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Abstract—We study the Lempel-Ziv’78 algorithm and

show that its (normalized) redundancy rate tends to a

Gaussian distribution for memoryless sources. We accom-

plish it by extending findings from our 1995 paper [4],

in particular, by presenting a new simplified proof of the

Central Limit Theorem (CLT) for the number of phrases

in the LZ’78 algorithm. As in [4], we first analyze the

asymptotic behavior of the total path length in the asso-

ciated digital search tree (a DST) built from independent

sequences. Then a renewal theory type argument yields

CLT for LZ’78 scheme. Here, we extend our analysis of

LZ’78 algorithm to present new results on the convergence

of moments, moderate and large deviations, and CLT for

the (normalized) redundancy. In particular we confirm

that the average redundancy rate decays as 1
logn

, and we

find that the variance is of order 1
n

where n is the length

of the text.

I. INTRODUCTION

The Lempel-Ziv compression algorithm [15] is a uni-

versal compression scheme. It partitions the text to be

compressed into consecutive phrases such that the next

phrase is the unique shortest prefix of the uncompressed

text not seen before in the compressed portion of the text.

The compression code for a word w over the alphabet A
we denote as C(w). It is known that for a large class of

sources the average compression rate |C(w)|/|w| tends

to the source entropy rate h when |w| → ∞. Our goal

is to prove that the (normalized) redundancy rate

r(w) =
|C(w)|
|w| − h

tends in probability and in moments to a normal distri-

bution when w is generated by a memoryless source. In
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particular, we prove that

E(r(w)) = O

(
1

log |w|

)
, Var(r(w)) = O

(
1

|w|

)

when |w| → ∞.

It is convenient to organize the phrases (dictionary) of

the Lempel-Ziv scheme in a digital search tree (DST)

[8], [14] which represents a parsing tree. The root then

contains an empty phrase. The first phrase is the first

symbol, say “a ∈ A” which is stored in a node appended

to the root. The next phrase is either “aa ∈ A2” stored in

another node that branches out from the node containing

the first phrase “a” or a new symbol that is stored

in a node attached to the root. This process repeats

recursively until the text is parsed into full phrases (last

incomplete phrase will be ignored here). A detailed

description can be found in [3], [4], [14]; see also

Figure 1.

Fig. 1. A digital tree representation of the Lempel-Ziv parsing for

the string 11001010001000100 . . . into phrases (1)(10)(0)(101) . . .

Let a text w be generated over an alphabet A, and let

T (w) be the associated digital search tree constructed

by the algorithm. Each node in T (w) corresponds to a

phrase in the parsing algorithm. Let L(w) be the (total)

path length in T (w), that is, the sum of all paths from

the root to all nodes (i.e., the sum of phrases which is

also the text length). We have L(w) = |w| (if all phrases
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are full). If we know the order of nodes creation in the

tree T (w), then we can reconstruct the original text w;

otherwise we construct a string of the same universal

type, as discussed in [13].

The compression code C(w) is a description of T (w),
node by node in the order of creation; each node being

identified by a pointer to its parent node in the tree

and the symbol that labels the edge linking it to the

parent node. The pointer to the kth node requires at

most ⌈log2 k⌉ bits, and the next symbol costs ⌈log2 |A|⌉
bits. We just assume that the total pointer cost is

⌈log2(k)⌉+⌈log2 |A|)⌉ bits. The compressed code length

is

|C(w)| =
M(w)∑

k=1

⌈log2(k)⌉+ ⌈log2(|A|)⌉ (1)

where M(w) is the number of full phrases needed to

parse w. Clearly, M(w) is also the number of nodes in

the associated tree T (w). Notice that the code is self-

consistent and does not need a priori knowledge of the

text length, since the length is a simple function of the

node sequence. We conclude from (1) that

|C(w)| = ξ2(M(w)) .

where we define

ξQ(x) = x⌈logQ(|A|)⌉ +
∑

0<k≤x

⌈logQ(k)⌉ . (2)

for any integer Q and real x. Notice that ξQ(M(w))
is the code length if it is written in a Q-ary alphabet. It

turns out that when x increases ξQ(x) is (asymptotically)

equivalent to x(⌈logQ x⌉ + ⌈logQ(|A|)). In fact, our

results hold for any function which is asymptotically

equivalent to x(α log x+β) for some nonnegative num-

bers α and β. Actually, different implementation may

add O(M(w)) to the code length (see [7] for precise

formula) without changing our asymptotic findings. To

simplify, we shall assume throughout that

|C(w)| = M(w) (log(M(w)) + log(|A|)) . (3)

Using natural logarithm simply means that we measure

the quantities of information in ”nat” units.

In this paper we study the limiting distribution, large

deviations, and moments of the number of phrases M(w)
and the redundancy r(w) when the text of length |w| = n
is generated by a memoryless source. We prove the

Central Limit Theorem (CLT) for the number of phrases

and establish precise rate of decay of the LZ’78 code

redundancy. Furthermore, we prove that the (normalized)

redundancy rate of the LZ’78 code obeys the Central

Limit Law with mean O(1/ log n) and variance O(1/n).
The former result was already proved in our 1995 paper

[4] while the the average redundancy was presented in

[7], [12], but not the CLT for the redundancy which is

new. However, the proof of the CLT in our 1995 paper

was quite complicated; it involves a generalized ana-

lytic depoissonization over convex cones in the complex

plane. In this paper we simplified and generalized it to

present new comprehensive large deviations results. It

should be pointed out that since our 1995 paper [4] no

simpler, in fact, no new proof of CLT was presented

except the one by Neininger and Ruschendorf [10] but

only for unbiased memoryless sources (as in [1]). The

proof of [10] applies the so called contraction method.

The paper is organized as follows. In the next section

we present our main results concerning the LZ’78 al-

gorithm followed by CLT and large deviations results

for the path length in digital search trees which are

at the heart of our proof. Most proofs are delayed till

Sections IV and V.

II. MAIN RESULTS

Let n be a nonnegative integer. We denote by Mn

the number of phrases M(w) and Cn the code length

C(w) when the original text w is of fixed length n.We

shall assume throughout that the text is generated by a

memoryless source over alphabet A such that the entropy

rate is h = −∑a∈A pa log pa > 0 where pa is the

probability of symbol a ∈ A. We respectively define

the compression rate ρn:

ρn =
Cn

n
,

and the redundancy rn:

rn = ρn − h .

We also define h2 =
∑

a∈A pa(log pa)
2 and

η = −
∑

k≥2

∑
a∈A pka log pa

1−
∑

a∈A pka
. (4)

Finally, we introduce three functions over integer m:

β(m) =
h2
2h

+ γ − 1− η +∆1(logm),

+
1

m

(
logm+

h2
2h

+ γ − η −
∑

a∈A

log pa −
1

2

)
,

v(m) =
m

h

(
h2 − h2

h2
logm+ c2 +∆2(logm)

)

ℓ(m) =
m

h
(logm+ β(m)) ,

where γ = 2.718 . . . is the Euler constant, c2 a constant,

and ∆1(x) and ∆2(x) are weighted sum of periodic

functions when log pa for a ∈ A are rationally related,
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that is, log pa are integer multiplies of a real number;

otherwise ∆1(x) and ∆2(x) converge to zero as x → ∞
(see [4], [14] for details).

We prove the following theorem regarding the number

of phrases Mn which improves our previous result from

[4] by adding the convergence of moments.

Theorem 1. Consider the LZ’78 algorithm over a se-

quence of length n generated by a memoryless source.

The number of phrases Mn has mean E[Mn] and vari-

ance Var(Mn) satisfying

E(Mn) = ℓ−1(n) + o(n1/2/ log n) (5)

=
nh

log ℓ−1(n) + β(ℓ−1(n))
+ o(n1/2/ log n)

∼ nh

log n
,

Var(Mn) ∼ v(ℓ−1(n))

(ℓ′(ℓ−1(n)))2
∼ (h2 − h2)n

log2 n
. (6)

Furthermore, the normalized number of phrases con-

verges in distribution and moments to the the standard

normal distribution N(0, 1). More precisely, for any

given real x:

lim
n→∞

P (Mn < E(Mn) + x
√

Var(Mn)) = Φ(x), (7)

where

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt.

In addition, for all nonnegative k

lim
n→∞

E



(
Mn −E(Mn)√

Var(Mn)

)k

 = µk (8)

where

µk =





0 k odd

k!
2k/2( k

2
)!

k even
(9)

are the moments of N(0, 1).

We also have large and moderate deviations results for

Mn. To the best of our knowledge these results are new

(see also [4], [9]).

Theorem 2. Consider the LZ’78 algorithm over a se-

quence of length n generated by a memoryless source.

(i) [Large Deviations]. For all 1
2 < δ < 1 there exist

ε > 0, B > 0 and β > 0 such that for all y > 0

P (|Mn−E(Mn)| > ynδ) ≤ A exp

(
−βnε y

(1 + n−εy)δ

)

for some A > 0.

(ii) [Moderate Deviation]. There exists B > 0 such that

P (|Mn −E(Mn)| ≥ x
√

Var(Mn)) ≤ Be−
x2

2

for all non-negative real x < Anδ with δ < 1
6 .

Using these large deviations results, we shall conclude

that the average compression rate converges to the en-

tropy rate. Furthermore, our large deviation results allow

us also to estimate the average redundancy

E(rn) =
E(Cn)

n
− h

and its limiting distribution when n → ∞. More pre-

cisely, in Section IV we prove the following.

Theorem 3. The average compression rate converges to

the entropy rate, that is,

lim
n→∞

E(Cn)

n
= h . (10)

More precisely, for all 1
2 < δ < 1

E(Cn) = ℓ−1(n)(log ℓ−1(n) + log |A|) +O(nδ log n)

= E(Mn)(logE(Mn) + log |A|) + o(n1/2+ε),

and

Var(Cn) ∼ Var(Mn)(logE(Mn) + log |A|+ 1)2

∼ (h2 − h2)n.

Furthermore,

Cn −E(Cn)√
Var(Cn)

d→ N(0, 1)

and in moments, where N(0, 1) represents the standard

normal distribution.

In order to establish the limiting distribution for the

redundancy we also need the corresponding large devi-

ation results for the code length Cn that we formulate

next and prove in Section IV.

Theorem 4. Consider the LZ’78 algorithm over a mem-

oryless source.

(i) [Large Deviations] For all 1
2 < δ < 1 there exist

ε > 0, B > 0 and β > 0 such that for all y > 0

P (|Cn −E(Cn)| > ynδ log(n/ log n)) ≤ (11)

≤ A exp

(
−βnε y

(1 + n−εy)δ

)

for some A > 0.

(ii) [Moderate deviation] There exists B > 0 such that

for n

P (|Cn −E(Cn)| ≥ x
√

Var(Cn)) ≤ Be−
x2

2 (12)
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for all non-negative real x < Anδ with δ < 1
6 .

The next finding is a direct consequence of Theo-

rems 3 and 4.

Corollary 1. The redundancy rate rn satisfies for all
1
2 < δ < 1:

E(rn) =
E(Cn)

n
− h

= h
log(|A|)− β(ℓ−1(n))

log ℓ−1(n) + β(ℓ−1(n))
+O(nδ−1 log n)

∼ h
log(|A|)− β

(
h n
log n

)

log n
, (13)

and

Var(rn) ∼
(h2 − h2)

n
.

Furthermore,

rn −E(rn)√
Var(rn)

d→ N(0, 1)

and the convergence also holds in moments.

In passing, we observe that the above Corollary fol-

lows from a trivial derivation:

E(rn)+O(nδ−1) =
ℓ−1(n)(log(ℓ−1(n)) + log |A|)− nh

n

=
ℓ−1(n) log |A|+ ℓ−1(n) log ℓ−1(n)− hℓ(ℓ−1(n))

n

=
ℓ−1(n)

n

(
log |A| − β(ℓ−1(n)

)

where we use the fact that ℓ(ℓ−1(n)) = n by definition

of the inverse function and

hℓ(ℓ−1(n)) = ℓ−1 log ℓ−1(n) + β(ℓ−1(n))

by the definition of ℓ(n).

The average redundancy estimate was first proved in

[7], [12] but we provide here a new simplified proof.

The variance and the limiting distribution of the redun-

dancy are new. Notice that the estimate for the mean

redundancy is smaller and more precise than previously

obtained average estimates of O( log lognlogn ) obtained via

probabilistic methods [11].

In Figure 2 we show a histograms of rn for different

values of n. We see that the mean of rn decreases when n
increases, in theory like 1/ log n. However, the variance

decreases much faster, like 1/n.

Fig. 2. Simulation of the redundancy distribution for n = 400
(green), n = 1000 (red), n = 2000 (blue) and n = 10000 (cyan)

with pa = 0.9

III. FROM LEMPEL-ZIV TO DIGITAL SEARCH TREE

In this section we make a connection between the

Lempel-Ziv algorithm and digital search trees using a

renewal argument [2].

Our goal is to derive an estimate on the probability

distribution of Mn. We assume that our original text

is a prefix of an infinite sequence X generated by

a memoryless source over the alphabet A. We build

a Digital Search Tree (DST) by parsing the infinite

sequence X up to the mth phrase; see Figure 1 for an

illustration. Thus the associated DST is constructed over

m strings (phrases).

Let Lm be the total path length in the associated DST

after inserting m (independent) strings. The quantity Mn

is exactly the number of strings needed to be inserted to

increase the path length of the associated DST to n. This

observation leads to the following identity valid for all

integers n and m:

P (Mn > m) = P (Lm < n) . (14)

This so called renewal equation [2] allows us to study

the number of phrases Mn through the path length Lm

of the associated digital search tree built over m fixed

independent strings.

We now use generating functions to find a functional

equation for the distribution of Lm. Let Lm(u) =
E(uLm) be the moment generating function of Lm. In

the following, k is a tuple (k1, . . . k|A|) where ka for

a ∈ A stands for the number of strings that starts with
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symbol a. Since inserted strings in DST are independent,

we conclude that

Lm+1(u) = um
∑

k

(
m

k

)∏

a∈A

pka

a Lka
(u), (15)

where (
m

k

)
=

m!∏
a∈A ka!

.

Next, we introduce the exponential generating function

L(z, u) =
∑

m

zm

m!
Lm(u)

leading to the following partial functional-differential

equation

∂

∂z
L(z, u) =

∏

a∈A

L(pauz, u) . (16)

It is clear from the construction that L(z, 1) = ez ,

since Lm(1) = 1 for all integer m. Via the cumulant

formula, we also know that for all integers m and for t
complex (sufficiently small for which log(Lm(et) exists)

we have

log(Lm(et)) = tE(Lm) +
t2

2
Var(Lm) +O(t3) . (17)

Notice that the term O(t3) is not uniform in m. In pass-

ing, we remark that E(Lm) = L′
m(1) and Var(Lm) =

L′′
m(1) + L′

m(1) − (L′
m(1))2.

In [4] we proved the following result (cf. Theorem 1

of [4]) that we adopt here.

Theorem 5. Consider a digital search tree built over m
independent strings. Then

E(Lm) = ℓ(m) +O(1),

Var(Lm) = v(m) + o(m)

for large m.

We aim now at showing that the limiting distribution

of the path length is normal for m → ∞. In order to

accomplish it, we need one important technical result

proved in Section V.

Theorem 6. For all δ > 0 and for all δ′ < δ there exists

ε > 0 such that logLm(etm
−δ

) exists for |t| ≤ ε, and

logLm(etm
−δ

) = O(m), (18)

logLm(etm
−δ

) =
t

mδ
E(Lm) (19)

+
t2

2m2δ
Var(Lm) + t3O(m1−3δ′)

for large m.

Provided Theorem 6 is granted, we are ready to prove

our main results concerning the path length Lm.

Theorem 7. Consider a digital search tree built over m
sequences generated by a memoryless source. Then

Lm −E(Lm)√
VarLm

→ N(0, 1)

in probability and in moments. More precisely, for any

given real number x:

lim
m→∞

P (Lm < E(Lm) + x
√

Var(Lm)) = Φ(x), (20)

and for all nonnegative integer k and ε > 0

E

((
Lm −E(Lm)√

VarLm

)k
)

= µk +O(m− 1

2
+ε) (21)

where µk are centralized moments of the normal distri-

bution given by (9).

Proof: We apply Levy’s continuity theorem or

equivalently Goncharov’s result [14] asserting that
Lm−E(Lm)√

VarLm

tends to the standard normal distribution if

for complex τ

Lm

(
exp

(
τ√

Var(Lm)

))
e−τE(Lm)/

√
Var(Lm) → eτ

2/2.

(22)

To prove it we apply several times our main technical

result Theorem 6 with

t =
τmδ

√
VarLm

= O(m−1/2−ε+δ) → 0

where δ < 1/2 and ε > 0. Thus by Theorem 6 we find

logLm

(
exp

(
τ√

Var(Lm)

))
=

τE[Lm]√
VarLm

(23)

+
τ2

2
+O(m− 1

2
+ε′)

for some ε′ > 0. Thus by (22) the normality result

follows.

To establish the convergence in moments, we use (23)

in the Cauchy formula applied on a circle of radius R
encircling the origin, that is,

E

((
Lm −E(Lm)√

VarLm

)k
)

=

=
1

2iπ

∮
dτ

τk+1
Lm

(
exp

(
τ√

Var(Lm)

))
e−τE(Lm)/

√
Var(Lm)

=
1

2iπ

∮
dτ

τk+1
exp

(
τ2

2

)
(1 +O(m− 1

2
+ε′)
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= µk +O
(
R−k exp(R2/2)m− 1

2
+ε′
)
.

This completes the proof.

We also have some large deviation results for the path

length presented next.

Theorem 8. Consider a digital search tree built over m
sequences generated by a memoryless source.

(i) [Large deviation]. Let 1
2 < δ < 1. Then there exist

ε > 0, B > 0, and β > 0 such that for all x ≥ 0:

P (|Lm −E(Lm)| > xmδ) ≤ B exp(−βmεx). (24)

(ii) [Moderate deviation]. There exists B > 0 such that

P (|Lm −E(Lm)| ≥ x
√

Var(Lm)) ≤ Be−
x2

2 (25)

for non-negative real x < Amδ with δ < 1/6 and A > 0.

Proof: We apply the Chernov bound. Let t > 0 be

a non-negative real number. We have the identity

P
(
Lm > E(Lm) + xmδ

)
= P

(
etLm > e(E(Lm)+xmδ)t

)
.

Using Markov’s inequality we find

P (etLm > e(E(Lm)+xmδ)t) ≤ E(etLm)

e(E(Lm)+xmδ)t

= Lm(et) exp(−tE(Lm)− xmδt) .

Here we take

δ′ =
δ + 1/2

2
>

1

2
, ε = δ′ − 1

2
> 0

since δ > 1/2. We now apply Theorem 6 with t′ and δ′

and we set t = t′m−δ′ to obtain

logLm(et) = tE(Lm) +O(t2Var(Lm)).

By Theorem 5 we conclude

logLm(et)− tE[Lm] = O(m−ε). (26)

We complete the lower bound by setting tmδ = t′mε

with β = t′.
To obtain an upper bound we follow the same route

only considering −t instead of t and using

P
(
Lm < E(Lm)− xmδ

)

= P
(
e−tLm > e−(E(Lm)−xmδ)t

)

≤ Lm(e−t) exp(tE(Lm)− xmδt).

To prove part (ii) of moderate deviation, we apply

again Theorem 6 with

t =
xmδ′

√
VarLm

(27)

where δ < δ′ < 1
6 . Then by Theorem 6 (with formally δ

and δ′ interchanged)

logLm

(
exp(

x√
Var(Lm)

)

)
=

= E(Lm)
x√

Var(Lm)
+

x2

2Var(Lm)
Var(Lm)

+
x3m3δ′

(Var(Lm))
3

2

O(m1−3δ).

Observe that the error term for x = O(mδ) is

O(m− 1

2
+3δ′(logm)−3/2) = o(1)

since δ′ < 1/6 leading to

logLm

(
exp

(
x√

Var(Lm)

))
−E(Lm)

x√
Var(Lm)

=
x2

2
+ o(1). (28)

Therefore, by Markov inequality for all t > 0,

P (Lm > E(Lm) + x
√

Var(Lm)) ≤

≤ exp(logLm(et)− tE(Lm)− xt
√

Var(Lm)).

Using (28) we find

P (Lm > E(Lm) + x
√

Var(Lm)) ≤
exp(logLm(et)− tE(Lm)− xt

√
Var(Lm))

= exp

(
x2

2
+ o(1)− x2

)
∼ exp(−x2

2
)

where we set t = x/
√

Var(Lm) in the last line. This

completes the proof of the lower bound, while for the

upper bound we follow the footsteps with t replaced by

−t.

IV. PROOFS OF MAIN THEOREMS

In this section we prove our main results, namely

Theorems 1 and 2 as well as Theorem 3 and 4. We start

with the large deviation results.

A. Proof of Theorem 2

We start with Theorem 2(i). By (14) we have

P (Mn > ℓ−1(n) + ynδ) = P (Mn > ⌊ℓ−1(n) + ynδ⌋)
= P (L⌊ℓ−1(n)+ynδ⌋ < n) .

Observe that E(Lm) = ℓ(m) +O(1), hence

E(L⌊ℓ−1(n)+ynδ⌋) = ℓ(ℓ−1(n) + ynδ) +O(1). (29)
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Since the function ℓ(·) is convex and ℓ(0) = 0, we have

for all real numbers a > 0 and b > 0

ℓ(a+ b) ≥ ℓ(a) +
ℓ(a)

a
b, (30)

ℓ(a− b) ≤ ℓ(a)− ℓ(a)

a
b. (31)

Applying inequality (30) to a = ℓ−1(n) and b = ynδ we

arrive at

n−E(L⌊ℓ−1(n)+ynδ⌋) ≤ −y
n

ℓ−1(n)
nδ +O(1). (32)

Thus

P (L⌊ℓ−1(n)+ynδ⌋ < n) ≤ P (Lm−E(Lm) < −xmδ+O(1))

by identifying

m = ⌊ℓ−1(n) + ynδ⌋, x =
n

ℓ−1(n)

nδ

mδ
y. (33)

We now apply several times Theorem 8 from the previ-

ous section regarding the path length Lm. That is, for all

x > 0 and for all m, there exist ε > 0 and A such that

P (Lm −E(Lm) < xmδ) < Ae−βxmε

. (34)

In other words,

P (Lm −E(Lm) < xmδ +O(1)) ≤ Ae−βxmε+O(mε−δ))

≤ A′e−βxmε

for some A′ > A we find

P (Mn > ℓ−1(n) + ynδ) ≤ A′ exp(−βxmε). (35)

We know that ℓ−1(n) = Ω( n
logn). Thus with x defined

as (33) we have

x = O((log n)1+δ)
y

(1 + ynδ−1 log n)δ
≤ β′ nε1y

(1 + yn−ε2)δ

for some β′ > 0. Setting ε1 < ε and ε2 < ε for some

ε > 0 we establish the upper bound.

In a similar fashion, we have

P (Mn < ℓ−1(n)− ynδ) = P (L⌊ℓ−1(n)−ynδ⌋ > n) (36)

and

E(L⌊ℓ−1(n)−ynδ⌋) = ℓ(ℓ−1(n)− ynδ) +O(1). (37)

Using inequality (31) we obtain

n−E(L⌊ℓ−1(n)−ynδ⌋) ≥ y
n

ℓ−1(n)
nδ +O(1). (38)

In conclusion,

P (L⌊ℓ−1(n)−ynδ⌋ > n) ≤ P (Lm−E(Lm) > xmδ+O(1))

by identifying

m = ⌊ℓ−1(n)− ynδ⌋, x =
n

ℓ−1(n)

nδ

mδ
y.

Observe that this case is easier since we have now

m < ℓ−1(n) and we don’t need the correcting term

(1 + ynε)−δ.

Now we can turn our attention to moderate devia-

tion expressed in Theorem 2(ii) (with δ < 1/6). It is

essentially the same proof except that we consider

y
sn

ℓ′(ℓ−1(n))
with sn =

√
v(ℓ−1(n))

instead of ynδ, and we assume y = O(nδ′) for some

δ′ < 1
6 . Thus

y
sn

ℓ′(ℓ−1(n))
= O(n

1

2
+ε) = o(n)

for some ε > 0. By Theorem 1 we know that

E(Mn) = ℓ−1(n) + o(sn/ℓ
′(ℓ−1(n)),

thus for y > 0

P (Mn > ℓ−1(n) + y
sn

ℓ′(ℓ−1(n))
) = P (Lm < n) (39)

with m = ⌊ℓ−1(n) + y sn
ℓ′(ℓ−1(n))⌋. We use the estimate

ℓ(a+ b) = ℓ(a) + ℓ′(a)b+ o(1)

when b = o(a) and a → ∞. Thus

ℓ

(
ℓ−1(n) + y

sn
ℓ′(ℓ−1(n))

)
= n+ ysn + o(1) . (40)

Since
√

v(m) = sn +O(1) we have

n = E(Lm)− y
√

v(m) +O(1).

By Theorem 8 we know that

P (Lm < E(Lm)− y
√

v(m) +O(1)) ≤ A exp(−y2/2),

where the term O(1) inducing a term

exp

(
O

(
y2

v(m)

))
= exp(o(1))

which is absorbed in A since δ < 1/6. The proof for

y < 0 follows a similar path.
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B. Proof of Theorem 1

We first show that for all 1
2 < δ < 1

E(Mn) = ℓ−1(n) +O(nδ).

Indeed, noticing that for any random variable X

|E(X)| ≤ E(|X|) =
∫ ∞

0
P (|X| > y)dy,

we set X = Mn − ℓ−1(n) to find from Theorem 2(i)

|E(Mn)− ℓ−1(n)| ≤

≤ nδ + nδ

∫ ∞

1
P (|Mn − ℓ−1(n)| > ynδ)dy = O(nδ).

By the renewal equation (14), for a given y we have

P (Mn > ℓ−1(n) + y
sn

ℓ′(ℓ−1(n))
) =

P (L⌊ℓ−1(n)+y sn
ℓ′(ℓ−1(n))

⌋ < n).

Let m = ⌊ℓ−1(n) + y sn
ℓ′(ℓ−1(n))⌋. We know that

n−E(Lm) = −ysn +O(1)

and

sn =
√

v(ℓ−1(n)) =
√

Var(Lm)(1 + o(1)).

Therefore

P

(
Mn > ℓ−1(n) + y

sn
ℓ′(ℓ−1(n))

)
=

P
(
Lm < E(Lm) + y

√
Var(Lm)(1 + +o(1))

)
.

Hence

P
(
Lm < E(Lm) + y(1 + o(1))

√
Var(Lm)

)
≥

P

(
Mn > ℓ−1 + y

sn
ℓ′(ℓ−1(n))

)

since for all y′ we have

lim
m→∞

P
(
Lm < E(Lm) + y′

√
Var(Lm)

)
= Φ(y′),

and therefore by continuity of Φ(x)

lim
m→∞

P
(
Lm < E(Lm) + y(1± o(1))

√
Var(Lm)

)

= Φ(y) .

Thus

lim
m→∞

P

(
Mn > ℓ−1(n) + y

sn
ℓ′(ℓ−1(n))

)
= 1− Φ(y)

and following the same footsteps we also establish the

matching lower bound

lim
m→∞

P (Mn < ℓ−1(n)− y
sn

ℓ′(ℓ−1(n))
) = Φ(y).

This proves two things: first that

(Mn − ℓ−1(n))
ℓ′(ℓ(−1(n))

sn

tends to the normal distribution in probability. Second,

since by the moderate deviation result the normalized

random variable

(Mn − ℓ−1(n))
ℓ′(ℓ(−1(n))

sn

has bounded moments, and then by the virtue of the

dominated convergence and the convergence to the nor-

mal distribution

lim
n→∞

E

(
(Mn − ℓ−1(n))

ℓ′(ℓ−1((n))

sn

)
= 0,

lim
n→∞

E

((
(Mn − ℓ−1(n))

ℓ′(ℓ(−1(n))

sn

)2
)

= 1.

In other words,

E(Mn) = ℓ−1(n) + o(n1/2 log n)

Var(Mn) ∼ v(ℓ−1(n))

(ℓ′(ℓ−1(n)))2
.

which prove (5) and (6). This completes the proof of our

main result Theorem 1.

C. Proof of Theorem 3

In this section we prove the central limit theorem and

large deviation for the code length

Cn = Mn (logMn + log(|A|))

as presented in (3).

Let now µn = E(Mn) and σn =
√

Var(Mn). Define

also

g(y) = y(log |A|+ log y), g(Mn) = Cn.

Clearly, for any fixed x > 0

P (Mn ≥ µn+xσn) = P (g(Mn) ≥ g(µn+xσn)). (41)

By Taylor’s expansion, since g′′(y) = 1/y, we have

g(µn+xσn) = g(µn)+xσng
′(µn)+O

(
(xσn)

2

µn

)
(42)

where

g′(y) = 1 + log |A|+ log y.

By Theorem 1

lim
n→∞

P (Mn ≥ µn + xσn) = Φ(x) ,

and then by (41)-(42) we find

P (Cn ≥ g(µn + xσn)) =
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P

(
Mn ≥ µn + σn

(
x+O

(
x2σn

µng′(µn)

)))

which converges to Φ(x) since

Φ

(
x+O

(
x2σn

µng′(µn)

))
= Φ(x) +O(n−1/2+ε).

Via similar analysis we find

lim
n→∞

P (Cn ≤ µn(log µn + log |A|)−

−xσn(log µn + log |A|+ 1)) = Φ(x).

In other words the random variable

Cn − g(µn)

σng′(µn)

tends to the normal distribution in probability.

In order to conclude the convergence in moment,

we use the moderate deviation result. Observe that by

Theorem 4 proved next the normalized random variable

satisfies

P

(∣∣∣∣
Cn − g(µn)

σng′(µn)

∣∣∣∣ ≥ x

)
≤ Be−x2/2

for x = O(nδ) when δ < 1
6 . Thus

Cn − g(µn)

σng′(µn)

has bounded moments. Indeed, we have for x = nε for

ε < 1/6.

P

(∣∣∣∣
Cn − g(µn)

σng′(µn)

∣∣∣∣ ≥ nε

)
≤ Be−n2ε/2 .

Since
√
2n ≤ Mn ≤ n, we conclude that

g(
√
n) ≤ g(n) ≤ g(n) = O(n log n).

Therefore, for all integer k:

E

(∣∣∣∣
Cn − g(µn)

σng′(µn)

∣∣∣∣
k
)

=

2k

∫ ∞

0
xk−1P

(∣∣∣∣
Cn − g(µn)

σng′(µn)

∣∣∣∣ ≥ x

)
dx

≤ 2k

∫ nε

0
xk−1e−Bx2/2dx+O(nk logk n)e−n2ε/2 = O(1) .

In summary, the random variable

Cn − g(µn)

σng′(µn)
=

Cn − µn(log µn + log |A|))
σn(log µn + log |A|+ 1)

has bounded moments. Therefore, by virtue of the dom-

inated convergence and the convergence to the normal

distribution

lim
n→∞

E

(
Cn − g(µn)

σng′(µn)

)
= 0

lim
n→∞

E

(
Cn − g(µn)

σng′(µn)

)2

= 1.

In other words, for some ε > 0

E(Cn) = g(µn) + o(n−1/2+ε) (43)

Var(Cn) ∼ Var(Mn)(log µn + log |A|+ 1)2 (44)

which proves our variance estimate.

D. Proof of Theorem 4

We start with the moderate deviation results. We

already know that for x ≤ An1/6 for some A,B > 0
we have

P (Mn ≥ µn + xσn) ≤ Be−x2/2.

As in the previous section, we use g(x) = x(log |A| +
log x) and note that g(Mn) = Cn. We also have

P (g(Mn) ≥ g(µn + xσn)) ≤ Be−x2/2.

Since

g(µn+xσn) = g(µn)+g′(µn)σnx

(
1 +O

(
xσn

µng′(µn)

))

we arrive at

P

(
g(Mn) ≥ g(µn) + xσng

′(µn)

(
1 +O(x

σn
g′(µn)µn

))

≤ Be−x2/2.

But for x = O(n1/6)

x
σn

g′(µn)µn
≤ An1/6 σn

g′(µn)µn
= O(n−1/3) → 0,

hence

P
(
g(Mn) ≥ g(µn) + xσng

′(µn)
)
=

P (g(Mn) ≥ g(µn + σnx(1 +O(n−1/3)) ≤

Be−x2/2(1+O(n−1/3)) ≤ B′e−x2/2

for some B′ > 0. Therefore, from (43)-(44) we conclude

P (Cn > E(Cn) + x
√

Var(Cn)) ≤ B′′e−x2/2

and similarly

P (Cn < E(Cn)− x
√

Var(Cn)) ≤ B′′e−x2/2

for some B′′ > B′, where B′′ absorbs asymptotics of

(43) and (44).
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We now turn our attention to the large deviation result.

We also have the fact that Mn ≤ n. If µn ≤ z ≤ n, we

find

g(z) ≤ g(µn) + (z − µn)g
′(n) .

Thus for y such that µn + ynδ ≤ n:

g(Mn) ≥ g(µn) + ynδg′(n) ⇒ g(Mn) ≥ g(µn + ynδ)

⇒ Mn ≥ µn + ynδ.

Thus by Theorem 2(i) we obtain

P (g(Mn) ≥ g(µn) + ynδg′(n)) ≤

A exp

(
−βnε y

(1 + n−εy)δ

)
.

The result also holds for µn + ynδ > n since P (Mn >
n) = 0. On the other hand, for

√
2n ≤ v ≤ µn we have

g(v) ≥ g(µn) + (v − µn)g
′(µn). Thus:

g(Mn) ≤ g(µn)− ynδg′(µn) ⇒ g(Mn) ≤ g(µn − ynδ)

⇒ Mn ≥ µn − ynδ.

By Theorem 2(i)

P (g(Mn) ≥ g(µn)− ynδg′(µn)) ≤

A exp

(
−βnε y

(1 + n−εy)δ

)
.

Since g′(µn) and g′(n) are both O(log n), the order nδ

is not changed in the large deviation result.

V. TECHNICAL RESULTS

The main goal of this section is to prove Theorem 6.

We accomplish it through several technical results using

throughout analytic depoissonization [5].

A. Auxiliary Results

First, we will work with the Poisson model, that is,

the exponential generating function L(z, u) satisfying

(16) (or its Poisson version L(z, u)e−z) from which

we extract information about the probability generating

function Lm(u) for large z and u in the vicinity of u = 1.

Throughout we use analytic depoissonization of [5].

Define

X(z) =
∂

∂u
L(z, 1), X̃(z) = X(z)e−z ,

Ṽ (z) = e−z ∂2

∂u2
L(z, 1) + X̃(z)− (X̃(z))2,

that is, the Poisson mean X̃(z) and the Poisson variance

Ṽ (z). For a given fixed z, for any t, we then have

logL(z, et) = z + X̃(z)t+ Ṽ (z)
t2

2
+O(t3). (45)

We first obtain some estimates on the Poisson mean

X̃(z) and Poisson variance Ṽ (z) (cf. Lemma 1) by

by applying Theorem 10 below that we prove in the

last subsection. Then we derive some estimates on the

derivative of logL(z, et) (cf. Lemma 2). Finally, we use

depoissonization tool reviewed below in Theorem 9 to

prove Theorem 6.

The main tool of this section is analytic depoissoniza-

tion that we review next. To this end we will use the

diagonal exponential depoissonization established in [5].

Let θ be a non-negative number smaller than π
2 , and C(θ)

be complex cone around the positive real axis defined as

C(θ) = {z : arg(z)| ≤ θ}. We will use of the following

theorem from [5] (cf. Theorem 8) known as the diagonal

exponential depoissonization tool.

Theorem 9 (Jacquet and Szpankowski, 1998). Let uk
be a sequence of complex number, and θ ∈]0, π2 [. For all

ε > 0 there exist c > 1, α < 1, A > 0 and B > 0 such

that:

z ∈ C(θ) & |z| ∈ [
m

c
, cm] ⇒ | log(L(z, um)| ≤ B|z|,

z /∈ C(θ) , |z| = m ⇒ |L(z, um)| ≤ Aeαm.

Then

Lm(um) = L(m,um)(1 + o(m− 1

2
+ε))·

· exp
(
−m− m

2

(
∂

∂z
log(L(m,um))− 1

)2
)

(46)

for m → ∞.

In Theorems 12 and 13 of Section V-C we prove

the following main technical result needed to establish

Theorem 6.

Theorem 10. Let δ ∈]0, 1[. There exist numbers θ ∈
]0, π2 [, α < 1, A > 0, B > 0 and ε > 0 such that for all

complex t such |t| ≤ ε:

z ∈ C(θ) ⇒ | log(L(z, et|z|−δ

))| ≤ B|z| (47)

z /∈ C(θ) ⇒ |L(z, et|z|−δ

)| ≤ Aeα|z| (48)

Granted Theorem 10, we now proceed to estimate the

Poisson mean and variance that are further used to prove

Theorem 11 – main technical result of this section – in

which we obtain an estimate on logLm(et).

We start with some bounds on the Poisson mean,

variance, and logL(z, et).

Lemma 1. Let δ be an arbitrary non negative number.

There exists ε > 0 such that for |t| ≤ ε and z ∈ C(θ)
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the following estimates hold

X̃(z) = O(|z|1+δ),

Ṽ (z) = O(|z|1+2δ),

logL(z, et|z|
−δ

) = z + X̃(z)
t

|z|δ + Ṽ (z)
t2

2|z|2δ
+O(t3|z|1+3δ) .

Proof: We first notice that logL(z, 1) = z. We

recall that X̃(z) and Ṽ (z) are respectively the first and

second derivative of L(z, et) with respect to t at t = 0.

By Cauchy’s formula [5], [14]:

X̃(z) =
1

2iπ

∮
logL(z, et)

dt

t2
, (49)

Ṽ (z) =
2

2iπ

∮
logL(z, et)

dt

t3
, (50)

where the integrals are along the circle of center 0
and radius ε|z|−δ . On this integral loop the estimate

| logL(z, et)| ≤ B|z| holds, and therefore we have

|X̃(z)| ≤ B

ε
|z|1+δ , (51)

|Ṽ (z)| ≤ 2B

ε2
|z|1+2δ , (52)

which proves the first two assertions. For the third one,

we need to assess the reminder

R(z, t) = logL(z, et)− z − X̃(z)t− Ṽ (z)
t2

2
.

We again use the Cauchy formula

R(z, t) =
2t3

2iπ

∮
logL(z, et

′

)
dt′

(t′)3(t′ − t)
. (53)

The above follows by noting that

R(z, t) =
1

2iπ

∮
logL(z, et

′

)
dt′

(t′ − t)

R(z, 0) =
1

2iπ

∮
logL(z, et)

dt

t

R′(z, 0) =
1

2iπ

∮
logL(z, et)

dt

t2

R′′(z, 0) =
1

2iπ

∮
logL(z, et)

dt

t3
.

We integrate R(z, t) around the circle of center 0 and

radius ε|z|−δ. If we restrict |t| ≤ ε
2 |z|−δ , then |t− t′| ≥

ε
2 |z|−δ , and

|R(z, t)| ≤ 8B

ε3
|t|3|z|1+3δ

which completes the proof.

Let now

D(z, t) :=
∂

∂z
logL(z, et)

which is needed in (46) to apply the diagonal de-

poissonization. Our second technical lemma provides

estimates on D(z, t).

Lemma 2. Let δ > 0. There exist ε > 0 and B′ > 0
such that for all t such |t| < ε

|D(m, tm−δ))| ≤ B′,

D(m, tm−δ) = 1 + X̃ ′(m)
t

mδ
+O(t2m2δ),

X̃ ′(m) = O(mδ)

for m → ∞.

Proof: The key point here is to show that

D(m, tm−δ)) = O(1). In order to establish it, we again

use the Cauchy formula:

D(m, tm−δ) =
1

2iπ

∮
logL(z, etm

−δ

)
dz

(z −m)2
, (54)

where the integration loop encircles m within a radius

O(m) and is included in the cone C(θ). Let |t| ≤ ε so

that (48) holds, namely | logL(z, etm−δ

)| ≤ B|z| since

m = O(|z|). To this end the loop is chosen to be a

circle of center m and radius m sin(θ). Noticing that

|z| < m(1 + sin(θ) we finally arrive at

|D(m, tm−δ)| ≤ B
1 + sin(θ)

sin(θ)
. (55)

From here the proof takes a similar path as in the

previous lemma. By noticing that D(m, 0) = 1 we have

X̃ ′(m) =
∂

∂t
D(m, 0) =

1

2iπ

∮
D(m, t′)

dt′

(t′)2

D(m, tm−δ) = 1 + X̃ ′(m)tm−δ+

+
tm−δ

2iπ

∮
D(m, t′)

dt′

(t′)2(t′ − tm−δ)
,

where the integral loop is now the circle of center tm−δ

and radius εm−δ.

These two lemmas allow us to establish the following

intermediate result.

Theorem 11. There exists a number A > 0 such that

for all arbitrarily small δ′ < δ, and for all complex t
such that |t| ≤ A, we have

logLm(etm
−δ

) = X̃(m)
t

mδ

+
(
Ṽ (m)−m(X̃ ′(m))2

) t2

2m2δ

+ O(t3m1−3δ+6δ′)
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for m → ∞
Proof: We apply (46) of Theorem 9. Let δ′ < δ be

arbitrary small. We want to apply Lemma 1 with t′ and

δ′ such that t′ = tmδ′−δ, so that the condition |t′| ≤ ε
is easily checked. From

logL(m, et
′m−δ′

) = m+ X̃(m)
t′

mδ′
+ Ṽ (m)

t′2

2m2δ′

+O(t′3m1+3δ′)

we find

logL(m, etm
−δ

) = m+ X̃(m)
t

mδ
+ Ṽ (m)

t2

2m2δ

+O(t3m1−3δ+6δ′ ) .

In order to apply (46) we need to estimate
(

∂

∂z
log(L(m,um))− 1

)2

= (D(m,um)− 1)2 ,

where um = etm
−δ

Applying Lemma 2 with t′ = tmδ′−δ

we first find

D(m, etm
−δ

) = 1+ X̃ ′(m)
t

mδ
+O(t2m−2δ+4δ′) . (56)

Then using X ′(m) = O(mδ′) we arrive at

(
D(m, etm

−δ

)− 1
)2

= (X̃ ′(m))2
t2

m2δ
+O(t3m−3δ+5δ′) .

Putting everything together and using (46) of Theo-

rem 9, we finally achieve the expected estimate on

logLm(etm
−δ

) [5], [14].

The next result allows us to connect Poissonized mean

and variance with the original mean and variance. It

follows directly from Theorem 11.

Corollary 2. For any δ′ > 0

E(Lm) = X̃(m) + o(1) = O(m1+δ′),

Var(Lm) = Ṽ (m)−m(X ′(m))2 + o(1) = O(m1+2δ′)

as m → ∞.

B. Proof of Theorem 6

We are finally in the position to prove Theorem 6,

granted Theorem 10 which we will establish in the next

section. From Theorem 9 and Lemma 2, for any δ′ > 0,

we obtain the estimate

logLm(etm
−δ′

) = O(m)

which proves (18) of Theorem 6. To prove (19) we

estimate the reminder

Rm(t) = logLm(et)−E(Lm)t− Var(Lm)
t2

2
.

By Cauchy formula, as in the proof of Lemma 1, we

have

Rm(t) =
2t3

2iπ

∮
logLm(et

′

)
dt′

(t′)3(t′ − t)
, (57)

where the integral is around a circle of center 0 and

radius ε|z|−δ . If we restrict |t| ≤ ε
2 |z|−δ , then |t− t′| ≥

ε
2 |z|−δ . As in the proof of Lemma 1, we find

Rm(t) = t3O

(
m1+3δ′

ε3

)
.

Therefore, for δ > δ′ we finally arrive at

Rm(tm−δ) = t3O
(
m1−3(δ−δ′)

)
= t3O

(
m1−3(δ′′)

)

(58)

for some δ′′ > 0, This completes the proof of Theorem 6.

C. Proof of Theorem 10

To complete our analysis we need to prove Theo-

rem 10. We establish (47) and (48) in below Theorems 12

and 13, respectively.

We apply the so called increasing domains tech-

nique [4], [14]. This technique allows to establish a

property over an area of complex plane (e.g., cone)

by mathematical induction. Indeed, let R be a real

number. We denote C0(θ) the subset of the linear cone

C(θ) = {z : | arg(z)| ≤ θ} consisting of complex

numbers of modulus smaller than or equal to R. By

extension, let k be an integer, and we denote by Ck(θ)
the subset of C(θ) that consists of complex numbers of

modulus smaller than or equal to Rρk where

ρ = min
u∈U(1),a∈A

{
1

pa|u|

}
> 1 (59)

for a neighborhood U(1) of u = 1. By construction if

z ∈ Ck(θ) for k > 0 and u ∈ U(1), then all pauz for

a ∈ A belong to Ck−1(θ) so that a property that holds

for Ck−1(θ) can be extended to a larger subset of the

cone, namely Ck(θ), for quantities satisfying functional

equations like (16). This is illustrated in Figure 3.

Our goal is to present a polynomial estimate

logL(z, u) (i.e., logL(z, u) = O(z)) for large z in a

cone containing the real positive axis. The main problem

is the existence of the logarithm of L(z, u) in particular

for complex values of z and u. Technically, we can

only prove the existence and growth of logL(z, u) for

complex u with small imaginary part as z increases. For

this we fix an arbitrary non-negative real number δ < 1,

and we fix t and z complex so that

u(z, t) = et|z|
−δ

. (60)
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Fig. 3. Sets Ck(θ) for θ = π

6
for k = 0, . . . , 6.

The key to our analysis is the following theorem that

proves (47) of Theorem 10.

Theorem 12. There exists a complex neighborhood U(0)
of t = 0 and B > 0 such that for all t ∈ U(0) and for

all z ∈ C(θ) the function logL(z, u(z, t) exists and

logL(z, u(z, t) ≤ B|z| . (61)

We prove it in several steps below. The road map for

the proof is as follows: We first introduce the following

function f(z, u) that we call the kernel function defined

as in [4]

f(z, u) =
L(z, u)
∂
∂zL(z, u)

=
L(z, u)∏

a∈A L(pauz, u)
. (62)

Notice that formally

1

f(z, u)
=

∂

∂z
logL(z, u).

Indeed, if we show that the kernel function is well

defined and is never zero in a convex set containing the

real positive line, then we will prove that logL(z, u)
exists since

logL(z, u) =

∫ z

0

dx

f(x, u)
. (63)

Furthermore, if we prove that the estimate f(x, u) =
Ω(1), then

logL(z, u) =

∫ z

0

dx

f(x, u)
= O(z) (64)

as needed to establish (47) of Theorem 10.

Understanding the kernel function is therefore the key

to our analysis. In passing we observe that the kernel

function satisfies the following differential equation:

∂

∂z
f(z, u) = 1− f(z, u)

∑

a∈A

pau

f(pauz, u)
. (65)

We proceed now with the proof of Theorem 12. We

start with a trivial lemma, whose proof is left to the

reader.

Lemma 3. Let for (x, ε) real positive tuple a function

h(x, ε) be defined on an open set containing all tuples

(x, 0) with x ≥ 0. Assume that the function h(x, ε) is

real positive and continuously differentiable. If

∀x ≥ 0 :
∂

∂x
h(x, 0) < 1,

then for all compact set Kx there exists a compact

neighborhood of U(0) of 0: (x0, t) ∈ Kx ×U(0) so that

the sequence defined for k integer

xk+1 = h(xk, ε) (66)

converges to a bounded fixed point when k → ∞.

Let us define the function a(z, u) as

1

f(z, u)
= 1 + a(z, u).

In the next two lemmas we prove that a(z, u) = O(1)
for u as in (60) which by (64) proves (47).

Lemma 4. Let δ′ be a real number such that δ′ < δ < 1.

For all number â > 0 there exists a real number ε > 0
such that for all real t and |t| < ε we have

|a(z, u(z, t))| ≤ â
|t|
|z|δ′ . (67)

for all z ∈ C(θ).
Proof: We apply the increasing domain technique

with

ρ = min
u∈U(1),a∈A

{
1

pa|u|

}
> 1

for a compact neighborhood U(1) of u = 1 which is

assumed to be small enough so that ρ is greater than 1.

To proceed, we next make u(z, t) independent of z in the

subset Ck(θ) of the kth increasing domain by introducing

uk(t) = etν
k

for ν = ρ−δ, and we fix

µ = ρ−δ′ > ν

for δ′ < δ. In the following we will denote fk(z) =
f(z, uk(t)), and uk = uk(t), omitting variable t. Recall

that the kernel function satisfies the differential equation:

f ′
k(z) = 1− fk(z)

∑

a∈A

pauk
f(paukz, uk)

. (68)
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Let ak(z, t) = a(z, uk(t)). Since L(z, 1) = ez for all

z, hence f(z, 1) = 1. Since ∂
∂uf(z, u) is well defined

and continuous, we can restrict the neighborhood U(1)
such that f(z, u) is non zero and therefore a(z, u) is

well defined for z ∈ C0(θ) = {z ∈ C(θ) : |z| < R} and

u ∈ U(1). Let a0 be a non negative number such that

∀u ∈ U(1) , ∀z ∈ C0(θ) : |a0(z, t)| ≤ a0|t| (69)

Now we fix ε such that a0ε < 1. We aim at proving

that there exists a number ǫ > 0 such that there exists

an increasing sequence of non negative numbers ak such

that for all z ∈ Ck(θ): and for all t such that |t| ≤ ǫ:

|ak(z, t)| ≤ ak|t|µk (70)

and lim supk→∞ ak < ∞.

We now apply the increasing domain approach, Let

z ∈ Ck(θ). We denote

gk(z) =
∑

a∈A

pauk
f(paukz, uk)

. (71)

Thus (68) can be rewritten as f ′
k(z) = 1 − gk(z)fk(z)

and the differential equation can be solved by

fk(z) = 1 +

∫ z

0
(1− gk(x)) exp(Gk(x)−Gk(z))dx ,

(72)

where Gk(z) is a primitive of function gk(z).
We now will give some bounds on gk(z) for z ∈ Ck(θ)

and |t| < ε. For all a ∈ A we assume paukz ∈ Ck−1(θ).
We have uk(t) = uk−1(νt) and we can use the recursion

since |νt| < ε. In particular we have

gk(z) =
∑

a∈A

pauk(1 + ak−1(paukz, νt)) (73)

= 1 + bk(z, t) (74)

with

bk(z, t) =
∑

a∈A

pa(uk − 1 + ukak−1(paukz, νt)) . (75)

Since both |ak−1(puk, νt)| and |ak−1(quk, νt)| are

smaller than ak−1νµ
k−1|t|, and since |uk − 1| ≤ βνk|t|

for some β close to 1, we have |b(z, t)| ≤ bk|t| with

bk = (ak−1νµ
k−1 + βνk)(1 + βνkε) . (76)

Thus plugging in (72) we find

|fk(z) − 1| ≤
∫ z

0
|bk(x, t)| exp(ℜ(Gk(x)−Gk(z)))dx

≤
∫ 1

0
bk|t||z| exp(ℜ(Gk(zy)−Gk(z)))dy

≤ bk|t|
cos(θ)− bk|t|

.

Clearly,

ℜ(Gk(yz)−Gk(z)) = −ℜ(z)(1 − y)

+

∫ 1

y
ℜ(zbk(zx, t))dx

≤ − cos(θ)|z|+ bk|z|,

hence

∣∣∣∣
1

fk(z)
− 1

∣∣∣∣ ≤
bk|t|

cos(θ)−bk|t|

1− bk|t|
cos(θ)−bk|t|

=
bk|t|

cos(θ)− 2bk|t|
.

(77)

Therefore,

ak ≤ (ak−1
ν

µ
+ β

νk

µk
)(1 + βνkε)

1

cos(θ)− bkε
. (78)

Let now h(ak, ε) be the right-hand side of (78). Notice

that
∂

∂ak
h(ak, 0) =

ν

µ cos(θ)
< 1

for small enough θ. Thus we are in the realm

of Lemma 3. Moreover, h(x, ε) is increasing. Since

in Lemma 3 we can make ε small enough, hence

lim supk→∞ ak < ∞ and (70) is proved, so the lemma.

We extend this lemma to a complex neighborhood of

t = 0 (u = 1).

Lemma 5. For all number α > 0 there exists ε > 0,

θ ∈]0, π2 [ such for complex t such that |t| < ε:

|a(z, u(z, t))| ≤ α
|t|
|z|δ′ (79)

for all z ∈ C.

Proof: The proof is essentially the same as the

previous lemma except that we have to extend the cone

C(θ) to a larger set C′(θ) defined by {z : | arg(z)| ≤
θ + φ|z|δ−1} so that if z ∈ C′(θ), then for all a ∈ A
also pau(z, t)z belongs to C′(θ) (with a small rotation

of angle ℑ( t
|z|δ ) in the case two points outside C(θ) may

not satisfy the induction hypothesis).

We now establish (48) of Theorem 10.

Theorem 13. Let θ ∈]0, π2 [. There exist numbers A > 0,

α < 1 and ε > 0 such that for all complex t such |t| ≤ ε:

z /∈ C(θ) ⇒ |L(z, u(z, t))| ≤ Aeα|z| . (80)

Proof: We proceed as with the previous proof: We

first prove it for t real (near t = 0) and then consider

complex t. We take a neighborhood U(1) of u = 1 (or

t = 0) and define ρ as in (59). We define C̄(θ) as the
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complementary of C(θ) in the complex plan. We also

introduce

λ = min
u∈U(1),a∈A

{pa|u|}. (81)

We set R > 0 and define C̄0(θ) and C̄k(θ) for k > 0
integer as subsets of C̄(θ):

C̄0(θ) = {z ∈ C̄(θ), |z| ≤ λR},
C̄k(θ) = {z ∈ C̄(θ), λR < |z| ≤ ρkR}.

With these definitions, if u ∈ U(1) when z is in C̄k(θ)−
C̄k−1(θ), then both puz and quz are in C̄k−1(θ). This

determines the increasing domains in this case.

Since L(z, 1) = ez and if α > cos(θ) then |L(z, 1)| ≤
eα|z|. There exist A0 > 0 and ε such that for all t such

|t| ≤ ε and for all z ∈ C̄0(θ): |L(z, et)| ≤ A0e
α|z|. We

also tune ε so that α
∏

k uk(ε) < 1.

We proceed doing the same analysis for z ∈ C̄1(θ).
But since |L(z, 1)| is strictly smaller than eα|z| for all

z ∈ C̄1(θ), we can find A1 < 1 and ε > 0 such that

for all t such |t| ≤ ε and for all z ∈ C̄1(θ) we have

|L(z, et)| ≤ A1e
α|z|. In fact since

min
z∈C̄1(θ)

{ |ez |
eα|z|

} → 0

when R → ∞ we can make A1 as small as we want.

We now define αk = α
∏i=k

i=0 uk(ε). We will prove by

induction that there exists an increasing sequence Ak < 1
such that for t such |t| ≤ ε:

z ∈ C̄k(θ) ⇒ |L(z, uk(t))| ≤ Ake
αk|z| . (82)

Our plan is to prove this property by induction. Assume

it is true for all integers smaller equal to k− 1, we then

prove it is true for k. Assume z ∈ C̄k(θ)− C̄k−1(θ). We

use of the differential equation:

L(z, uk) = L(z/ρ, uk) +

∫ z

z/ρ

∏

a∈A

L(paukx, uk)dx .

Clearly,

|L(z, uk)| ≤ |L(z
ρ
, uk)|+|z|

∫ 1

1/ρ

∏

a∈A

|L(paukzy, uk)|dy .

Using induction hypothesis

|L(z
ρ
, uk)| ≤ Ak−1e

αk−1|z|/ρ,

and for all a ∈ A:

|L(paukyz, uk)| ≤ Ak−1e
αk−1pa|uk||z|y ≤ Ak−1e

αkp|z|y

(we have αk−1|u| ≤ αk−1e
ε = αk). Thus

|L(z, uk) ≤ Ak−1e
αk−1|z|/ρ+

A2
k−1

αk

(
eαk|z| − eαk|z|/ρ

)
.

This gives an estimate

Ak ≤
A2

k−1

αk
+Ak−1e

−ρk−2(ρ−1)αkR .

Clearly the term in e−ρk−2(ρ−1)αkR can be made as small

as we want by increasing R. If we choose A1 such that

A1

α1
+ e−ρk−2(ρ−1)αkR < 1

for all k then we get Ak ≤ Ak−1 and the theorem is

proven for t real.

Second, we need to expand our proof to the case where

t is complex and |t| ≤ ε. To this end we use a similar

trick as in the proof of Lemma 5. We expand C̄(θ) to

C̄′(θ) = {z : arg(z)| ≥ θ + φRδ−1 − φ|z|δ−1}

for |z| > Rρ in order to assure that paukz stays in C̄′(θ)
for all a ∈ A when

z ∈ C̄′
k(θ)− C̄′

k−1(θ)

(absorbing a tiny rotation, if needed, that the factor uk
implies when t is complex). Of course, one must choose

φ such that θ + φRδ−1 < π
2 and tune ε.
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