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Analytic information theory aims at studying problems dbimation theory using analytic techniques of computer
science and combinatorics. Following Hadamard's pret¢kpse problems are tackled by complex analysis methods
such as generating functions, Mellin transform, Fouriefese saddle point method, analytic poissonization and
depoissonization, and singularity analysis. This apprdis at the crossroad of computer science and information
theory. In this survey we concentrate on one facet of infoignaheory (i.e., source coding better known as data
compression), namely thedundancy ratgproblem. The redundancy rate problem determines by how rtheh
actual code length exceeds the optimal code length. Wediurtstrict our interest to theverageredundancy for
knownsources, that is, when statistics of information sourceskaown. We present precise analyses of three types
of lossless data compression schemes, namely fixed-tablar{FV) length codes, variable-to-fixed (VF) length
codes, and variable-to-variable (VV) length codes. Inipaldr, we investigate average redundancy of Huffman,
Tunstall, and Khodak codes. These codes have succincsmyeations agees either as coding or parsing trees, and
we analyze here some of their parameters (e.g., the aveadigérpm the root to a leaf).

Keywords: Source coding, prefix codes, Kraft’s inequality, Shannavelobound, data compression, Huffman code,
Tunstall code, Khodak code, redundancy, distribution nmdyMellin transform, complex asymptotics.

1 Introduction

The basic problem afource codindetter known as (losslesdata compressiors to find a binary code
that can be unambiguously recovered with shortest possésleription either on average or for individual
sequences. Thanks to Shannon’s work we know that on avenageumber of binary bits per source
symbol cannot be smaller than the source entropy rate. Tdrerenany codes achieving the entropy,
therefore one turns attention tedundancy The average redundancy of a source code is the amount by
which the expected number of binary digits per source syrfitrothat code exceeds entropy. One of
the goals in designing source coding algorithms is to min@rihe average redundancy. In this survey,
we discuss various classes of source coding and their pamedgg average redundancy. It turns out that
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such analyses often resort to studying certain intriguiegs such as Huffman, Tunstall and Khodak trees.
We study them using tools from analysis of algorithms.

Lossless data compression comes in three flavors: fixeasiable (FV) length codes, variable-to-fixed
(VF) length codes, and finally variable-to-variable (V\itgh codes. The latter includes the previous two
families of codes and is the least studied among all data oesejpn schemes. In the fixed-to-variable
code the encoder maps fixed length blocks of source symholganiable-length binary code strings. Two
important fixed-to-variable length coding schemes are then8on code and the Huffman code. While
Huffman has already known that the average code length impteyically equal to the entropy of the
source, the asymptotic performance of the Huffman codélisiet fully understood. In [1] Abrahams
summarizes much of the vast literature on fixed-to-variddagth codes. In this survey, we present
precise analysis from our work [129] of the Huffman averaggundancy for memoryless sources. We
show that the average redundancy either converges to aitidyptomputable constant, as the block
length increases, or it exhibits a very erratic behaviottfiating betwee and1.

A VF encoder partitions the source string into variablegkbrphrases that belong to a given dictionary
D. Often a dictionary is represented by a complete tree &é.&gee in which every node has maximum
degree), also known as tiparsing tree The codes assigns a fixed-length word to each dictionary.ent
An important example of a variable-to-fixed code is the Talhsbde [133]. Savari and Gallager [112]
present an analysis of the dominant term in the asymptopiamsion of the Tunstall code redundancy. In
this survey, following [33], we describe a precise analg$ithe phrase length (i.e., path from the root to
a terminal node in the corresponding parsing tree) for suzdda and its average redundancy.

Finally, a variable-to-variable (VV) code is a concateoatof variable-to-fixed and fixed-to-variable
codes. A variable-to-variable length encoder consistspdraerand astring encoder The parser, as in
VF codes, segments the source sequence into a concateofgtiorases from a predetermined dictionary
D. Next, the string encoder in a variable-to-variable schémkes the sequence of dictionary strings
and maps each one into its corresponding binary codewordridible length. Aside from the special
cases where either the dictionary strings or the codewards & fixed length, very little is known about
variable-to-variable length codes, even in the case of mgess sources. Surprisingly, in 1972 Khodak
[65] described a VV scheme with small average redundandydbereases with the growth of phrase
length. He did not offer, however, an explicit VV code constion. We will remedy this situation and
follow [12] to propose a transparent proof.

Throughout this survey, we study various intriguing treesalibing Huffman, Tunstall and Khodak
codes. These trees are studied by analytic techniques bfsenaf algorithms [42; 70; 71; 72; 130].
The program of applying tools from analysis of algorithmgtoblems of source coding and in general
to information theory lies at the crossroad of computerrsm@eand information theory. It is also known
asanalytic information theory In fact, the interplay between information theory and catep science
dates back to the founding father of information theory,ud E. Shannon. His landmark paper “A
Mathematical Theory of Communication” is hailed as the fation for information theory. Shannon
also worked on problems in computer science such as chagsgimachines and computability of dif-
ferent Turing machines. Ever since Shannon’s work on bdtrimation theory and computer science,
the research at the interplay between these two fields haimaed and expanded in many exciting ways.
In the late 1960s and early 1970s, there were tremendoudist@linary research activities, exemplified
by the work of Kolmogorov, Chaitin, and Solomonoff, with thien of establishing algorithmic informa-
tion theory. Motivated by approaching Kolmogorov comptgxélgorithmically, A. Lempel (a computer
scientist), and J. Ziv (an information theorist) workedetiger in the late 1970s to develop compression
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algorithms that are now widely referred to as Lempel-Zivoaiilpms. Analytic information theory is a
continuation of these efforts.

Finally, we point out that this survey deals only with soucoeling forknown sourcesThe more prac-
tical universal source codin@in which source distribution is unknown) is left for anottiene. However,
at the end of this survey we provide an extensive bibliogyaphthe redundancy rate problem, including
universal source coding. In particular, we note that regears have seen a resurgence of interest in
redundancy rate fdixed-to-variablecoding (cf. [18; 23; 24; 25; 53; 78; 79; 80; 84, 86; 103; 105910
110; 112; 118; 121, 128; 129; 139; 146; 153; 149; 150]). Ssimgly there are only a handful of results
for variable-to-fixed codes (cf. [63; 76; 92; 111; 112; 1132.1136; 158] ) and an almost non-existing
literature on variable-to-variable codes (cf. [36; 44; B6}). While there is some recent work on universal
VF codes [132; 136; 158], to the best of our knowledge redoogéor universal VF and VV codes was
not studied with the exception of some preliminary work e&f Russian school [76; 77] (cf. also [82]).

This survey is organized as follows. In the next section, ves@nt some preliminary results such as
Kraft's inequality, Shannon lower bound, and Barron’s lemim Section 3 we analyze Hufmman's code.
Then we turn our attention in Section 4 to the Tunstall and Wedak codes. Finally, in Section 5 we the
VV code of Khodak and its interesting analysis. We concluide $urvey with two remarks concerning
average redundancy for sources with unknown parameterfandn-prefix codes.

2 Preliminary Results

Let us start with some definitions and preliminary resultsofirce codés a bijective mapping
C: A" —{0,1}"

from the set of all sequences over an alphabéb the sef0, 1}* of binary sequences. We writec A*
for a sequence of unspecified length, afd= z; ...z; € A7~**! for a sequence of length— i + 1.
We denote byP the probability of the source, and wrife(C, =) (or simply L(z)) for the code length
of the source sequenceover the code”. Finally, the sourcentropyis defined as usual b¥ (P) =
— > sea- P(x)1g P(x) and theentropy rateis denoted byh. We writelg := log, andlog for the
logarithm of unspecified base. We often present our resuithé binary alphabett = {0, 1}.

f L R

Tl

Lq

Fig. 1. Lattice paths and binary trees
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Throughout this survey (except in Section 6.2) we stpifix codegor which no codeword is a prefix
of another codeword. For such codes there is a mapping betvpeefix code and a path in a tree from
the root to a terminal (external) node (e.g., for a binarfipieode move to the left in the tree represents
0 and move to the right represerifs as shown in Figure 1. We also point out that a prefix code hed t
corresponding path in a tree defines a lattice path in thedfiratirant also shown in Figure 1. If some
additional constraints are imposed on the prefix codestrmislates into certain restrictions on the lattice
path indicated as the shaded area in Figure 1.

The prefix condition imposes some restrictions on the codgthe This fact is knows as Kraft’s in-
equality discussed next.

Theorem 1 (Kraft’sInequality) Let|.4] = m. For any prefix code the codeword lengths/s, ..., ¢x
satisfy the inequality

N
> omTh <l (1)
=1

Conversely, if codeword lengths satisfy this inequalitgntone can build a prefix code.

Proof. This is an easy exercise on trees. Consider only a binahablt|.A| = 2. Let ¢,,.x be the
maximum codeword length. Observe that at Ieygl. some nodes are codewords, some are descendants
of codewords, and some are neither. Since the number of midscts at leved,,, .. of a codeword located

at levels; is 2t==—%: we obtain

N
E 2émax_€1i < 2émax
— )
=1

which is the desired inequality. The converse part can agorbved, and is left for the reader. |

Observe that the Kraft's inequality implies the existentatdeast one sequengesuch that
L(z) > —log P(Z).
Actually, a stronger statement is due to Barron [5] who pdabe following result.

Lemmal (Barron) Let L(X) be the length of a prefix code, whekeis generated by a stationary er-
godic source over a binary alphabet. For any sequengef positive constants satisfying, 27 < oo
the following holds

P(L(X) < —log P(X) - a,) < 27",

and therefore
L(X)> —logP(X)—a, (almostsurely).

Proof: We argue as follows:

BL(X) < —log P(X)—an) = Y Pl)
z:P(x)<2-L(@)—an

Z 2—L(m)—an

z:P(z)<2—L(z)—an
< 9—an Z 2—L(z) < 9—@n

IN
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The lemma follows from the Kraft inequality for binary aldgiets and the Borel-CantelliLemma. =

Using Kraft's inequality we can now prove the first theorenSbiannon that bounds from below the
average code length.

Theorem 2 For any prefix code the average code lenBfi.(C, X)] cannot be smaller than the entropy
of the source (P), that is,
E[L(C,X)] > H(P).

where the expectation is taken with respect to the distiobuP of the source sequencé.
Proof. Let K = 3" 271 < 1 for a binary alphabet, anbl(z) := L(C, x). Then

E[L(C.X)] - H(P)] = > P@)L(x)+ Y  P(z)logP(z)
zeA* reA*
P(x)

= 162;* P(z)log 72_“1)/[( —logK >0

sincelogx < x — 1 for0 < z < 1 or the divergence is nonnegative, white< 1 by Kraft's inequality.m

What is the best code length? We are now in a position to antigaguestion. As long as the expected
code length is concerned, one needs to solve the followingtcained optimization problem for, say a
binary alphabet

i 3 —L(z) <
len;L(:v)P(x) subject to ;2 < 1.

This optimization problem has an easy solution through &dagiran multipliers, and one finds that the
optimal code length i€ (z) = — lg P(x) provided thdanteger character of the length is ignored

In general, one needs to round the length to an integer lijaémeurring some cost. This cost is usually
known under the namedundancyForknowndistribution P, that we assume throughout this survey, the

pointwise redundanciz® (z) for a codeC and theaverage redundan@c are defined as
RC(z) = L(C,z) +1g P(z), R =E[L(C,X)] - H(P)| > 0.

The pointwise redundancy can be negative, but the averagadancy cannot due to the Shannon theo-
rem.

3 Redundancy of Huffman’s FV Code

We now turn our attention to fixed-to-variable length codegarticular Shannon and Huffman codes. In
this section, we assume that a known soufcgenerates a sequencg = z; ...z, of fixedlengthn.
The codeC'(2) may be of a variable length.
We are interested in constructing an optimal code on avetageknown that the following optimiza-
tion problem
RH

n

= %{?EXf [L(Cp,x7) +1g P(x7)]

is solved by theduffman codeRecall that Huffman code is a recursive algorithm builtrabe associated
Huffman tree, in which the two nodes with lowest probalaktiare combined into a new node whose
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probability is the sum of the probabilities of its two chidal. Huffman coding is still one of the most
familiar topics in information theory [1; 45; 46; 124], hove, only recently a precise estimate of the

average redundan@f of the Huffman code was derived in [129] that we review below.
We study the average redundancy for memoryless sourcesngatbinary sequence. Lgtdenote
the probability of generatingd” and ¢ = 1 — p denote the probability of emittingl”. Throughout, we
1

assume thap < 5. We denote byP(z7) = pFq"~* the probability of generating a binary sequence

consisting of zeros andv — k ones. The expected code lendth.,,] of the Huffman code is

n

E[Ln) =) (Z)p’“qn_kL(k),

k=0

where

JESK

with Sy, representing the set of all inputs having probabiity”~*, andl; being the length of thgth
code inSy,. By Gallager’s sibling property [46], we know that code l&mginS;, are either equal ti(k)
orl(k)+ 1 for some integet(k). If n;, denotes the number of code wordsSipthat are equal td(k) + 1,

then
ng

(k)

Clearly,i(k) = | —1g(p*q"*)|. Stubley [124] analyzed carefully, and was led to conclude that

L(k) = 1(k) +

R, = Z(Z)p’“q”"“[lg(p’“q”"“)JrL—lg(p’“q""“)ﬂ

L9 <Z>pkqnk(1_2<1g<pkq"’“>+t1g<p’“q"’“>J>)+o(1).
k=0

Since
lg(p"q" ") + |~ 1g(p*¢" %) | = (ak + Bn)

1—p 1
@ ng< D )a B = logy (1_p)7

and(x) = x — |« | is the fractional part of, we arrive at the following

where

n

»H n n— - n n—ko—(a n
R, —2—Z<k>p’“q k(ak+ﬁn>—2kz_o(k)pkq Fa ik +o(1). )

k=0

This is our starting formula for the average Huffman redumayaln [129] we proved the following result.
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Fig. 2: The average redundancy of Huffman codes versus block:sfee (a) irrationala = log,((1 — p)/p) with
p = 1/m; (b) rationala = log, ((1 — p)/p) withp = 1/9.

Theorem 3 Consider the Huffman block code of lengttover a binary memoryless source. ok %
asn — o0
ms +o(1) = 0.057304 a irrational,

R, = 3)
3 = a7 ((BMn) = 3) = sramgmrmy 2 MM f0(1) o=

S

whereN, M are integers such thajcd(N, M) = 1 andp < 1.

Before we present a sketch of the proof, we plot in Figure 2atlerage redundand_yf as a function
of n for two values ofc, oneirrational and onerational. In Figure 2(a) we consider = 1g(1 — p)/p
irrational while in Figure 2(b)x is rational. Two modes of behavior are clearly visible. Thedtion in
Figure 2(a) converges to a constasst (.05) for largen as predicted by Theorem 3, while the curve in
Figure 2(b) is quite erratic (with the maximum close to Ggdléis upper bound.086).

We now briefly sketch the proof of Theorem 3. Details can bedbin [129]. From the above dis-

cussion, it should be clear that in order to evaluate the sayppgaring inﬁf we need to understand
asymptotics of the following

n

3 <Z>pk(1 ) f (i + )

k=0

for fixed p and some Riemann integrable functifn [0,1] — R uniformly overy € R wherezy, is a

sequence. In our casg = ak andy = Gn. We need to consider two casesirrational andx rational.
The case when is rational is relatively elementary. The following lemnaéén from [129] is easy to

prove. Using below lemma we easily derive (3) forational.
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Lemma?2 Let0 < p < 1 be a fixed real number and suppose that % is a rational number with
ged(N, M) = 1. Then for every bounded functigh [0,1] — R we have

n M—1
S ()it = g (5 G ) v @

k=0
uniformly for ally € R and some < 1.

The irrational case is more sophisticated and we need toahpptheory of sequences modulaas
fully explained in the book by Drmota and Tichy [32]. The fadling result can be found in [32; 130].

Lemma 3 Let0 < p < 1 be a fixed real number and be an irrational number. Then for every Riemann
integrable functionf : [0, 1] — R we have

n

Tim, Z<Z>pk(1—p)”kf(<ak+y))= | s 5)

k=0
where the convergence is uniform for all shijtg R.

In our case we seft(t) = ¢t and f(t) = 27t in (5) and Theorem 3 follows.

In passing we should point out that the methodology presidraes can be used to derive redundancy of
other FV codes. For example, Shannon code assigns the augtl [e- Ig(p*q" )] for the probability
pFq"~*. Its average redundancy is then

R, = kz_() (Z)qu”k (I=1g(p"q" ™)1 +1gp* ")
— (n k_n—k k n—k
= ;(k)p " F(=1g(p*q" ) (6)
-y <Z> g (ak + Bn) ()
k=0

Using Lemmas 2 and 3 we easily arrive at the following coriolus

Theorem 4 Consider the Shannon block code of lengthver a binary memoryless source. Fox %
asn — o

{ 1 +0(1) o irrational
_ (8)
b= ((Mn) =) +0(")  a=F. eedV. M) =1

wherep < 1.

In [129] we also derived the redundancy of Golomb’s code Wwiéca Huffman code for unbounded
alphabets.
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4 Redundancy of Tunstall and Khodak VF Codes

We now study variable-to-fixed (VF) length codes, in patacuthe Tunstall and Khodak VF codes.
Recall that in the in VF scenario, the source stringay ovenn-ary alphabet4, is partitioned into non-
overlapping (unique) phrases, each belonging to a givetionary D represented by a complgtarsing
tree 7. The dictionary entried € D correspond to théeavesof the associated parsing tree, so that
VF codes are prefix codes. The encoder represents each gtiisgdoy the fixed length binary code
word corresponding to its dictionary entry. If the dictiop& hasM entries, then the code word for
each phrase hdsog, M bits. The best known variable-to-fixed length code is thestalhcode [133];
however, it was independently discovered by Khodak [64].

Edges in the parsing tree of the Tun-

p=06 =04 stall's code correspond to letters from

Tunstall's construction the source alphabetd and are la-

M=5 beled by the alphabet prpbabilities, say
p1,...,Pm. Every vertexin such a tree

Khodak’s construction

is assigned the probability of the path
leading to it from the root, as shown
in Figure 3. For memoryless sources,
studied here, the probability of a ver-
tex is the product of probabilities of ver-
tices leading to it. More precisely, the
root node has» leaves corresponding to
all of the symbols in4 and labeled by
p1,--.,Ppm. Ateach iteration one selects
the current leaf corresponding to a string
of thehighest probabilitysay P,,.x, and
growsm children out of it with probabil-
ities 1 Puax, - - - , PmPmax. After J iter-
ations, the parsing tree hdson-rootinternal nodesandM = (m —1)J +m leaves, each corresponding
to a distinct dictionary entry.

Another version of VF algorithm was proposed by Khodak’s] [@#ho independently discovered the
Tunstall code using a rather different approach.gt, = min{ps, ..., p» }. Khodak suggested choos-
ing a real number € (0, pm:n) and growing a complete parsing tree until all leades D satisfy

r=0.25

Fig. 3: Tunstall’s and Khodak’s Codes fdf = 5 andr = 0.25.

Pmin” < P(d) <. 9)

Khodak and Tunstall algorithms are illustrated in Figureihwhe dictionaryD = {00,01, 10,110,111}
corresponding to strings represented by the paths fronotitea all terminal nodes.

It is known (see, e.g., [112, Lemma 2]) that the parsing tfeeJunstall and Khodak algorithms are
exactly the same, however, they react differently to thebabdity tie when expanding a leaf. More
precisely, when there are several leaves with the same Ipititaahe Tunstall algorithm selectneleaf
and expands it, then selects another leaf of the same ptityaadrid continues doing it until all leaves of
the same probability are expanded. The Khodak algorithnaredgall leaves with the same probability
simultaneously, in parallel; thus there are “jumps” in theer of dictionary entriesd/ when the parsing
tree grows. For example, in Figure 3 two nodes marked4” will be expanded simultaneously in the
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Khodak algorithm, and one after another by the Tunstallrétigm.

Our goal i this section is to present a precise analysis oKtiedak redundancy as well as to provide
some insights into the behavior of the parsing tree (i.e.ptith length distribution). Let us study first the
average redundancgte 7 defined

i Sletn Po@(E@) +log Po(2) )

n— o0 n

wherePs(x) is the probability of the source sequencdJsing renewal theory (i.e., regeneration theory)
[9] we find

lim > jaj=n Ps(x)L(x) _ 2aep Po(d){(d)
n—00 n B E[D] ’

wherel(d) is the length of the phragec D, andE[D] = ., |d| Pp(d) is the average phrase length
known also as the averadelay, which is actually the average path length from the root &rainal node

in the corresponding parsing tree. In the ab&¥erepresents the distribution of phrases in the dictionary,
but from now on we shall writé” := Pp. Since for the VF code}’ , _,, Ps(z)L(z) = log, M, we find

(11)

log M
E[D]
whereh := hg is the entropy rate of the source. In passing we should obskat by theConversation of
Entropy Property{111] the entropy rate of the dictionahy is related to the source entropyas follows

(12)

T =

hp = hE[D]. (13)

Tunstall's algorithm has been studied extensively (cf. shevey article [1]). Simple bounds for its
redundancy were obtained independently by Khodak [64] gntbnek and Schneider [63]. Tjalkens and
Willems [132] were the first to look at extensions of this ctmlsources with memory. Savari and Gallager
[112] proposed a generalization of Tunstall’s algorithmNtarkov sources and used renewal theory for
an asymptotic analysis of average code word length and deohay for memoryless and Markov sources.
Our presentation here is based on [33; 34].

In view of (12), we need to study the expected value of the gghteangthE[D]. In fact, we find the
distribution of D. But, instead of concentrating on the terminal nodes weyardhe behavior of internal
nodes. For Khodak’s code, it follows from (9) thatiifis a proper prefix of one or more entries of
D, := D, i.e.,y corresponds to an internal node®f:= 7, then

P(y) > r. (24)

Therefore, it is easier to characterize the internal noddéiseoparsing tred,. rather than its leaves. We
shall follow this approach when analyzing the path lengtbf Khodak’s code.

We first derive the moment generating function of the phrasgth D and then its moments. Our
approach is analytic and we use such tools as the Mellinfsemsand the Tauberian theorems [42; 130].
Let us define the probability generating functibir, z) of the phrase lengtl in the Khodak code with
parameter as

D(r,z) :=E[zP] = Z P(d)z1".
deD,
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However, as mentioned above, it is better to work with anattesform describing the probabilities of
strings which correspond faternal nodesn the parsing tre€,.. Therefore, we also define

S(rz)= Y. P(y)z. (15)

y: P(y)>r

In (17) of Lemma 4 below we show that
D(r,z) =14+ (z—1)S(r, 2), (16)

and therefore,
E[D]=> Py, EDD-1]=2> Pyl
yeY yey
Lemma4 LetD be a uniquely parsable dictionary (i.e., leaves in the cgpending parsing tree) and
Y be the collection of strings which are proper prefixes of onenore dictionary entries (i.e., internal
nodes of the parsing tree). Then for gl| < 1,

Sldl
> P(d) — 11 =Y Pyl (17)
deD yey

We are now in the position to analyze the Khodak algorithni.uLe 1/r andz be a complex number.
DefineS(v, z) = S(v™1, z). We restrict our attention here to a binary alphadetith 0 < p < ¢ < 1.
Let A(v) devote the number of source strings with probability attleas (i.e., number of internal nodes
in the corresponding parsing tree), that is,

Aw)= > L (18)

y:P(y)>1/v

The functionsA(v) andS(v, z) satisfy the following recurrences

0 v <1,
Av) = { 1+ A(vp) + A(vg) v > 1, -

and

~ 0 v <1,
S(v,2) = { 1+ ng(vp, z) + qu(vq, z) v>1, (20)
since every binary string either is the empty string, a gtstarting with the first source symbol, or a
string starting with the second source symbol. This partitlirectly leads to the recurrences above.
Observe thati(v) represents the number of internal nodes in Khodak’s coctsruwith parameter —+
andM, = A(v) + 1 = |D,| is the dictionary size for the binary alphabet. Furtti&i),] = S(v,1) and
E[D,(D, —1)] = §'(v,1).
We illustrate the approach of [33; 34] on distributionaluiés of D. For this we have to analyze (16)
which we write in the following form

D(v,2) =D(1/v,2) =1+ (z — 1)S(v, 2)
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where§(v,z) satisfies recurrence (20). We study asymptoticsﬁ()f),z) using the Mellin transform
[40; 42; 130]. The Mellin transfornf™*(s) of a functionF(v) is defined as

F*(s) = /000 F(v)v*dv.

Using the fact that the Mellin transform éf(ax) is a=*F*(s), we conclude from recurrence (20) that the
Mellin transformD* (s, z) of D(v, z) with respect ta becomes
~ 1—-2 1

D* = S 21
(5:2) = ST s~ 3 (21)

for R(s) < so(2), wheresy(z) denotes the real solution efp!~* + z¢'~* = 1. Itis easy to see that

z—1 1 pl®p+qln®q 2 3
50(2):— he +<h_e_2—hg’ (Z—l) +O((Z—1))

asz — 1 wherehy = pln(1/p) + ¢In(1/q) is the natural entropy.

In order to find the asymptotics @¥(v, z) asv — oo we proceed to compute the inverse transform of

D*(s, z), that is (cf. [130])

_ 1 o+l

D(v,z) = 5 Tlgr;o . D*(s,z)v™* ds, (22)
whereo < so(z). For this purpose it is usually necessary to determine thar pingularities of the
meromorphic continuation dD* (s, z) right to the lineR(s) = so(z), that is, we have to analyze the set

Z(z)={s€C:zp"™* +2¢'* =1} (23)

of all complex roots of:p!~* + 2¢*~* = 1. The next lemma, basically due to Jacquet and Schachinger,
summarizes all needed properties of theZet). Its proof can be found in [34].

Lemma5 Suppose thdl < p < ¢ < 1 and thatz is a real number withz — 1| < § for somed < § < 1.
Let
Z(z)={seC:p' ™ +¢' 75 =1/z}.

() All s € Z(z) satisfy
s0(z) < R(s) < 00(2),

wheresg(z) < 1 is the (unique) real solution gf' =% + ¢'=* = 1/z andoo(z) > 1 is the (unique) real
solution of1/z + ¢' =% = p'~*. Furthermore, for every integédrthere uniquely exists;,(z) € Z(z) with

2k — D)/ logp < S(sk(2)) < (2k + 1)/ logp
and consequentl (z) = {sx(2) : k € Z}.
(ii) If log ¢/ log p is irrational, then®(s;(z)) > R(so(z)) forall k£ # 0 and also
min  (R(sk(2)) — R(so(2))) > 0. (24)

|=—1/<5
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(iii) If log ¢/ logp = r/d is rational, whereged(r, d) = 1 for integersr, d > 0, then we hav&(s;(z)) =
R(s0(2)) if and only ifk = 0 mod d. In particular R(s1(z)), ..., R(sa—1(2)) > R(so(2)) and
2(k — k mod d)mi

log p

that is, alls € Z(z) are uniquely determined by, (z) and bysi(z), s2(2), ..., sa—1(z), and their
imaginary parts constitute an arithmetic progression.

5k(2) = Sk moa d(2) +

The next step is to use thiesidue theorenof Cauchy (cf. [42; 130]) to estimate the integral in (22),
thatis, to findD (v, z) = limy_. Fr(v, z) for everyr > so(z) with 7 & {R(s) : s € Z(z)} where

Fr(v,z) = - Z Res(D*(s,z)v "%, s = §)
s'€Z(z), R(s)<T,|S(s")|>T
L THT 1—2 1\ o g
— —— v %ds
27t Jo_ip \S(1—2p'= —2¢'—%) s
(1—z)w

Ipyl—s’ 7 1—g
ez, menerasr S5 P P F s ng

L /T“’T 1—2 1Y s
— ——Jv%ds
27t Jo_ip \S(1—2p'= —2¢'—%) s

provided that the series of residues converges and thedisit — oo of the last integral exists. The
problem is that neither the series nor the integral abovebselutely convergent since the integrand is
only of orderl/s. To circumvent this problem, we resort to analyze anothegiral (cf. [134]), namely

Di(v,z) = /Ov D(w, z) dw.

Clearly, the Mellin transfornD} (s, z) = —D*(s + 1, z) /s, and therefore it is of ordeP(1/s2). Then
one can estimate its inverse Mellin as described above. wewafter obtaining asymptotics ﬁl(v, 2)
asv — oo one must recover the original asymptoticsfb@v, z). This requires a Tauberian theorem of
the following form.

Lemma6 Suppose thaf (v, \) is a non-negative increasing functiondrn> 0, where)\ is a real param-
eter with|\| < ¢ for some0 < ¢ < 1. Assume that

F(v,\) —/va(w,/\)dw

has the asymptotic expansion
A+1

F(u,\) = =

)\+1(1+/\-0(1))

asv — oo and uniformly for|A| < §. Then
F,2) =M (14 AL - o0(1)

asv — oo and again uniformly foft\| < é.
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Proof. By the assumption
A+1

1))\+1 v
a1 < 5|/\|)\—+1
for v > vp and all|\| < 6. Setv’ = (¢|A|)*/?v. By monotonicity we obtain (fov > vg)
F(v+ v, ) — F(v,\)

Py

fN) < .
< 1 (v+v/))\+1 ,U)\+1 2 | |(v+v/))\+1
- A+1 A+1 v’ A+1
1 A1 A A—1/,7\2 A+1 5|)\|U’\Jrl
- m(er—i—()\—i—l)v '+ 0 ) M) + 0 B
A PR g|AjoA L N NETNT
= v —|—O(v ez|A|2)+o(T —v +O(v a2|/\|2).
In a similar way we find the corresponding lower bound ¢for vg + vé/Q), the result follows. |

Combining Mellin transform, Tauberian theorems and siagty analysis allow us to establish our
main results that we present next. The reader is referre8éfof¢r detailed proofs. First, we apply the
above approach to recurrence (19) and arrive at the follpwin

Theorem 5 Letv = 1/r in the Khodak’s construction and assume- co.
(i) If log ¢/ log p is irrational, then

M, = e + o(v) (25)

he = pln(1/p) 4+ qIn(1/q) is the entropy rate imaturalunits (i.e.,h. = hln2). Otherwise, when
log ¢/ log p is rational, letL > 0 is the largest real number for whidbg(1/p) andlog(1/q) are integer
multiples ofL. Then

u, = G, ooy (26)
for somen > 0 where
L €T
Q1(z) = me—uﬂ’ (27)

and, recall,(y) = y — |y| is the fractional part of the real number
(i) If log ¢/ log p is irrational, then

E[D,] = S(v,1) = 2= + 2 4+ o(1), (28)

while in the rational case

+O0(v™") (29)

) =1 (5-(5)) (30

for someyn > 0, where

andhy = plg®(1/p) + qlg*(1/q).
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Using these findings and using similar but more sophistitatalysis we obtain out next main result.

Theorem 6 Let D, denote the phrase length in Khodak’s construction with paeterr of the Tunstall
code with a dictionary of siz&/,. over a biased memoryless source. Thedhs— oo

D, — Llg M,
(7% = 7) 18 M.

— N(0,1)

whereN (0, 1) denotes the standard normal distribution. Furthermore,hageE[D] = % +0(1)

and , .
2

for large M,..

By combining (25) and (28) resp. (26) and (29) we can be evere mecise. In the irrational case we
have
g M, n lg(hln2)  ho

+o(1)
and in the rational case we find

lgM, lg(hln2 ha —lgL+1g(1 —e 1)+ Lig(e)/2 _
E[DT] = 3 + (h )+W+ ( n ) ( / + O((M, n),

so that there is actually no oscillation. Recdll,> 0 is the largest real number for whi¢h(1/p) and
In(1/q) are integer multiples aof.
As a direct consequence, we can derive a precise asympiaticifa for the average redundancy of the
Khodak code, that is,
Fﬁ - % _
E[D]

The following result is a consequence of the above deriuatio

Corollary 1 Let D, denote the dictionary in Khodak’s construction of the Talistode of sizel/,.. If
lgp/1gq is irrational, then

h haln 2 1
K _ 2 N
T, = PSTA ( 57, lg(hln2)) +o <1ong> .

In the rational case we have

_ h hyIn2 sinh(L/2) 1
K 2
"M, Ig M( 2h g(hn2) g< L/2 )+O log> M, )’

for somen > 0, whereL > 0 is the largest real number for whiclu(1/p) andIn(1/q) are integer
multiples ofL.
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I A Let us offer some final remarks. We
already observed that the parsing trees
for the Tunstall and Khodak algorithms
are the same exceptwhen there is a “tie”.
In the case of a tie Khodak algorithm
develops all nodes with the tie simul-
taneously while the Tunstall algorithm
expends one node after another. This
situation can occur both, for the ratio-
nal case and for the irrational case, and
somewhat surprisingly leads to the can-

> celation of oscillation in the redundancy

of the Khodak code for the rational case.

As shown in [112] tiny oscillations re-

Fig. 4: Arandom walk with a linear barrier; the exit time is equivatle main in the Tunstall code redundancy

to the phrase length in the Khodak algorithm (e.g., the exiet= 7). for the rational case. But as easy to see

that Central Limit Theorem holds also

logr
logq

—logg = b

for the Tunstall code as shown [34].

Finally, we relate our results to certain problems on randatks. As already observedin [112], a path
in the parsing tree from the root to a leaf corresponds to darwalk on a lattice in the first quadrant of
the plane (cf. Figure 4). Indeed, observe that our analytiseoKhodak code boils down to studying the
following sum

Aw)= Y f)
y:P(y)=1/v
for some functionf (v). SinceP(y) = p*q¢' for some nonnegative integeksl > 0, we conclude that the
summation set ofi(v) can be expressed, after setting- 2, as

klg(1/p) +11g(1/q) < V.

This corresponds to a random walk in the first quadrant wigitiear boundary conditiomr + by = V,
wherea = log(1/p) andb = log(1/q) as shown in Figure 4. The phrase length coincides with thie exi
time of such a random walk (i.e., the last step before theaandalk hits the linear boundary). This
correspondence is further explored in [31; 62].

5 Redundancy of Khodak VV Code

Recall that a variable-to-variable (VV) length code patis a source sequence into variable length
phrases that are encoded into strings of variable lengthlileW is well known that every VV (pre-
fix) code is a concatenation of a variable-to-fixed lengthec@@g., Tunstall code) and a fixed-to-variable
length encoding (e.g., Huffman code), an optimal VV codetatsyet been found. Fabris [36] proved
that greedy, step by step, optimization (that is, a coneditem of Tunstall and Huffman codes) does not
lead to an optimal VV code. In this section, we analyze arr@sing VV code due to Khodak [65].
Recall that in (10) we define the average redundancy rate as
im > jaj=n Ps(@)(L(z) + log Ps(x))

r=1li
n—oo n
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becomes after using renewal theory as in (11)

_ TCuep POUD ~ b Yy PA(U() +1g P(d)
E[D] E[D] ’

(31)

whereP is the probability law of the dictionary phrases did] = >, |d|P(d). From now on we
shall write D := E[D].

In previous sections we analyzed FV and VF codes. We provehibaaverage redundancy rate (per
block in the case of FV codes) @3(1/D). Itis an intriguing question whether one can construct aecod
with 7 = o(1/D). This quest was accomplished by Khodak [65] in 1972 who pitdiat one can find a

VV code with7 = O(D 5/ 3). However, the proof presented in [65] is rather sketchy andpicated.
Here we present a transparent proof proposed in [12] of thasfimg main result of this section.

Theorem 7 For everyD, > 1, there exists a VV code with average deldy> D, such that its average

redundancy rate satisfies

F=0(D % (32)

and the average code length@¥ D log D).

The rest of this section is devoted to describe a proof of Térad presented in [12]. We assumeran

ary alphabe#d = {ay, ..., a,, } with probability of symbol®, . . ., p,,. Let us first give some intuitions.
For everyd € D we can represeri®(d) asP(d) = pi* -- - pkm, wherek; = k;(d) is the number of times
symbola; appears ird. In what follows we writetype(d) = (k1, k2, ..., k) for all strings with the

same probabilityP(d) = p’fl --.pkm  Furthermore, the string encoder of our VV code uses a $jight
modified Shannon code that assignsiteé D a binary word of lengtt{(d) close to— log P(d) when
log P(d) is slightly larger or smaller than an integer. (Kraft's inedjty will not be automatically satisfied
but Lemma 9 below takes care of it.) Observe that the aveedjendancy of Shannon code is

> P(d)[[~log P(d)] +log P(d)] = Y P(d) - (ka(d)y1 + ka(d)y2 + - + ki (d)vm)
deD deD

wherev; = logp;. In order to build a VV code wittF = o(1/D), we are to find integeré; =
k1(d),...km = kn(d) such that the linear formk;v; + k2o + -+ + kmym IS Close to an integer.
In the sequel, we discuss some properties of the distribatidk, v, + kave + - - - + kmym ) When at least
one of~y; is irrational (cf. [32]).

Let||z|| = min({(z), (—z)) = min({(z), 1 — (x)) be the distance to the nearest integer. dispersion
4(X) of the setX C [0, 1) is defined as

0(X)= sup inf ||y —z|,
(%)= sw_ inf Iy~

that is, for everyy € [0,1) there existst € X with ||y — z|| < §(X). Sincelly + 1] = |y, the
same assertion holds for all real Dispersion tells us that points &f are at mosgd(X) apart in[0, 1].
Therefore, there exist distinct points, 2 € X with (y — x1) < 2§(X) and(y — z2) < 26(X).

The following property will be used throughout this papehisTis a standard result following from
Dirichlet’s approximation theorem, so we leave it for thader to prove it (cf. [32]).
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Lemma7 (i) Suppose that is an irrational number. There exists an integ€rsuch that
5({(k6):0< k< N}) < %

(i) In general, let(vy1,. .., v, ) be anm-vector of real numbers such that at least one of its coongisa
is irrational. There exists an integéy such that the dispersion of the set is

X={(kv+ - +kny):0<kj<N(1<j<m)}

is bounded by
2
(X)) < —.
(X) < +
The central step of all existence results is the observé#tiara bound on the dispersion of linear forms
of log, p; implies the existence of a VV code with small redundancy.eba| our main result of this
section follows directly from the below lemma whose progdiesented below.

Lemma8 Letp; > 0 (1 < j < m)withp; + --- + p,, = 1 be given and suppose that for sofie> 1
andn > 1 the set

X = {(k1logyp1 + -+ + kp, logy pm) 1 0 <k < N (1 < j <m)},

has dispersion
2

5(X) < +-

(33)
Then there exists a VV code with the average code lehgth ©(N?), the maximal length of order
©(N3log N), and the average redundancy rate

4+n
3

¥<c. D

Clearly, Lemma 7 and Lemma 8 directly imply Theorem 7 by sgttj = 1 if one of thelog, p; is
irrational. (If alllog, p; are rational, then the construction is simple).

We now concentrate on proving Lemma 8. The main thrust of thefds to construct a complete
prefix free seD of words (i.e., a dictionary) on an alphabet of sizesuch thalog, P(d) is very closdo
an integer(d) with high probability. This is accomplished by growing anary tree7 in which paths
from the root to terminal nodes halg; P(d) close to an integer.

In the first step, we sét) := |p; N?| (1 < < m) and define

:Czk?longl—i----—i—kSlloggpm.

By our assumption (33) of Lemma 8, there exist inte@e§k} < N such that

(z+ kilogapr+ -+ iy loga pm) = (k) + k1) loga pr + -+ + (ki + ko) loga pm) < 7

Now consider all paths in a (potentially) infinite-ary tree starting at the root wittf + k1 edges of type
a; € A, kS + ki edges of typeiz € A,. .., andk?, + k! edges of type:,, € A (cf. Figure 5). LetD,
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denote the set of such words. (These are the first words ofrefik ffree set we are going to construct.)
By an application of Stirling’s formula it follows that theare two positive constant§ ¢’ such that

/

c kO 4! d
- o mo< 34
< (34)

< P(Dy) = ((k‘f+k%) +ooe (k?ﬁkh)) B4k
5 <

KO+ kR + kL JPr TP

uniformly for all k71 with 0 < kjl < N. In summary, by construction all wordse D; have the property
that
(log, P(d)) < NZk
that is,log, P(d) is very close to an integer. Note further that all wordglig D; have about the same
length
ny = (k{ + &)+ + (k) + k) = N> + O(N),

and words irD; constitute the first crop of “good words”. Finally, I8f = .A™* \ D; denote all words of
lengthn; not inD, (cf. Figure 5). Then

c/l C/

1-—<P <1——.
N = (B1) < N

In the second step, we consider all words B, and concatenate them with appropriately chosen words
do of length~ N2 such thalog, P(rds) is close to an integewith high probability The construction is
almost the same as in the first step. For every woedB3; we set

z(r) = logy P(r) + k(l) logop1 + -+ + k?n logs Pim.-

By (33) there exist integes < k7 (r) < N (1 < j < m) such that

(2(r) + ki (r)logg p1 + -+ + k7, (1) 10ga pm) < 77
Now consider all paths (in the infinite tréE) starting atr € B; with k¥ + k?(r) edges of type,

k9 + k3(r) edges of typeus, ..., andkl, + k2, (r) edges of types,, (that is, we concatenatedwith
properly chosen wordg;) and denote this set 97 (). We again have that the total probability of these
words is bounded from below and above by

KO+ K2(r)) + -+ + (KO, + k2 (1)) kg+k§(r)mpk°m+kfn(r) < P&
KO+ k2(r), ... kO, 4 k2,(r) ! " - N’

/!

Q

PG < POx(r) = P

Furthermore, by construction we hafleg, P(d)) < + forall d € D3 (r).

Similarly, we can construct a s&%, (r) instead ofD; (r) for which we havel — (log, P(d)) < 4/N".
We will indicate in the sequel whether we will ugg (r) or D; (r).

LetDy = | J(DF (1) : v € By) (or Do = | J(D; (r) : r € By)). Then all wordsi € D have almost the

same lengthd| = 2N? + O(2N), their probabilities satisfy

(log, P(d)) < % (Or 1 — (log, P(d)) < % )
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. “good” word inD;

’ “bad” word in BJ

2N2 + O(2N)
cc
P(D,) = U

3N2+ O(3N)

09 =3-8F &

KN2 + O(KN)
K=Nlog N
-1
c c
Pog = B-FE

Fig. 5: lllustration to the construction of the VV code.
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and the total probability is bounded by

C/ c/l CI/ C/
(1)< <—(1-=).
{(5) smos5(-5)

For everyr € By, let BT (r) (or B~ (r)) denote the set of paths (resp. words) starting witt length
2K+ -+ kO) + (ki + k2(r) + - -+ kL, + K2, (r)) that arenotcontained irD5 (r) (or D; (1)) and set
By = U(BS (r) : v € By) (or By = | J(B; () : € By)). Observe that the probability &, is bounded

by
o 2 ¢ 2
(-9Y <re= (1-2)'

We continue this construction, as illustrated in Figurert i stepj we define sets of wordB; and
B; such that all wordg € D; satisfy

flog, P(d)) < - (or 1 {log, P(d)) < 77 )

and the length ofl € D; U B, is then given byd| = jN? + O (jN). The probabilities o; and3; are

bounded by
¢ !’ j—1 o ¢ Jj—1
_ _ < )< _

and

for somes > 0. This also ensures that

The complete prefix free s@ on them-ary alphabetis givenbfp =D, U --- UDg U Bk.
By the above construction, it is also clear that the averadpgyds bounded by

aN*<D=> P(d)|d| < c;N*
deD

for certain constants, co > 0. Notice further that the maximal code length satisfies

1;1€az>)<|d| =0 (N°logN) =0 (DlogD).
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Now we construct a variant of the Shannon code With o(1/D). For everyd € D; U --- U D we
can choose a non-negative integéf) with
2
In particular, we have
if (log, P(d)) < 2/N"and
2
———— < {(d) +logy, P(d) <0

N7
if 1 — (log, P(d)) < 2/N". Ford € Bx we simply set'(d) = [—log, P(d)]. The final problem is now
to adjustthe choices of 4" resp. “—" in the above construction so that Kraft's inequality isisi@&d. For

this purpose we use the following easy property (that we &filom Khodak [65]).

Lemma 9 (Khodak, 1972) LetD be a finite set with probability distributioR and suppose that for every
d € D we have((d) + log, P(d)| < 1 for a nonnegative integef(d). If

> P(d)(U(d) + logy P(d)) = 2 Y P(d)(£(d) + logy P(d))?, (35)
deD deD

then there exists an injective mappig D — {0, 1}* such thatC' is a prefix free set anf’'(d)| = ¢(d)
forall d € D.

Proof. We use the local expansi@n® = 1 — xlog 2 4+ n(z) for |z| < 1, where((log 4) /4)2? < n(z) <
(log4)z?. Hence

Zz—é(d) — Z P(d)2~ (Hd)+log, P(d))

deD deD|
= 1-1log2 Y P(d)(¢(d) +logy P(d)) + Y _ P(d)n (£(d) + log, P(d))
deD deD
< 1-1log2 ) P(d)(¢(d) +log, P(d)) +21og2 > P(d)(£(d) + log, P(d))
- deD deD
< 1

If (35) is satisfied, then Kraft’s inequality follows, anceife exists an injective mappindg: D — {0, 1}*
such thaCC is a prefix free set and’(d)| = ¢(d) forall d € D. |

Applying the above lemma, after some tedious algebra, vieaat the following bound on the average
redundancy rate

o b P e <o

Since the average code lendthis of orderN?® we have

—1-14n 4+t
F:O(D 3)20(9 )

This proves the upper bound foiof Lemma 8 and Theorem 7 follows.
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6 Generalization and Concluding Remarks

In this concluding section, we address two problems: usalarodes and non-prefix codes. In particular,
we analyze the average redundancy of Shannon code whenutoe shstribution isinknown Then we
construct a one-to-one code whose average length is snitadlerthe source entropy in defiance of the
Shannon lower bound. To focus, we only consider fixed-tdabde codes with block size equaltoover
binarya™ = {0, 1}* sequences generated by a memoryless source.

6.1 Universal Codes

We study here a FV code over a binary memoryless sourceunithowrparametef. The probability of
asequence? = z!...x, oflengthnis P(z}) = 6%(1—6)"~F, wherek is the number of t”s. To apply
any FV code, say Shannon’s code, we need to estithatEhere are several algorithms to accomplish
it. We selectd that minimizes theMinimum Description LengtiiMDL) by applying the Krichevsky—
Trofimov (KT) estimator [76; 143]. The KT-estimator is defihigy the following conditional probability

Ck+1/2

n

Pe(xy, = 1|x71171)

wherek is the number of t
k ones anch — k zeros is

s in the sequence . Thus, the probability?,(k, n — k) of a sequence of

1/2-...-(k=1/2)-1/2-...-(n—k —1/2)
n!

P.(k,n—k) =

3

which can be also written as

kE+1/2)I'(n—k+1/2)
7l(n+1)

P.(k,n—k) = I(

wherel'(x) is the Euler gamma function.
Let us now choose a source coding, say the Shannon-Fanoaod&9; 49]) which assigns the code
lengthL,, = [—log P.(k,n — k)] + 1. The average redundancy of such a code is

=1+ an (Z) 6% (1 — 6)"* ([—log P.(k,n — k)] + log 6% (1 — )" *) .
k=0

Using[—z] = —x + 1 — (—z) we reduce the above to the following

—SF —~ (0 ey vk OFQ—O)"TE
R, _2+kz_0(k)9(1 0) 1og7Pe(k’n_k) E,

where .
_ N\ pkq  p\n—ky _
E, = kE:O (k)9 (1-0) (—log P.(k,n — k)).

The main result of this section is presented next. Its cotagdeof can be found in [28].
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Theorem 8 Consider the Shannon-Fano code over a memonrydgssurce. Then

SF
n

_sr 1 1
R :§1ogn—§log§+2—En—|—O(n_l/2) (36)

whereF,, behavior depends whethar= log 1%9 is rational or not, that is:
(i) If o = log 252 is rational, i.e.a. = % for some positive integers/, N with ged(M, N) = 1, then

™n

E, = % + Gy (—log(l —0)n + %log 5 ) +o(1) (37)

asn — oo, where

o= [ (o)) 1)

is a periodic function with periogf; and maximunmax |G| < 577
- _ 1—60 i : .

(i) If o = log =~ is irrational, then X

asn — oQ.

Proof. We sketch the proof. We start with the main parthij and then we deal wittk,,. Our proof
first approximates the binomial distribution by its Gaussikensity, and then estimates the sum by the
Gaussian integral, coupling with large deviations of theobmial distribution. By Stirling’s formula, we

have
2

oF (1 —g)n—F v x
log————— - —
P.(k,n—k) 2 2In2
for k = On+x,/0(1 — 0)n andz = o(n'/%). Note that the left-hand side is bounded above byg n +
1/2forn > 2 andk # 0, n. This follows easily from the identity

(2n)/7

4n !

1 1
= Slogn+ 5 log +O((Jal + [o2)n /%),

Fn+1/2)= (n>0),

and the inequalities
V2rn(n/e)” < nl < e2V2mn(n/e)", (n>1).

On the other hand, by using the local limit theorem for theohiral distribution we arrive at

N\ ok vk _ e/ 213172
(k>9 (1-6) —m(HO((HIl) ) (39)

uniformly for z = o(n'/%), we deduce that

—SF 1 e 2 1 1 T x?
R —FE,=— /22 “log = — —— | dz + O(n"/?).
" ‘/_%/me (2 08Tt 5085 21112) z+ 0™
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A straightforward evaluation of the integral leads to (36).
In order to evaluatds,, we need to appeal to theory of sequences motlal®in Section 3. We need to
generalize Lemmas 2 and 3 proved in [28].

Lemma 10 Let0 < p < 1 be a fixed real number anfl: [0, 1] — R be a Riemann integrable function.

(i) If « is irrational, then
n 1
. n ne
Tim > (k)pk(l—p> (ot y = 0= /) = [ @, @0)
k=0 0
where the convergence is uniform for all shijtg R.

(i) Suppose thatv = % is a rational number with integer®/, M such thatged(N, M) = 1. Then
uniformly for ally € R

5 ()= o (b= (= Cpmnin2))) = [ f0 a4 Gun) @)

k=0
GulF) = 7= 76“””2/2 (((v=513) ) - [ )

is a periodic function with perioq%.

To estimateF,, we need to sef (¢) = ¢ in Lemma 10, and this completes the proof of Theorem 8. B

Theorem 8 is quite revealing. In previous sections we prdkiat for knownsourcesP the average
redundancy of FV codes B = O(1) as the length of the sequence increases. However, if one reed
estimate one parametérn our case, the penalty incurred increase§ togn+O(1). In general, if there
arem — 1 unknown parameters, the average redundancy is

-1
n = m2 logn 4+ O(1)

=

as predicted by Rissanen’s lower bound [6; 104].

6.2 One-to-One Codes Violating Kraft's Inequality

Finally, we discuss a code known as thee-to-onecode that isnot a prefix code, and therefore doesn't
satisfy the Kraft’s inequality. We show that for such codes $hannon lower bound doesn’t apply.

We consider again a binary memoryless souXcever the binary alphabed = {0,1} generating a
sequence? = z1,...,z, € A" with probability P(z}) = p*¢"*, wherek is the number 00's in 27
andp is known. We shall assume tha ¢. We first list all2™ probabilities in a nonincreasing order and
assign code lengths to them as shown below:

probabiiies ¢ (2) > ¢ (2) = . > o (2)"

code lengths |log,(1)] |log,(2) ] e [log,(2™)].
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Observe that there ar@) equal probabilitieg*¢”~* that are assigned different code lengths. More

precisely, define
n n n
Ay = <0> + <1> 4+ <k> A1 =0.

Starting from the positiom;_; + 1 of the above list , the ne>(t’,;) probabilities are the same and equal
topFqm~F. Foreachj = A;,_1 +i,1 < i < (), we assign the code length

[logs ()] = [loga(Ak—1 +1)]

to thejth binary string. Thus the average code length is

n Ap n (Z)
E[L,) = D> o ™" Y llog()) =D p*a"* Y [loga(Ar-1 +1)).
k=0 J=Ap_1+1 k=0 i—1

Our goal is to estimati|[L,,] asymptotically for large: and the average redundancy
R, = E[L,] — nh(p)

whereh(p) = —plgp — qlg ¢ is the binary entropy.

Let us first simplify the formula fol£[L,,]. We need to handle the inner sum that contains the floor
function. To evaluate this sum we apply the following idgn(cf. Knuth [70] Ex. 1.2.4-42)

N N-1
> aj=Nay— Y jlaj — a))
j=1 j=1
for any sequence;. Using this, we easily find an explicit formula for the innensof (42), namely
(3) .
Sn,k = L10g2(Ak_1 -|—])J = (k) L]ng AkJ — (2[1082(Ak)J+1 — 2"1032(Ak—1+2)])

=1
+ (Ap1 + D1+ [logy(Ax)| — [loga(Ar—1 +2)]).

After some algebra, usinge| = = — () and[z] = = + (—z), we finally reduce the formula fdt[L,,]
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to the following
E[L,] = Z(Z)p’“q"_’“tlongkJ

o (") DFgn—io—(1ogs A1)

27

(42)

(43)

k=0
S WS T P Ay,
p> </€>p STy (1 +logy (m — (—logy(Ap—1 +2)) — (logy Ay
k=0 k
Y " - A —(lo; _ log
_ Z (k>pkqn k 7:1 1 (2 (logg Ak)+1 _ 2( 1 82(Ak—1+2)>)
=0 ()

+ 2 pkqn—k2<—log2(Ak,1+2)>'

Our main result proved in [131] is presented next.

Theorem 9 Consider a binary memoryless source and the one-to-oné blode described above. Then

forp < 4

1 3+1n(2) P

+1

R, —iloan —

+ F(n)+o(1)

———= +log L=p . + log (2(1—]9))
21n(2) *1-2p2rp(l—p) 1-2p °° P

(44)

where as beforev = log,(1 — p)/p, 8 = logy(1/(1 — p) and F(n) = 0 if log, 1*71’ is irrational. If

log, 1%’7 = N/M for some integerd/, N such thafged(N, M) = 1, then

1-p
1—-2p

2(1—3p)
1-2p

b

Fn) =~ 1—2p

Hpy (nf)[x]—

Huy (nf—a)[—z]—
where (cf. Lemma 10)

) = = [ e ({01 (= toms (122 v/ompan ) -

for some Riemann functigh
For p = £, we have

Ly =nh(1/2) —2+2""(n+2)

for everyn > 1.

T
21n

2

Hy (nB)[27"]+

2

p
1—2p

Hy(nf—a)[27]

) f 0w}

Some observations are in order. First, the average redepdgnis negativg!) for non-prefix codes
such as one-to-one codes. This was already observed by Wyd&72 [146] and also discussed in
[2]. Second, in view of Theorem 9, we again see that asyngpbahavior of the redundancy depends
on the rationality/irrationality obx = log,(1 — p)/p (cf. [28; 29; 129]). In Figure 6 we ploR,, +
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— -1.55]
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] -1
—_— L_n-n*h(p)+0.5*log(n) — L_n-n*h(p)+0.5*log(n)
(a) (b)

Fig. 6: Plots of L, — nh(p) + 0.5log(n) (y-axis) versusn (x-axis) for: (a) irrational = log,(1 — p)/p with
p = 1/m; (b) rationala = log, (1 — p)/p withp = 1/9.

0.5log,(n) versusn. We observe change of “mode” from a “converging mode” to actfhating mode”,
when switching fromx = log,(1 — p)/p irrational (cf. Fig. 6(a)) to rational (cf. Fig. 6(b)). Rdktthat
we saw this already for Huffman, Shannon, and Tunstall codes

We only briefly sketch the proof of Theorem 9. We only analyzeel{42) which we re-write as follows

- n n - n— - n—
kz—o(k> PFq" " |log, Ay Z( ) Flogy Ak — ) (k>p’“q *(log, Ag),

k=0 k=0

and define

n n

n _ n—
an = <k>pkq" "log, Ak, b= <k>pkq *(logs Ag).

k=0 k=0
We first deal witha,, for which we need to derive a precise asymptotic estimateifor But this is a
simple exercise of the saddle point method [42; 130] as ptedéelow.

Lemma 1l Forlargen andp < 1/2
1_

1—-2p \/27mp (1-

whereh(p) is the binary entropy. More precisely, for an> 0 andk = np + O(n'/?*¢) we have

_1-p 1 1-p\* 1 o [ (k= 1p)? -
A’“_l—wm( 2) e (Caa) 4roe) e

App =

2"h<P> (1 + O(n—1/2)) (45)
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for somey > 0.
Proof. We use the saddle point method [130]. Let’s first define theegaing function ofdy, that is,

)n _ 2nzn+1
1—-=2

An(z) = ZAka _ 1tz
k=0

Thus by Cauchy’s formula [130]

1 (1+2)" =227+ dz
27 1—z Zk+1

_ 1 1 2nlog(1+z)7(k+1)logzdz.

27 1—=2

A, =

Define H(z) = nlog(l + z) — (k + 1)logz. The saddle point, solvesH’(z,) = 0, and one finds
2= (k+1)/(n—k+1)=p/(1—p)+ O(1/n)fork = npandH"(z9) = ¢*/p. Thus by the saddle
point method

1 1
A, = 2nH(zo) 1+O n—1/2 )
S 2mnH" (2p) ( ( 2
This proves (45). In a similar manner, as shown in [27], waldigh (46). ]

Forb,, we need to appeal to Lemma 10 after observing thafifer pn| < n!/2+¢

(k —np)®

-8
2pgn In 2 O(n™"),

log Ay, = ak +nfB — logy wy/n —

wherew = (1 — 2p)/27pq/(1 — p). Thus, we need asymptotics of

an (Z)pkq"k <ak +nf — logy wy/n — M>

prrd 2pgn In 2

that is discussed in Lemma 10. Details of the proof can bedaufil 31].
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