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Abstract

During the 10th Seminar on Analysis of Algorithms, MSRI, Berkeley, June 2004,
Knuth posed the problem of analyzing the left and the right path length in a random
binary trees. In particular, Knuth asked about properties of the generating function of
the joint distribution of the left and the right path lengths. In this paper, we mostly
focus on the asymptotic properties of the distribution of the difference between the
left and the right path lengths. Among other things, we show that the Laplace trans-
form of the appropriately normalized moment generating function of the path difference
satisfies the first Painlevé transcendent. This is a nonlinear differential equation that
has appeared in many modern applications, from nonlinear waves to random matrices.
Surprisingly, we find out that the difference between path lengths is of the order n5/4

where n is the number of nodes in the binary tree. This was also recently observed by
Marckert and Janson. We present precise asymptotics of the distribution’s tails and
moments. We shall also discuss the joint distribution of the left and right path lengths.
Throughout, we use methods of analytic algorithmics such as generating functions and
complex asymptotics, as well as methods of applied mathematics such as the WKB
method.

Key Words: Binary trees, Catalan number, path length, Painlevé transcendent, WKB
method.

∗The work was supported by NSF Grants CCR-0208709 and DMS-02-02815, NIH Grant R01 GM068959-
01, and NSA Grant MDA 904-03-1-0036

1



1 Introduction

Trees are the most important nonlinear structures that arise in computer science. Appli-
cations are in abundance; here we discuss binary unlabeled ordered trees (further called
binary trees) and study their asymptotic properties when the number of nodes, n, becomes
large. While various interesting questions concerning statistics of randomly generated bi-
nary trees were investigated since Euler and Cayley [6, 12, 13, 18, 20, 21], recently novel
applications have been surfacing. In 2003 Seroussi [16], when studying universal types for
sequences and Lempel-Ziv’78 parsings, asked for the number of binary trees of given path
length (sum of all paths from the root to all nodes). This was an open problem; partial
solutions are reported in [11, 17].

During the 10th Seminar on Analysis of Algorithms, MSRI, Berkeley, June 2004, Knuth
asked to analyze the joint distribution of the left and the right path lengths in random
binary trees. This problem received a lot of attention in the community (cf. related papers
[8, 15]) and leads to an interesting analysis, that encompasses several other problems studied
recently [8, 11, 14, 15, 16, 17, 20]. Here, we mostly focus on the asymptotic properties of
the distribution of the difference between the left and the right path lengths. However, we
also obtain some results for the joint distribution of the left and the right path lengths in
a random binary tree.

In the standard model, that we adopt here, one selects uniformly a tree among all binary
unlabeled ordered trees built on n nodes, Tn (where |Tn| =

(2n
n

)
1

n+1 =Catalan number).
Many deep and interesting results concerning the behavior of binary trees in the standard
model were uncovered. For example, Flajolet and Odlyzko [4] and Takacs [20] established
the average and the limiting distribution for the height (longest path), while Louchard [14]
and Takacs [19, 20, 21] derive the limiting distribution for the path length. As we indicate
below, these limiting distributions are expressible in terms of the Airy’s function (cf. [1, 2]).
Recently, Seroussi [16, 17], and Knessl and Szpankowski [11] analyzed properties of random
binary trees when selected uniformly from the set Tt of all binary trees of given path length
t. Among other results, they enumerated the number of trees in Tt and analyze the number
of nodes in a randomly selected tree from Tt.

We now summarize our main results and put them into a bigger perspective. Let Nn(p, q)
be the number of binary trees built on n nodes with the right path length equal to p and the
left path length equal to q. It is easy to see that its generating function Gn(w, v) satisfies

Gn(w, v) =
n∑

i=0

wivn−iGi(w, v)Gn−i(w, v) (1.1)

with G0(w, v) = 1. Summing over n we obtain the triple transform C(w, v, z) (cf. also
(2.12) below) that satisfies

C(w, v, z) = 1 + zC(w, v, wz)C(w, v, vz). (1.2)

This is exactly the equation that Knuth asked to analyze.
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The above functional equation encompasses many properties of binary trees. Let us first
set w = v and define C(w, z) = C(w,w, z). Recurrence (1.2) then becomes

C(w, z) = 1 + zC2(w, zw). (1.3)

Observe that this equation is asymmetric with respect to z and w. When enumerating trees
in Tn, we set w = 1 to get the well known algebraic equation C(1, z) = 1 + zC2(1, z) that
can be explicitly solved as C(1, z) =

(
1 −

√
1 − 4z

)
/(2z), leading to the Catalan number.

A randomly (uniformly) selected tree from Tn has path length Tn that is asymptotically
distributed as Airy’s distribution [19, 20], that is,

Pr{Tn/
√

2n3 ≤ x} → W (x)

where W (x) is the Airy distribution function defined by its moments [5]. The Airy dis-
tribution arises in surprisingly many contexts, such as parking allocations, hashing tables,
trees, discrete random walks, area under a Brownian bridge, etc. [5, 14, 19, 20, 21].

Setting z = 1 in (1.3) we arrive at

C(w, 1) = 1 + C2(w,w)

which is not algebraically solvable. Observe that the coefficient of wt in C(w, 1) enumerates
binary trees with a given path length t. In [11, 17] it was shown that

[wt]C(w, 1) = |Tt| =
1

(log2 t)
√

πt
2

2t
log2 t(1+c1 log−2/3 t+c2 log−1 t+O(log−4/3 t))

for large t, where c1 and c2 are explicitly computable constants.
Let us now set v = 1 in (1.2). Then

C(w, 1, z) = 1 + zC(w, 1, wz)C(w, 1, z)

while Gn(w, 1) = [zn]C(w, 1, z) satisfies

Gn+1(w, 1) =
n∑

i=1

wiGi(w, 1)Gn−i(w, 1). (1.4)

Observe that Gn(w, 1) is the generating function of the right path length. Actually, recur-
rence (1.4) was studied by Takacs in [19] when analyzing the area under a Bernoulli random
walk. Also, it appears in the Kleitman-Winston conjecture [9, 22].

Finally, we turn attention to results presenting in this paper. We first analyze the
limiting distribution of the difference Dn = Rn − Ln where Rn,Ln are the right and left
path lengths, respectively. We observe that the difference Dn is of order n5/4. This was also
recently observed by Marckert [15] and Janson [8]. Among other things, we show that the
tail of the distribution is thicker than that of the Gaussian distribution. More precisely,

n−5/4 · Pr{Dn = βn5/4} ∼
√

5
6
(5β)1/3c0 exp

(
−3

4
51/3β4/3

)
[1 + O(β−4/3)]
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as β → ∞, where c0 is a constant.
Next, we analyze moments of Dn. We first observe that odd moments vanish, while

the normalized even moments satisfy (asymptotically) a certain nonlinear recurrence that
occurs in various forms in many other problems, that are described by nonlinear functional
equations similar to (1.1) (e.g., quicksort, linear hashing, enumeration of trees in Tt). In
these cases, usually the limiting distribution can be characterized only by moments. We
conjecture that these problems constitute a new class of distributions determined by mo-
ments. More precisely, let Z be a (normalized) limiting distribution of such a process. Then
for some an → ∞ we have E[Zk]/ak = ck such that in general ck satisfies

ck+1 = αk + βkck + γk

k∑

i=0

cick−i (1.5)

with some initial conditions, and given αk, βk and γk. In our case (cf. also [8]) the even
normalized moments of Dn converge as E[D2m+2

n ]/n5(m+1)/2 → (2m + 2)!
√

π∆m for any
integer m ≥ 0, where ∆m satisfy the recurrence similar to (1.5) (cf. (2.23) and (2.24)
below). Similar recurrences appear in the quicksort [10], linear hashing [5], path length in
binary trees [12, 14, 20, 21], area under Bernoulli walk [19], enumeration of trees with given
path length [11], and many others [6, 13, 18].

Finally, we analyze the moment generating function of Dn. We observe that the Laplace
transform of an appropriately normalized moment generating function satisfies the first
Painlevé transcendent nonlinear differential equation [7]

0 = U2
1 (φ) + 2U ′′

1 (φ) − 4φ.

This also appears in many modern applications, including nonlinear waves and random
matrices. We shall also discuss the joint distribution of the left and the right path lengths.

Throughout, we use methods of analytic algorithmics such as generating functions and
complex asymptotics, as well as methods of applied mathematics, such as the WKB method.
We add that moments of Dn were recently analyzed by Janson [8] using a Galton-Watson
branching process approach, and the limiting distribution is implicit in Marckert [15], who
applied Brownian analysis. As pointed out by Janson [8] “many different methods are
useful and valuable, even for the same types of problems, and should be employed without
prejudice”.

2 Problem Statement and Summary of Results

Let N(p, q;n) be the number of binary trees with n nodes that have a total right path
length p and a total left path length q. We also set

N(p, q;n) = N̄(p + q, p − q;n) (2.1)

and note the obvious symmetry relation
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N(p, q;n) = N(q, p;n). (2.2)

We shall mostly focus on analyzing the difference between the right and left path length,
and this we denote by

J = p − q. (2.3)

It is well known [6] that the total number of trees with n nodes is the Catalan number

Cn =
1

n + 1

(
2n
n

)
. (2.4)

Then we define the probability distribution of the path length difference, Dn, by

P−(J ;n) = Prob[Dn = J ] =
1

Cn

(n
2)−|J |∑

i=0

N(i, i + |J |;n), J ∈
[
−
(

n

2

)
,

(
n

2

)]
. (2.5)

Here we used the fact that the left or right path in a tree with n nodes can be at most
(
n
2

)
.

We can easily verify that

P−

((
n

2

)
− 1;n

)
= 0, (2.6)

P−

((
n

2

)
;n
)

= P−

((
n

2

)
− 2;n

)
= P−

((
n

2

)
− 3;n

)
= 1/Cn, (2.7)

since there are no trees where the path length difference is one below the maximum, and
exactly one tree (out of Cn) has this difference either zero or two or three below the maximum
value of

(n
2

)
. In view of (2.2) we have P−(J ;n) = P−(−J ;n) so it is sufficient to analyze

(2.5) for J ≥ 0.
The generating function of N(p, q) in (2.1)

Gn(w, v) =
∑

p

∑

q

N(p, q;n)wpvq (2.8)

satisfies the recurrence

Gn+1(w, v) =
n∑

i=0

wivn−iGi(w, v)Gn−i(w, v), n ≥ 0, (2.9)

subject to the initial condition
G0(w, v) = 1. (2.10)

From (2.9) we also obtain the functional equation

C(w, v, z) = 1 + zC(w, v, wz)C(w, v, vz) (2.11)

for the triple transform
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C(w, v, z) =
∞∑

n=0

Gn(w, v)zn =
∑

n

∑

p

∑

q

N(p, q;n)znwpvq. (2.12)

We note that Gn(1, 1) = Cn and from (2.5) we obtain

P−(J ;n) =
1

Cn
[wJ ]Gn

(
w,

1
w

)
. (2.13)

We study the limit n → ∞, with an appropriate scaling of p and q. First we consider
the path length difference, with J scaled as

J = βn5/4 = O(n5/4). (2.14)

For a fixed β we shall obtain

P−(J ;n) ∼ n−5/4p−(β) (2.15)

where p−(β) is a probability density that can be represented as

p−(β) =
1

2πi

∫ i∞

−i∞
e−βb[1 +

√
πH̄(b)]db (2.16)

=
1
2π

∫ ∞

−∞
e−βix[1 +

√
πH̄(ix)]dx

=
1
π

∫ ∞

0
cos(βx)S(x)dx,

where S(x) = 1 +
√

πH̄(ix) and

1 +
√

πH̄(b) =
∫ ∞

−∞
eβbp−(β)dβ. (2.17)

Thus the left side of (2.17) is the moment generating function of p−(β), which is an entire
function of b.

While we do not have an explicit formula for p−(β), we have the following asymptotic
and numerical values:

p−(β) ∼
√

5
6
(5β)1/3c0 exp

(
−3

4
51/3β4/3

)
[1 + O(β−4/3)] (2.18)

as β → ∞, with
c0 ≈ .5513288; (2.19)

p−(0) ≈ .45727 ; p′′−(0) ≈ −.71462. (2.20)

We also find that the density has two inflection points, at β = ±βc, with

βc ≈ .75898. (2.21)
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Figure 1: The density p−(β) for β ∈ [0, 3].

This is our first main result.
The function p−(β) is graphed in Figure 1 over the range β ∈ [0, 3], and the derivatives

p′−(β) and p′′−(β) are given over the same range in Figure 2. The graph of p−(β) somewhat
resembles a Gaussian, but it differs from the Gaussian density in at least three important
respects. First, the tail is clearly thicker in view of (2.18). For any Gaussian density, we
would have βcp−(0) = 1/

√
2π = .39894 . . . while for the present density (2.20) and (2.21)

yield the value βcp−(0) ≈ .34705. Finally, the Gaussian density would be an entire function
of β, while we will show that if we view p−(β) as a function of the complex variable β,
this function has an essential singularity at β = 0. While for |β| small and β real, p−(β) is
locally Gaussian, its behavior for |β| small and β imaginary is quite different.

The function H̄ in (2.16) is an entire function satisfying H̄(b) = H̄(−b) and H̄(0) = 0.
Denoting its Taylor series as

H̄(b) =
∞∑

m=0

b2m+2∆m (2.22)

and setting

∆m =
1

Γ
(

5
2m + 2

)∆̃m (2.23)

we find that ∆̃m satisfies the nonlinear recurrence

∆̃m+1 =
(5m + 6)(5m + 4)

8
∆̃m +

1
4

m∑

`=0

∆̃`∆̃m−`, m ≥ 0 (2.24)
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Figure 2: The first derivative p′−(β) and the second derivative p′′−(β).

with
∆0 = ∆̃0 =

1
4
. (2.25)

In view of (2.22) and (2.17) the variance of the limiting density p−(β) in (2.15) is
∫ ∞

−∞
β2p−(β)dβ = 2

√
π∆0 =

√
π

2
. (2.26)

We thus observe that the even moments of the difference converge as follows

E[D2m+2
n ]

n5(m+1)/2
→ (2m + 2)!

√
π∆m.

This should be compared with Janson [8].
Furthermore, setting

H̄(b) = b6/5∆(b4/5) = B3/2∆(B), b = B5/4 (2.27)

we shall show that for b, B > 0 the function ∆(B) satisfies the nonlinear integral equation

0 =
∫ B

0
∆(ξ)∆(B − ξ)dξ + 2B2∆(B) + 2

√
B√
π

− 4√
π

∫ B

0

∆′(ξ)√
B − ξ

dξ. (2.28)

We also have ∆(B) ∼ B/4 as B → 0+ and, in view of (2.22),

∆(B) =
∞∑

m=0

B1+ 5
2
m∆m. (2.29)

The following asymptotic properties hold:

∆m = k′ e
m/2

√
m

m−m/210−m/2

[
1 − 4

15m
+ O(m−2)

]
, m → ∞, (2.30)

∆(B) = c0BeB5/20[1 − B−5 + O(B−10)], B → ∞, (2.31)

H̄(b) = c0b
2eb4/20[1 − b−4 + O(b−8)], b → ∞. (2.32)
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Here k′ and c0 are related by

c0 = 2
√

πk′, (2.33)

so that the numerical value of k′ can be obtained from (2.19).
We can also infer the behavior of H̄(b) for purely imaginary values of b. Letting b = ix

with x > 0 and using (2.22) yields

1 +
√

πH̄(ix) ≡ S(x) =
∞∑

m=0

∆m−1(−1)m
√

πx2m (2.34)

where
∆−1 ≡ 1√

π
. (2.35)

Then if
H̄(ix) = −y3/2Λ(y) = −x6/5Λ(x4/5), y = x4/5 (2.36)

we find that Λ(y) satisfies

0 =
∫ y

0
Λ(ξ)Λ(y − ξ)dξ + 2y2Λ(y) − 2

√
y

√
π

+
4√
π

∫ y

0

∆′(ξ)√
y − ξ

dξ. (2.37)

Note that this equation differs from (2.28) only slightly, by the signs of the last two terms.
However, (2.37) can be analyzed by a Laplace transform whereas (2.28) cannot. Indeed,
setting

U(φ) =
∫ ∞

0
e−yφΛ(y)dy (2.38)

we obtain from (2.37)

0 = 2U ′′(φ) + U2(φ) + 4
√

φU(φ) − φ−3/2. (2.39)

Also, since we know the behavior of Λ(y) as y → 0+ we must have

U(φ) ∼ 1
4φ2

, φ → +∞. (2.40)

Setting

U(φ) = −2
√

φ + U1(φ) (2.41)

we obtain from (2.39) and (2.40)

0 = U2
1 (φ) + 2U ′′

1 (φ) − 4φ, (2.42)

with
U1(φ) = 2

√
φ +

1
4
φ−2[1 + o(1)], for φ → ∞.
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The second order nonlinear ODE in (2.42) is (after a slight rescaling) the first Painlerè
transcendent [7]. This classic problem has been studied for over 100 years, and modern
applications in nonlinear waves and random matrices have been found in recent years. It is
well known that each singularity of U1(φ) is a double pole, and the Laurent expansion near
a singularity at φ = −ν∗ has the form

U1(φ) =
−12

(φ + ν∗)2
+ O(1), φ → −ν∗. (2.43)

Let us denote by ν∗ the singularity with the largest real part. Note that to uniquely fix this
we need the second term in the expansion of U1(φ) as φ → ∞, as given below (2.42). In
view of (2.43), (2.38), and (2.41) we then obtain

Λ(y) − 1√
π

y−3/2 ∼ −12ye−ν∗y, y → ∞ (2.44)

and (2.36) then yields

√
πH̄(ix) + 1 = S(x) ∼ 12

√
πx2 exp(−ν∗x

4/5), x → ∞. (2.45)

This yields the behavior of the moment generating function of the density p−(β) along the
imaginary axis. The constant ν∗ is found numerically as

ν∗ = 3.41167 . . . . (2.46)

Finally, we discuss the joint distribution for the total left and right path lengths. This
problem we formulate, but do not analyze. Introducing the scaling

p + q = αn3/2, p − q = βn5/4 (2.47)

we obtain

P (p, q;n) = Prob [right path length = p, left path length = q | number of nodes = n]

= N(p, q;n)/Cn

∼ 2n−11/4 1
(2πi)2

∫ i∞

−i∞

∫ i∞

−i∞
e−aαe−bβ [1 +

√
πH(a, b)]dadb

≡ 2n−11/4p(α, β). (2.48)

Thus

1 +
√

πH(a, b) =
∫ ∞

0
eaα

∫ ∞

−∞
ebβp(α, β)dβdα (2.49)

is the moment generating function of the two-dimensional density, which has support over
the range α ≥ 0 and β ∈ R. We have H(0, 0) = 0 and p(α,−β) = p(α, β).

10



Setting α = 0 with H̄(b) = H(0, b) we obtain the marginal distribution of the path
length difference, with

p−(β) =
∫ ∞

0
p(α, β)dα.

The marginal distribution of the total path length (without distinguishing between right
and left paths) is given by

p+(α) =
1

2πi

∫ i∞

−i∞
[1 +

√
πH(a, 0)]e−aαda

so that

1 +
√

πH(a, 0) =
∫ ∞

0
eaαp+(α)dα.

This has been previously shown to follow an Airy distribution [11].
The function H(a, b) satisfies the integral integration

0 =
∫ 1

0

H(x3/2a, x5/4b)H((1 − x)3/2a, (1 − x)5/4b)
[x(1 − x)]3/2

dx (2.50)

+
2√
π

∫ 1

0

{
H((1 − x)3/2a, (1 − x)5/4b)

(1 − x)3/2
− H(a, b)

}
dx

x3/2

− 4√
π

H(a, b) + (4a + 2b2)
[

1√
π

+ H(a, b)
]

.

In terms of the generating function in (2.8) the scaling (2.47) translates to

w = 1 +
b

n5/4
+

a

n3/2
, v = 1 − b

n5/4
+

a

n3/2
(2.51)

and then, for fixed a and b and n → ∞,

Gn(w, v) ∼ 4n

n3/2
√

π
[1 +

√
πH(a, b)]. (2.52)

Here we used the asymptotic behavior of the Catalan numbers Cn. We have thus identi-
fied the scaling (2.47) and the problem (2.50) that must be analyzed to obtain the joint
distribution of left and right paths in binary trees with large numbers of nodes n. While
it does not seem feasible to solve (2.50) exactly, we believe that an asymptotic analysis for
a and/or b large should be possible, and from this one can obtain asymptotic properties of
the joint density p(α, β) for α and/or |β| large.
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3 The Basic Integral Equation

We shall derive (2.50) with the scaling in (2.51) and (2.52). In [11], we previously analyzed
Gn(w,w) for n → ∞ and various ranges of w. This corresponds to computing the total
path length in a tree with n nodes. The distribution of the path length is P+(I;n) =∑

p+q=I N(p, q;n)/Cn and this is known to follow an Airy distribution in the limit n → ∞,
with the scaling I = p + q = O(n3/2).

We begin by computing “moments” of N(p, q), by expanding (2.9) about (w, v) = (1, 1).
Since Gn(1, 1) = Cn and Gn(w, v) = Gn(v, w), we write

Gn(w, v) = Cn + An(w − 1) + An(v − 1) (3.1)

+ En(w − 1)2 + Dn(w − 1)(v − 1) + En(v − 1)2 + · · ·

where

An =
∂

∂w
Gn(w, v)|(1,1) , En =

1
2

∂2

∂w2
Gn(w, v)|(1,1) , Dn =

∂2

∂w∂v
Gn(w, v)|(1,1). (3.2)

By iterating (2.9) for the first few values on n, we find that

G1(w, v) = 1 , G2(w, v) = w + v (3.3)

G3(w, v) = w3 + w2v + wv2 + v3 + wv (3.4)

G4(w, v) = (w3 + v3)(w3 + w2v + wv2 + v3 + wv) + (w2v + wv2)(w + v). (3.5)

In general, Gn(w, v) is a polynomial in w and v of degree
(
n
2

)
.

By using (3.1) in (2.9), we are led to the recurrences

An+1 =
n∑

i=0

iCiCn−i + 2
n∑

i=0

CiAn−i, (3.6)

Dn+1 =
n∑

i=0

i(n − i)CiCn−i + 2
n∑

i=0

DiCn−i + 2
n∑

i=0

AiAn−i + 2n
n∑

i=0

Cn−iAi, (3.7)

and

En+1 =
n∑

i=0

(
i

2

)
CiCn−i + 2

n∑

i=0

EiCn−i +
n∑

i=0

AiAn−i + n

n∑

i=0

Cn−iAi. (3.8)

By using

n∑

i=0

(
i

2

)
CiCn−i =

n∑

i=0

(n − i)2 + i2 − n

4
CiCn−i

we can symmetrize (3.8). Then defining
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Fn = Dn − 2En (3.9)

we obtain from (3.7) and (3.8)

Fn+1 =
n∑

i=0

[
i(n − i) − (n − i)2

2
− i2

2
+

n

2

]
CiCn−i + 2

n∑

i=0

Cn−iFi. (3.10)

We can solve (3.6) – (3.10), e.g., by using generating functions and the fact that
∑∞

n=0 Cnzn =
1
2z (1 −

√
1 − 4z). A lengthy but straightforward analysis yields

An =
1
2
4n − 3n + 1

2n + 2

(
2n
n

)
=

1
2
4n − 3n + 1

2
Cn, (3.11)

Fn = −n4n−1 +
n2

n + 1

(
2n
n

)
= −n4n−1 + n2Cn (3.12)

and

Dn =
1
6

1
n + 1

(
2n
n

)
(5n3 + 30n2 + 25n + 6) − (7n + 4)4n−1. (3.13)

Then from (3.9), (3.12) and (3.13), we get

En =
1
12

Cn(5n3 + 24n2 + 25n + 6) − 3n + 2
n

4n. (3.14)

Using Stirling’s formula and the fact that

Cn =
4n

n3/2

[
1√
π

+ O(n−1)
]

, n → ∞

we obtain the large n estimates

An =
1
2
4n − 3

2
1√
πn

4n + O(4nn−3/2), (3.15)

En =

[
5
12

n3/2

√
π

− 3
4
n + O(

√
n)

]
4n, (3.16)

Dn =

[
5
6

n3/2

√
π

− 7
4
n + O(

√
n)

]
4n, (3.17)

Fn = Dn − 2En ∼ −1
4
n4n. (3.18)

In view of (3.1) and (3.15) – (3.18), it would seem that a natural scaling would have p

and q both O(n3/2), say with

p = α1n
3/2, q = β1n

3/2, (3.19)
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and then scale the generating function variables w and v as

w − 1 = a1n
−3/2, v − 1 = b1n

−3/2. (3.20)

This is certainly correct if w = v, and then all the terms in (3.1), as well as the cubic and
higher order terms, become of the same order (O(4nn−3/2)) as n → ∞. However, we show
in Appendix A that with the scaling (3.19) and (3.20), we ultimately obtain an integral
equation for the leading term in the expansion of Gn(w, v), as follows

Gn(w, v) = Cn +
4n

n3/2
F (a1, b1;n) ∼ 4n

n3/2

[
1√
π

+ F (a1, b1)
]

. (3.21)

The solution of the equation has the form F (a1, b1) = F0(a1 + b1), which depends on a1 and
b1 only through their sum. This leads to a limiting joint density for the distribution of the
left and right paths of the form P (p, q;n) ∼ n−3p0(α1, β1), where p0(α1, β1) = δ(α1 − β1)×
[function of (α1 + β1)]. Here δ is the Dirac delta function, and in p0 the latter function
corresponds to the Airy density. But this suggests that the scaling (3.19) is too “thick” in
the difference p − q, and that the correct scaling must have p − q = o(n3/2).

To infer the right scaling needed to obtain a genuine two-dimensional density, we rewrite
the quadratic terms in (3.1) as

En(w + v − 2)2 + Fn(w − 1)(v − 1). (3.22)

In view of (3.16) and (3.18) the two terms in (3.22) balance each other, and also the constant
and linear terms in (3.1), if we scale w and v as

w + v − 2 = O(n−3/2), (w − 1)(v − 1) = O(n−5/2). (3.23)

This is accomplished by setting

w = 1 +
b

n5/4
+

a

n3/2
, v = 1 − b

n5/4
+

a

n3/2
. (3.24)

Note that when w = v, b = 0 and (3.24) is consistent with the scaling w − 1 = O(n−3/2)
required for the limiting Airy distribution of the total pathlength. The cubic terms in (3.1)
would take the form

Hn[(w − 1)3 + (v − 1)3] + Kn(w − 1)(v − 1)(w + v − 2) (3.25)

= Hn(w + v − 2)3 + (Kn − 3Hn)(w − 1)(v − 1)(w + v − 2).

We can show that Hn = O(n34n) as n → ∞, and Kn ∼ 3Hn with Kn − 3Hn = O(n5/24n).
Hence the scaling (3.24) also leads to the cubic terms being O(n−3/24n). It should be
possible to show by induction that all terms in the Taylor expansion (3.1) balance. Instead
we show that the scaling (3.24) leads to a non-trivial integral equation, whose solution leads
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to a two-dimensional density for the distribution of left and right paths in the tree, without
the collapse that we see with (3.19) and (3.20).

We use (3.24) in (2.9) and get

Gn(w, v) = Cn +
4n

n3/2
H(a, b;n). (3.26)

From (3.24) we have a = 1
2n3/2(w + v − 2) and b = 1

2n5/4(w − v), so that

Gi(w, v) = Ci +
4i

i3/2
H

((
i

n

)3/2

a,

(
i

n

)5/4

b; i

)
, (3.27)

with a similar expression for Gn−i(w, v). Thus (2.9) becomes

Cn+1 +
4n+1

(n + 1)3/2
H

((
1 +

1
n

)3/2

a,

(
1 +

1
n

)5/4

b;n + 1

)
= T̃1 + T̃2 + T̃3 + T̃4 (3.28)

where

T̃1 =
n∑

i=0

(
1 +

b

n5/4
+

a

n3/2

)i(
1 − b

n5/4
+

a

n3/2

)n−i

CiCn−i (3.29)

T̃2 =
n∑

i=0

(
1 +

b

n5/4
+

a

n3/2

)i(
1 − b

n5/4
+

a

n3/2

)n−i

Ci
4n−i

(n − i)3/2
(3.30)

×H

((
1 − i

n

)3/2

a,

(
1 − i

n

)5/4

b;n − i

)

and

T̃3 =
n∑

i=0

(
1 +

b

n5/4
+

a

n3/2

)i(
1 − b

n5/4
+

a

n3/2

)n−i

Cn−i
4i

i3/2
(3.31)

×H

((
i

n

)3/2

a,

(
i

n

)5/4

b;n − i

)
.

T̃4 =
n∑

i=0

(
1 +

b

n5/4
+

a

n3/2

)i(
1 − b

n5/4
+

a

n3/2

)n−i

(3.32)

× 4n

i3/2(n − i)3/2
H

((
i

n

)3/2

a,

(
i

n

)5/4

b; i

)
H

((
1 − i

n

)3/2

a,

(
1 − i

n

)5/4

b;n − i

)
.

We estimate individually the terms T̃j for j = 1, 2, 3, 4. We assume that H(a, b;n) tends to
the limit H(a, b) as n → ∞ so that (3.26) becomes
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Gn(w, v) ∼ 4n

n3/2

[
1√
π

+ H(a, b)
]

, n → ∞. (3.33)

Note also that Gn(1, 1) = Cn implies that H(0, 0) = 0.
First, by using the Euler MacLaurin formula we approximate the sum in (3.32) by an

integral and obtain

T̃4 ∼ 4n

n2

∫ 1

0

H(x3/2a, x5/4b)H((1 − x)3/2a, (1 − x)5/4b)
[x(1 − x)]3/2

dx. (3.34)

The fact that H(a, b) is analytic in (a, b) with H(0, 0) = 0 insures that the integral in (3.34)
is finite, in spite of the singularities at x = 0 and x = 1.

Next we estimate the difference between T̃1 and Cn+1, using the fact that the Catalan
numbers satisfy the recurrence relation Cn+1 =

∑n
i=0 CiCn−i. We thus have

T̃1 − Cn+1 =
n∑

i=0

[(
1 +

b

n5/4
+

a

n3/2

)i(
1 − b

n5/4
+

a

n3/2

)n−i

− 1

]
CiCn−i (3.35)

=
n∑

i=0

{
(2i − n)

b

n5/4
+

na

n3/2
+

b2

n5/2

[(
i

2

)
+
(

n − i

2

)
− i(n − i)

]
+ . . .

}
CiCn−i.

Now we use the asymptotic relations

n∑

i=0

i(n − i)CiCn−i ∼
4n

√
π

∫ 1

0

dx
√

x
√

1 − x
= O(4n)

n∑

i=0

(
i

2

)
CiCn−i ∼

n2

2

n∑

i=0

Ci
4n

√
πn3/2

∼ 4n

√
π

√
n

n∑

i=0

CiCn−i = Cn+1 ∼ 4n+1

√
π

n−3/2.

Using the above in (3.35) yields

T̃1 − Cn+1 =
4n

√
π

4a + 2b2

n2
+ O(4nn−5/2). (3.36)
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We next write T̃2 in (3.30) as

T̃2 =
n∑

i=0

Ci4−i

(
1 +

b

n5/4
+

a

n3/2

)i(
1 − b

n5/4
+

a

n3/2

)n−i

(3.37)

×
[

4n

(n − i)3/2
H

((
1 − i

n

)3/2

a,

(
1 − i

n

)5/4

b;n − i

)
− 4n

n3/2
H(a, b;n)

]

+
4n

n3/2
H(a, b;n)

n∑

i=0

Ci4−i

[(
1 +

b

n5/4
+

a

n3/2

)i(
1 − b

n5/4
+

a

n3/2

)n−i

− 1

]

+
4n

n3/2
H(a, b;n)

n∑

i=0

Ci4−i.

Using the generating function for the Cn we can easily show that

n∑

i=0

Ci4−i = 2 − 2√
πn

+ O(n−3/2), n → ∞. (3.38)

Expanding the next to last term in (3.37) as in (3.35) and using

n∑

i=0

2i − n

n5/4
bCi4−i = − 2b

n1/4
+ O(n−3/4),

n∑

i=0

(
i

2

)
Ci4−in−5/2 ∼

n∑

i=0

√
i

2
√

π
n−5/2 = O(n−1),

n∑

i=0

(
n − i

2

)
Ci4−in−5/2 =

n∑

i=0

(n − i)(n − i − 1)
2

Ci4−in−5/2

=
1

2
√

n

∞∑

i=0

Ci4−i + O

(
1
n

)
∼ 1√

n
,

n∑

i=0

i(n − i)Ci4−in−5/2 = O(n−1)

we obtain

n∑

i=0

Ci4−i

[(
1 +

b

n5/4
+

a

n3/2

)i(
1 − b

n5/4
+

a

n3/2

)n−i

− 1

]
(3.39)

= − 2b
n1/4

+
2a + b2

√
n

+ O(n−3/4).

The first sum in the right side of (3.37) we approximate by the Euler-MacLaurin formula
and use H(a, b;n) → H(a, b) as n → ∞; thus we obtain
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4n

n2
√

π

∫ 1

0

1
x3/2

[
H(1 − x)3/2a, (1 − x)5/4b)

(1 − x)3/2
− H(a, b)

]
dx. (3.40)

Here we also used Ci4−i ∼ i−3/2/
√

π for i → ∞. By combining (3.38) – (3.40), we see that
(3.37) becomes

T̃2 =
4n

n3/2
H(a, b;n)

[
2 − 2√

πn
+ O(n−3/2)

]
(3.41)

+
4n

n3/2
H(a, b;n)

[
− 2b

n1/4
+

2a + b2

√
n

+ O(n−3/4)
]

+
4n

n2

1√
π

∫ 1

0

1
x3/2

[
H((1 − x)3/2a, (1 − x)5/4b)

(1 − x)3/2
− H(a, b)

]
dx.

Finally, we consider T̃3 in (3.31). By changing the index on the sum from i to n−i and using
the symmetry H(a, b;n) = H(a,−b;n) we see that T̃3 is the same as T̃2 with b replaced by
−b. Then adding T̃3 to T̃2 it follows that the terms of order O(4nn−7/4) cancel and hence

T̃2 + T̃3 =
4n+1

n3/2
H(a, b;n)

[
1 − 1√

πn
+ O(n−3/2)

]
+

4n

n2

{
(4a + 2b2)H(a, b;n) (3.42)

+
2√
π

∫ 1

0

1
x3/2

[
H((1 − x)3/2a, (1 − x)5/4b)

(1 − x)3/2
− H(a, b)

]
dx

}
+ O(4nn−5/2).

We use (3.42), (3.36) and (3.34) in (3.28) and note that

4n+1

(n + 1)3/2
H

((
1 +

1
n

)3/2

a,

(
1 +

1
n

)5/4

b;n + 1

)
− 4n+1

n3/2
H(a, b;n) = O(4nn−5/2). (3.43)

Thus at order O(4nn−2) we obtain from (2.9) and (3.33) the integral equation in (2.50).
Using the above procedure we can refine (3.33) to an expansion of the form

Gn(w, v) =
4n

n3/2

[
1√
π

+ H(a, b) +
1√
n

H(1)(a, b) + O(n−1)
]

(3.44)

where H(1) can be characterized as the solution of a linear integral equation, whose kernel
involves the solution H(a, b) to (2.50).

We can recast (2.50) as follows. We assume first that a < 0 and b > 0, and set

H(a, b) = (−a)T ((−a)2/3, (−a)2/3b−4/5) = (−a)T (A, θ) (3.45)

where

A = (−a)2/3, θ = (−a)2/3b−4/5. (3.46)
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Using (3.45) and (3.46) in (2.50), dividing by a2/A, and integrating by parts, with

∫ 1

0
[T (A − Ax, θ) − T (A, θ)]

1
x3/2

dx = 2T (A, θ) − 2T (0, θ) +
∫ 1

0

2√
x

d

dx
T (A − Ax, θ)dx,

we see that (2.50) becomes

0 =
∫ A

0
T (ξ, θ)T (A − ξ, θ)dξ +

2A1/2

√
π

θ−5/2 (3.47)

− 4√
π

∫ A

0

1√
A − ξ

d

dξ
T (ξ, θ)dξ + (2A2θ−5/2 − 4A)T (A, θ).

Here we also used T (0, θ) = −1, since (3.15) shows that Gn(w, v) − Cn ∼ An(w + v − 2) =
2an−3/2An ∼ a4nn−3/2, for a → 0 and n → ∞, and hence H(a, b) ∼ a as a → 0. From
(3.45) it then follows that T (A, θ) → −1 as A → 0.

The integral operator in (3.47) involves only the A variable, and θ appears only as a
parameter. Introducing the Laplace transform

T̂ (S, θ) =
∫ ∞

0
T (A, θ)e−ASdA (3.48)

in (3.47) leads to

0 = T̂ 2 − 4
√

ST̂ + 4T̂S + 2θ−5/2T̂SS +
1

S3/2
θ−5/2 − 4√

S
. (3.49)

Furthermore, letting

T̂ (S, θ) = 2
√

S + T1(S, θ) (3.50)

we obtain from (3.49)

0 = T 2
1 + 4T1,S + 2θ−5/2T1,SS − 4S. (3.51)

We will show in Appendix B that an asymptotic analysis of the functional equation in (2.11),
with the scaling (3.24), leads to a limiting nonlinear ODE that is equivalent to (3.51).

In the sections that follow, we shall analyze (2.50) when a = 0. We conclude this section
by expressing the distribution in (2.48), in the limit n → ∞, in terms of the solution H(a, b)
to (2.50). We have, inverting (2.8),

P (p, q;n) =
1

Cn

1
(2πi)2

∮ ∮
w−p−1v−q−1Gn(w, v)dwdv (3.52)

where the integrals are closed loops about the origins in the w- and v- planes. In view of
the scaling (3.24) and (2.47), we have
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w−p−1v−q−1 = (wv)−1(wv)−
p+q
2

(w

v

)− p−q
2 (3.53)

=
[
1 +

2a
n3/2

+ O(n−2)
]−αn3/2/2 [

1 +
2b

n5/4
+ O(n−3/2)

]−βn5/4/2

∼ e−aαe−bβ .

Using (3.53), (3.33), and Cn ∼ 4nn−3/2/
√

π in (3.52), and approximating the loop integrals
by ones over Bromwich contours, we obtain precisely (2.48). This shows that n11/4P (p, q;n)
tends to a limit when p and q are scaled as in (2.47). We note that the factor of 2 in (2.48)
arises from the Jacobian dwdv = |∂(w, v)/∂(a, b)|dadb.

4 Analysis of the Difference Between Right and Left Paths

We get a = 0 in (2.50) with

H̄(b) = H(0, b), (4.1)

which yields

0 =
∫ 1

0

H̄(x5/4b)H̄((1 − x)5/4b)
[x(1 − x)]3/2

dx +
2b2

√
π

(4.2)

+
2√
π

∫ 1

0

[
H̄((1 − x)5/4b)

(1 − x)3/2
− H̄(b)

]
dx

x3/2
+
(

2b2 − 4√
π

)
H̄(b).

We first take b real and, since H̄(b) = H̄(−b), we may take b > 0. Introducing B = b4/5

and ∆(B) = H̄(b)b−6/5 as in (2.27) we see that (4.2) becomes

0 =
∫ 1

0
b12/5∆(Bx)∆(B − Bx)dx +

2√
π

B5/2 (4.3)

+
2√
π

b6/5

∫ 1

0
[∆(B − Bx) − ∆(B)]

dx

x3/2
+
(

2b2 − 4√
π

)
b6/5∆(B).

After dividing by b8/5 = B2 and integrating by parts in the second integral, (4.3) becomes
(2.28). By examining (2.28) as B → 0 we see that ∆(B) ∼ ∆0B and the first two terms in
the right side of (2.28) are O(B3), while the last two terms balance to give ∆0 = 1/4. Thus

H̄(b) ∼ 1
4
b2, b → 0 (4.4)

and this gives the variance of the limiting density p−(β) in (2.26), as the variance is√
πH̄ ′′(0).

While it seems difficult to solve (2.28) exactly, we can infer the behavior of ∆(B) as
B → ∞. Let us write
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∆(B) = exp[Φ(B)] (4.5)

and rewrite (2.28) as

0 = 2
∫ B/2

0
eΦ(B−ξ)∆(ξ)dξ + 2B2eΦ(B) + O(

√
B) − 4√

π

∫ B

0

1√
ξ
Φ′(B − ξ)eΦ(B−ξ)dξ. (4.6)

Now we assume that Φ � Φ′ � Φ′′ as B → ∞ and we view (4.5) as a WKB type
expansion. Since ∆(B) will grow exponentially, the O(

√
B) term in (4.6) will not affect

the asymptotic series. The first integral in (4.6) we treat as an implicit Laplace integral,
where the factor eΦ(B−ξ) will concentrate the integrand for ξ small (more precisely for
ξ = O(1/Φ′(B))). We thus write

2
∫ B/2

0
eΦ(B−ξ)∆(ξ)dξ ∼ 2

∫ ∞

0
eΦ(B)e−ξΦ′(B)[1 + O(ξ2Φ′′(B))]∆′(0)ξ dξ (4.7)

=
1
2
eΦ(B)

(
1

Φ′(B)

)2 [
1 + O

(
Φ′′(B)

(Φ′(B))2

)]
.

We shall see that the leading term in (4.7) suffices to obtain the first three terms in the
expansion of Φ(B) and the first two terms in that of ∆(B).

The second integral in (4.6) we expand as

∫ B

0

1√
ξ
Φ′(B − ξ)eΦ(B−ξ)dξ =

∫ ∞

0

1√
ξ

[
Φ′ − ξΦ′′ +

ξ2

2
Φ′′′ + O(ξ3Φ(iv))

]
eΦe−ξΦ′

× e
1
2
ξ2Φ′′

e−
1
6
ξ3Φ′′′

[
1 + O(ξ4Φ(iv))

]
dξ, (4.8)

where Φ and all its derivatives are understood to be evaluated at B, in the right side of
(4.8). Again the integral becomes concentrated where ξ is small. In (4.8) we introduce the
scaling

ξ =
ζ

Φ′(B)
(4.9)

to obtain

eΦ

∫ ∞

0

e−ζ

√
ζ

√
Φ′
[
1 − ζ

Φ′′

(Φ′)2
+

ζ2

2
Φ′′′

(Φ′)3
+ · · ·

]
(4.10)

×
[
1 +

ζ2

2
Φ′′

(Φ′)2
+

ζ4

8
(Φ′′)2

(Φ′)4
+ · · ·

] [
1 − ζ3

6
Φ′′′

(Φ′)3
+ · · ·

]
dζ,

where again Φ = Φ(B), Φ′ = Φ′(B), etc. Evaluating the integrals in (4.10) in terms of the
Gamma function, using
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Γ
(

1
2

)
=

√
π,

1
2
Γ
(

1
2

)
− Γ

(
3
2

)
= −1

8
√

π,

1
2
Γ
(

5
2

)
− 1

6
Γ
(

7
2

)
=

1
16

√
π,

1
8
Γ
(

9
2

)
− 1

2
Γ
(

7
2

)
= − 15

128
√

π

and then using (4.10) and (4.7) in (4.6) we obtain, after cancelling the common factor eΦ(β),

1
2(Φ′)2

+ 2B2 = 4
√

Φ′
[
1 − 1

8
Φ′′

(Φ′)2
+

1
16

Φ′′′

(Φ′)3
− 15

128
(Φ′′)2

(Φ′)4
+ O(B−15)

]
. (4.11)

Here we wrote the error term as O(B−15), anticipating that
√

Φ′ ∼ B2/2 so that Φ′ ∼ B4/4
and Φ ∼ B5/20 as B → ∞.

From (4.11) it follows that Φ′(B) has an expansion of the form

Φ′(B) = ν0B
4 + ν1B

−1 + ν2B
−6 + O(B−11). (4.12)

Using (4.12) yields
Φ′′′

(Φ′)3
∼ 12

ν2
0

B−10,
(Φ′′)2

(Φ′)4
∼ 16

ν2
0

B−10

and

Φ′′

(Φ′)2
=

4
ν0

B−5

[
1 − 9

4
ν1

ν0
B−5 + O(B−10)

]
.

Using the above in (4.11) and equating coefficients of B2, B−3 and B−8 leads to the relations

2 = 4
√

ν0, 0 =
ν1

2ν0
− 1

2ν0
,

1
2ν2

0

= 4
√

ν0

[
9
8

ν1

ν2
0

− 9
8

1
ν2
0

+
ν2

2ν0
− 1

8

(
ν1

ν0

)2

− ν1

4ν2
0

]

so that ν0 = 1/4, ν1 = 1 and ν2 = 5. It follows that

Φ′(B) =
1
4
B4 + B−1 + 5B−6 + O(B−11)

and hence

Φ(B) =
1
20

B5 + log B + constant − B−5 + O(B−10)

and (4.5) yields

∆(B) = c0BeB5/20[1 − B−5 + O(B−10)] (4.13)
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for B → ∞ and some constant c0. We shall later determine c0 numerically. We have thus
obtained (2.31) using a formal WKB expansion. Then (2.32) follows immediately from
(2.27) and the fact that B5 = b4.

An alternate approach to analyzing (4.2) is via a Taylor expansion in powers of b.
Expanding H̄(b) as in (2.22) corresponds to expanding ∆(B) in the form in (2.29). Using
(2.29) in (2.28) leads to

0 =
∞∑

m=0

m∑

`=0

∆`∆m−`B
(

5
2
` + 2,

5
2
(m − `) + 2

)
B

5
2
m+3 + 2

∞∑

m=0

B
5
2
m+3∆m +

2√
π

√
B

− 4√
π

∞∑

m=0

B
5
2
m+1

(
1 +

5
2
m

)
∆mB

(
5
2
m + 1,

1
2

)
. (4.14)

Here
B(x, y) =

Γ(x)Γ(y)
Γ(x + y)

is the Beta function. Since B
(
1, 1

2

)
= 2 we obtain ∆0 = 1/4 and then for m ≥ 0 we compare

coefficients of B
5
2
m+3 in (4.14), which leads to the recurrence

4√
π

∆m+1
Γ
(

5
2m + 7

2

)
Γ
(

1
2

)

Γ
(

5
2m + 4

) 5m + 7
2

= 2∆m +
m∑

`=0

Γ
(

5
2` + 2

)
Γ
(

5
2(m − `) + 2

)

Γ
(

5
2m + 4

) ∆`∆m−`.(4.15)

We can somewhat simplify this equation by getting

∆̃m = Γ
(

5
2
m + 2

)
∆m (4.16)

which leads to

∆̃m+1 =
(5m + 6)(5m + 4)

8
∆̃m +

1
4

m∑

`=0

∆̃`∆̃m−`. (4.17)

We have thus derived (2.24). Despite the nonlinearity in (4.17) being in the form of a
convolution sum, we cannot solve (4.17) by using generating functions, due to the rapid
growth of ∆̃m as m → ∞. Note that since ∆̃m > 0 for all m we immediately obtain the
lower bound

∆̃m ≥ k0

(
25
8

)m

Γ
(

m +
6
5

)
Γ
(

m +
4
5

)
, (4.18)

where k0 is a positive constant. The right side of (4.18) follows by dropping the nonlinear
term in (4.17) and replacing = by ≥. We can take k0 = 1/

[
4Γ
(

6
5

)
Γ
(

4
5

)]
, since ∆̃0 = 1/4.

We next analyze (4.17) for m → ∞ by using a discrete WKB-type expansion. Antici-
pating that the nonlinear part of (4.17) becomes negligible compared to ∆̃m+1 as m → ∞,
we write

23



∆̃m = k

(
25
8

)m

Γ
(

m +
6
5

)
Γ
(

m +
4
5

)
[1 + ε(m)] (4.19)

where ε(m) → 0 as m → ∞.
Using (4.19) in (4.17) and retaining only the boundary terms in the sum (corresponding

to ` = 0, 1 and ` = m − 1,m) we obtain

k

(
25
8

)m+1

Γ
(

m + 1 +
6
5

)
Γ
(

m + 1 +
4
5

)
[1 + ε(m + 1)] + · · · (4.20)

=
k

8
(5m + 6)(5m + 4)

(
25
8

)m

Γ
(

m +
6
5

)
Γ
(

m +
4
5

)
[1 + ε(m)]

+
1
2
∆̃0k

(
25
8

)m

Γ
(

m +
6
5

)
Γ
(

m +
4
5

)
[1 + ε(m)]

+
1
2
∆̃1k

(
25
8

)m−1

Γ
(

m +
1
5

)
Γ
(

m − 1
5

)
[1 + ε(m − 1)] + · · · .

From (4.15) and (4.17) we have

∆̃1 =
49
64

=
(

7
8

)2

, ∆1 =
7
60

1√
π

(4.21)

and thus the fourth moment of p−(β) is
∫ ∞

−∞
β4p−(β)dβ = 24

√
π∆1 =

14
5

, (4.22)

where we used (2.17) and (2.27). Using Γ(z + 1) = zΓ(z) to simplify the left side of (4.20)
we see that as m → ∞ this equation becomes

ε(m + 1) − ε(m) ∼ ε′(m) =
1 + ε(m)

(5m + 6)(5m + 4)
+ O(m−4)

so that ε′(m) ∼ 1
25m−2 and hence

ε(m) ∼ − 1
25

1
m

, m → ∞. (4.23)

From (4.23), (4.19) and (4.16) we obtain

∆m = k

(
25
8

)m Γ
(
m + 6

5

)
Γ
(
m + 4

5

)

Γ
(

5
2m + 2

)
[
1 − 1

25m
+ O(m−2)

]
(4.24)

= k
√

2π
2
√

2
5
√

5
em/2

√
m

m−m/210−m/2

[
1 − 4

15m
+ O(m−2)

]
,

where the last equality follow from Stirling’s approximation, in the form
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Table 1:

m ∆m ∆m(10m)m/2√me−m/2 ∆m(10m)m/2√me−m/2/
(
1 − 4

5m

)

10 .71125(–9) .15154 .15570
20 .73829(–20) .15349 .15557
30 .64124(–32) .15416 .15554
40 .10779(–44) .15450 .15553
50 .52860(–58) .15470 .1555341
60 .96628(–72) .15484 .1555319
70 .77532(–86) .15493 .1555306
80 .30690(–100) .15501 .1555298
90 .65424(–115) .15506 .1555292
100 .80422(–130) .15511 .1555288
1000 .69013(–1785) .15548 .1555270
2000 .63932(–3869) .15550 .1555270

Γ(m + α) = mme−m

√
2π
m

mα

[
1 +

(
α2

2
− α

2
+

1
12

)
1
m

+ O(m−2)
]

.

This analysis suggests that the lower bound (4.18) is correct asymptotically to leading order,
albeit with a different constant replacing k0. Note that (4.24) agrees with (2.30) if

k′ = k
√

2π
2
√

2
5
√

5
. (4.25)

Also, the terms retained in going from (4.17) to (4.20) are sufficient to obtain the O(m−2)
error term in (4.24), though we shall not calculate it.

The constant k cannot be determined from (4.20), and must be obtained numerically.
In Table 4 we compute ∆m by iterating (4.15).

For m in the range [10, 2000] we then give ∆m(10m)m/2√me−m/2 and ∆m(10m)m/2√me−m/2

/
(
1 − 4

15m

)
. Both of these sequences should converge to k′ as m → ∞, with the latter con-

verging more rapidly, as our analysis suggests it behaves as k′[1 + O(m−2)]. The data in
Table 1 confirm precisely our formal asymptotic analysis, and show that

k′ ≈ .1555270. (4.26)

In Table 1 the notation .71125(−9) means .71125 × 10−9, etc.
We next show that the asymptotic relations in (2.30) and (2.31) are consistent with

(2.29). We argue that for B → ∞ the dominant contribution to the sum in (2.29) comes
from large values of m, where (4.24) applies. Thus we write
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∆(B) =
∞∑

m=0

B1+ 5
2
m∆m (4.27)

=
∫ ∞

1
B1+ 5

2
xk′
( e

10x

)x/2 1√
x

[
1 +

4
15x

+ O(x−2)
]

dx.

Here we approximated the sum by an integral. The correction terms from the Euler Maclau-
rin formula in this approximation are smaller than any term in the asymptotic series in
(4.24).

Getting

φ = φ(x,B) = −x

2
log x +

5
2
x log B +

x

2
log
( e

10

)
(4.28)

we view the integral in (4.27) as a Laplace type integral. Then the major contribution will
come from where φx = 0, and this occurs at

x = x0 =
1
10

B5. (4.29)

Noting that

φ(x0, B) =
x0

2
log
(

B5

x0

)
+

x0

2
log
( e

10

)
=

1
20

B5 (4.30)

we expand φ in Taylor series about x = x0. Hence (4.27) becomes

∆(B) = k′BeB5/20

∫ ∞

−∞
exp

[
− 1

4x0
(x − x0)2 +

1
12x2

0

(x − x0)3 −
1

24x3
0

(x − x0)4 + · · ·
]
(4.31)

× 1
√

x0

[
1 − x − x0

2x0
+

3(x − x0)2

8x2
0

+ . . .

] [
1 − 4

15x0
+ · · ·

]
dx.

Scaling x = x0 + 2
√

x0ξ leads to

∆(B) = 2k′BeB5/20

∫ ∞

−∞
e−ξ2

[
1 +

2
3
√

x0
ξ3 +

2
9x0

ξ6 + O(x−3/2
0 )

]
(4.32)

×
[
1 − 1

√
x0

ξ +
3

2x0
ξ2

] [
1 − 4

15x0
+ O(x−3/2

0 )
]

dx

= 2k′BeB5/20√π

[
1 +

1
6x0

] [
1 − 4

15x0
+ O(x−2

0 )
]

.

In view of (4.29) we see that (4.32) agrees with the WKB expansion (4.13), provided that
c0 = 2

√
πk′, as in (2.33).

In Table 2, we calculate ∆(B) numerically for B in the range [1, 7], and compare this to
∆(B)B−1e−B5/20 and also to ∆(B)B−1e−B5/20/(1 − B−5). Both of these functions should
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Table 2:

B ∆(B) ∆(B)B−1e−B5/20 ∆(B)B−1e−B5/20/(1 − B−5)
1 .33176 .31558 –
2 5.0774 .51256 .5290967
3 .31140(6) .54893 .5512023
4 .37924(23) .55078 .5513226
5 .19895(69) .55115 .5513282
6 .23615(170) .55125 .5513287
7 .35143(366) .55129 .5513288
8 .15579(713) .55131 .5513288

Table 3:

η = x2 −
√

πH̄(ix)
5 .84204
10 .95962
15 .98659
20 .99477
25 .99772

converge to c0, with the latter converging much more rapidly, as our analysis predicts that
it behaves as c0[1 + O(B−10)] for B → ∞. The numerics validate our asymptotic analysis,
give the value in (2.19) for c0, and also confirm (2.33) (with (4.26)).

We next consider H̄(b) and (2.22) for b purely imaginary. This analysis will facilitate the
numerical calculation of p−(β), which we expressed in (2.16) as a Fourier integral involving
S(x) = 1 +

√
πH̄(ix). We get

b = ix, x > 0. (4.33)

From (2.32) we see that as b → +∞, corresponding to x → −i∞, we have 1 +
√

πH̄(b) ∼√
πH̄(b), with an exponentially small error. However, this ceases to be true for some complex

ranges of b, i.e., there is a Stoke’s phenomenon in the asymptotic behavior of H̄(b).
With (4.33) and (2.22) we have

H̄(ix) = −x2
∞∑

m=0

(−1)m∆mx2m, (4.34)

and we note that the estimate in (2.30) shows that H̄(·) is an entire function. From (2.16)
we would expect S(x) to decay as x → ∞ and thus H̄(ix) → −1/

√
π as x → ∞.
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In Table 3 we give numerical values of −H̄(ix)
√

π with η = x2, for η in the range
[5, 25]. The data indeed indicates that the quantity approaches the value 1 quite rapidly,
as η, x → ∞. To obtain the rate of approach it becomes convenient to define ∆−1 = 1/

√
π

and then

S(x) ≡
∞∑

m=−1

(−1)m+1x2m+2√π∆m = 1 +
√

πH̄(ix). (4.35)

Setting

H̄(b) = H̃(x) = H̃(−ib) (4.36)

we see that (4.2) becomes

0 =
∫ 1

0

H̃(xu5/4)H̃(x(1 − u)5/4)
[u(1 − u)]3/2

du − 2x2

√
π

(4.37)

+
2√
π

∫ 1

0

[
H̃((1 − u)5/4x)

(1 − u)3/2
− H̃(x)

]
du

u3/2
−
(

2x2 +
4√
π

)
H̃(x).

Then letting

H̃(x) = −x6/5Λ(x4/5), y = x4/5

we obtain from (4.37) the equation (2.37). Its analysis, using a Laplace transform, we
already indicated in (2.38) – (2.43). Inverting the Laplace transform in (2.38) and using
(2.41) leads to

Λ(y) =
1

2πi

∫ i∞

−i∞
eyφ[−2

√
φ + U1(φ)]dφ (4.38)

=
1

2πi

d

dy

∫ i∞+ε

−i∞+ε
eyφ

[
− 2√

φ
+

U1(φ)
φ

]
dφ

= − 2√
π

d

dy
(y−1/2) +

1
2πi

d

dy

∫ i∞+ε

−i∞+ε
eyφ U1(φ)

φ
dφ.

The asymptotic behavior of the last integral as y → +∞ is obtained by shifting the contour
to the left, until we encounter the first singularity of U1(φ), which is the double pole at
φ = −ν∗. Thus (4.38) becomes

Λ(y) − 1√
π

y−3/2 ∼ − 12
2πi

∫ i∞

−i∞

eyζ

ζ2
e−yν∗dζ (4.39)

which leads to (2.44). Then, since y = x4/5, we have
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S(x) = 1 +
√

πH̄(ix) = 1 +
√

πH̃(x)

= 1 −
√

πx6/5Λ(x4/5)

=
(

Λ(y) − 1√
π

y−3/2

)
(−

√
πy3/2)

∼ −12y5/2e−ν∗y√π

and this is the result in (2.45).
To determine ν∗ numerically, we can solve the Painlevè equation (2.42) numerically and

see where it blows up. However, it is somewhat difficult to impose accurately the condition
as φ → ∞. Thus we instead calculate ∆m from (2.23) and (2.24) for m sufficiently large so
we can precisely estimate

R(x) ≡ − 1
x4/5

log

{
1
12

∞∑

m=0

(−1)mx2m−2∆m−1

}
. (4.40)

Our analysis suggests that

R(x) → ν∗ as x → ∞. (4.41)

Note that the right side of (4.40) corresponds to solving the asymptotic relation (2.45)
for ν∗, in terms of the sum in (4.35). In doing this we divided the sum by 12x2, which
should improve the convergence, since it adds to R(x) the terms of order O(x−4/5 log x) and
O(x−4/5), which correspond to the first two correction terms to the limit in (4.41).

In Table 4 we consider x in the range [1, 8] and compute the sum
∑∞

m=0(−1)mx2m∆m−1

as well as R(x). The data again confirm our asymptotic analysis and lead to the value of ν∗
in (2.46). We note that there is a lot of cancelation in the alternating sum. To obtain the
result for x = 8 we needed to truncate the sum at about m = 2, 500 and do the calculation
with 175 digits of precision !

In the next section we use our results for the function H̄(b) to study the limiting density
p−(β), both asymptotically and numerically.

5 Asymptotic and Numerical Studies of p−(β)

We study p−(β) in (2.16) which is a proper density which satisfies p−(−β) = p−(β),
∫ ∞

−∞
p−(β)dβ = 1,

∫ ∞

−∞
β2p−(β)dβ =

1
2
√

π and
∫ ∞

−∞
β4p−(β)dβ =

14
5

.

Higher order moments follow easily from (2.17) and (2.22) – (2.24).
We obtain the tail behavior as β → ∞. We argue that since H̄(b) is entire, there must

be a saddle point in the integral
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Table 4:

x
∑∞

m=0(−1)mx2m∆m−1 R(x)
1 .36868 3.482732
2 .12273 3.428240
3 .29170(–1) 3.411948
4 .61976(–2) 3.411285
5 .12817(–2) 3.411601
6 .26478(–3) 3.411674
7 .55131(–4) 3.411675
8 .11616(–4) 3.411672

1
2πi

∫ i∞

−i∞
e−βb[1 +

√
πH̄(b)]db (5.1)

along the positive real b-axis, far from the origin. Then we shift the integration contour in
(5.1) far to the right and use the estimate in (2.32), thus obtaining for β → ∞

p−(β) ∼ 1
2πi

∫

Br

√
πc0e

b4/20e−bβb2[1 + O(b−4)]db. (5.2)

The integrand in (5.2) has a saddle point where

d

db

(
−bβ +

b4

20

)
= 0 ⇒ b = b0(β) = (5β)1/3. (5.3)

The directions of steepest descent are arg(b − b0) = ±π/2 and the standard saddle point
estimate gives

p−(β) ∼ 1
2πi

√
πc0b

2
0 exp

(
b4
0

20
− b0β

)∫ i∞

−i∞
exp

(
3b2

0

10
ζ2

)
dζ (5.4)

= c0

√
5
6
b0(β) exp

[
−3

4
βb0(β)

]

which is precisely the result in (2.18). Note that using the O(b−4) correction term in (2.32)
will allow us to compute an O(β−4/3) correction to (2.18). It appears that the asymptotic
series for H̄(b) involves powers of b−4, and that in p−(β) involves powers of β−4/3.

Next we discuss the analyticity of p−(β) about β = 0. If the density were analytic we
could write the last equation in (2.16) as

p−(β) =
1
π

∞∑

m=0

dmβ2m (−1)m

(2m)!
(5.5)
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where

dm =
∫ ∞

0
x2mS(x)dx. (5.6)

Using the estimate (2.45) for S(x) we can use (5.6) to infer the behavior of dm for n → ∞:

dm ∼
∫ ∞

0
x2m12

√
πx2 exp(−ν∗x

4/5)dx (5.7)

=
∫ ∞

0
y

5
2
(m+1)e−ν∗y12

√
π

5
4
y

1
4 dy

= 12
√

π
5
4
ν
− 5

2
m− 15

4∗ Γ
(

5
2
m +

15
4

)
.

It follows that dm/(2m)! grows faster than exponentially (roughly like mm/2) and thus the
series (5.5) cannot define an analytic function. By appropriate contour rotation in (2.16)
we believe that we can show that p−(β) has an essential singularity at β = 0, and infer its
behavior as β → 0 for all values of arg(β) ∈ [0, 2π). However, this would require knowing
the behavior of H̄(b) for b → ∞ and arbitrary arg(b), which we did not analyze. Note that
this would lead also to a better understanding of how the relation (2.32) (presumably valid
also in some sector (range of arg(b)) containing the real axis) transitions to the relation
H̄(b) ∼ −1/

√
π, which is certainly true for arg(b) = ±π/2.

We next calculate numerically p−(β) for moderate values of β ≥ 0. First we discretize
the integral(s) in (2.16) using a step size h, which yields the approximation

p−(β) .=
h

2π

∞∑

J=−∞
e−Jβhi[1 +

√
πH̄(Jhi)] (5.8)

=
h

2π

∞∑

J=−∞
e−Jβhi

∞∑

m=0

(−1)m
√

π∆m−1(Jh)2m

=
h

2π

[
1 +

∞∑

J=1

2 cos(Jβh)
∞∑

m=0

(−1)m
√

π∆m−1(Jh)2m

]
.

Our basic procedure is as follows: choose some βmax (say βmax = 3), choose a small step
size h, truncate the limit on the outer sum at J = Nmax (with hNmax � 1), calculate the
inner sum to some specified precision (to hold uniformly in the range Jh ∈ [0, hNmax]), and
plot the right side of (5.8) as a function of β over the range [0, βmax].

Our numerical studies show that it is desirable to estimate the truncated tail in the
J-sum in (5.8) analytically. More precisely, we write (2.16) as
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p−(β) =
1
2π

[∫ hNmax

0
2 cos(βx)S(x)dx +

∫ ∞

hNmax

2 cos(βx)S(x)dx

]
(5.9)

.=
h

2π

[
1 +

Nmax∑

J=1

2 cos(Jβh)S(Jh) − cos(βNmaxh)S(Nmaxh)

]

+
1
π

∫ ∞

hNmax

cos(βx)S(x)dx.

Here the term involving S(Nmaxh) comes from the Euler MacLaurin approximation to the
first integral in (5.9). The last integral in (5.9) we approximate using (2.45), thus defining

TAIL (β;hNmax) ≡
12√
π

∫ ∞

hNmax

x2 cos(βx) exp(−ν∗x
4/5)dx. (5.10)

For hNmax → ∞ we can further approximate the integral in (5.10) using

∫ ∞

z
cos(βx)S(x)dx ∼ −12

√
π

β
sin(βz)z2 exp(−ν∗z

4/5), z → ∞. (5.11)

However, this approximation is not valid for small β and it is not hard to evaluate (5.10)
numerically. We thus follow the procedure outlined below (5.8) by using the refined ap-
proximation in (5.9), with (5.10). Note that approximations for the derivatives of p−(β)
can then be obtained by analytically differentiating (5.9). This method was used to obtain
the graphs in Figure 1 and Figure 2. Here we used h = .025 and hNmax = 7.5, so that
Nmax = 300. Without the tail estimate in (5.10), much smaller values of h and 1/Nmax

would be needed.
We illustrate our approach in Table 5. Here we compute p−(β) at the values β = 0, 1, 2, 3

and also give p′′−(0) and the inflection point βc. The table illustrates the convergence as
h → 0 and hNmax → ∞, and leads to the values in (2.20) and (2.21). We comment
that in obtaining Table 5, care must be taken to accurately calculate S(x) in the range
x ∈ [0, Nmaxh]. For example, for Nmaxh = 8 we needed to truncate the m-sum in (5.8)
(which defines S(Jh)) at m = 1500 and use 100 digits of precision. We can estimate the
number of terms we need to retain in the sum, in terms of x, analytically. For example,
take x = 10. Then if we truncate the sum at m = M = 3000 we have x2M = 106000, while
∆3000 is of the order of 10−6066. Thus this truncation should give S(10) correctly to about
60 digits. We find that S(10) ≈ .95290(−6), and this required doing the calculation in 250
digits of precision.

Appendix A

Here we briefly discuss the scalings (3.19) and (3.20). By using (3.20) and (3.21) in (2.9)
we obtain
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Table 5:

h hNmax p−(0) p−(1) p−(2) p−(3) p′′−(0) βc

0.1 5 .45727 .22450 .041958 .0047815 –.71460 .75901
0.05 5 .45727 .22450 .041957 .0047818 –.71461 .75899
0.025 5 .45727 .22450 .041957 .0047819 –.71462 .75899
0.01 5 .45727 .22450 .041957 .0047820 –.71462 .75898

0.1 7.5 .45727 .22450 .041957 .0047820 –.71462 .75898
0.05 7.5 .45727 .22450 .041957 .0047819 –.71462 .75898
0.025 7.5 .45727 .22450 .041957 .0047819 –.71462 .75898
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This is analogous to (3.28) - (3.32).
Omitting details we expand the terms in (A.1) as n → ∞, assuming that F (a1, b1;n) →

F (a1, b1) as n → ∞. By Euler MacLaurin we have

T4 ∼ 4n

n2

∫ 1

0

F (a1x
3/2, b1x

3/2)F (a1(1 − x)3/2, b1(1 − x)3/2)
[x(1 − x)]3/2

dx. (A.2)
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Then for T1 we obtain

T1 − Cn+1 ∼
n∑

i=0

ia1 + (n − i)b1

n3/2
CiCn−i (A.3)

=
a1 + b1

n3/2

n∑

i=0

iCiCn−i

=
a1 + b1

n3/2

n∑

i=0

(n − i)Cn−iCi

∼ a1 + b1√
n

∞∑

i=0

4n

n3/2

1√
π

4−iCi

=
4n

n2

2(a1 + b1)√
π

.

We next use T2(b1, a1) = T3(a1, b1) and write the former as

T2 =
4n

n3/2

n∑

i=0

4−iCi

(
1 +

a1

n3/2

)i
(

1 +
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n3/2

)n−i

F (a1, b1) (A.4)

+
n∑
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(
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)i
(
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Ci
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

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)3/2
a1,
(
1 − i

n

)3/2
b1;n − i

)

(
1 − i

n

)3/2
− F (a1, b1)


 .

The second term in (A.4) can be approximated for i = O(n) by an integral, which leads to

4n

n2

∫ 1

0

1√
πx3/2

[
F ((1 − x)3/2a1, (1 − x)3/2b1)

(1 − x)3/2
− F (a1, b1)

]
dx. (A.5)

Using (3.38) we write the first part of (A.4) as

4n

n3/2

n∑

i=0

4−iCi

[(
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n3/2

)i
(

1 +
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[
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(A.6)

∼ 4n

n3/2

[
n∑

i=0

4−iCi
ia1 + (n − i)b1

n3/2
+ 2 − 2√

πn

]
F (a1, b1) =

4n

n3/2

[
2 +

2b1√
n
− 2√

πn
+ O(n−1)

]
F (a1, b1).

Using (A.2) – (A.6) in (A.1) we obtain in the limit n → ∞ the nonlinear integral equation

0 =
∫ 1

0

F (x3/2a1, x
3/2b1)F ((1 − x)3/2a1, (1 − x)3/2b1)

[x(1 − x)]3/2
dx (A.7)

+
2√
π

∫ 1

0

{
F ((1 − x)3/2a1, (1 − x)3/2b1)

(1 − x)3/2
− F (a1, b1)

}
dx

x3/2

− 4√
π

F (a1, b1) + 2(a1 + b1)
[

1√
π

+ F (a1, b1)
]

.

34



To analyze (A.7) we take a1, b1 < 0 and set

F (a1, b1) = (−a1 − b1)F̄ (A1, B1); A1 = (−a1)2/3, B1 = (−b1)2/3. (A.8)

After some simplification (A.7) then becomes

2F̄ (A1, B1) =
∫ 1

0
F̄ (A1(1 − x), B1(1 − x))F̄ (A1x,B1x)dx (A.9)

− 4√
π

1

A
3/2
1 + B

3/2
1

∫ 1

0

1√
1 − x

d

dx
[F̄ (A1x,B1x)]dx.

Now let C = (A3/2
1 + B

3/2
1 )2/3 = (−a1 − b1)2/3 with

F̄ (A1, B1) = F∗(C), (A.10)

so that (A.9) becomes

2CF∗(C) =
∫ C

0
F∗(y)F∗(C − y)dy − 4√

π

∫ C

0

1√
C − y

F ′
∗(y)dx. (A.11)

Note that this integral equation, upon getting F∗(C) = 1
2D̄(2−2/3C), is that obtained in

[11] for the Airy distribution of total path length.
We have thus shown that the scaling (3.20) leads to the approximation Gn(w, v) ∼

4nn−3/2[π−1/2 + F0(a1 + b1)], where F0(a1 + b1) = F∗((−a1 − b1)2/3) for a1, b1 < 0. The
corresponding limiting density, with the scaling (3.19) is

p0(α1, β1) =
1

(2πi)2

∫ i∞

−i∞

∫ i∞

−i∞
e−α1a1eβ1b1 [1 +

√
πF0(a1 + b1)]da1db1. (A.12)

This implies that p0(α1, β1) has the form δ(α1−β1) times an Airy distribution. Thus seeing
the fine structure of the distribution of the left and right path difference requires a different
scaling, that has p − q = o(n3/2).

Appendix B

Here we briefly discuss the functional equation (2.11) for the triple generating function of
N(p, q;n). We use the scaling (3.24) and also set

z =
1
4

(
1 +

ζ

n

)
=

1
4

+ O(n−1) (B.1)

with

C(w, v, z) = C̄(ζ, a, b) = C̄

(
(4z − 1)n,

1
2
n3/2(w + v − 2),

1
2
n5/4(w − v)

)
. (B.2)
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With (B.1) and (B.2), (2.11) becomes

C̄(ζ, a, b) = 1 +
1
4

(
1 +

ζ

n

)
C̄

(
ζ +

b

n1/4
+

a√
n

+
ζb

n5/4
+

ζa

n3/2
, a, b

)
(B.3)

× C̄

(
ζ − b

n1/4
+

a√
n
− ζb

n5/4
+

ζa

n3/2
, a, b

)
.

Next we let

C̄(ζ, a, b) = 2
[
1 +

1√
n

D(ζ, a, b;n)
]

(B.4)

where D = O(1) as n → ∞. Then expanding D as

D(ζ, a, b;n) = D(0)(ζ, a, b) + n−1/4D(1)(ζ, a, b) + O(n−1/2) (B.5)

we obtain the limiting ODE

0 = ζ + 2aD
(0)
ζ + b2D

(0)
ζζ + [D(0)]2. (B.6)

When b = 0 this becomes a Ricatti equation that can be solved explicitly in terms of
Airy functions. When a = 0 it reduces to the Painlevè transcendent. We can also relate
(B.6) to (3.51). By setting

ζ = (−a)2/3(−S), D(0) = (−a)1/3D̄ (B.7)

and recalling that θ = (−a)2/3b−4/5 (cf. (3.46)) we obtain from (B.6)

O = −S + 2D̄S + D̄2 + θ−5/2D̄SS. (B.8)

Then 2D̄ satisfies the same equation (3.51) as the function T1.
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