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Analytic information theory aims at studying problems of information theory using analytic techniques of computer
science and combinatorics. Following Hadamard’s precept,these problems are tackled by complex analysis methods
such as generating functions, Mellin transform, Fourier series, saddle point method, analytic poissonization and
depoissonization, and singularity analysis. This approach lies at the crossroad of computer science and information
theory. In this survey we concentrate on one facet of information theory (i.e., source coding better known as data
compression), namely theredundancy rateproblem. The redundancy rate problem determines by how muchthe
actual code length exceeds the optimal code length. We further restrict our interest to theaverageredundancy for
knownsources, that is, when statistics of information sources are known. We present precise analyses of three types
of lossless data compression schemes, namely fixed-to-variable (FV) length codes, variable-to-fixed (VF) length
codes, and variable-to-variable (VV) length codes. In particular, we investigate average redundancy of Huffman,
Tunstall, and Khodak codes. These codes have succinct representations astrees, either as coding or parsing trees, and
we analyze here some of their parameters (e.g., the average path from the root to a leaf).

Keywords: Source coding, prefix codes, Kraft’s inequality, Shannon lower bound, data compression, Huffman code,
Tunstall code, Khodak code, redundancy, distribution modulo 1, Mellin transform, complex asymptotics.

1 Introduction
The basic problem ofsource codingbetter known as (lossless)data compressionis to find a binary code
that can be unambiguously recovered with shortest possibledescription either on average or for individual
sequences. Thanks to Shannon’s work we know that on average the number of binary bits per source
symbol cannot be smaller than the source entropy rate. Thereare many codes achieving the entropy,
therefore one turns attention toredundancy. The average redundancy of a source code is the amount by
which the expected number of binary digits per source symbolfor that code exceeds entropy. One of
the goals in designing source coding algorithms is to minimize the average redundancy. In this survey,
we discuss various classes of source coding and their corresponding average redundancy. It turns out that
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such analyses often resort to studying certain intriguing trees such as Huffman, Tunstall and Khodak trees.
We study them using tools from analysis of algorithms.

Lossless data compression comes in three flavors: fixed-to-variable (FV) length codes, variable-to-fixed
(VF) length codes, and finally variable-to-variable (VV) length codes. The latter includes the previous two
families of codes and is the least studied among all data compression schemes. In the fixed-to-variable
code the encoder maps fixed length blocks of source symbols into variable-length binary code strings. Two
important fixed-to-variable length coding schemes are the Shannon code and the Huffman code. While
Huffman has already known that the average code length is asymptotically equal to the entropy of the
source, the asymptotic performance of the Huffman code is still not fully understood. In [1] Abrahams
summarizes much of the vast literature on fixed-to-variablelength codes. In this survey, we present
precise analysis from our work [129] of the Huffman average redundancy for memoryless sources. We
show that the average redundancy either converges to an explicitly computable constant, as the block
length increases, or it exhibits a very erratic behavior fluctuating between0 and1.

A VF encoder partitions the source string into variable-length phrases that belong to a given dictionary
D. Often a dictionary is represented by a complete tree (i.e.,a tree in which every node has maximum
degree), also known as theparsing tree. The codes assigns a fixed-length word to each dictionary entry.
An important example of a variable-to-fixed code is the Tunstall code [133]. Savari and Gallager [112]
present an analysis of the dominant term in the asymptotic expansion of the Tunstall code redundancy. In
this survey, following [33], we describe a precise analysisof the phrase length (i.e., path from the root to
a terminal node in the corresponding parsing tree) for such acode and its average redundancy.

Finally, a variable-to-variable (VV) code is a concatenation of variable-to-fixed and fixed-to-variable
codes. A variable-to-variable length encoder consists of aparserand astring encoder. The parser, as in
VF codes, segments the source sequence into a concatenationof phrases from a predetermined dictionary
D. Next, the string encoder in a variable-to-variable schemetakes the sequence of dictionary strings
and maps each one into its corresponding binary codeword of variable length. Aside from the special
cases where either the dictionary strings or the codewords have a fixed length, very little is known about
variable-to-variable length codes, even in the case of memoryless sources. Surprisingly, in 1972 Khodak
[65] described a VV scheme with small average redundancy that decreases with the growth of phrase
length. He did not offer, however, an explicit VV code construction. We will remedy this situation and
follow [12] to propose a transparent proof.

Throughout this survey, we study various intriguing trees describing Huffman, Tunstall and Khodak
codes. These trees are studied by analytic techniques of analysis of algorithms [42; 70; 71; 72; 130].
The program of applying tools from analysis of algorithms toproblems of source coding and in general
to information theory lies at the crossroad of computer science and information theory. It is also known
asanalytic information theory. In fact, the interplay between information theory and computer science
dates back to the founding father of information theory, Claude E. Shannon. His landmark paper “A
Mathematical Theory of Communication” is hailed as the foundation for information theory. Shannon
also worked on problems in computer science such as chess-playing machines and computability of dif-
ferent Turing machines. Ever since Shannon’s work on both information theory and computer science,
the research at the interplay between these two fields has continued and expanded in many exciting ways.
In the late 1960s and early 1970s, there were tremendous interdisciplinary research activities, exemplified
by the work of Kolmogorov, Chaitin, and Solomonoff, with theaim of establishing algorithmic informa-
tion theory. Motivated by approaching Kolmogorov complexity algorithmically, A. Lempel (a computer
scientist), and J. Ziv (an information theorist) worked together in the late 1970s to develop compression
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algorithms that are now widely referred to as Lempel-Ziv algorithms. Analytic information theory is a
continuation of these efforts.

Finally, we point out that this survey deals only with sourcecoding forknown sources. The more prac-
tical universal source coding(in which source distribution is unknown) is left for another time. However,
at the end of this survey we provide an extensive bibliography on the redundancy rate problem, including
universal source coding. In particular, we note that recentyears have seen a resurgence of interest in
redundancy rate forfixed-to-variablecoding (cf. [18; 23; 24; 25; 53; 78; 79; 80; 84; 86; 103; 105; 109;
110; 112; 118; 121; 128; 129; 139; 146; 153; 149; 150]). Surprisingly there are only a handful of results
for variable-to-fixed codes (cf. [63; 76; 92; 111; 112; 113; 132; 136; 158] ) and an almost non-existing
literature on variable-to-variable codes (cf. [36; 44; 65;76]). While there is some recent work on universal
VF codes [132; 136; 158], to the best of our knowledge redundancy for universal VF and VV codes was
not studied with the exception of some preliminary work of the Russian school [76; 77] (cf. also [82]).

This survey is organized as follows. In the next section, we present some preliminary results such as
Kraft’s inequality, Shannon lower bound, and Barron’s lemma. In Section 3 we analyze Hufmman’s code.
Then we turn our attention in Section 4 to the Tunstall and VF Khodak codes. Finally, in Section 5 we the
VV code of Khodak and its interesting analysis. We conclude this survey with two remarks concerning
average redundancy for sources with unknown parameters andfor non-prefix codes.

2 Preliminary Results
Let us start with some definitions and preliminary results. Asource codeis a bijective mapping

C : A∗ → {0, 1}∗

from the set of all sequences over an alphabetA to the set{0, 1}∗ of binary sequences. We writex ∈ A∗

for a sequence of unspecified length, andxj
i = xi . . . xj ∈ Aj−i+1 for a sequence of lengthj − i + 1.

We denote byP the probability of the source, and writeL(C, x) (or simplyL(x)) for the code length
of the source sequencex over the codeC. Finally, the sourceentropyis defined as usual byH(P ) =
−∑

x∈A∗ P (x) lg P (x) and theentropy rateis denoted byh. We write lg := log2 and log for the
logarithm of unspecified base. We often present our results for the binary alphabetA = {0, 1}.

L R

R

L

Fig. 1: Lattice paths and binary trees



4 Wojciech Szpankowski

Throughout this survey (except in Section 6.2) we studyprefix codesfor which no codeword is a prefix
of another codeword. For such codes there is a mapping between a prefix code and a path in a tree from
the root to a terminal (external) node (e.g., for a binary prefix code move to the left in the tree represents
0 and move to the right represents1), as shown in Figure 1. We also point out that a prefix code and the
corresponding path in a tree defines a lattice path in the firstquadrant also shown in Figure 1. If some
additional constraints are imposed on the prefix codes, thistranslates into certain restrictions on the lattice
path indicated as the shaded area in Figure 1.

The prefix condition imposes some restrictions on the code length. This fact is knows as Kraft’s in-
equality discussed next.

Theorem 1 (Kraft’s Inequality) Let |A| = m. For any prefix code the codeword lengthsℓ1, ℓ2, . . . , ℓN

satisfy the inequality
N∑

i=1

m−ℓi ≤ 1. (1)

Conversely, if codeword lengths satisfy this inequality, then one can build a prefix code.

Proof. This is an easy exercise on trees. Consider only a binary alphabet|A| = 2. Let ℓmax be the
maximum codeword length. Observe that at levelℓmax some nodes are codewords, some are descendants
of codewords, and some are neither. Since the number of descendants at levelℓmax of a codeword located
at levelℓi is 2ℓmax−ℓi , we obtain

N∑

i=1

2ℓmax−ℓi ≤ 2ℓmax ,

which is the desired inequality. The converse part can also be proved, and is left for the reader.

Observe that the Kraft’s inequality implies the existence of at least one sequencẽx such that

L(x̃) ≥ − log P (x̃).

Actually, a stronger statement is due to Barron [5] who proved the following result.

Lemma 1 (Barron) Let L(X) be the length of a prefix code, whereX is generated by a stationary er-
godic source over a binary alphabet. For any sequencean of positive constants satisfying

∑
n 2−an < ∞

the following holds
P(L(X) < − logP (X) − an) ≤ 2−an ,

and therefore
L(X) ≥ − log P (X) − an (almost surely).

Proof: We argue as follows:

P(L(X) < − log2 P (X) − an) =
∑

x:P (x)<2−L(x)−an

P (x)

≤
∑

x:P (x)<2−L(x)−an

2−L(x)−an

≤ 2−an

∑

x

2−L(x) ≤ 2−an .
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The lemma follows from the Kraft inequality for binary alphabets and the Borel-Cantelli Lemma.

Using Kraft’s inequality we can now prove the first theorem ofShannon that bounds from below the
average code length.

Theorem 2 For any prefix code the average code lengthE[L(C, X)] cannot be smaller than the entropy
of the sourceH(P ), that is,

E[L(C, X)] ≥ H(P ).

where the expectation is taken with respect to the distribution P of the source sequenceX .

Proof. Let K =
∑

x 2−L(x) ≤ 1 for a binary alphabet, andL(x) := L(C, x). Then

E[L(C, X)] − H(P )] =
∑

x∈A∗

P (x)L(x) +
∑

x∈A∗

P (x) log P (x)

=
∑

x∈A∗

P (x) log
P (x)

2−L(x)/K
− log K ≥ 0

sincelog x ≤ x− 1 for 0 < x ≤ 1 or the divergence is nonnegative, whileK ≤ 1 by Kraft’s inequality.

What is the best code length? We are now in a position to answerthis question. As long as the expected
code length is concerned, one needs to solve the following constrained optimization problem for, say a
binary alphabet

min
L

∑

x

L(x)P (x) subject to
∑

x

2−L(x) ≤ 1.

This optimization problem has an easy solution through Lagrangian multipliers, and one finds that the
optimal code length isL(x) = − lg P (x) provided theinteger character of the length is ignored.

In general, one needs to round the length to an integer, thereby incurring some cost. This cost is usually
known under the nameredundancy. ForknowndistributionP , that we assume throughout this survey, the

pointwise redundancyRC(x) for a codeC and theaverage redundancyR
C

are defined as

RC(x) = L(C, x) + lg P (x), R
C

= E[L(C, X)] − H(P )] ≥ 0.

The pointwise redundancy can be negative, but the average redundancy cannot due to the Shannon theo-
rem.

3 Redundancy of Huffman’s FV Code
We now turn our attention to fixed-to-variable length codes,in particular Shannon and Huffman codes. In
this section, we assume that a known sourceP generates a sequencexn

1 = x1 . . . xn of fixed lengthn.
The codeC(xn

1 ) may be of a variable length.
We are interested in constructing an optimal code on average. It is known that the following optimiza-

tion problem

R
H

n = min
Cn

EXn
1
[L(Cn, xn

1 ) + lg P (xn
1 )]

is solved by theHuffman code. Recall that Huffman code is a recursive algorithm built over the associated
Huffman tree, in which the two nodes with lowest probabilities are combined into a new node whose
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probability is the sum of the probabilities of its two children. Huffman coding is still one of the most
familiar topics in information theory [1; 45; 46; 124], however, only recently a precise estimate of the

average redundancyR
H

n of the Huffman code was derived in [129] that we review below.
We study the average redundancy for memoryless sources emitting a binary sequence. Letp denote

the probability of generating “0” and q = 1 − p denote the probability of emitting “1”. Throughout, we
assume thatp < 1

2 . We denote byP (xn
1 ) = pkqn−k the probability of generating a binary sequence

consisting ofk zeros andn − k ones. The expected code lengthE[Ln] of the Huffman code is

E[Ln] =

n∑

k=0

(
n

k

)
pkqn−kL(k),

where

L(k) =
1(
n
k

)
∑

j∈Sk

lj

with Sk representing the set of all inputs having probabilitypkqn−k, andlj being the length of thejth
code inSk. By Gallager’s sibling property [46], we know that code lengths inSk are either equal tol(k)
or l(k)+1 for some integerl(k). If nk denotes the number of code words inSk that are equal tol(k)+1,
then

L(k) = l(k) +
nk(
n
k

) .

Clearly,l(k) = ⌊− lg(pkqn−k)⌋. Stubley [124] analyzed carefullynk and was led to conclude that

R
H

n =

n∑

k=0

(
n

k

)
pkqn−k[lg(pkqn−k) + ⌊− lg(pkqn−k)⌋]

+ 2

n−1∑

k=0

(
n

k

)
pkqn−k(1 − 2(lg(pkqn−k)+⌊− lg(pkqn−k)⌋)) + o(1).

Since

lg(pkqn−k) + ⌊− lg(pkqn−k)⌋ = 〈αk + βn〉

where

α = log2

(
1 − p

p

)
, β = log2

(
1

1 − p

)
,

and〈x〉 = x − ⌊x⌋ is the fractional part ofx, we arrive at the following

R
H

n = 2 −
n∑

k=0

(
n

k

)
pkqn−k〈αk + βn〉 − 2

n∑

k=0

(
n

k

)
pkqn−k2−〈αk+βn〉 + o(1). (2)

This is our starting formula for the average Huffman redundancy. In [129] we proved the following result.
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Fig. 2: The average redundancy of Huffman codes versus block sizen for: (a) irrationalα = log
2
((1 − p)/p) with

p = 1/π; (b) rationalα = log
2
((1 − p)/p) with p = 1/9.

Theorem 3 Consider the Huffman block code of lengthn over a binary memoryless source. Forp < 1
2

asn → ∞

R
H

n =





3
2 − 1

ln 2 + o(1) ≈ 0.057304 α irrational,

3
2 − 1

M

(
〈βMn〉 − 1

2

)
− 1

M(1−2−1/M )
2−〈nβM〉/M + o(1) α = N

M

(3)

whereN, M are integers such thatgcd(N, M) = 1 andρ < 1.

Before we present a sketch of the proof, we plot in Figure 2 theaverage redundancyR
H

n as a function
of n for two values ofα, oneirrational and onerational. In Figure 2(a) we considerα = lg(1 − p)/p
irrational while in Figure 2(b)α is rational. Two modes of behavior are clearly visible. The function in
Figure 2(a) converges to a constant (≈ 0.05) for largen as predicted by Theorem 3, while the curve in
Figure 2(b) is quite erratic (with the maximum close to Gallager’s upper bound0.086).

We now briefly sketch the proof of Theorem 3. Details can be found in [129]. From the above dis-

cussion, it should be clear that in order to evaluate the sumsappearing inR
H

n we need to understand
asymptotics of the following

n∑

k=0

(
n

k

)
pk(1 − p)n−kf(〈xk + y〉)

for fixed p and some Riemann integrable functionf : [0, 1] → R uniformly overy ∈ R wherexk is a
sequence. In our casexk = αk andy = βn. We need to consider two cases:α irrational andα rational.

The case whenα is rational is relatively elementary. The following lemma taken from [129] is easy to
prove. Using below lemma we easily derive (3) forα rational.
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Lemma 2 Let 0 < p < 1 be a fixed real number and suppose thatα = N
M is a rational number with

gcd(N, M) = 1. Then for every bounded functionf : [0, 1] → R we have

n∑

k=0

(
n

k

)
pk(1 − p)n−kf(〈kα + y〉) =

1

M

M−1∑

l=0

f

(
l

M
+

〈My〉
M

)
+ O(ρn) (4)

uniformly for ally ∈ R and someρ < 1.

The irrational case is more sophisticated and we need to appeal to theory of sequences modulo1 as
fully explained in the book by Drmota and Tichy [32]. The following result can be found in [32; 130].

Lemma 3 Let0 < p < 1 be a fixed real number andα be an irrational number. Then for every Riemann
integrable functionf : [0, 1] → R we have

lim
n→∞

n∑

k=0

(
n

k

)
pk(1 − p)n−kf(〈αk + y〉) =

∫ 1

0

f(t) dt, (5)

where the convergence is uniform for all shiftsy ∈ R.

In our case we setf(t) = t andf(t) = 2−t in (5) and Theorem 3 follows.
In passing we should point out that the methodology presented here can be used to derive redundancy of

other FV codes. For example, Shannon code assigns the code length⌈− lg(pkqn−k)⌉ for the probability
pkqn−k. Its average redundancy is then

R
S

n =

n∑

k=0

(
n

k

)
pkqn−k

(
⌈− lg(pkqn−k)⌉ + lg pkqn−k

)

=

n∑

k=0

(
n

k

)
pkqn−k〈− lg(pkqn−k)〉 (6)

=

n∑

k=0

(
n

k

)
pkqn−k〈αk + βn〉 (7)

Using Lemmas 2 and 3 we easily arrive at the following conclusion.

Theorem 4 Consider the Shannon block code of lengthn over a binary memoryless source. Forp < 1
2

asn → ∞

rn =





1
2 + o(1) α irrational

1
2 − 1

M

(
〈Mnβ〉 − 1

2

)
+ O(ρn) α = N

M , gcd(N, M) = 1
(8)

whereρ < 1.

In [129] we also derived the redundancy of Golomb’s code which is a Huffman code for unbounded
alphabets.
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4 Redundancy of Tunstall and Khodak VF Codes
We now study variable-to-fixed (VF) length codes, in particular, the Tunstall and Khodak VF codes.
Recall that in the in VF scenario, the source stringx, say overm-ary alphabetA, is partitioned into non-
overlapping (unique) phrases, each belonging to a givendictionaryD represented by a completeparsing
tree T . The dictionary entriesd ∈ D correspond to theleavesof the associated parsing tree, so that
VF codes are prefix codes. The encoder represents each parsedstring by the fixed length binary code
word corresponding to its dictionary entry. If the dictionary D hasM entries, then the code word for
each phrase has⌈log2 M⌉ bits. The best known variable-to-fixed length code is the Tunstall code [133];
however, it was independently discovered by Khodak [64].

0.16 0.24

0.2160.144

0.24 0.36

0.6

1.000

0.4

0.4 0.6

p = 0.6        q = 04

Tunstall’s construction

M = 5

Khodak’s construction

r = 0.25

Fig. 3: Tunstall’s and Khodak’s Codes forM = 5 andr = 0.25.

Edges in the parsing tree of the Tun-
stall’s code correspond to letters from
the source alphabetA and are la-
beled by the alphabet probabilities, say
p1, . . . , pm. Every vertex in such a tree
is assigned the probability of the path
leading to it from the root, as shown
in Figure 3. For memoryless sources,
studied here, the probability of a ver-
tex is the product of probabilities of ver-
tices leading to it. More precisely, the
root node hasm leaves corresponding to
all of the symbols inA and labeled by
p1, . . . , pm. At each iteration one selects
the current leaf corresponding to a string
of thehighest probability, sayPmax, and
growsm children out of it with probabil-
itiesp1Pmax, . . . , pmPmax. After J iter-

ations, the parsing tree hasJ non-rootinternal nodesandM = (m−1)J +m leaves, each corresponding
to a distinct dictionary entry.

Another version of VF algorithm was proposed by Khodak’s [64] who independently discovered the
Tunstall code using a rather different approach. Letpmin = min{p1, . . . , pm}. Khodak suggested choos-
ing a real numberr ∈ (0, pmin) and growing a complete parsing tree until all leavesd ∈ D satisfy

pminr ≤ P (d) < r. (9)

Khodak and Tunstall algorithms are illustrated in Figure 3 with the dictionaryD = {00, 01, 10, 110, 111}
corresponding to strings represented by the paths from the root to all terminal nodes.

It is known (see, e.g., [112, Lemma 2]) that the parsing treesfor Tunstall and Khodak algorithms are
exactly the same, however, they react differently to the probability tie when expanding a leaf. More
precisely, when there are several leaves with the same probability, the Tunstall algorithm selectsoneleaf
and expands it, then selects another leaf of the same probability, and continues doing it until all leaves of
the same probability are expanded. The Khodak algorithm expandsall leaves with the same probability
simultaneously, in parallel; thus there are “jumps” in the number of dictionary entriesM when the parsing
tree grows. For example, in Figure 3 two nodes marked “0.24” will be expanded simultaneously in the
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Khodak algorithm, and one after another by the Tunstall algorithm.
Our goal i this section is to present a precise analysis of theKhodak redundancy as well as to provide

some insights into the behavior of the parsing tree (i.e., the path length distribution). Let us study first the
average redundancyrater defined

r = lim
n→∞

∑
|x|=n PS(x)(L(x) + log PS(x))

n
, (10)

wherePS(x) is the probability of the source sequencex. Using renewal theory (i.e., regeneration theory)
[9] we find

lim
n→∞

∑
|x|=n PS(x)L(x)

n
=

∑
d∈D PD(d)ℓ(d)

E[D]
, (11)

whereℓ(d) is the length of the phrased ∈ D, andE[D] =
∑

d∈D |d|PD(d) is the average phrase lengthD,
known also as the averagedelay, which is actually the average path length from the root to a terminal node
in the corresponding parsing tree. In the abovePD represents the distribution of phrases in the dictionary,
but from now on we shall writeP := PD. Since for the VF codes

∑
|x|=n PS(x)L(x) = log2 M , we find

r =
log M

E[D]
− h (12)

whereh := hS is the entropy rate of the source. In passing we should observe that by theConversation of
Entropy Property[111] the entropy rate of the dictionaryhD is related to the source entropyh as follows

hD = hE[D]. (13)

Tunstall’s algorithm has been studied extensively (cf. thesurvey article [1]). Simple bounds for its
redundancy were obtained independently by Khodak [64] and by Jelinek and Schneider [63]. Tjalkens and
Willems [132] were the first to look at extensions of this codeto sources with memory. Savari and Gallager
[112] proposed a generalization of Tunstall’s algorithm for Markov sources and used renewal theory for
an asymptotic analysis of average code word length and redundancy for memoryless and Markov sources.
Our presentation here is based on [33; 34].

In view of (12), we need to study the expected value of the phrase lengthE[D]. In fact, we find the
distribution ofD. But, instead of concentrating on the terminal nodes we analyze the behavior of internal
nodes. For Khodak’s code, it follows from (9) that ify is a proper prefix of one or more entries of
Dr := D, i.e.,y corresponds to an internal node ofTr := T , then

P (y) ≥ r. (14)

Therefore, it is easier to characterize the internal nodes of the parsing treeTr rather than its leaves. We
shall follow this approach when analyzing the path lengthD of Khodak’s code.

We first derive the moment generating function of the phrase lengthD and then its moments. Our
approach is analytic and we use such tools as the Mellin transform and the Tauberian theorems [42; 130].
Let us define the probability generating functionD(r, z) of the phrase lengthD in the Khodak code with
parameterr as

D(r, z) := E[zD] =
∑

d∈Dr

P (d)z|d|.
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However, as mentioned above, it is better to work with another transform describing the probabilities of
strings which correspond tointernal nodesin the parsing treeTr. Therefore, we also define

S(r, z) =
∑

y: P (y)≥r

P (y)z|y|. (15)

In (17) of Lemma 4 below we show that

D(r, z) = 1 + (z − 1)S(r, z), (16)

and therefore,
E[D] =

∑

y∈Y

P (y), E[D(D − 1)] = 2
∑

y∈Y

P (y)|y|.

Lemma 4 Let D be a uniquely parsable dictionary (i.e., leaves in the corresponding parsing tree) and
Y be the collection of strings which are proper prefixes of one or more dictionary entries (i.e., internal
nodes of the parsing tree). Then for all|z| ≤ 1,

∑

d∈D

P (d)
z|d| − 1

z − 1
=

∑

y∈Y

P (y)z|y|. (17)

We are now in the position to analyze the Khodak algorithm. Let v = 1/r andz be a complex number.
DefineS̃(v, z) = S(v−1, z). We restrict our attention here to a binary alphabetA with 0 < p < q < 1.
Let A(v) devote the number of source strings with probability at least v−1 (i.e., number of internal nodes
in the corresponding parsing tree), that is,

A(v) =
∑

y:P (y)≥1/v

1. (18)

The functionsA(v) andS̃(v, z) satisfy the following recurrences

A(v) =

{
0 v < 1,
1 + A(vp) + A(vq) v ≥ 1,

(19)

and

S̃(v, z) =

{
0 v < 1,

1 + zpS̃(vp, z) + zqS̃(vq, z) v ≥ 1,
(20)

since every binary string either is the empty string, a string starting with the first source symbol, or a
string starting with the second source symbol. This partition directly leads to the recurrences above.
Observe thatA(v) represents the number of internal nodes in Khodak’s construction with parameterv−1

andMr = A(v) + 1 = |Dr| is the dictionary size for the binary alphabet. Further,E[Dr] = S̃(v, 1) and
E[Dr(Dr − 1)] = S̃′(v, 1).

We illustrate the approach of [33; 34] on distributional results of D. For this we have to analyze (16)
which we write in the following form

D̃(v, z) = D(1/v, z) = 1 + (z − 1)S̃(v, z)
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whereS̃(v, z) satisfies recurrence (20). We study asymptotics ofD̃(v, z) using the Mellin transform
[40; 42; 130]. The Mellin transformF ∗(s) of a functionF (v) is defined as

F ∗(s) =

∫ ∞

0

F (v)vs−1dv.

Using the fact that the Mellin transform ofF (ax) is a−sF ∗(s), we conclude from recurrence (20) that the
Mellin transformD∗(s, z) of D̃(v, z) with respect tov becomes

D̃∗(s, z) =
1 − z

s(1 − zp1−s − zq1−s)
− 1

s
, (21)

for ℜ(s) < s0(z), wheres0(z) denotes the real solution ofzp1−s + zq1−s = 1. It is easy to see that

s0(z) = −z − 1

he
+

(
1

he
− p ln2 p + q ln2 q

2h3
e

)
(z − 1)2 + O((z − 1)3)

asz → 1 whereh2 = p ln(1/p) + q ln(1/q) is the natural entropy.
In order to find the asymptotics of̃D(v, z) asv → ∞ we proceed to compute the inverse transform of

D̃∗(s, z), that is (cf. [130])

D̃(v, z) =
1

2πi
lim

T→∞

∫ σ+iT

σ−iT

D̃∗(s, z)v−s ds, (22)

whereσ < s0(z). For this purpose it is usually necessary to determine the polar singularities of the
meromorphic continuation of̃D∗(s, z) right to the lineℜ(s) = s0(z), that is, we have to analyze the set

Z(z) = {s ∈ C : zp1−s + zq1−s = 1} (23)

of all complex roots ofzp1−s + zq1−s = 1. The next lemma, basically due to Jacquet and Schachinger,
summarizes all needed properties of the setZ(z). Its proof can be found in [34].

Lemma 5 Suppose that0 < p < q < 1 and thatz is a real number with|z − 1| ≤ δ for some0 < δ < 1.
Let

Z(z) = {s ∈ C : p1−s + q1−s = 1/z}.
(i) All s ∈ Z(z) satisfy

s0(z) ≤ ℜ(s) ≤ σ0(z),

wheres0(z) < 1 is the (unique) real solution ofp1−s + q1−s = 1/z andσ0(z) > 1 is the (unique) real
solution of1/z + q1−s = p1−s. Furthermore, for every integerk there uniquely existssk(z) ∈ Z(z) with

(2k − 1)π/ log p < ℑ(sk(z)) < (2k + 1)π/ log p

and consequentlyZ(z) = {sk(z) : k ∈ Z}.

(ii) If log q/ log p is irrational, thenℜ(sk(z)) > ℜ(s0(z)) for all k 6= 0 and also

min
|z−1|≤δ

(ℜ(sk(z)) −ℜ(s0(z))) > 0. (24)
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(iii) If log q/ log p = r/d is rational, wheregcd(r, d) = 1 for integersr, d > 0, then we haveℜ(sk(z)) =
ℜ(s0(z)) if and only ifk ≡ 0 mod d. In particularℜ(s1(z)), . . . ,ℜ(sd−1(z)) > ℜ(s0(z)) and

sk(z) = sk mod d(z) +
2(k − k mod d)πi

log p
,

that is, all s ∈ Z(z) are uniquely determined bys0(z) and bys1(z), s2(z), . . . , sd−1(z), and their
imaginary parts constitute an arithmetic progression.

The next step is to use theresidue theoremof Cauchy (cf. [42; 130]) to estimate the integral in (22),
that is, to findD̃(v, z) = limT→∞ FT (v, z) for everyτ > s0(z) with τ 6∈ {ℜ(s) : s ∈ Z(z)} where

FT (v, z) = −
∑

s′∈Z(z), ℜ(s′)<τ,|ℑ(s′)|>T

Res(D̃∗(s, z) v−s, s = s′)

+
1

2πi

∫ τ+iT

τ−iT

(
1 − z

s(1 − zp1−s − zq1−s)
− 1

s

)
v−s ds

= −
∑

s′∈Z(z), ℜ(s′)<τ,|ℑ(s′)|>T

(1 − z)v−s′

zs′p1−s′ ln p + zs′q1−s′ ln q

+
1

2πi

∫ τ+iT

τ−iT

(
1 − z

s(1 − zp1−s − zq1−s)
− 1

s

)
v−s ds

provided that the series of residues converges and the limitasT → ∞ of the last integral exists. The
problem is that neither the series nor the integral above areabsolutely convergent since the integrand is
only of order1/s. To circumvent this problem, we resort to analyze another integral (cf. [134]), namely

D̃1(v, z) =

∫ v

0

D̃(w, z) dw.

Clearly, the Mellin transform̃D∗
1(s, z) = −D̃∗(s + 1, z)/s, and therefore it is of orderO(1/s2). Then

one can estimate its inverse Mellin as described above. However, after obtaining asymptotics of̃D1(v, z)

asv → ∞ one must recover the original asymptotics ofD̃(v, z). This requires a Tauberian theorem of
the following form.

Lemma 6 Suppose thatf(v, λ) is a non-negative increasing function inv ≥ 0, whereλ is a real param-
eter with|λ| ≤ δ for some0 < δ < 1. Assume that

F (v, λ) =

∫ v

0

f(w, λ) dw

has the asymptotic expansion

F (v, λ) =
vλ+1

λ + 1
(1 + λ · o(1))

asv → ∞ and uniformly for|λ| ≤ δ. Then

f(v, λ) = vλ(1 + |λ| 12 · o(1))

asv → ∞ and again uniformly for|λ| ≤ δ.
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Proof. By the assumption ∣∣∣∣F (v, λ) − vλ+1

λ + 1

∣∣∣∣ ≤ ε|λ| v
λ+1

λ + 1

for v ≥ v0 and all|λ| ≤ δ. Setv′ = (ε|λ|)1/2v. By monotonicity we obtain (forv ≥ v0)

f(v, λ) ≤ F (v + v′, λ) − F (v, λ)

v′

≤ 1

v′

(
(v + v′)λ+1

λ + 1
− vλ+1

λ + 1

)
+

2

v′
ε|λ| (v + v′)λ+1

λ + 1

=
1

v′(λ + 1)

(
vλ+1 + (λ + 1)vλv′ + O(vλ−1(v′)2) − vλ+1

)
+ O

(
ε|λ|vλ+1

v′

)

= vλ + O
(
vλε

1
2 |λ| 12

)
+ O

(
ε|λ|vλ+1

v′

)
= vλ + O

(
vλε

1
2 |λ| 12

)
.

In a similar way we find the corresponding lower bound (forv ≥ v0 + v
1/2
0 ), the result follows.

Combining Mellin transform, Tauberian theorems and singularity analysis allow us to establish our
main results that we present next. The reader is referred to [34] for detailed proofs. First, we apply the
above approach to recurrence (19) and arrive at the following.

Theorem 5 Letv = 1/r in the Khodak’s construction and assumev → ∞.
(i) If log q/ log p is irrational, then

Mr =
v

he
+ o(v) (25)

he = p ln(1/p) + q ln(1/q) is the entropy rate innaturalunits (i.e.,he = h ln 2). Otherwise, when
log q/ log p is rational, letL > 0 is the largest real number for whichlog(1/p) andlog(1/q) are integer
multiples ofL. Then

Mr =
Q1(ln v)

he
v + O(v1−η) (26)

for someη > 0 where

Q1(x) =
L

1 − e−L
e−L〈 x

L 〉, (27)

and, recall,〈y〉 = y − ⌊y⌋ is the fractional part of the real numbery.

(ii) If log q/ log p is irrational, then

E[Dr] = S̃(v, 1) =
lg v

h
+

h2

2h2
+ o(1), (28)

while in the rational case

E[Dr] = S̃(v, 1) =
lg v

h
+

h2

2h2
+

Q2(ln v)

h ln 2
+ O(v−η) (29)

for someη > 0, where

Q2(x) = L ·
(

1

2
−

〈 x

L

〉)
(30)

andh2 = p lg2(1/p) + q lg2(1/q).
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Using these findings and using similar but more sophisticated analysis we obtain out next main result.

Theorem 6 Let Dr denote the phrase length in Khodak’s construction with parameterr of the Tunstall
code with a dictionary of sizeMr over a biased memoryless source. Then asMr → ∞

Dr − 1
h lg Mr√(

h2

h3 − 1
h

)
lg Mr

→ N(0, 1)

whereN(0, 1) denotes the standard normal distribution. Furthermore, wehaveE[D] = lg Mr

h + O(1)
and

Var[Dr] =

(
h2

h3
− 1

h

)
lg Mr + O(1)

for largeMr.

By combining (25) and (28) resp. (26) and (29) we can be even more precise. In the irrational case we
have

E[Dr] =
lg Mr

h
+

lg(h ln 2)

h
+

h2

2h2
+ o(1)

and in the rational case we find

E[Dr] =
lg Mr

h
+

lg(h ln 2)

h
+

h2

2h2
+

− lg L + lg(1 − e−L) + L lg(e)/2

h
+ O((M−η

r ),

so that there is actually no oscillation. Recall,L > 0 is the largest real number for whichln(1/p) and
ln(1/q) are integer multiples ofL.

As a direct consequence, we can derive a precise asymptotic formula for the average redundancy of the
Khodak code, that is,

rK
M =

lg M

E[D]
− h .

The following result is a consequence of the above derivations.

Corollary 1 Let Dr denote the dictionary in Khodak’s construction of the Tunstall code of sizeMr. If
lg p/ lg q is irrational, then

rK
Mr

=
h

lg Mr

(
−h2 ln 2

2h
− lg(h ln 2)

)
+ o

(
1

log Mr

)
.

In the rational case we have

rK
Mr

=
h

lg Mr

(
− h2 ln 2

2h
− lg(h ln 2) − lg

(
sinh(L/2)

L/2

))
+ O

(
1

log2 Mr

)
,

for someη > 0, whereL > 0 is the largest real number for whichln(1/p) and ln(1/q) are integer
multiples ofL.
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k

l

a plog–= rlog
plog

-----------

rlog
qlog

-----------

qlog– b=

Fig. 4: A random walk with a linear barrier; the exit time is equivalent
to the phrase length in the Khodak algorithm (e.g., the exit time= 7).

Let us offer some final remarks. We
already observed that the parsing trees
for the Tunstall and Khodak algorithms
are the same except when there is a “tie”.
In the case of a tie Khodak algorithm
develops all nodes with the tie simul-
taneously while the Tunstall algorithm
expends one node after another. This
situation can occur both, for the ratio-
nal case and for the irrational case, and
somewhat surprisingly leads to the can-
celation of oscillation in the redundancy
of the Khodak code for the rational case.
As shown in [112] tiny oscillations re-
main in the Tunstall code redundancy
for the rational case. But as easy to see
that Central Limit Theorem holds also

for the Tunstall code as shown [34].
Finally, we relate our results to certain problems on randomwalks. As already observed in [112], a path

in the parsing tree from the root to a leaf corresponds to a random walk on a lattice in the first quadrant of
the plane (cf. Figure 4). Indeed, observe that our analysis of the Khodak code boils down to studying the
following sum

A(v) =
∑

y:P (y)≥1/v

f(v)

for some functionf(v). SinceP (y) = pkql for some nonnegative integersk, l ≥ 0, we conclude that the
summation set ofA(v) can be expressed, after settingv = 2V , as

k lg(1/p) + l lg(1/q) ≤ V.

This corresponds to a random walk in the first quadrant with the linear boundary conditionax + by = V ,
wherea = log(1/p) andb = log(1/q) as shown in Figure 4. The phrase length coincides with the exit
time of such a random walk (i.e., the last step before the random walk hits the linear boundary). This
correspondence is further explored in [31; 62].

5 Redundancy of Khodak VV Code
Recall that a variable-to-variable (VV) length code partitions a source sequence into variable length
phrases that are encoded into strings of variable lengths. While it is well known that every VV (pre-
fix) code is a concatenation of a variable-to-fixed length code (e.g., Tunstall code) and a fixed-to-variable
length encoding (e.g., Huffman code), an optimal VV code hasnot yet been found. Fabris [36] proved
that greedy, step by step, optimization (that is, a concatenation of Tunstall and Huffman codes) does not
lead to an optimal VV code. In this section, we analyze an interesting VV code due to Khodak [65].

Recall that in (10) we define the average redundancy rate as

r = lim
n→∞

∑
|x|=n PS(x)(L(x) + log PS(x))

n
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becomes after using renewal theory as in (11)

r =

∑
d∈D P (d)ℓ(d) − hD

E[D]
=

∑
d∈D P (d)(ℓ(d) + lg P (d))

E[D]
, (31)

whereP is the probability law of the dictionary phrases andE[D] =
∑

d∈D |d|P (d). From now on we
shall writeD := E[D].

In previous sections we analyzed FV and VF codes. We prove that the average redundancy rate (per
block in the case of FV codes) isO(1/D). It is an intriguing question whether one can construct a code
with r = o(1/D). This quest was accomplished by Khodak [65] in 1972 who proved that one can find a

VV code withr = O(D
−5/3

). However, the proof presented in [65] is rather sketchy and complicated.
Here we present a transparent proof proposed in [12] of the following main result of this section.

Theorem 7 For everyD0 ≥ 1, there exists a VV code with average delayD ≥ D0 such that its average
redundancy rate satisfies

r = O(D
−5/3

) (32)

and the average code length isO(D log D).

The rest of this section is devoted to describe a proof of Theorem 7 presented in [12]. We assume anm-
ary alphabetA = {a1, . . . , am} with probability of symbolsp1, . . . , pm. Let us first give some intuitions.
For everyd ∈ D we can representP (d) asP (d) = pk1

1 · · · pkm
m , whereki = ki(d) is the number of times

symbolai appears ind. In what follows we writetype(d) = (k1, k2, . . . , km) for all strings with the
same probabilityP (d) = pk1

1 · · · pkm
m . Furthermore, the string encoder of our VV code uses a slightly

modified Shannon code that assigns tod ∈ D a binary word of lengthℓ(d) close to− logP (d) when
log P (d) is slightly larger or smaller than an integer. (Kraft’s inequality will not be automatically satisfied
but Lemma 9 below takes care of it.) Observe that the average redundancy of Shannon code is

∑

d∈D

P (d)[⌈− log P (d)⌉ + log P (d)] =
∑

d∈D

P (d) · 〈k1(d)γ1 + k2(d)γ2 + · · · + km(d)γm〉

whereγi = log pi. In order to build a VV code withr = o(1/D), we are to find integersk1 =
k1(d), . . . km = km(d) such that the linear formk1γ1 + k2γ2 + · · · + kmγm is close to an integer.
In the sequel, we discuss some properties of the distribution of 〈k1γ1 +k2γ2 + · · ·+kmγm〉 when at least
one ofγi is irrational (cf. [32]).

Let ‖x‖ = min(〈x〉, 〈−x〉) = min(〈x〉, 1 − 〈x〉) be the distance to the nearest integer. Thedispersion
δ(X) of the setX ⊆ [0, 1) is defined as

δ(X) = sup
0≤y<1

inf
x∈X

‖y − x‖,

that is, for everyy ∈ [0, 1) there existsx ∈ X with ‖y − x‖ ≤ δ(X). Since‖y + 1‖ = ‖y‖, the
same assertion holds for all realy. Dispersion tells us that points ofX are at most2δ(X) apart in[0, 1].
Therefore, there exist distinct pointsx1, x2 ∈ X with 〈y − x1〉 ≤ 2δ(X) and〈y − x2〉 ≤ 2δ(X).

The following property will be used throughout this paper. This is a standard result following from
Dirichlet’s approximation theorem, so we leave it for the reader to prove it (cf. [32]).
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Lemma 7 (i) Suppose thatθ is an irrational number. There exists an integerN such that

δ ({〈kθ〉 : 0 ≤ k < N}) ≤ 2

N
.

(ii) In general, let(γ1, . . . , γm) be anm-vector of real numbers such that at least one of its coordinates
is irrational. There exists an integerN such that the dispersion of the set is

X = {〈k1γ + · · · + kmγ〉 : 0 ≤ kj < N (1 ≤ j ≤ m)}

is bounded by

δ(X) ≤ 2

N
.

The central step of all existence results is the observationthat a bound on the dispersion of linear forms
of log2 pj implies the existence of a VV code with small redundancy. Indeed, our main result of this
section follows directly from the below lemma whose proof ispresented below.

Lemma 8 Let pj > 0 (1 ≤ j ≤ m) with p1 + · · · + pm = 1 be given and suppose that for someN ≥ 1
andη ≥ 1 the set

X = {〈k′
1 log2 p1 + · · · + k′

m log2 pm〉 : 0 ≤ k′
j < N (1 ≤ j ≤ m)},

has dispersion

δ(X) ≤ 2

Nη
. (33)

Then there exists a VV code with the average code lengthD = Θ(N3), the maximal length of order
Θ(N3 log N), and the average redundancy rate

r ≤ c′m · D− 4+η
3 .

Clearly, Lemma 7 and Lemma 8 directly imply Theorem 7 by setting η = 1 if one of thelog2 pj is
irrational. (If all log2 pj are rational, then the construction is simple).

We now concentrate on proving Lemma 8. The main thrust of the proof is to construct a complete
prefix free setD of words (i.e., a dictionary) on an alphabet of sizem such thatlog2 P (d) is very closeto
an integerℓ(d) with high probability. This is accomplished by growing anm-ary treeT in which paths
from the root to terminal nodes havelog P (d) close to an integer.

In the first step, we setk0
i := ⌊piN

2⌋ (1 ≤ i ≤ m) and define

x = k0
1 log2 p1 + · · · + k0

m log2 pm.

By our assumption (33) of Lemma 8, there exist integers0 ≤ k1
j < N such that

〈
x + k1

1 log2 p1 + · · · + k1
m log2 pm

〉
=

〈
(k0

1 + k1
1) log2 p1 + · · · + (k0

m + k1
m) log2 pm

〉
<

4

Nη
.

Now consider all paths in a (potentially) infinitem-ary tree starting at the root withk0
1 + k1

1 edges of type
a1 ∈ A, k0

2 + k1
2 edges of typea2 ∈ A,. . ., andk0

m + k1
m edges of typeam ∈ A (cf. Figure 5). LetD1
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denote the set of such words. (These are the first words of our prefix free set we are going to construct.)
By an application of Stirling’s formula it follows that there are two positive constantsc′, c′′ such that

c′

N
≤ P (D1) =

(
(k0

1 + k1
1) + · · · + (k0

m + k1
m)

k0
1 + k1

1 , . . . , k
0
m + k1

m

)
p

k0
1+k1

1
1 · · · pk0

m+k1
m

m ≤ c′′

N
(34)

uniformly for all k1
j with 0 ≤ k1

j < N . In summary, by construction all wordsd ∈ D1 have the property
that

〈log2 P (d)〉 <
4

Nη
,

that is,log2 P (d) is very close to an integer. Note further that all words ind ∈ D1 have about the same
length

n1 = (k0
1 + k′

1) + · · · + (k0
m + k′

m) = N2 + O(N),

and words inD1 constitute the first crop of “good words”. Finally, letB1 = An1 \D1 denote all words of
lengthn1 not inD1 (cf. Figure 5). Then

1 − c′′

N
≤ P (B1) ≤ 1 − c′

N
.

In the second step, we consider all wordsr ∈ B1 and concatenate them with appropriately chosen words
d2 of length∼ N2 such thatlog2 P (rd2) is close to an integerwith high probability. The construction is
almost the same as in the first step. For every wordr ∈ B1 we set

x(r) = log2 P (r) + k0
1 log2 p1 + · · · + k0

m log2 pm.

By (33) there exist integers0 ≤ k2
j (r) < N (1 ≤ j ≤ m) such that

〈
x(r) + k2

1(r) log2 p1 + · · · + k2
m(r) log2 pm

〉
<

4

Nη
.

Now consider all paths (in the infinite treeT ) starting atr ∈ B1 with k0
1 + k2

1(r) edges of typea1,
k0
2 + k2

2(r) edges of typea2, . . ., andk0
m + k2

m(r) edges of typeam (that is, we concatenatedr with
properly chosen wordsd2) and denote this set byD+

2 (r). We again have that the total probability of these
words is bounded from below and above by

P (r)
c′

N
≤ P (D2(r)) = P (r)

(
(k0

1 + k2
1(r)) + · · · + (k0

m + k2
m(r))

k0
1 + k2

1(r), . . . , k
0
m + k2

m(r)

)
p

k0
1+k2

1(r)
1 · · · pk0

m+k2
m(r)

m ≤ P (r)
c′′

N
.

Furthermore, by construction we have〈log2 P (d)〉 < 4
Nη for all d ∈ D+

2 (r).
Similarly, we can construct a setD−

2 (r) instead ofD+
2 (r) for which we have1−〈log2 P (d)〉 < 4/Nη.

We will indicate in the sequel whether we will useD+
2 (r) orD−

2 (r).
Let D2 =

⋃
(D+

2 (r) : r ∈ B1) (orD2 =
⋃

(D−
2 (r) : r ∈ B1)). Then all wordsd ∈ D2 have almost the

same length|d| = 2N2 + O(2N), their probabilities satisfy

〈log2 P (d)〉 <
4

Nη

(
or 1 − 〈log2 P (d)〉 <

4

Nη

)
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dr

r

“good” word inDj

“bad” word in Bj

N2

N2 + O(N)

2N2 + O(2N)

3N2 + O(3N)

KN2 + O(KN)
K = N log N

.

.

.

P D1( ) c
N
----=

P D2( ) 1 c
N
----– 

 =
c
N
----

P D3( ) 1 c
N
----– 

  2
=

c
N
----

P DK( ) 1 c
N
----– 

  k 1–
=

c
N
----

Fig. 5: Illustration to the construction of the VV code.
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and the total probability is bounded by

c′

N

(
1 − c′′

N

)
≤ P (D2) ≤

c′′

N

(
1 − c′

N

)
.

For everyr ∈ B1, letB+(r) (or B−(r)) denote the set of paths (resp. words) starting withr of length
2(k0

1 + · · ·+ k0
m)+ (k1

1 + k2
1(r)+ · · ·+ k1

m + k2
m(r)) that arenotcontained inD+

2 (r) (orD−
2 (r)) and set

B2 =
⋃

(B+
2 (r) : r ∈ B1) (or B2 =

⋃
(B−

2 (r) : r ∈ B1)). Observe that the probability ofB2 is bounded
by (

1 − c′′

N

)2

≤ P (B2) ≤
(

1 − c′

N

)2

.

We continue this construction, as illustrated in Figure 5, and in stepj we define sets of wordsDj and
Bj such that all wordsd ∈ Dj satisfy

〈log2 P (d)〉 <
4

Nη

(
or 1 − 〈log2 P (d)〉 <

4

Nη

)

and the length ofd ∈ Dj ∪ Bj is then given by|d| = jN2 + O (jN). The probabilities ofDj andBj are
bounded by

c′

N

(
1 − c′′

N

)j−1

≤ P (Dj) ≤
c′′

N

(
1 − c′

N

)j−1

,

and (
1 − c′′

N

)j

≤ P (Bj) ≤
(

1 − c′

N

)j

.

This construction is terminated afterK = O(N log N) steps so that

P (BK) ≤ c′′
(

1 − c′

N

)K

≤ 1

Nβ

for someβ > 0. This also ensures that

P (D1 ∪ · · · ∪ DK) > 1 − 1

Nβ
.

The complete prefix free setD on them-ary alphabet is given byD = D1 ∪ · · · ∪ DK ∪ BK .
By the above construction, it is also clear that the average delay is bounded by

c1N
3 ≤ D =

∑

d∈D

P (d) |d| ≤ c2N
3

for certain constantsc1, c2 > 0. Notice further that the maximal code length satisfies

max
d∈D

|d| = O
(
N3 log N

)
= O

(
D log D

)
.
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Now we construct a variant of the Shannon code withr = o(1/D). For everyd ∈ D1 ∪ · · · ∪ DK we
can choose a non-negative integerℓ(d) with

|ℓ(d) + log2 P (d)| <
2

Nη
.

In particular, we have

0 ≤ ℓ(d) + log2 P (d) <
2

Nη

if 〈log2 P (d)〉 < 2/Nη and

− 2

Nη
< ℓ(d) + log2 P (d) ≤ 0

if 1 − 〈log2 P (d)〉 < 2/Nη. Ford ∈ BK we simply setℓ(d) = ⌈− log2 P (d)⌉. The final problem is now
to adjustthe choices of “+” resp. “−” in the above construction so that Kraft’s inequality is satisfied. For
this purpose we use the following easy property (that we adopt from Khodak [65]).

Lemma 9 (Khodak, 1972) LetD be a finite set with probability distributionP and suppose that for every
d ∈ D we have|ℓ(d) + log2 P (d)| ≤ 1 for a nonnegative integerℓ(d). If

∑

d∈D

P (d)(ℓ(d) + log2 P (d)) ≥ 2
∑

d∈D

P (d)(ℓ(d) + log2 P (d))2, (35)

then there exists an injective mappingC : D → {0, 1}∗ such thatC is a prefix free set and|C(d)| = ℓ(d)
for all d ∈ D.

Proof. We use the local expansion2−x = 1− x log 2 + η(x) for |x| ≤ 1, where((log 4)/4)x2 ≤ η(x) ≤
(log 4)x2. Hence

∑

d∈D

2−ℓ(d) =
∑

d∈D|

P (d)2−(ℓ(d)+log2 P (d))

= 1 − log 2
∑

d∈D

P (d)(ℓ(d) + log2 P (d)) +
∑

d∈D

P (d)η (ℓ(d) + log2 P (d))

≤ 1 − log 2
∑

d∈D

P (d)(ℓ(d) + log2 P (d)) + 2 log 2
∑

d∈D

P (d)(ℓ(d) + log2 P (d))2

(35)

≤ 1

If (35) is satisfied, then Kraft’s inequality follows, and there exists an injective mappingC : D → {0, 1}∗
such thatC is a prefix free set and|C(d)| = ℓ(d) for all d ∈ D.

Applying the above lemma, after some tedious algebra, we arrive at the following bound on the average
redundancy rate

r ≤ 1

D

∑

d∈D

P (d)(ℓ(d) + lg P (d)) ≤ C
1

DN1+η
.

Since the average code lengthD is of orderN3 we have

r = O

(
D

−1− 1+η
3

)
= O

(
D

− 4+η
3

)
.

This proves the upper bound forr of Lemma 8 and Theorem 7 follows.
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6 Generalization and Concluding Remarks
In this concluding section, we address two problems: universal codes and non-prefix codes. In particular,
we analyze the average redundancy of Shannon code when the source distribution isunknown. Then we
construct a one-to-one code whose average length is smallerthan the source entropy in defiance of the
Shannon lower bound. To focus, we only consider fixed-to-variable codes with block size equal ton over
binaryα∗ = {0, 1}∗ sequences generated by a memoryless source.

6.1 Universal Codes
We study here a FV code over a binary memoryless source withunknownparameterθ. The probability of
a sequencexn

1 = x! . . . xn of lengthn is P (xn
1 ) = θk(1−θ)n−k, wherek is the number of “1”s. To apply

any FV code, say Shannon’s code, we need to estimateθ. There are several algorithms to accomplish
it. We selectθ that minimizes theMinimum Description Length(MDL) by applying the Krichevsky–
Trofimov (KT) estimator [76; 143]. The KT-estimator is defined by the following conditional probability

Pe(xn = 1|xn−1
1 ) =

k + 1/2

n

wherek is the number of “1”s in the sequencexn−1
1 . Thus, the probabilityPe(k, n − k) of a sequence of

k ones andn − k zeros is

Pe(k, n − k) =
1/2 · . . . · (k − 1/2) · 1/2 · . . . · (n − k − 1/2)

n!
,

which can be also written as

Pe(k, n − k) :=
Γ(k + 1/2)Γ(n− k + 1/2)

πΓ(n + 1)

whereΓ(x) is the Euler gamma function.
Let us now choose a source coding, say the Shannon-Fano code (cf. [19; 49]) which assigns the code

lengthLn = ⌈− logPe(k, n − k)⌉ + 1. The average redundancy of such a code is

R
SF

n = 1 +

n∑

k=0

(
n

k

)
θk(1 − θ)n−k

(
⌈− logPe(k, n − k)⌉ + log θk(1 − θ)n−k

)
.

Using⌈−x⌉ = −x + 1 − 〈−x〉 we reduce the above to the following

R
SF

n = 2 +

n∑

k=0

(
n

k

)
θk(1 − θ)n−k log

θk(1 − θ)n−k

Pe(k, n − k)
− En,

where

En =

n∑

k=0

(
n

k

)
θk(1 − θ)n−k〈− logPe(k, n − k)〉.

The main result of this section is presented next. Its complete proof can be found in [28].
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Theorem 8 Consider the Shannon-Fano code over a memoryless(θ) source. Then

R
SF

n =
1

2
log n − 1

2
log

πe

2
+ 2 − En + O(n−1/2) (36)

whereEn behavior depends whetherα = log 1−θ
θ is rational or not, that is:

(i) If α = log 1−θ
θ is rational, i.e.α = N

M for some positive integersM, N with gcd(M, N) = 1, then

En =
1

2
+ GM

(
− log(1 − θ)n +

1

2
log

πn

2

)
+ o(1) (37)

asn → ∞, where

GM (y) :=
1

M

1√
2π

∞∫

−∞

e−x2/2

(〈
M

(
y − x2

2 ln 2

)〉
− 1

2

)
dx

is a periodic function with period1M and maximummax |GM | ≤ 1
2M .

(ii) If α = log 1−θ
θ is irrational, then

En =
1

2
+ o(1) (38)

asn → ∞.

Proof. We sketch the proof. We start with the main part ofR
SF

n and then we deal withEn. Our proof
first approximates the binomial distribution by its Gaussian density, and then estimates the sum by the
Gaussian integral, coupling with large deviations of the binomial distribution. By Stirling’s formula, we
have

log
θk(1 − θ)n−k

Pe(k, n − k)
=

1

2
log n +

1

2
log

π

2
− x2

2 ln 2
+ O((|x| + |x|3)n−1/2),

for k = θn + x
√

θ(1 − θ)n andx = o(n1/6). Note that the left-hand side is bounded above by1
2 log n +

1/2 for n ≥ 2 andk 6= 0, n. This follows easily from the identity

Γ(n + 1/2) =
(2n)!

√
π

4n n!
(n ≥ 0),

and the inequalities
√

2πn(n/e)n ≤ n! ≤ e1/12
√

2πn(n/e)n, (n ≥ 1).

On the other hand, by using the local limit theorem for the binomial distribution we arrive at
(

n

k

)
θk(1 − θ)n−k =

e−x2/2

√
2πθ(1 − θ)n

(
1 + O((1 + |x|3)n−1/2)

)
, (39)

uniformly for x = o(n1/6), we deduce that

R
SF

n − En =
1√
2π

∫ ∞

−∞

e−x2/2

(
1

2
log n +

1

2
log

π

2
− x2

2 ln 2

)
dx + O(n−1/2).



Average Redundancy 25

A straightforward evaluation of the integral leads to (36).
In order to evaluateEn we need to appeal to theory of sequences modulo1 as in Section 3. We need to

generalize Lemmas 2 and 3 proved in [28].

Lemma 10 Let0 < p < 1 be a fixed real number andf : [0, 1] → R be a Riemann integrable function.

(i) If α is irrational, then

lim
n→∞

n∑

k=0

(
n

k

)
pk(1 − p)n−kf

(〈
kα + y − (k − np)2/(2pqn ln 2)

〉)
=

∫ 1

0

f(t) dt, (40)

where the convergence is uniform for all shiftsy ∈ R.

(ii) Suppose thatα = N
M is a rational number with integersN, M such thatgcd(N, M) = 1. Then

uniformly for ally ∈ R

n∑

k=0

(
n

k

)
pk(1 − p)n−kf

(〈
kα + y − (k − np)2/(2pqn ln 2)

〉)
=

∫ 1

0

f(t) dt + GM (y) (41)

where

GM (y)[f ] :=
1

M

1√
2π

∞∫

−∞

e−x2/2

(〈
M

(
y − x2

2 ln 2

)〉
−

∫ 1

0

f(t) dt

)
dx

is a periodic function with period1M .

To estimateEn we need to setf(t) = t in Lemma 10, and this completes the proof of Theorem 8.

Theorem 8 is quite revealing. In previous sections we provedthat for knownsourcesP the average
redundancy of FV codes isR = O(1) as the length of the sequence increases. However, if one needs to
estimate one parameter,θ in our case, the penalty incurred increases to1

2 log n+O(1). In general, if there
arem − 1 unknown parameters, the average redundancy is

Rn =
m − 1

2
log n + O(1)

as predicted by Rissanen’s lower bound [6; 104].

6.2 One-to-One Codes Violating Kraft’s Inequality
Finally, we discuss a code known as theone-to-onecode that isnot a prefix code, and therefore doesn’t
satisfy the Kraft’s inequality. We show that for such codes the Shannon lower bound doesn’t apply.

We consider again a binary memoryless sourceX over the binary alphabetA = {0, 1} generating a
sequencexn

1 = x1, . . . , xn ∈ An with probabilityP (xn
1 ) = pkqn−k, wherek is the number of0’s in xn

1

andp is known. We shall assume thatp ≤ q. We first list all2n probabilities in a nonincreasing order and
assign code lengths to them as shown below:

probabilities qn
(

p
q

)0

≥ qn
(

p
q

)1

≥ . . . ≥ qn
(

p
q

)n

,

code lengths ⌊log2(1)⌋ ⌊log2(2)⌋ . . . ⌊log2(2
n)⌋.
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Observe that there are
(
n
k

)
equal probabilitiespkqn−k that are assigned different code lengths. More

precisely, define

Ak =

(
n

0

)
+

(
n

1

)
+ · · · +

(
n

k

)
, A−1 = 0.

Starting from the positionAk−1 + 1 of the above list , the next
(
n
k

)
probabilities are the same and equal

to pkqn−k. For eachj = Ak−1 + i, 1 ≤ i ≤
(
n
k

)
, we assign the code length

⌊log2(j)⌋ = ⌊log2(Ak−1 + i)⌋

to thejth binary string. Thus the average code length is

E[Ln] =

n∑

k=0

pkqn−k
Ak∑

j=Ak−1+1

⌊log2(j)⌋ =

n∑

k=0

pkqn−k

(n
k)∑

i=1

⌊log2(Ak−1 + i)⌋.

Our goal is to estimateE[Ln] asymptotically for largen and the average redundancy

Rn = E[Ln] − nh(p)

whereh(p) = −p lg p − q lg q is the binary entropy.

Let us first simplify the formula forE[Ln]. We need to handle the inner sum that contains the floor
function. To evaluate this sum we apply the following identity (cf. Knuth [70] Ex. 1.2.4-42)

N∑

j=1

aj = NaN −
N−1∑

j=1

j(aj+1 − aj)

for any sequenceaj . Using this, we easily find an explicit formula for the inner sum of (42), namely

Sn,k =

(n
k)∑

j=1

⌊log2(Ak−1 + j)⌋ =

(
n

k

)
⌊log2 Ak⌋ − (2⌊log2(Ak)⌋+1 − 2⌈log2(Ak−1+2)⌉)

+ (Ak−1 + 1)(1 + ⌊log2(Ak)⌋ − ⌈log2(Ak−1 + 2)⌉).

After some algebra, using⌊x⌋ = x − 〈x〉 and⌈x⌉ = x + 〈−x〉, we finally reduce the formula forE[Ln]
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to the following

E[Ln] =
n∑

k=0

(
n

k

)
pkqn−k⌊log2 Ak⌋ (42)

− 2

n∑

k=0

(
n

k

)
pkqn−k2−〈log2 Ak〉 (43)

+
n∑

k=0

(
n

k

)
pkqn−k 1 + Ak−1(

n
k

)
(

1 + log2

(
Ak

Ak−1 + 2

)
− 〈− log2(Ak−1 + 2)〉 − 〈log2 Ak〉

)

−
n∑

k=0

(
n

k

)
pkqn−k Ak−1(

n
k

)
(
2−〈log2 Ak〉+1 − 2〈− log2(Ak−1+2)〉

)

+ 2
n∑

k=0

pkqn−k2〈− log2(Ak−1+2)〉.

Our main result proved in [131] is presented next.

Theorem 9 Consider a binary memoryless source and the one-to-one block code described above. Then
for p < 1

2

Rn = −1

2
log2 n − 3 + ln(2)

2 ln(2)
+ log2

1 − p

1 − 2p

1√
2πp(1 − p)

+
p

1 − 2p
log2

(
2(1 − p)

p

)

+ F (n) + o(1) (44)

where as beforeα = log2(1 − p)/p, β = log2(1/(1 − p) andF (n) = 0 if log2
1−p

p is irrational. If

log2
1−p

p = N/M for some integersM, N such thatgcd(N, M) = 1, then

F (n) = − 1 − p

1 − 2p
HM (nβ)[x]− p

1 − 2p
HM (nβ−α)[−x]−2(1 − 3p)

1 − 2p
HM (nβ)[2−x]+

p

1 − 2p
HM (nβ−α)[2x]

where (cf. Lemma 10)

HM (y)[f ] :=
1

M
√

2π

∫ ∞

−∞

e−x2/2

(〈
M

(
y − log2

(
1 − 2p

1 − p

√
2πpqn

)
− x2

2 ln 2

)〉
−

∫ 1

0

f(t)dt

)
dx

for some Riemann functionf .
For p = 1

2 , we have
Ln = nh(1/2)− 2 + 2−n(n + 2)

for everyn ≥ 1.

Some observations are in order. First, the average redundancy Rn is negative(!) for non-prefix codes
such as one-to-one codes. This was already observed by Wynerin 1972 [146] and also discussed in
[2]. Second, in view of Theorem 9, we again see that asymptotic behavior of the redundancy depends
on the rationality/irrationality ofα = log2(1 − p)/p (cf. [28; 29; 129]). In Figure 6 we plotRn +
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Fig. 6: Plots ofLn − nh(p) + 0.5 log(n) (y-axis) versusn (x-axis) for: (a) irrationalα = log
2
(1 − p)/p with

p = 1/π; (b) rationalα = log
2
(1 − p)/p with p = 1/9.

0.5 log2(n) versusn. We observe change of “mode” from a “converging mode” to a “fluctuating mode”,
when switching fromα = log2(1 − p)/p irrational (cf. Fig. 6(a)) to rational (cf. Fig. 6(b)). Recall that
we saw this already for Huffman, Shannon, and Tunstall codes.

We only briefly sketch the proof of Theorem 9. We only analyze here (42) which we re-write as follows

n∑

k=0

(
n

k

)
pkqn−k⌊log2 Ak⌋ =

n∑

k=0

(
n

k

)
pkqn−k log2 Ak −

n∑

k=0

(
n

k

)
pkqn−k〈log2 Ak〉,

and define

an =

n∑

k=0

(
n

k

)
pkqn−k log2 Ak, bn =

n∑

k=0

(
n

k

)
pkqn−k〈log2 Ak〉.

We first deal withan for which we need to derive a precise asymptotic estimate forAn. But this is a
simple exercise of the saddle point method [42; 130] as presented below.

Lemma 11 For largen andp < 1/2

Anp =
1 − p

1 − 2p

1√
2πnp(1 − p)

2nh(p)
(
1 + O(n−1/2)

)
(45)

whereh(p) is the binary entropy. More precisely, for anε > 0 andk = np + Θ(n1/2+ε) we have

Ak =
1 − p

1 − 2p

1√
2πnp(1 − p)

(
1 − p

p

)k
1

(1 − p)n
exp

(
− (k − np)2

2p(1 − p)n

) (
1 + O(n−δ)

)
(46)
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for someδ > 0.

Proof. We use the saddle point method [130]. Let’s first define the generating function ofAk, that is,

An(z) =

n∑

k=0

Akzk =
(1 + z)n − 2nzn+1

1 − z
.

Thus by Cauchy’s formula [130]

Ak =
1

2πi

∮
(1 + z)n − 2nzn+1

1 − z

dz

zk+1

=
1

2πi

∮
1

1 − z
2n log(1+z)−(k+1) log zdz.

DefineH(z) = n log(1 + z) − (k + 1) log z. The saddle pointz0 solvesH ′(z0) = 0, and one finds
z0 = (k + 1)/(n − k + 1) = p/(1 − p) + O(1/n) for k = np andH ′′(z0) = q3/p. Thus by the saddle
point method

Ak =
1

1 − z0

1√
2πnH ′′(z0)

2nH(z0)(1 + O(n−1/2)).

This proves (45). In a similar manner, as shown in [27], we establish (46).

For bn we need to appeal to Lemma 10 after observing that for|k − pn| ≤ n1/2+ε

log Ak = αk + nβ − log2 ω
√

n − (k − np)2

2pqn ln 2
+ O(n−δ),

whereω = (1 − 2p)
√

2πpq/(1 − p). Thus, we need asymptotics of

n∑

k=0

(
n

k

)
pkqn−k

〈
αk + nβ − log2 ω

√
n − (k − np)2

2pqn ln 2

〉

that is discussed in Lemma 10. Details of the proof can be found in [131].
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