∗, MFS, Fk, Ck, Dk)
⊲Input F : Set of frequent edges
⊲Input ξ∗: Frequency threshold
⊲Input, Output MFS: Set of maximal frequent edgesets
⊲Input Fk: Frequent edgeset withk edges
⊲Input Ck: Set of candidate edges for edgeset extension
⊲Input Dk: Set of already visited edges
Rk ← set of all unvisited edges reachable fromFk

if ∃F ′ ∈MFS s.t.Rk ⊆ F ′ andH(Fk) ⊆ H(F ′) then return
closed ← true
for eachc ∈ Ck do

Dk+1 ← Dk ← Dk ∪ {c}
Fk+1 ← Fk ∪ {c}
H(Fk+1) ← H(Fk) ∩H(c)
if |H(Fk+1)| ≥ ξ∗ then

if H(Fk+1) = H(Fk) then closed← false
Ck+1 ← (Ck ∪N(c)) \Dk+1

EXTENDFREQUENTEDGESET(F , ξ∗, MFS, Fk+1, Ck+1, Dk+1)
if closed then

if 6 ∃F ′ ∈MFS s. t.Fk ⊆ F ′ andH(Fk) ⊆ H(F ′) then MFS ←MFS ∪ Fk

frequent. This set cannot be extended by the only edge in its candidate set,ea, since the edgeset{ab, ac, ea} is a

subgraph of only two input graphs. Therefore, this edgeset is recorded as a closed frequent subgraph. Note that

extension of the edgeset with edgede is not considered since this edge is not connected to the edgeset under

consideration. Therefore, it never gets into the candidateedge set. Furthermore, extension of the edgeset{ac} with

edgeab is not considered since this edge has already been visited. Upon termination, the algorithm reports four

closed frequent subgraphs shown in boxed nodes in the figure,which are{ab}, {ab, ac}, {ab, ea} and{de}. Note

that{ab} is reported since its occurrence set is different from its superset{ab, ac}, hence it is closed. Although

edgesets{ac} and{ea} are also frequent, they are not reported since they are contained in other frequent edgesets

with the same occurrence set.

Statistical Significance

To evaluate the statistical significance of identified patterns, we use a simple reference model that takes degree

distribution into account. LetXij(r) be the random variable indicating the existence of an interaction between

ortholog groupsli andlj in networkGr. Assuming that all interactions in a network are independent from each other,

we estimate the probability of this interaction based on thenumber of interactions of the two ortholog groups in the

corresponding organism asP (Xij(r) = 1) = dr(i)dr(j)/|E(Gr)| [53]. Here,dr(i) denotes the number of
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interacting partners of ortholog groupi in networkGr. For a set of interactionsF , let random variableYF (r) indicate

the existence ofF in networkGr, i.e., YF (r) = (F ⊆ E(Gr)). Then,P (YF (r)) = Πlilj∈F P (Xij(r) = 1). Defining

ZF =
∑m

r=1 YF (r) as the number of networks that containF , we evaluate the significance of observingF in k

networks byP (ZF ≥ k), i.e., the probability ofF being a subgraph of at leastk networks. Assuming that the

interaction networks are generated independently from each other, we directly estimate this probability for small

number of networks. For larger numbers of networks, on the other hand, we estimate thez-score for the observed

pattern through normal approximation.

Results and Discussion

In this section, we first present molecular interaction patterns discovered by MULE and discuss their biological

interpretation. We then illustrate the runtime efficiency of M ULE, compare its execution characteristics with those of

FSG and gSpan, and show that it is possible to recover actual frequent subgraphs from the contracted patterns

discovered by MULE very quickly using an isomorphism-based graph mining algorithm.

Mining Results
Frequent Molecular Interaction Patterns in DIP Protein Interaction Networks

In this section, we present results on mining nine eukaryotic protein interaction networks gathered from BIND [10]

and DIP [11]. In order to relate the proteins in different organisms and compute ortholog-contracted graphs, we use

ortholog groups derived from COG, Homologene, and sequenceclustering using BLASTCLUST. We compare each

homolog group in Homologene with ortholog groups in COG. If aHomologene group shares at least one protein with

a COG ortholog group, we merge the Homologene group into the corresponding COG group. We then compare each

protein that is not yet assigned to an ortholog group with theexisting ortholog groups using BLAST. If the protein

has significant sequence similarity with at least half of theproteins in a group, then we assign the protein to that

ortholog group as well. For the remaining proteins, we run BLASTCLUST and create a new ortholog group from

each cluster identified by BLASTCLUST. We then compute the ortholog-contracted graphs based on these ortholog

groups, considering both direct and one-hop indirect interactions. The statistics of the original PPI networks and the

ortholog-contracted graphs are shown in Table 1.

When we mine the nine PPI networks for patterns of frequency four using MULE, we are able to identify 41 frequent

connected subgraphs. The largest subgraph that is common toH. sapiens, D. melanogaster, C. elegans, andS.

cerevisiaecontains 18 interactions between 19 ortholog groups, whichis shown in Figure 5(a). These interactions are

associated with zinc-finger domains (KOG1721). For any combination of three organisms among these four, we are
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able to obtain larger subgraphs that are related to zinc-finger proteins. For example,H. sapiens, D. melanogaster, and

C. elegansshare 115 interactions related to zinc-finger among 83 ortholog groups (p < 5e− 206), while H. sapiens,

D. melanogaster, andS. cerevisiaeshare 81 interactions among 66 ortholog groups (p < 3e− 152). The star shape of

this interaction network is probably due to (1) numerous cellular activities that zinc-finger proteins participate in

(e.g., cell division, transcription, MAP Kinase signaling, and actin polymerization, and others) and (2) a large number

of proteins with zinc-finger domains, both in higher and lower eukaryotes (about 1% of proteins in mammals) [54]).

Surprisingly, there is a significant degree of conservationof interactions among zinc-finger proteins and their partners

across these diverse organisms. An interesting followup investigation would be to see how DNA binding specificities

of these zinc-finger domains have evolved.

Using the same number of organisms for the threshold, a portion of a large protein complex, TFIID, involved in

transcription by RNA Polymerase II is identified as a conserved subnet inM. musculus, H. sapiens, D. melanogaster,

andS. cerevisiae[55]. This conserved subnet is shown in Figure 5(b). The mapping of these interactions on each

organism are also shown in the figure, where direct and indirect interactions are shown by solid and dashed edges,

respectively. InS. cerevisiae, this protein complex consists of one TATA-Binding Protein(TBP) and at least 14

TATA-Associated Factors (TAFs); yet in the conserved subnetwork, only 4 are found [55]. One hypothesis explaining

this observation is that the TAFs present in the conserved network have greater role in promoting transcription

relative to other TAFs that are absent.

When we lower the frequency threshold to 3, MULE identifies much larger number of conserved interaction patterns,

specifically 158 frequent subgraphs. Four of these patternsand their mapping on the corresponding organisms are

shown in Figure 6. Almost all proteins involved in these conserved subnets are well-annotated forS. cerevisiae,

which facilitates mapping of these annotations to other organisms that share these interaction patterns. The subnet in

Figure 6(a) is a pathway associated with small nuclear ribonucleoprotein complex and is conserved inD.

melanogaster, C. elegans, andS. cerevisiae. Proteins Lsm1-7 make up a complex that participates in mRNA

degradation and splicing [56]. Proteins Smx3 and Smd2 are sequence homologs of subunits in this complex. The

interactions among components of Actin-related protein Arp2/3 complex conserved inB. taurus, H. sapiens, andS.

cerevisiae, are shown in Figure 6(b). This complex is involved in actin nucleation. There are 7 components known in

all for this complex inS. cerevisiae, where Arc18 is missing in the conserved subnet [57]. In the same study, Arc40 is

indicated to be essential for viability, which may explain why Arc40 has greater number of interacting partners than

the other proteins present in the conserved network. In Figure 6(c), two endosomal sorting complexes, ESCRT-II

(Vps22, Vsp25, and Vps36) and ESCRT-III (Vps20, Vsp24, and Vps32), are shown to be conserved together inD.

melanogaster, S. cerevisiae, andH. sapiens. These two complexes take part in the multivesicular-body pathway and
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act downstream of another protein complex, ESCRT-I [58]. Finally, in Figure 6(d), dense interactions between a

collection of proteins involved in vesicle transport are detected [59]. These interactions are conserved inD.

melanogaster, S. cerevisiae, andR. norvegicus.

Mining of PPI networks enables not only identification of frequent subgraphs but also phylogenetic analysis of

modularity. In Table 2, we list the top eight groups of three organisms based on their shared interactions and

subgraphs. While these results may be biased by the varying availability of interaction data for different organisms,

they illustrate characteristics of modular phylogeny consistent with sequence-level phylogenetics. For instance,C.

elegansshares more interactions withD. melanogasterandH. sapiensthanS. cerevisiaedoes, although its available

PPI network is less comprehensive.M. musculusis always listed withH. sapiens, andR. norvegicusshares many

frequent patterns withH. sapiensandM. musculusalthough the PPI data for this organism is very limited. Notethat

the lack of an interaction pattern in an organism does not necessarily mean that the particular pattern does not exist in

that organism, since the available interaction data is not comprehensive. However, the patterns identified on available

data can be used to map known interactions to other species.

Frequent Sub-pathways in KEGG Metabolic Pathways

Using the proposed algorithm, we mine several pathway collections extracted from the KEGG metabolic pathway

database. KEGG currently contains a large database of pathway maps for several metabolic processes, including

carbohydrate, energy, lipid, nucleotide, and aminoacid metabolism for 157 organisms. We mine several pathways

belonging to different metabolisms for different organisms. Sample frequent sub-pathways discovered in pathway

collections that belong to glutamate and alanine metabolisms are shown in Figure 7. The nodes of the displayed

graphs are labeled by KEGG ID’s of enzymes, which can be queried on KEGG web site for detailed information.

We are able to observe fairly large sub-pathways that are frequent. For example, a sub-pathway of glutamate

metabolism that contains 4 nodes and 6 edges occurs in 45 (29%) of the 155 organisms. This sub-pathway is shown

by bold nodes and edges in Figure 7(a). It is composed of enzymes glmS (2.6.1.16 -

glucosamine-fructose-6-phosphate-aminotransferase),guaA (6.3.5.2 - GMP synthase), nadE (6.3.5.1 -

NH(3)-dependent NAD(+) synthetase), and purF (amidophosphoribosyltranferase). In this sub-pathway, all enzymes

are related by L-Glutamine.

Mining the pathways for different support thresholds allows evaluation of frequent sub-pathways in a multi-level

fashion. For instance, when we reduce the required support threshold to 19.3% (30 organisms) for glutamate

metabolism, the largest sub-pathway we are able to discoverconsists of 5 nodes and 10 edges, which is a supergraph

of the previous one. This sub-pathway is shown in the figure bysolid nodes and edges. As seen in the figure, this
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pathway contains enzyme glnA (6.3.1.2 - glutamine synthetase), which is also related to the other enzymes by

L-glutamine. Further reducing the support threshold to 14.2% (22 organisms), we are able to discover a sub-pathway

of 6 nodes and 13 edges, which is the entire graph shown in the figure. This pathway is also a supergraph of the

previous one, with gltX (6.1.1.17 - glutamyl-tRNA synthetase) added, which interacts bidirectionally with glnA

through L-Glutamate. The self-loop for gltX implies that this enzyme takes part in two consecutive reactions, which

are part of the observed frequent sub-pathways. The original frequent sub-pathway extracted from this largest

frequent ortholog-contracted subgraph is shown in Figure 8(a).

In Figure 7(b), largest of the frequent sub-pathways that are discovered in alanine-aspartate metabolism for three

different levels of support threshold are shown. The bold sub-pathway of 5 nodes and 8 edges occurs in 50 (32.1%)

of the 156 organisms, the solid one with 5 nodes and 11 edges occurs in 30 (19.2%) of the organisms, and the entire

graph of 6 nodes and 16 edges occurs in 18 (11.5%) of the organisms. Note that enzyme purB (4.3.2.2 -

adenylosuccinate lyase) and its interaction with purA (6.3.4.4 - adenylosuccinate synthetase) through

adenylosuccinate (N6-(1,2-Dicarboxyethyl)-AMP), shownin dotted lines in the figure, is included in the most

frequent sub-pathway of alanine-aspartate metabolism butis excluded from the larger sub-pathways of lower

frequency, which is interesting to note. The original frequent sub-pathway extracted from the largest frequent

ortholog-contracted subgraph is shown in Figure 8(b).

Runtime Efficiency

In this section, we compare MULE to two existing graph mining algorithms, FSG [30] and gSpan [34] to illustrate the

effectiveness of node-contraction in terms of runtime performance. All experiments reported in this section are

performed on a Pentium-IV 3.0 GHz workstation with 512 MB RAM.

To evaluate runtime efficiency, we rely on metabolic pathways since there is a larger number of available metabolic

pathways, making it suitable for illustrating the performance gap between different algorithms. In all of our

experiments, we observe that MULE runs much faster than both FSG and gSpan on the graph collections obtained

from metabolic pathway datasets. First, we are not able to obtain results from gSpan on the raw directed graphs

obtained directly from KEGG metabolic pathways. We suspectthat gSpan is not able to respond to these queries

because of memory limitations. However, as we illustrate further in this section, gSpan runs very quickly on datasets

that are filtered using MULE. The performance comparison of MULE and FSG is shown in Table 3. The runtimes of

MULE and FSG along with the number of frequent subgraphs (patterns) and the size of (number of edges in) the

largest pattern are shown in the table. As is evident from thefigures in the table, MULE runs much faster than FSG by

several orders of magnitude. Note that FSG always returns maximal frequent subgraphs. MULE, on the other hand,
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sometimes returns supersets of frequent subgraphs becauseof contraction. In our experiments on metabolic

pathways, we notice that these supersets are rare and can be easily identified upon examination. Observe that in

Table 3, the number of frequent subgraphs discovered by FSG and MULE are the same for all support values in both

datasets. This shows that the frequent patterns discoveredby the two algorithms correspond to the same set of

patterns, while some of these patterns are smaller in MULE, since an edge that actually appears at different locations

in the subgraph is contracted into one edge by MULE.

The supersets returned by MULE can be reprocessed through FSG or gSpan and exact frequent subgraphs can be

extracted very quickly. This is illustrated in Table 4. In the table, we display the extraction of five largest subgraphs

that are discovered by MULE for both datasets. These results show that MULE can be used in a different setup for

analysis of biological networks as well. In this setup, a user first mines the graph collection of interest using MULE.

Note that, since MULE is fast enough, this can be done repeatedly to tune the minimum support value to obtain the

most interesting set of discovered patterns. Upon examination of frequent subgraphs discovered by MULE, the user

may choose the patterns of special interest among these. Then, the actual patterns that correspond to these contracted

patterns can be extracted by filtering the database and running one of the isomorphism-based graph mining

algorithms such as FSG and gSpan. Filtering the graph database reduces the size of the search space substantially in

terms of both number and size of graphs to be mined. Indeed, asevident from Table 4, the largest subgraphs that are

discovered by MULE are extracted within seconds. In addition, extracting the entire set of frequent subgraphs

discovered by MULE takes much less time than mining the original dataset directly, using one of the

isomorphism-based algorithms without any preprocessing.As seen in the table, we are able to discover all frequent

(σ∗ = 8%) subgraphs on Glutamate pathway collection in 17.8 secondsthrough preprocessing with MULE followed

by isomorphism-based mining with gSpan. Recall that we are not able to mine the original datasets with gSpan alone.

Similarly, a combination of MULE and FSG is able to mine this dataset in 101.5 seconds, while FSG alone spends

138.9 seconds to complete the same task. This improvement inruntime (factor of roughly 8) increases rapidly with

database size. As databases grow, node contraction is the only known viable approach. In conclusion, while MULE is

established as a fast tool for discovering frequent patterns in biological networks in a biologically interpretable

fashion, it can also be used to improve other graph mining algorithms. Note also that in the case of protein interaction

networks, node contraction is generally necessary for understanding evolutionary relationships.

Discussion

MULE is able to detect known functional modules from the interaction networks by exploiting their conservation

among different organisms (Figures 5 and 6). Although our results are limited by the availability of the interaction
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data, it appears that the conservation of functional modules is a wide-spread phenomenon observed in numerous

cellular activities. Interactions among subunits of protein complexes involved in transcription, mRNA degradation

and splicing, actin nucleation, endosomal sorting, and vesicle transport are significantly conserved in yeast and

higher eukaryotes, such as humans. This suggests that as more interaction data becomes available, MULE can be used

to automatically map functional organization of proteins of a query organism based on the interaction networks of

others.

Conclusions

With the rapidly increasing amount of network and interaction data in molecular biology, the problem of mining

patterns, motifs, and modules in biological networks becomes increasingly important. This paper provides a

framework for mining biological networks using an innovative graph simplification technique, which leads to

efficient graph mining algorithms. The proposed model and algorithm are shown to be well-suited to mining

metabolic pathways and protein interaction networks providing interesting results and being able to respond to

queries rapidly. It also provides a framework for multi-level analysis of occurrence of interaction patterns in these

networks. Our approach can be easily extended to other biological networks as well.

The proposed framework can be further improved by adding flexibility for capturing biologically meaningful

information that helps in interpretation of discovered patterns. Finally, the concept of a matching subgraph can be

extended to one of an “approximate match”. The notions of approximations and distance would need to be

formalized before such algorithms can be devised.
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Figures
Figure 1- Graph models for metabolic pathways

(a) A portion of glycolysis reference pathway in directed hypergraph representation. Compounds are shown by

rectangles, enzymes are shown by ovals. For each reaction, there is an edge from each substrate to the catalyzing

enzyme and one from the catalyzing enzyme to each product. (b) The same pathway using a directed graph

representation. Here, enzymes are the nodes of the graph anda directed edge indicates that one enzyme consumes the

product of the other.

Figure 2- Illustration of ortholog contraction

A sample interaction network and its ortholog-contracted representation. The ortholog-contracted representation of

the bold subgraph ofG exists inΥ(G), also shown in bold.

Figure 3- Ortholog contraction in molecular interaction ne tworks

(a) A 5-node portion of theS. cerevisiaeprotein interaction network. Each protein is labeled by theCOG cluster it

belongs to. (b) The ortholog-contracted representation ofthis protein interaction network based on ortholog groups in

COG. (c) Ortholog-contracted representation of the directed graph model for the metabolic pathway of Figure 1.

Figure 4- Sample execution of MULE

(a) Input graph set, (b) resulting enumeration tree of frequent edgesets.
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Figure 5- Frequent interaction patterns that are common to f our organisms

(a) The frequent interaction pattern that involves interactions of zinc-finger protein, common toH. sapiens, D.

melanogaster, C. elegans, andS. cerevisiae(p < 6e− 20). (b) The frequent interaction pattern of TFIID complex and

its occurrence inH. sapiens, M. musculus, D. melanogaster, andS. cerevisiae(p < 9e− 51). Orthologous proteins

are horizontally aligned.

Figure 6- Sample interaction patterns with frequency three

(a) Small nuclear ribonucleoprotein complex (p < 2e− 43), (b) Actin-related protein Arp2/3 complex (p < 9e− 11),

(c) Endosomal sorting (p < 1e− 78), (d) Vesicular transport (p < 2e− 23). Orthologous proteins are horizontally

aligned.

Figure 7- Frequent edgesets in KEGG metabolic pathways

Frequent subgrapgs identified by MULE for different support values on (a) Glutamate, (b) Alanine metabolism

among 155 and 156 organisms, respectively. Corresponding extracted sub-pathways are shown in Figure 8.

Figure 8- Sub-pathways extracted from frequent subgraphs d iscovered by MULE

Frequent sub-pathways extracted from the frequent edgesets shown in Figure 7. (a) Glutamate, (b) Alanine

metabolism.

Tables
Table 1- Statistics of mined PPI networks and the correspond ing ortholog-contracted graphs.

PPI network Ortholog-contracted graph
Organism # proteins #interactions # ortholog # direct # indirect

groups interactions
A. thaliana 288 424 151 133 63
O. sativa 301 340 219 333 217
S. cerevisiae 5157 18192 1679 5327 43420
C. elegans 3345 5988 1494 2818 12968
D. melanogaster 8577 28829 2849 11088 65540
H. sapiens 4541 8577 1940 3868 23916
B. taurus 195 265 89 126 21
M. musculus 2479 2959 1213 1730 2284
R. norvegicus 696 881 445 714 761
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Table 2- Top eight groups of three organisms that contain mos t frequent connected subgraphs and
interactions.

# frequent # frequent
Organism set subgraphs interactions
C. elegans, D. melanogaster, H. sapiens 8 134
S. cerevisiae, D. melanogaster, H. sapiens 20 126
D. melanogaster, H. sapiens, M. musculus 17 86
S. cerevisiae, C. elegans, D. melanogaster 15 77
S. cerevisiae, C. elegans, H. sapiens 6 50
S. cerevisiae, H. sapiens, M. musculus 10 26
C. elegans, H. sapiens, M. musculus 5 23
H. sapiens, M. musculus, R. norvegicus 10 23

Table 3- Comparison of runtime performances of FSG and MULE on Glutamate and Alanine
metabolic pathway datasets.

FSG MULE

Minimum Runtime Largest Number of Runtime Largest Number of
Dataset Support (%) (secs.) pattern patterns (secs.) pattern patterns

20 0.2 9 12 0.01 9 12
16 0.7 10 14 0.01 10 14

Glutamate 12 5.1 13 39 0.10 13 39
10 22.7 16 34 0.29 15 34
8 138.9 16 56 0.99 15 56
24 0.1 8 11 0.01 8 11
20 1.5 11 15 0.02 11 15

Alanine 16 4.0 12 21 0.06 12 21
12 112.7 17 25 1.06 16 25
10 215.1 17 34 1.72 16 34

Table 4- Extraction of contracted patterns discovered by MULE using FSG and gSpan.
Glutamate metabolism,σ∗ = 8% Alanine metabolism,σ∗ = 10%

Size of Extraction time Size of Size of Extraction time Size of
contracted (secs.) extracted contracted (secs.) extracted

pattern FSG gSpan pattern pattern FSG gSpan pattern
15 10.8 1.12 16 16 54.1 10.13 17
14 12.8 2.42 16 16 24.1 3.92 16
13 1.7 0.31 13 12 0.9 0.27 12
12 0.9 0.30 12 11 0.4 0.13 11
11 0.5 0.08 11 8 0.1 0.01 8

Total number of patterns: 56 Total number of patterns: 34
Total runtime of FSG alone: 138.9 secs. Total runtime of FSG alone :215.1 secs.
Total runtime of MULE+FSG: 0.99+100.5 secs. Total runtime of MULE+FSG: 1.72+160.6 secs.
Total runtime of MULE+gSpan: 0.99+16.8 secs. Total runtime of MULE+gSpan: 1.72+31.0 secs.
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