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Abstract

Background: Molecular interaction data plays an important role in understanding biological processes at a
modular level by providing a framework for understanding cellular organization, functional hierarchy, and
evolutionary conservation. As the quality and quantity of network and interaction data increases rapidly,
the problem of effectively analyzing this data becomes significant. Graph theoretic formalisms, commonly
used for these analysis tasks, often lead to computationally hard problems due to their relation to subgraph
isomorphism.

Methods: This paper presents an innovative new algorithm, MULE, for detecting frequently occurring
patterns and modules in biological networks. Using an innovative graph simplification technique based on
ortholog contraction, which is ideally suited to biological networks, our algorithm renders these problems

computationally tractable and scalable to large numbers of networks.

Results: We show, experimentally, that our algorithm can extract frequently occurring patterns in metabolic
pathways and protein interaction networks from the KEGG, DIP, and BIND databases within seconds.
When compared to existing approaches, our graph simplification technique can be viewed either as a
pruning heuristic, or a closely related, but computationally simpler task. When used as a pruning heuristic,
we show that our technique reduces effective graph sizes significantly, accelerating existing techniques by
several orders of magnitude! Indeed, for most of the test cases, existing techniques could not even be
applied without our pruning step. When used as a stand-alone analysis technique, MULE is shown to

convey significant biological insights at near-interactive rates.

Conclusions: Using tools presented in this paper, comparative analysis of biological networks at near

interactive rates is now feasible.

Background

Increasing availability of experimental data relating tolbgical sequences, coupled with efficient tools such as
BLAST and CLUSTAL have contributed to fundamental underdiag of a variety of biological processes [1, 2].
These tools are used for discovering common subsequengesdaiis, which convey functional, structural, and

evolutionary information. Recent developments in molacbiology have resulted in a new generation of



experimental data that bear relationships and interagtietween biomolecules [3, 4]. Biomolecular interactiotada
generally referred to as biological or cellular networks, frequently abstracted using graph models. Although vast
amounts of high-quality data is becoming available, effic@nalysis counterparts to BLAST and CLUSTAL are not
readily available for such abstractions.

Itis possible to model biological networks using variouagr theoretic formalisms [5]. As is the case with
sequences, two key problems on graphs derived from biomlaleinteractions correspond to aligning multiple
graphs and finding frequently occurring subgraphs in a ctidie of graphs. Solutions to these problems provide
understanding of several interesting concepts such as commtifs of molecular interactions, evolutionary
relationships and differences among cellular networkcstmes of different organisms, organization of functional
modules, relationships and interactions between seqagand patterns of gene regulation.

In this paper, we address the problem of finding frequentbyaing molecular interaction patterns among different
organismsi.e., mining a collection of biological networks for frequentsgmwaphs. This problem, generally referred
to as graph mining, is particularly challenging becauselates to the NP-hard subgraph isomorphism problem.
Consequently, domain-specific abstractions are necesargler to simplify the problem. We use here an
abstraction based on contraction of nodes that correspoordttologous biomolecules. We show that this simplifies
the graph mining problem considerably, while being ableotare the underlying biological information accurately.
Furthermore, we reinterpret the mining problem in the cxindécross-species analysis of molecular interaction data
to identify not only frequently occurring patterns of maléar interactions but also sets of organisms that share
common interaction patterns. This facilitates phylogereatalysis of modularity in cellular networks.

We devise an efficient algorithm, M., which is based on frequent itemset extraction to discaegpfent

subgraphs among these graphs taking into account the rdton@lecular interaction data. This is in contrast to
existing formulations of frequent subgraph extractiongasn a-priori like approaches that suffer from exponential
explosion of problem size (in addition to the NP hardnes®bfisg the problem).

Using the proposed algorithm, we mine protein-proteinraatdon networks derived from DIP, BIND, and KEGG
databases. We show thatUME is able to discover biologically meaningful patterns witkeconds. In the results
section, we discuss a selection of interesting patternstaild\We also compare the computational efficiency of
MuULE with existing graph mining algorithms. As a stand-alondysia technique, MLE conveys significant
biological insights at rates several orders of magnitudtefahan isomorphism-based graph mining algorithms. We
also establish our graph simplification technique as a pguhéeuristic, which may be used to discover contracted
patterns to filter the data to be mined for isomorphic pattewdhen used as a pruning heuristicy Mt reduces

effective graph sizes significantly, accelerating exgtiechniques by several orders of magnitude.



Before presenting the ortholog-contraction based miniggréghm for molecular interaction networks, we briefly
introduce graph-theoretic formalisms for the analysisioldgical networks and discuss existing literature on the
comparative analysis of molecular interactions througis¢habstractions. We then discuss existing graph mining

algorithms and challenges associated with graph-stredtdata.

Graph-Theoretic Formalisms for Molecular Interaction Net works

In the multi-layered organization of living organisms,laldr interactions form the bridge between individual
molecules €.g, genes, mRNA, proteins and metabolites) and large-scgimaration of the cell through functional
modules [4,5]. Common abstractions for cellular intexatsiinclude protein interaction networks, gene regulatory

networks, metabolic pathways, and signaling pathways.

Protein Interaction Networks

Protein interaction networks are comprised of groups @frating proteins. These networks provide the

experimental basis for understanding modular organiaatiaells, as well as useful information for predicting the
biological function of individual proteins. Common mettsoaf obtaining protein interaction data include two-hybrid
experiments [6], mass spectrometry experiments [7], tanaféinity purification (TAP) [8], and phage-display [9].
Recently, there have been several efforts aimed at organizbtein interaction networks into publicly available
databases such as BIND [10] and DIP [11]. This experimerta teveals either pairwise interactions, as in
two-hybrid experiments, or multi-way interactions betweeset of proteins, as in mass spectrometry experiments.
Pairwise interactions are conveniently modeled by simptiinected graphs in which nodes represent proteins and an
edge between two nodes represents the interaction betiveeonitresponding proteins. Multi-way interactions are

modeled using hyperedges that represent interactionsbkatwarious proteins in a hypergraph [5].

Gene Regulatory Networks

Gene regulatory networks, also referred to as genetic mksyepresent regulatory interactions between pairs of
genes and are generally inferred from gene expressionitatagh microarray experiments [12]. A simple and
frequently used mathematical model for gene regulatorywouds is a boolean network model. In this model, nodes
correspond to genes and a directed edge from one gene tdigraepresents the regulatory effect of the first gene
on the second. The edge is labeled by either a + or - sign tesept up- or down-regulation, respectively. More
sophisticated models that capture the degree of reguldtiongh weighted graphs and/or differential equationghav

also been proposed.



Metabolic and Signaling Pathways

Metabolic pathways characterize the process of chemiaations that, together, perform a particular metabolic
function. With recent progress in application of computasil methods to cell biology, there have been successful
attempts at modeling, synthesizing and organizing meitapathways into public databases such as KEGG [13-15].
Metabolic pathways are chains of reactions linked to ealerdiy chemical compounds (metabolites) through
product-substrate relationships. A natural mathematicalel for metabolic pathways is a directed hypergraphin
which each node corresponds to a compound, and each hyparedgsponds to a reaction (or equivalently
enzyme) [15]. The direction of a pin of a hyperedge indicathsther the compound is a substrate or a product of the
reaction. This representation is illustrated in Figure.litds possible to replace this model by a simpler directed
graph if, for instance, we are only interested in relatioasveen enzymes. In such a model, enzymes correspond to
nodes of the graph and a directed edge from one enzyme toaaratlicates that a product of the first enzyme is a
substrate of the second. This representation is illustiat&igure 1(b). Indeed, metabolic pathways are repredente
in terms of various binary relations in KEGG [13]. Furthemmcedges may be labeled by the compound that relates
the two corresponding enzymes.

Much like metabolic pathways and gene regulatory netwaiksialing pathways can also be modeled by directed

graphs [16].

Comparative Analysis of Molecular Interaction Networks

Graph alignment and graph mining provide various oppotigesfor cross-species analysis of biological networks.
An interesting approach to understanding evolutionaryseoration of interactions is the investigation of common
topological motifs in molecular interaction networks [1B}: These studies reveal that more complex graph
structures such as relatively large cliques or cycles gr@fgtantly conserved in the nature, compared to simple
motifs. Furthermore, proteins that are organized in colegsatterns tend to be conserved to a higher degree. These
results motivate the investigation of conserved intececpiatterns among evolutionarily related proteins.

Recently, several algorithms have been proposed for tharaknt of protein interaction networks to understand the
conservation of pathways, complexes, and modules amofagetit organisms [20-23]. While comparing two
networks that belong to two separate species, these megeoésally construct alignment graphs by creating
super-nodes from any pair of potentially orthologous pgratend search for heavy subgraphs or pathways in these
graphs. A similar approach is adapted to the alignment afordds that belong to multiple species, and is shown to
provide significant insight on the conservation of a numbdriaogical processes [24]. One major problem

associated with large-scale application of these appessichithe comparative analysis of growing number of



interaction networks is computational scalability. Sitlee number of nodes in the alignment graph is exponential
with respect to the number of organisms, direct applicaticthese approaches is infeasible, as interaction data for
more organisms becomes available. In this study, we focusgraph-mining approach for comparative analysis of
biological networks. Since graph mining algorithms areiglesd for analyzing a large number of graphs, our
approach is well suited to comprehensive analysis of a lemfjection of networks that belong to various species. By
taking advantage of the nature of biological networks, wds#ealgorithms that render the graph mining problem
tractable through contraction of orthologous nodes. Whiéefocus here is on discovering any frequent subgraph that
is connected, the method can be extended relatively easilgrticular target topological structures such as linear

chains (pathways) or dense subgraphs (complexes or my{Rigs

Overview of Graph Mining Algorithms

There have been significant efforts aimed at developingefii@lgorithms for mining graph structured datasets in
recent years [26]. Given a collection of graphs in which reocterrespond to data items and edges to their underlying
relations, we can define the graph mining problem as one ahfirfdequent isomorphic substructures, mapped to

each other consistently with the labeling of nodes and edges

Computational Challenges in Graph Mining

Most graph mining algorithms in literature are based on te#-studied association rule mining, or more generally,
the frequent itemset problem [27]. This problem can be ddfasfollows. Given a set of itends = {i1, i2, ..., 9, }

and a set of transactio’s = {1}, T, ..., T),, } overS,i.e, T; C S for all 4, find all subsets of S such that

o(t) = % > o*. Here,o(t) is the support of itemsetands™ is the prescribed threshold on support,
signifying the desired frequency of patterns to be minedgkent itemset mining algorithms are generally based on
the lattice or downward closure property of support. Thigparty states that an itemset cannot be frequent if even
one of its subsets is not frequent [28]. Taking advantagkisfiroperty, frequent itemset mining algorithms
enumerate all potentially frequent itemsets by effecyiyelining the search space. In terms of graph mining,
downward closure translates to the fact that a subgrapbdsiént only if all of its subgraphs are frequent.

Not surprisingly, most existing graph mining algorithmsigealize state-of-the-art frequent itemset mining

algorithms to structured data. However, this generabirgpioses significant challenges for the following reasons:

e Subgraph Isomorphism: While counting frequencies of subgraphs in the graph dalmme must verify
whether a given structure is a subgraph of a graph in the ds¢gl26]. This requires solution of the

NP-complete subgraph isomorphism problem [29] at all esquigoints of the solution space.



e Canonical Labeling: Frequent itemset mining algorithms dictate a lexicographdler on items and represent
itemsets as ordered sets to ensure that no itemset is coeiti@re than once. However such an ordering of
nodes and/or edges in graphs is not trivial. Furthermomapeding canonical labels for graphs in order to sort
them in a unique and deterministic manner is equivalentsting isomorphism between graphs [30].
Therefore, graph mining algorithms generally aim to miieniedundancy caused by duplicate consideration

of subgraphs [31].

e Connectivity: While taking advantage of the downward closure propertyeqdient itemset mining, candidate
itemsets are generated in a bottom-up fashion by extendintsets with addition of items one by one. In the
case of graph mining, extension of subgraphs is not trieaesit is necessary to maintain connectivity of

candidate subgraphs, since the target frequent patterrteaired to be connected, in general.

Existing Graph Mining Algorithms

One of the earliest graph mining algorithms, Subdue [34jased on recursively finding a subgraph that provides the
best compression based on the Minimum Description LengBL(Mrinciple. At each step of the algorithm, the
subgraph that provides maximal compression, hence is mezpidnt, is discovered via a beam search heuristic and
replaced by a single node. This mining process is carriegomrsively. In contrast to this greedy algorithm, other
existing graph mining algorithms are aimed at discoverlhfyequent patterns, searching the entire space of
subgraphs.

Another early graph mining algorithm, AGM [33], adapts thellknown a-priori algorithm [28] to mining vertex

sets that induce frequent subgraphs in a graph databasendihdeature of this algorithm is that it provides a
canonical labeling for graphs based on an adjacency-maiesentation. This might be computationally infeasible
for applications involving large graphs as in our case. F8@, jon the other hand, provides a canonical
representation based on sparse adjacency list data stractd adopts a breadth-first enumeration algorithm for
discovering frequent subgraphs. Recent graph mining tqake are aimed at improving these algorithms by
developing more efficient canonical representations #ice redundancy in candidate generation along with
several optimization techniques to help prune the seammtesmore efficiently.

gSpan [34] reduces the overhead introduced by the problesngssed in the previous section through a DFS-based
canonical representation of graphs and enumerates thehsgzace in a depth-first manner to achieve significant
speed-up over earlier algorithms such as FSG. CloseGrdpls[an extension of gSpan designed to discover only

those subgraphs that do not have a supergraph of same stgpaeoid redundancy in the output. FFSM [35]



improves upon gSpan by reducing redundant candidate geretlarough a vertical search scheme based on an
algebraic graph framework. A recent algorithm, SPIN [36itHier speeds up graph mining by splitting the process
into two independent tasks of mining subtrees and exterttiege subtrees to frequent subgraphs. This is based on
the observation that major problems in graph mining areedby the existence of cycles and a majority of these
problems can be handled efficiently by avoiding cycless@oN [37] relies on the same idea to generate frequent
substructures hierarchically by starting from paths, edieg frequent paths to trees, and further extending fregue
trees to graphs.

Ghazizadeh and Chawate [38] present an alternate approagphuhing the search space using summaries. In this
method, graphs are summarized by superposing identitzdigled nodes and assigning weights to edges based on
this superposition. Observing that the edges of a frequdigraph must have weights greater than the frequency
threshold £* = o*|7), it is possible to prune out many subgraphs immediatelyifply evaluating the weights of
the edges. Our approach in this paper also relies on the fdmmtracting identically-labeled nodes, however, our
algorithm is fundamentally different from existing graptining approaches in the sense that it totally avoids the

subgraph isomorphism problem.

Methods

We first define the graph mining problem in the context of mall@cinteraction networks. We then introduce the
idea of contracting orthologous nodes and discuss theityadidd interpretability of the idea in the context of protei
interaction networks and metabolic pathways. Finally, wgl@re strategies for adapting frequent itemset mining
algorithms to mining frequent edge sets and develop anefticilgorithm [39], MILE, for frequent subgraph

discovery in biological networks along these lines.

Graph Mining Problem

This paper addresses the graph mining problem in the cooftéxblogical networks. The input to the problem is a
set of graphs in which nodes correspond to biomolecules dgelsecorrespond to interactions between these
molecules. Over this set of graphs, we are looking for fregjgabgraphs that are connected and isomorphic to each
other. In the general setting for graph mining, isomorphisaefined with respect to the labeling of nodes. In the
context of biological networks, labeling is based on theassent of functional correspondence, as suggested by
sequence homology or more comprehensive methods of furattmnotation. For metabolic pathways, the
hierarchical classification of enzymes provides a meankbmling nodes. In the context of protein interaction

networks, proteins of different species are functionadiyaiated through ortholog clustering. Without loss of



generality, in the following discussion, we refer to nodepeoteins, and label these nodes based on the assignment
of these proteins into ortholog groups. Assessment of fonat correspondence between biomolecules is discussed
in detail in the next section. In the following, we do not cioies edge labelsd.g, compounds for metabolic

pathways) for simplicity since it is relatively straightfeard to extend typical graph mining algorithms to this case
We also assume that the graphs are directed, since someutanliteractions are directed.g, enzyme-enzyme

interactions) and any undirected graph may be represestadimected graph.

Definition 1 Interaction network . Given a set of biomolecul&$in one particular organism, a set of interactions
E between these molecules, and a many-to-many mapping eftiil@solecules into a set of ortholog groups

L ={l,ls,...,1,}, the corresponding interaction network is modeled by aletbgraphG = (V, E, £). Each

v € V(@) is associated with a set of ortholog groupsv) C £. Each edgew € E(G) represents an interaction

between: andw.

We define node labeling flexibly to allow proteins to be asstecl with more than one ortholog group. This is
motivated by the fact that some proteins may be involved inetivan one cellular process. Specifically, if domain
families [40,41] are used to relate proteins, multi-labmdes are necessary for handling multi-domain proteins.
Furthermore, since observed interaction networks reptessuperposition of dynamically organized interactions i
spatial and temporal dimensions [42], this model accwyai@btures the dynamic and complex modular organization

of cellular processes.

Definition 2 Subgraph of an interaction network. A graphsS is a subgraph of interaction network, i.e.,S C G
if there is an injective mapping : V(S) — V(G) such that for all € V(.S), L(v) C L(¢(v)) and for all
wv € E(9), p(u)p(v) € E(G).

A subgraphS is connected if and only if for any subgétc V' (S), 3u € U andv € V(S) \ U such thatw € E(S)
orvu € E(S). In molecular interaction networks, a connected graph neaipterpreted as a set of interactions
related to each other through at least one molecule. Threxafderactions that are related to a particular cellular
process are expected to form a connected subgraph. Suctaptbgnay also be connected to each other as a
reflection of crosstalk between different processes. Rstréason, we define the graph mining problem as one of
identifying all connected subgraphs that exist in at leatsired number of organisms. This allows us to understand
the conservation and divergence of functional modulesfferdint organisms and identify conserved links between

different cellular processes.

Definition 3 Closed frequent subgraph discovery



Input: A set of interaction networks = {G; = (V1,E1, L), Go = (Va, B0, L), ..., Gy = (Vi, B, £)}, €ach
belonging to a different organism, and a support threshgid

Problem: Let H(S) = {G; : S C G;} be the occurrence set of gragh Find all connected subgraptfssuch that
&(S)=|H(S)| > o*|G|, i.e.,S is a frequent subgraph ig and for all.S” 3 .S, H(S) # H(S'), i.e.,S is closed.

In this framework, one is interested in discovering all s@pdps that are frequent and closed. A closed subgraph is a
frequent subgraph such that none of its supersets occue isatine set of organisms as itself. This property ensures
maximality of discovered patterns. Note that, in traditibmining algorithms, a closed subgraph is defined as a
frequent subgraph such that none of its supergraphs is@sginé as itself. For mining biological networks, we use a
generalized definition of a closed subgraph that takes ictount the occurrence set of a subgraph rather than its
cardinality. This allows us to identify conserved pattdiorsany subset of organisms, facilitating phylogenetic
analysis of modularity in molecular interaction networkhis approach may also be viewed as a symmetric mining
problem, where not only the subgraphs that occur in manyaer&sbut also the organisms that share many
interactions or subgraphs are of interest.

As can be inferred from the definition of a subgraph, our grapiing problem requires repeated solutions to the
subgraph isomorphism problem. In typical applications @fing biological networks, it is necessary to run repeated
gueries interactively with different parameters until asactory set of results is obtained. This is clearly naisible

in the current problem setting. It is important to note tinatre exist many proteins in an organism that are
homologous to each other. This translates to the repetfi@ach label in a single interaction network. This is the
underlying source of the subgraph isomorphism problem. &shall now show, if all orthologous nodes are
contracted into a single node, the underlying problem catobsiderably simplifieavhile the underlying biological

information is preserved

Ortholog Contraction

We propose an alternate setting for graph mining based amazion of orthologous nodes. While simplifying the
graph mining problem significantly, ortholog contractionintains not only the correctness by preserving the
underlying frequent subgraphs in the graph database, $mttaé biological relevance and interpretability of the
discovered patterns. The fact that the underlying freqsebgraphs in the database are preserved is formally shown,

and is particularly important to note. Therenis loss of informatiomesulting from our ortholog clustering technique.

Definition 4 Ortholog-contracted graph. Given interaction networks = (V, E, £) the ortholog-contracted

representation o, T(G) = G = (V, E, L) is constructed as follows. Fdr< i < |£|, there exists unique € V'

10



such thatZ(v) = {l;}. For eachuv € E and for alll; € L(u), l; € L(v), there existsiv € E such thatZ(u) = {I;}
andL(v) = {i,}.

A sample interaction network and its ortholog-contractgatesentation are shown in Figure 2. Observe that the
ortholog-contracted graph of an interaction network igjueiwhile the reverse is not necessarily true. However, all
subgraphs of an interaction network are preserved in itotoy-contracted representation, as the

ortholog-contracted representations of all subgraplts afe subgraphs af, as stated in the following theorem.

Theorem 1 Preservation of subgraphsGiven interaction networkl = (V, E, £), letY(G) =G = (V, E, L) be

its ortholog-contracted representation. Then for & G, T(S) C G.

Proof. Take anyS C G. LetS = Y(S) and¢ be the appropriate mapping frov(.S) to V(G). For eachy € V(S)

andl; € L(v), there exists a uniquec V (S) such thatl.(v) = {I;}. SinceL(v) C L(¢(v)), l; € L(¢p(v)).

Therefore, there also exists a unigb(@) € V(G) such thatL(¢(v)) = {I;}. Then, there is a unique injective
mappingg : V(S) — V(G), where)(v) = 6(v) for anyv € V(S). Hence, for anyio € E(S) that results from
uv € E(S), sinced ¢(u)¢p(v) € E(G), there exists (1) (v) = ¢(u) ¢(v) € E(G). ThereforeS C G. O

In Figure 2, the ortholog-contracted representation obitid subgraph of~ is also shown in bold iff (G).

Corollary 1 Preservation of frequent subgraphs For a set of interaction networks = {G1, G, ...,G,, }, let
G ={Y(G1),Y(Ga), ..., Y(G)} be the corresponding set of ortholog-contracted graphs.iff a frequent
subgraph ing, thenY(S) is a frequent subgraph ig.

We can interpret this result as follows. If we mine the setrtti@og-contracted graphs instead of the original set of
interaction networks, we will discoversaupersetf the frequent subgraphs of the original set. In other wosesdo

not missany frequent patterns that exist in the dataset. Therefasealways possible to recover the actual frequent
subgraphs from the set of frequent ortholog-contractedisydhs using an isomorphism-based graph mining
algorithm. This is significantly more efficient than runnithg isomorphism-based algorithm on the original dataset,
since mining the ortholog-contracted graph prunes out widie infrequent substructures, thus the resulting set is
significantly smaller both in terms of graph size and numbbgraphs. Furthermore, the idea of ortholog-contraction
does not conflict with the purpose of mining molecular inééicn data; as we shall show, it is very useful by itself.

We elaborate on this point in the context of metabolic patrsrnd protein interaction networks.

Ortholog Contraction in Protein Interaction Networks
Recent studies on the evolution of protein interaction oeta suggest that orthologous proteins that result from

recent duplications are likely to share common interast{d3]. In other words, conservation of interactions betwee

11



orthologous proteins translates into conservation oftionc Therefore, while mining protein interaction netwsrk
for common network patterns among different species, preia different organisms must be related to each other
through orthology.

Since proteins that are evolutionarily or functionallyateld show significant sequence homology, a reasonable way
of detecting protein families relies on sequence clustgdd, 45]. A problem with inter-species protein sequence
clustering is that out-paralogs, which have no functiomawwlutionary relationship since they predate the split of
species, are also clustered together along with ortholodsraparalogs [46].

Recently, ortholog families have been identified throughermmmprehensiva-silico analysis and organized into
several databases, such as COG [47] and Homologene [48% The been relevant efforts to comprehensively
identify domain families as well, including PFAM [40] and AIA [41]. However, in order to avoid over-populating
the contracted network, interacting domains should beidersd while relating nodes in the interaction network
through domain families.

Node contraction in protein interaction networks reduocésractions between proteins into those between ortholog
groups. This is illustrated in Figure 3. A 5-node portion®fCerevisia@rotein interaction network is shown in
Figure 3(a). In this figure, the common names of each proteislaown in the oval representing that protein. The
nodes are labeled by their COG clusters. As a result of arthebntraction, 3'5’ exoribonuclease (Mtr3) and 3'5’
phosphorolytic exoribonuclease (Ski6), which belong enghme COG family, are contracted into single node, as
shown in Figure 3(b). Therefore, the interaction of thesdgins with Csl4 is represented as a single interaction

between ortholog groups KOG1068 and KOG3409.

Ortholog Contraction in Metabolic Pathways

In the directed graph model for metabolic pathways, nodel$atorrespond to enzymes that catalyze the respective
reactions. Although the biochemical properties of enzydifésr from organism to organism, enzymes are classified
based on metabolic functions and protein orthologies. &ily, there exists a comprehensive enzyme nomenclature
that provides hierarchical classification of enzymes basdoiochemical function [49]. In this enzyme nomenclature
system, each enzyme is identified by its Enzyme Commissi@) (Ember. The numbers in the squares that
represent reactions in Figure 1(a) are the EC numbers ofithgees that catalyze these reactions.

An enzyme may catalyze multiple reactions in a particuldinway. Therefore, an enzyme class may be attached to
more than one node in the corresponding graph model. Howsnee the edges in the directed graph model signify
the producer-consumer relation between two enzymes,axdittg nodes corresponding to the orthologous enzymes

(i.e., enzymes that belong to the same class) preserves thisiafion. The ortholog-contracted representation of the

12



metabolic pathway graph of Figure 1 is shown in Figure 3@jhls representation, although the node that
corresponds to enzyme EC:2.7.1.2 is contracted, we do sethe information that this enzyme not only consumes
the product of EC:5.1.3.3, but also produces a compounddicansumed by the same enzyme. The only information
that is hidden by this model is the fact that these two intéwas between this pair of enzymes are derived from two

successive reactions, which may be extracted by post-psong as theoretically shown in the previous section.

Mining Ortholog-Contracted Graphs for Frequent Edgesets
Once we contract orthologs into a single node for each gthpHrequent subgraph discovery problem is reduced to

a generalized form of frequent itemset mining. We elabasatthis point in the following lemma.

Lemma 1 Equivalence of ortholog-contracted graphs to edgeess. For ortholog contracted grapky, define edge
setE(G) = {(li,1;) : 3uv € E(G) such that L(u) = {I;}, L(v) = {I;}}. If S is also an ortholog-contracted
graph, thenS C G if and only if £(S) C E(G).

Proof. Itis straightforward to see that f C G, thenE(S) C E(G). Now assume thak(S) C E(G). For any

(I;,1;) € E(S), there exist unique, v € V(S) such thatl(u) = {I;}, L(v) = {l,}, anduv € E(S). Furthermore,
(I;,1;) € E(G). Therefore, there exist uniqué, v’ € V(G) such thatl.(v') = {I;}, L(v') = {l;}, andu/v’ € E(G).
Letting ¢(u) = v’ andg(v) = v’, we haveS C G. a

We can generalize this lemma to conclude that an orthologracted graph is uniquely determined by the set of its
edges. Therefore, mining frequent subgraphs in a coliedi@rtholog-contracted graphs is equivalent to mining
frequent edgesets in a collection of graphs that are unygietermined by the set of their edges. Since we are
interested only in connected subgraphs, we define an edgdsethe set of label pairs that correspond to the edges

of a connected graph.

Definition 5 Edgeset.Given a set of ortholog label§ = {l;,1s, ...,1,,}, an edgesel’ = {e1, e, ..., ex } is a set of

ordered pairse; = {ls,;}, where for any subsét’ C F, there existg; € F', e; € F'\ I’ such that; Ne; # 0.

Definition 6 Closed frequent edgeset discovery.

Input: Set of ortholog contracted graplgs= {G1, Gb, ..., G,, } and a support threshold*.

Problem: For edgeseF’, let H(F) = {G, : F C E(G;)} be the occurrence set . Find all closed edgesefs that
are frequentirg, i.e.,{(F) = |H(F)| > o*|G| and forall ' > F, H(F') # H(F).

Observe that this problem is a generalized version of trguat itemset mining problem. Indeed, frequent itemset

mining is a special case in which the underlying graph isqueli Therefore, a simple approach to solving this

13



problem is to remove the connectivity constraint, and findratjuent subgraphs using a frequent itemset mining
algorithm. The connected components of all frequent sydfgrarovide the set of all frequent connected subgraphs.
However, this approach has two drawbacks. First, althoughsures that all frequent edgesets will be discovered, it
does not ensure that the discovered edgesets will be cl8sednd, since the number of connected subgraphs of a
clique is much larger than that of a sparse graph, this rétaxaill enlarge the search space significantly, degrading
computational efficiency. Therefore, a specialized atparifor this problem, which takes into account the
connectivity and maximality constraints, along with théume of data that is derived from molecular interactions is

necessary.

Adapting Itemset Mining to Edgeset Mining

Since the frequent edgeset mining algorithm is closelytedito the frequent itemset mining problem, we base our
algorithm design on existing itemset mining algorithmsnagkinto account the specific characteristics of biological
networks.

As discussed in the previous section, frequent itemsetmiaigorithms enumerate the space of possible itemsets,
exploiting the downward closure property to prune out therae space. Starting from the smallest itemsets, the
occurrence of each itemset in the input transaction setlinted. Smaller frequent itemsets are extended with other
frequent itemsets to generate larger itemsets that aratiaite frequent. Repetitions are avoided by inducing a
lexicographic ordering of items.

Two major design choices for frequent itemset mining athoms are, the order of traversal of the enumeration tree
and the method for determining the support of each item#8t [bis possible to traverse the itemset tree in
depth-first or breadth-first fashion. Breadth-first trasérahich generates the nodes of the tree level by level, is
efficient in the sense that it eliminates the maximum nunifeeguent itemsets at each level. However, it requires a
larger memory since it stores all nodes at each level of te fFherefore, breadth-first traversal becomes inefficient
as the tree gets deeper. Depth-first traversal, on the otimet, lexpands a node immediately after its itemset is
discovered to be frequent, keeping the storage requiretd@nninimum, at the expense of exploring extra

itemsets [27].

There are two possible methods for computing the suppordf é@emset as well. One approach is the set counting
method, which makes a pass over the transaction set at edetltaoount the number of transactions that contain the
corresponding itemset. This approach is memory-efficiedteell-suited to breadth-first traversal. Set intersestio
on the other hand, stores the identifiers of all transactiogiscontain each itemset and computes the intersection of

identifier sets while extending an itemset. This approaatimizes the number of passes over the transaction set at
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the expense of additional memory for storing the identifees sThis method is more appropriate for depth-first
traversals.

Most closed frequent itemset mining algorithms use a déhtraversal along with set intersection, since
depth-first traversal provides the opportunity of decidiitether an itemset is closed upon its expansion [51, 52].
This combination is also appropriate for the closed fre¢jedgeset mining problem in biological networks for the

following reasons:

e Occurrence of subgraphs In contrast to association rule mining, in mining biolainetworks, the identity
of organisms that contain the particular subgraph is of@steas well as its frequency. This is because, this set
of organisms provides considerable information about treservation of pathways, modules, and complexes,
evolutionary relations between species, and the fundtemzotation of discovered interaction patterns.
Therefore, for each edgeset explored by the algorithm rietessary to store the identifiers of organisms that

contain this edgeset.

e Graph size vs database sizdn biological applications, the size of the graphs is lathen the size of typical
transactions in association rule mining. For instancepéefim interaction network generally contains
thousands of edges. This is also true for the cardinalitdenfiified patterns. On the other hand, while typical
data mining applications involve millions of transactiptiee number of biological networks to be mined is
smaller. Therefore, in mining biological networks, the eranation tree is wider and deeper, while the data to
be processed at each enumeration node is smaller. This meg#dsfirst enumeration along with set

intersection feasible and memory efficient.

MULE: An Efficient Algorithm for Maximal Frequent Edgeset Mining

The key difference between frequent edgeset mining andémigtemset mining is that in the former, we are only
interested in connected subgraphs. In order to generateratlected subgraphs in the database, we perform
depth-first search on the graph constructed from all frege@ges. To avoid repetitions, we induce a lexicographic
order on the edges and remember previously visited edgeshtsmumeration node. Assume, at any stage of the
algorithm, that we have a frequent edgeset eflges, denoted h¥,. We define the candidate g€} to be the set of
edges that are connected to the edgds;inbut have not been previously visited. The set of edges pusly visited

by the depth-first enumeration algorithm is denoted’y For any candidate edges Cj, we extendF), as follows:

Fry1 = FpUc Dyy1 = Dip=DpUec,
N() = {eeF:enc#0} Cria (Cr UN(c)) \ Dy.
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Here,F denotes the set of all frequent edges in the graph database.

The resulting algorithm foMining UniqueL abeledEdgesets (MLE) is shown in Algorithm 1 and 2.

Algorithm 1 Main procedure for mining ortholog-contracted graphs.

procedure MINEORTHOLOGCONTRACTEDGRAPHS (G, o*)
>lnput G: Set of ortholog-contracted graphs
>lnput o*: Support threshold
>Output M F'S: Set of closed frequent subgraphs
£ — o'[g]
E —{e={l,,}:3GeGst.uveV(G), we E(G),Lu)=Is,Llv) =1}
for eache = {l;,1;} € £do
H(e) « {GeG:3u,ve V(G) st.uv € E(G), L(u) =15, L(v) =1;}
F o {ec€:|H(e)| > ¢}
MFS «— ()
for eache; € F do
N(e;)) «— {eje F:ejne; #0}
EXTENDFREQUENTEDGESET(F, {*, MFS, {e;}, N(e;), {e1,e2,....,ei—1})
return M FS

The main procedure, MEORTHOLOGCONTRACTEDGRAPHS performs pre-processing by determining the set of
frequent edges in the input graph set. It then generatespeaitibn of the frequent edgeset tree rooted at each
frequent edge by calling 65r ENDFREQUENTEDGESET. Upon each invocation, 6 ENDFREQUENTEDGESETtries

to extend the edgeset (subgraph) by all edges in the cardidgtone by one. If the extended edgeset is frequent,
then the procedure is invoked again for the extended edgBsetalgorithm stops whenever an edgeset cannot be
further extended. This edgeset is then recorded, if it isnbsumed by any other recorded frequent edgeset. Upon
invocation, XTENDFREQUENTEDGESETchecks whether the current frequent tree is already sulxsbgnether
closed frequent edgesets that have previously been dismhveso, it stops the search process. This optimization
helps prune out the search space in chudkg:S is empty on first invocation of ETENDFREQUENTEDGESET, and

is input to the procedure at each subsequent invocatiorrgivhié is extended with newly discovered frequent
subgraphs.

Consider the input graph set of Figure 4(a). These graphs®adges in allgb, ac, bd, ce, de, andea. Figure 4(b)
shows the frequent edgeset tree for mining subgraphs tistieat least 3 of the input graphs. Procedure
EXTENDFREQUENTEDGESETIs invoked forab, ac, de, andea, since these are the only frequent edges. The edgeset
F, candidate sef’, and the seH of identifiers of graphs that contain this edgeset are shawach node of the
edgeset tree. The sets of visited edge¥label the branches of the tree, since these sets are shapaddnt and
children. At any instant, sdD for a node is the one at its right-most branch. On first inviocathe algorithm starts

with edgese{ab}, whose candidate seti€(ab) = {ac, ea} and extends it with edger since the edgesgub, ac} is
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Algorithm 2 Recursive procedure for extending a frequent edgeset.

procedure EXTENDFREQUENTEDGESET(F, £*, M F'S, F}, Ck, Dg)
>lnput F: Set of frequent edges
>lnput &*: Frequency threshold
>Input, Output M F'S: Set of maximal frequent edgesets
>lnput Fy: Frequent edgeset withedges
>lnput Cj: Set of candidate edges for edgeset extension
>lnput Dy: Set of already visited edges
Ry, < set of all unvisited edges reachable frdin
if 3F' € MFS s.t. R, C F' andH(Fy) C H(F') thenreturn
closed < true
for eache € C}, do
Dyyq1 «— Dy «— DU {C}
Fip1 — Fp U {C}
H(Fy41) « H(Fp,)NH(c)
if | H(Fi1)| > € then
if H(Fj11) = H(F}) then closed «— false
Ckt1 < (Cxk UN(c)) \ Dyy1
EXTENDFREQUENTEDGESETWF,&*, MF'S, Fiy1, Cry1, Diy1)
if closed then
if AF' € MFSs.t.F, C F'andH(F;) C H(F')then MFS «— MFS U F},

frequent. This set cannot be extended by the only edge iaftdidate seka, since the edgesétb, ac, ea} is a
subgraph of only two input graphs. Therefore, this edgesetdorded as a closed frequent subgraph. Note that
extension of the edgeset with edgreis not considered since this edge is not connected to thesetigader
consideration. Therefore, it never gets into the candiddge set. Furthermore, extension of the edggsst with
edgead is not considered since this edge has already been visifgah términation, the algorithm reports four
closed frequent subgraphs shown in boxed nodes in the fighieh are{ab}, {ab, ac}, {ab, ea} and{de}. Note
that{ab} is reported since its occurrence set is different from ifgesset{ ab, ac}, hence it is closed. Although
edgeset§ac} and{ea} are also frequent, they are not reported since they areioedtim other frequent edgesets

with the same occurrence set.

Statistical Significance

To evaluate the statistical significance of identified paiewe use a simple reference model that takes degree
distribution into account. LeX;;(r) be the random variable indicating the existence of an intina between
ortholog group$; andi; in networkG,.. Assuming that all interactions in a network are indepenttem each other,
we estimate the probability of this interaction based omilnber of interactions of the two ortholog groups in the

corresponding organism & X;;(r) = 1) = d,(¢)d,(j)/|E(G)| [53]. Here,d, (i) denotes the number of
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interacting partners of ortholog groun networkG,.. For a set of interactionE, let random variabl&(r) indicate
the existence of” in networkG,, i.e, Yr(r) = (F C E(G,)). Then,P(Yr(r)) = IIj,;,e r P(Xi;(r) = 1). Defining
Zr =Y., Yp(r) as the number of networks that contdinwe evaluate the significance of observifign &
networks byP(Zr > k), i.e, the probability ofF” being a subgraph of at lealsnetworks. Assuming that the
interaction networks are generated independently frorh eiter, we directly estimate this probability for small
number of networks. For larger numbers of networks, on therdtand, we estimate thescore for the observed

pattern through normal approximation.

Results and Discussion

In this section, we first present molecular interactiongrat discovered by MLE and discuss their biological
interpretation. We then illustrate the runtime efficien€yWbuLE, compare its execution characteristics with those of
FSG and gSpan, and show that it is possible to recover actelént subgraphs from the contracted patterns

discovered by MILE very quickly using an isomorphism-based graph mining aligor.

Mining Results
Frequent Molecular Interaction Patterns in DIP Protein Interaction Networks

In this section, we present results on mining nine eukacymitein interaction networks gathered from BIND [10]
and DIP [11]. In order to relate the proteins in differentamgms and compute ortholog-contracted graphs, we use
ortholog groups derived from COG, Homologene, and sequenseering using BLASTCLUST. We compare each
homolog group in Homologene with ortholog groups in COG. H@amologene group shares at least one protein with
a COG ortholog group, we merge the Homologene group intodh@sponding COG group. We then compare each
protein that is not yet assigned to an ortholog group withetkisting ortholog groups using BLAST. If the protein
has significant sequence similarity with at least half ofgheteins in a group, then we assign the protein to that
ortholog group as well. For the remaining proteins, we ruMBICLUST and create a new ortholog group from
each cluster identified by BLASTCLUST. We then compute thhalog-contracted graphs based on these ortholog
groups, considering both direct and one-hop indirect &uons. The statistics of the original PPl networks and the
ortholog-contracted graphs are shown in Table 1.

When we mine the nine PPl networks for patterns of frequeogytising MULE, we are able to identify 41 frequent
connected subgraphs. The largest subgraph that is comntarsepiensD. melanogasteC. elegansandS.
cerevisiaeontains 18 interactions between 19 ortholog groups, wisishown in Figure 5(a). These interactions are

associated with zinc-finger domains (KOG1721). For any doaton of three organisms among these four, we are
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able to obtain larger subgraphs that are related to zin@ffipgpteins. For exampléd{. sapiensD. melanogasteand

C. eleganshare 115 interactions related to zinc-finger among 83 mtigroups < 5¢ — 206), while H. sapiens

D. melanogasteandsS. cerevisiasghare 81 interactions among 66 ortholog groyps (3¢ — 152). The star shape of
this interaction network is probably due to (1) numerou&ita activities that zinc-finger proteins participate in
(e.g., cell division, transcription, MAP Kinase signaljrsond actin polymerization, and others) and (2) a large numbe
of proteins with zinc-finger domains, both in higher and loeekaryotes (about 1% of proteins in mammals) [54]).
Surprisingly, there is a significant degree of conservatidnteractions among zinc-finger proteins and their pagne
across these diverse organisms. An interesting followugsitigation would be to see how DNA binding specificities
of these zinc-finger domains have evolved.

Using the same number of organisms for the threshold, agmoofi a large protein complex, TFIID, involved in
transcription by RNA Polymerase Il is identified as a conedrsubnet inVl. musculusH. sapiensD. melanogaster
andS. cerevisia¢s5]. This conserved subnet is shown in Figure 5(b). The rmappf these interactions on each
organism are also shown in the figure, where direct and iodinéeractions are shown by solid and dashed edges,
respectively. InS. cerevisiaghis protein complex consists of one TATA-Binding Prot€iBP) and at least 14
TATA-Associated Factors (TAFs); yet in the conserved stvaek, only 4 are found [55]. One hypothesis explaining
this observation is that the TAFs present in the conservidank have greater role in promoting transcription
relative to other TAFs that are absent.

When we lower the frequency threshold to 3yMe identifies much larger number of conserved interactiorepast
specifically 158 frequent subgraphs. Four of these pat@rdgheir mapping on the corresponding organisms are
shown in Figure 6. Almost all proteins involved in these @med subnets are well-annotated $rcerevisiag

which facilitates mapping of these annotations to otheanigms that share these interaction patterns. The subnet in
Figure 6(a) is a pathway associated with small nuclear ribtmoprotein complex and is conservedin
melanogastelC. elegansandS. cerevisiagProteins Lsm1-7 make up a complex that participates in mRNA
degradation and splicing [56]. Proteins Smx3 and Smd2 apeesee homologs of subunits in this complex. The
interactions among components of Actin-related proteip2&8 complex conserved 8. taurus H. sapiensandS.
cerevisiagare shown in Figure 6(b). This complex is involved in actitleation. There are 7 components known in
all for this complex inS. cerevisiagwhere Arcl8 is missing in the conserved subnet [57]. In #messtudy, Arc40 is
indicated to be essential for viability, which may explaihywArc40 has greater number of interacting partners than
the other proteins present in the conserved network. InrBidi{c), two endosomal sorting complexes, ESCRT-II
(Vps22, Vsp25, and Vps36) and ESCRT-III (Vps20, Vsp24, apd32), are shown to be conserved togethéd.in

melanogastesS. cerevisiagandH. sapiensThese two complexes take part in the multivesicular-batiyway and
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act downstream of another protein complex, ESCRT-I [58}aHy, in Figure 6(d), dense interactions between a
collection of proteins involved in vesicle transport aréedéed [59]. These interactions are conservell.in
melanogastesS. cerevisiagandR. norvegicus

Mining of PPI networks enables not only identification ofduent subgraphs but also phylogenetic analysis of
modularity. In Table 2, we list the top eight groups of thregamisms based on their shared interactions and
subgraphs. While these results may be biased by the varyailghkility of interaction data for different organisms,
they illustrate characteristics of modular phylogeny dstesit with sequence-level phylogenetics. For instafice,
eleganshares more interactions with melanogasteandH. sapienshanS. cerevisia€loes, although its available
PPI network is less comprehensiw. musculuss always listed withH. sapiensandR. norvegicushares many
frequent patterns withl. sapiensndM. musculusalthough the PPI data for this organism is very limited. Nbsg

the lack of an interaction pattern in an organism does nassarily mean that the particular pattern does not exist in
that organism, since the available interaction data is astprehensive. However, the patterns identified on availabl

data can be used to map known interactions to other species.

Frequent Sub-pathways in KEGG Metabolic Pathways

Using the proposed algorithm, we mine several pathway ctidies extracted from the KEGG metabolic pathway
database. KEGG currently contains a large database of pgtimaps for several metabolic processes, including
carbohydrate, energy, lipid, nucleotide, and aminoacithivaism for 157 organisms. We mine several pathways
belonging to different metabolisms for different organgsiBample frequent sub-pathways discovered in pathway
collections that belong to glutamate and alanine metatngl@re shown in Figure 7. The nodes of the displayed
graphs are labeled by KEGG ID’s of enzymes, which can be gden KEGG web site for detailed information.

We are able to observe fairly large sub-pathways that acuiénet. For example, a sub-pathway of glutamate
metabolism that contains 4 nodes and 6 edges occurs in 45 &3ke 155 organisms. This sub-pathway is shown
by bold nodes and edges in Figure 7(a). It is composed of eeaggimS (2.6.1.16 -
glucosamine-fructose-6-phosphate-aminotransfergsef (6.3.5.2 - GMP synthase), nadE (6.3.5.1 -
NH(3)-dependent NAD(+) synthetase), and purF (amidophosposyltranferase). In this sub-pathway, all enzymes
are related by L-Glutamine.

Mining the pathways for different support thresholds a@valuation of frequent sub-pathways in a multi-level
fashion. For instance, when we reduce the required supgpesthiold to 19.3% (30 organisms) for glutamate
metabolism, the largest sub-pathway we are able to disamresists of 5 nodes and 10 edges, which is a supergraph

of the previous one. This sub-pathway is shown in the figuredbg nodes and edges. As seen in the figure, this
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pathway contains enzyme gInA (6.3.1.2 - glutamine synd®tavhich is also related to the other enzymes by
L-glutamine. Further reducing the support threshold t@%#(22 organisms), we are able to discover a sub-pathway
of 6 nodes and 13 edges, which is the entire graph shown ingheefi This pathway is also a supergraph of the
previous one, with gltX (6.1.1.17 - glutamyl-tRNA synthegtd added, which interacts bidirectionally with ginA
through L-Glutamate. The self-loop for gltX implies thaistkenzyme takes part in two consecutive reactions, which
are part of the observed frequent sub-pathways. The ofifyjgtuent sub-pathway extracted from this largest
frequent ortholog-contracted subgraph is shown in Fig(ae 8

In Figure 7(b), largest of the frequent sub-pathways thestliscovered in alanine-aspartate metabolism for three
different levels of support threshold are shown. The bolstgathway of 5 nodes and 8 edges occurs in 50 (32.1%)
of the 156 organisms, the solid one with 5 nodes and 11 edgesin 30 (19.2%) of the organisms, and the entire
graph of 6 nodes and 16 edges occurs in 18 (11.5%) of the @manNote that enzyme purB (4.3.2.2 -
adenylosuccinate lyase) and its interaction with purA.&#8- adenylosuccinate synthetase) through
adenylosuccinate (N6-(1,2-Dicarboxyethyl)-AMP), shawmlotted lines in the figure, is included in the most
frequent sub-pathway of alanine-aspartate metabolisnslexicluded from the larger sub-pathways of lower
frequency, which is interesting to note. The original frequsub-pathway extracted from the largest frequent

ortholog-contracted subgraph is shown in Figure 8(b).

Runtime Efficiency

In this section, we compare BLE to two existing graph mining algorithms, FSG [30] and gSi4 fo illustrate the
effectiveness of node-contraction in terms of runtime @@nfance. All experiments reported in this section are
performed on a Pentium-IV 3.0 GHz workstation with 512 MB RAM

To evaluate runtime efficiency, we rely on metabolic pathsvsince there is a larger number of available metabolic
pathways, making it suitable for illustrating the perfoma gap between different algorithms. In all of our
experiments, we observe thatle runs much faster than both FSG and gSpan on the graph cofisaibtained
from metabolic pathway datasets. First, we are not able taimmbesults from gSpan on the raw directed graphs
obtained directly from KEGG metabolic pathways. We suspettgSpan is not able to respond to these queries
because of memory limitations. However, as we illustratéher in this section, gSpan runs very quickly on datasets
that are filtered using MLE. The performance comparison ofME and FSG is shown in Table 3. The runtimes of
MuLE and FSG along with the number of frequent subgraphs (pajtard the size of (number of edges in) the
largest pattern are shown in the table. As is evident fronfithees in the table, MLE runs much faster than FSG by

several orders of magnitude. Note that FSG always returxénmadfrequent subgraphs. MLE, on the other hand,
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sometimes returns supersets of frequent subgraphs bemfacm@raction. In our experiments on metabolic
pathways, we notice that these supersets are rare and casilyddentified upon examination. Observe that in

Table 3, the number of frequent subgraphs discovered by FE@AaLE are the same for all support values in both
datasets. This shows that the frequent patterns discobgréak two algorithms correspond to the same set of
patterns, while some of these patterns are smallerun i/ since an edge that actually appears at different locations
in the subgraph is contracted into one edge by g

The supersets returned byuME can be reprocessed through FSG or gSpan and exact freqbgnapbs can be
extracted very quickly. This is illustrated in Table 4. Irttable, we display the extraction of five largest subgraphs
that are discovered by WLE for both datasets. These results show thatL¥ can be used in a different setup for
analysis of biological networks as well. In this setup, artisst mines the graph collection of interest using M.

Note that, since MLE is fast enough, this can be done repeatedly to tune the mmisupport value to obtain the
most interesting set of discovered patterns. Upon examimaf frequent subgraphs discovered by M, the user

may choose the patterns of special interest among thesea, feeactual patterns that correspond to these contracted
patterns can be extracted by filtering the database andmgionmie of the isomorphism-based graph mining
algorithms such as FSG and gSpan. Filtering the graph dsgabduces the size of the search space substantially in
terms of both number and size of graphs to be mined. Indeexjdsnt from Table 4, the largest subgraphs that are
discovered by MILE are extracted within seconds. In addition, extracting thtee set of frequent subgraphs
discovered by MILE takes much less time than mining the original dataset dytacding one of the
isomorphism-based algorithms without any preprocesgisgeen in the table, we are able to discover all frequent
(c* = 8%) subgraphs on Glutamate pathway collection in 17.8 secttmdagh preprocessing with MLE followed

by isomorphism-based mining with gSpan. Recall that we at@ble to mine the original datasets with gSpan alone.
Similarly, a combination of MILE and FSG is able to mine this dataset in 101.5 seconds, whiledi@e spends
138.9 seconds to complete the same task. This improvemanmttime (factor of roughly 8) increases rapidly with
database size. As databases grow, node contraction is lihkrmwn viable approach. In conclusion, whileUME is
established as a fast tool for discovering frequent pattierbiological networks in a biologically interpretable
fashion, it can also be used to improve other graph miningrialgns. Note also that in the case of protein interaction

networks, node contraction is generally necessary for istaieding evolutionary relationships.

Discussion
MULE is able to detect known functional modules from the inteoachetworks by exploiting their conservation

among different organisms (Figures 5 and 6). Although osulte are limited by the availability of the interaction
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data, it appears that the conservation of functional madsla wide-spread phenomenon observed in numerous
cellular activities. Interactions among subunits of pimt®mplexes involved in transcription, mMRNA degradation
and splicing, actin nucleation, endosomal sorting, anétieegansport are significantly conserved in yeast and

higher eukaryotes, such as humans. This suggests that asntevaction data becomes availableyM can be used
to automatically map functional organization of proteifig@uery organism based on the interaction networks of

others.

Conclusions

With the rapidly increasing amount of network and intemattilata in molecular biology, the problem of mining
patterns, motifs, and modules in biological networks beeemcreasingly important. This paper provides a
framework for mining biological networks using an innovatgraph simplification technique, which leads to
efficient graph mining algorithms. The proposed model agdrithm are shown to be well-suited to mining
metabolic pathways and protein interaction networks mlog interesting results and being able to respond to
queries rapidly. It also provides a framework for multidéanalysis of occurrence of interaction patterns in these
networks. Our approach can be easily extended to otherdiaabnetworks as well.

The proposed framework can be further improved by addingbfiléy for capturing biologically meaningful
information that helps in interpretation of discoveredg@ats. Finally, the concept of a matching subgraph can be
extended to one of an “approximate match”. The notions of@pmations and distance would need to be

formalized before such algorithms can be devised.
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Figures
Figure 1- Graph models for metabolic pathways

(a) A portion of glycolysis reference pathway in directeghggraph representation. Compounds are shown by
rectangles, enzymes are shown by ovals. For each readtame,is an edge from each substrate to the catalyzing
enzyme and one from the catalyzing enzyme to each prodycth@psame pathway using a directed graph
representation. Here, enzymes are the nodes of the graphdiretted edge indicates that one enzyme consumes the

product of the other.

Figure 2- lllustration of ortholog contraction
A sample interaction network and its ortholog-contractgatesentation. The ortholog-contracted representafion o

the bold subgraph aF exists inT(G), also shown in bold.

Figure 3- Ortholog contraction in molecular interaction ne tworks
(a) A 5-node portion of th&. cerevisia@rotein interaction network. Each protein is labeled by@@G cluster it
belongs to. (b) The ortholog-contracted representatidghisfprotein interaction network based on ortholog groups i

COG. (c) Ortholog-contracted representation of the da@graph model for the metabolic pathway of Figure 1.

Figure 4- Sample execution of MULE

(a) Input graph set, (b) resulting enumeration tree of feerjedgesets.

26



Figure 5- Frequent interaction patterns that are common to f our organisms

(a) The frequent interaction pattern that involves intgoas of zinc-finger protein, common . sapiensD.
melanogasteC. elegansandS. cerevisiagp < 6e — 20). (b) The frequent interaction pattern of TFIID complex and
its occurrence irH. sapiensM. musculusD. melanogasteandS. cerevisia¢p < 9¢ — 51). Orthologous proteins

are horizontally aligned.

Figure 6- Sample interaction patterns with frequency three
(a) Small nuclear ribonucleoprotein complex< 2e — 43), (b) Actin-related protein Arp2/3 complex & 9e — 11),
(c) Endosomal sortings(< 1e — 78), (d) Vesicular transporp(< 2e — 23). Orthologous proteins are horizontally

aligned.

Figure 7- Frequent edgesets in KEGG metabolic pathways
Frequent subgrapgs identified bydve for different support values on (a) Glutamate, (b) Alaninetatbolism

among 155 and 156 organisms, respectively. Correspongtrapted sub-pathways are shown in Figure 8.

Figure 8- Sub-pathways extracted from frequent subgraphs d iscovered by MULE

Frequent sub-pathways extracted from the frequent edgsisetvn in Figure 7. (a) Glutamate, (b) Alanine

metabolism.
Tables
Table 1- Statistics of mined PPI networks and the correspond ing ortholog-contracted graphs.
PPI network Ortholog-contracted graph
Organism # proteins  #interactions # ortholog # direct #rimcti
groups interactions
A. thaliana 288 424 151 133 63
O. sativa 301 340 219 333 217
S. cerevisiae 5157 18192 1679 5327 43420
C. elegans 3345 5988 1494 2818 12968
D. melanogaster 8577 28829 2849 11088 65540
H. sapiens 4541 8577 1940 3868 23916
B. taurus 195 265 89 126 21
M. musculus 2479 2959 1213 1730 2284
R. norvegicus 696 881 445 714 761
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Table 2- Top eight groups of three organisms that contain mos

t frequent connected subgraphs and

interactions.
# frequent  # frequent

Organism set subgraphs interactions
C. elegansD. melanogasteH. sapiens 8 134

S. cerevisiagD. melanogasteH. sapiens 20 126

D. melanogasteH. sapiensM. musculus 17 86

S. cerevisiageC. elegansD. melanogaster 15 77

S. cerevisiagC. elegansH. sapiens 6 50

S. cerevisiagH. sapiensM. musculus 10 26

C. elegansH. sapiensM. musculus 5 23

H. sapiensM. musculusR. norvegicus 10 23

Table 3- Comparison of runtime performances of FSG and

metabolic pathway datasets.

MULE on Glutamate and Alanine

FSG MULE
Minimum Runtime Largest Number of Runtime Largest Number of
Dataset Support (%) (secs.)  pattern patterns (secs.) ripattepatterns
20 0.2 9 12 0.01 9 12
16 0.7 10 14 0.01 10 14
Glutamate 12 5.1 13 39 0.10 13 39
10 22.7 16 34 0.29 15 34
8 138.9 16 56 0.99 15 56
24 0.1 8 11 0.01 8 11
20 15 11 15 0.02 11 15
Alanine 16 4.0 12 21 0.06 12 21
12 112.7 17 25 1.06 16 25
10 215.1 17 34 1.72 16 34
Table 4- Extraction of contracted patterns discovered by MULE using FSG and gSpan.
Glutamate metabolisna;* = 8% Alanine metabolismg™* = 10%
Size of Extraction time Size of Size of Extraction time Site o
contracted (secs.) extracted contracted (secs.) exdracte
pattern FSG gSpan pattern pattern FSG gSpan pattern
15 10.8 1.12 16 16 541  10.13 17
14 12.8 2.42 16 16 24.1 3.92 16
13 1.7 0.31 13 12 0.9 0.27 12
12 0.9 0.30 12 11 0.4 0.13 11
11 0.5 0.08 11 8 0.1 0.01 8

Total number of patterns: 56

Total runtime of FSG alone: 138.9 secs.

Total runtime of MULE+FSG: 0.99+100.5 secs.
Total runtime of MULE+gSpan: 0.99+16.8 secs.

Total number of patterns: 34

Total runtime of F®@e&:215.1 secs.
Total runtime obME+FSG: 1.72+160.6 secs.
Total runtime obMe+gSpan: 1.72+31.0 secs.

28



2711 w

C00267 C00668
2712 ¢

5.1.3.3

2.7.1.2
C00221
2.7.1.63

Figure 1

29



Figure 2

30



KOG3013

KOG1613

Figure 3

KOG1068

KOG1068

(a)

KOG3409

KOG3013

KOG1613

(b)

31

KOG1068

KOG3409



F=90
|H| =1{1,2,3,4}
D = {ab,ac,de, ea}

e e e a = {ab, ac = {ab,ac, de
o @ F = {ab} F = {ac} o ;:{dDe} ol F = {ea}

O OO e O Vi1 Iarl N Rl P
G Gs
° e o ° D = {ab, acj&i@b, ac,ea}
° ° F = {ab,ac} F = {ab,ea}
o o NN CETA N )
3
(a) (b)

32



Figure 5

TAF6

KOG2549 JC4245
) KOG1142 TAFC TAF61
/
;o
|
1
) KOG3302 | TBP TBP1
! 1 1
| 1 1
v I
\
KOG3334 O TAF9 TAF17
Pattern M. musculus H. sapiens D. melanogaster S. cerevisiae
(b)

33



KOG1782 CG4279 F40F8.9 Lsml KOG0677 Arp2 Arp2
/
i
KOG3448 CG10418 T10G3.6 Lsm2 KOG3380,I Arp23-pl6 Arp23-p16
1 1 1 "
KOG3482 DebB ZK652.1 Smx KOG1876\ Arp23-p20 Arp23-p20
\
KOG3459 CG1249 C52E4.3 Smdz KOG1523 Arp23-pal Arp23-p4l
1 1 A )
KOG1781 CG13277 ZK593.7 Lsm7 KOG2826 Arp23-p34 | Arp23-p34
\
\
KOG3293 CG31990 F32A5.7 Lsm4 KOG0678 Arp3 \ Arp3
Pattern D. melanogaster C. elegans  S. cerevisiae Pattern B. taurus H. sapiens
(a) (b)
KOG3229 Vps24 CG9779 Chmp3
Chmp4A -
KOG1656 Vps32 CG8055 O—/ -- Chmp4B:<5)
- Chmp4C
KOG2910 Vps20 CG4071 Chmp6
1
KOG2760 Vps36 : CG10711 Eap45
1 A
KOG3341 Vps22 CG6637 Eap30
KOG4068 Vps25 CG14750 Eap20
Pattern S. cerevisiae D. melanogaster H. sapiens
(c)
Syntaxin:
Sso2
KOG0810 1] \%
e
/
KOG0860 Nyvlp Snayptobrevin
KOG1586 alpha-SNAP
KOG3065 Spo20
Snap-25B
Pattern D. melanogaster S. cerevisiae R. norvegicus

Figure 6

(d)

34

Arp2

Arcl5

Arcl9

Arc40

Arc35

Arp3

S. cerevisiae



Figure 7

35



GMP 5-Phosphoribosylamine

Glu L-Glutamate Gln
(a)

Fumarate

Asp
L-Arginino-succinate () () Adenylo-succinate

| aspS | | purA

O pyrB O O

N-Carbomyl-L-Aspartate L-Aspartate Oxaloacetate

(b)

Figure 8

36



