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7.0. Introduction

Repeated patterns and related phenomena in words are known to play a central
role in many facets of computer science, telecommunications, coding, data com-
pression, and molecular biology. One of the most fundamental questions arising
in such studies is the frequency of pattern occurrences in another string known
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328 Analytic Approach to Pattern Matching

as the text. Applications of these results include gene finding in biology, code
synchronization, user search in wireless communications, detecting signatures
of an attacker in intrusion detection, and discovering repeated strings in the
Lempel-Ziv schemes and other data compression algorithms.

The basic pattern matching is to find for a given (or random) pattern w or
a set of patterns W and text X how many times W occurs in the text and how
long it takes for W to occur in X for the first time. These two problems are
not unrelated as we have already seen in Chapter 6. Throughout this chapter
we allow patterns to overlap and we count overlapping occurrences separately.
For example, w = abab occurs three times in the text = bababababb.

We consider pattern matching problems in a probabilistic framework in
which the text is generated by a probabilistic source while the pattern is given.
In Chapter 1 various probabilistic sources were discussed. Here we succinctly
summarize assumptions adopted in this chapter. In addition, we introduce a
new general source known as a dynamic source recently proposed by Vallée. In
Chapter 2 algorithmic aspects of pattern matching and various efficient algo-
rithms for finding patterns were discussed. In this chapter, as in Chapter 6,
we focus on analysis. However, unlike Chapter 6, we apply here analytic tools
of combinatorics and analysis of algorithms to discover general laws of pattern
occurrences. An immediate consequence of our results is the possibility to set
thresholds at which a pattern in a text starts being (statistically) meaningful.

The approach we undertake to analyze pattern matching problems is through
a formal description by means of regular languages. Basically, such a descrip-
tion of contexts of one, two, or several occurrences gives access to expecta-
tion, variance, and higher moments, respectively. A systematic translation into
generating functions of a complex variable z is available by methods of ana-
lytic combinatorics deriving from the original Chomsky-Schützenberger theo-
rem. Then, the structure of the implied generating functions at a pole, usually
at z = 1, provides the necessary asymptotic information. In fact, there is
an important phenomenon of asymptotic simplification where the essentials of
combinatorial-probabilistic features are reflected by the singular forms of gener-
ating functions. For instance, variance coefficients come out naturally from this
approach together with a suitable notion of correlation. Perhaps the originality
of the present approach lies in such a joint use of combinatorial-enumerative
techniques and of analytic-probabilistic methods.

There are various pattern matching problems. In its simplest form, the pattern
W = w is a single string w and one searches for some/all occurrences of w as
a block of consecutive symbols in the text. This problem is known as the exact

string matching and its analysis is presented in Section 7.2 (cf. also Chapter 6).
We adopt a symbolic approach, and first describe a language that contains all
occurrences of w. Then we translate this language into a generating function
that will lead to precise evaluation of the mean and the variance of the number
of occurrences of the pattern. Finally, we prove the central and local limit laws,
and large deviations.

In the generalized string matching problem the pattern W is a set rather

Version May 18, 2004



7.0. Introduction 329

than a single pattern. In its most general formulation, the pattern is a pair
(W0,W) where W0 is the so called forbidden set. If W0 = ∅, then W appears in
the text whenever a word from W occurs as a string with overlapping allowed.
When W0 6= ∅ one studies the number of occurrences of strings in W under
the condition that there is no occurrence of a string from W0 in the text X .
This could be called a restricted string matching since one restricts the text
to those strings that do not contain strings from W0. Finally, setting W = ∅
(with W0 6= ∅) we search for the number of text strings that do not contain
any pattern from W0. In particular, for ℓ ≤ k if W0 consists of runs of zeros of
length at least ℓ and at most k, then we deal with the so called (ℓ, k) sequences
that find application in magnetic recoding.

We shall present a complete analysis of the generalized string matching prob-
lem in Section 7.3. We first consider the so called reduced set of patterns in which
a string in W cannot be a substring of another string in W . We shall general-
ize our combinatorial language approach from Section 7.2 to derive the mean,
variance, central and local limit laws, and large deviations. Then we analyze
the generalized string pattern matching with W0 = ∅ and adopt a different
approach. We shall construct an automaton to recognize the pattern W that
turns out to be a de Bruijn graph. The generating function of the number of
occurrences will have a matrix form with the main matrix representing the tran-
sition matrix of the associated de Bruijn graph. Finally, we consider the (ℓ, k)
sequences and enumerate them leading to the Shannon capacity.

In Section 7.4 we discuss a new pattern matching problem called the sub-

sequence pattern matching or the hidden pattern matching. In this case the
pattern W = a1a2 · · · am, where ai is a symbol of the underlying alphabet, is to
occur as a subsequence rather than a string (consecutive symbols) in a text. We
say that W is hidden in the text. For example, date occurs as a subsequence in
the text hidden pattern, in fact four times, but not even once as a string. The
gaps between occurrences of W may be bounded or unrestricted. The extreme
cases are: fully unconstrained problem where all gaps are unbounded; and the
fully constrained problem where all gaps are bounded. We analyze these and
mixed cases.

In Section 7.5 we generalized all of the above pattern matching problems
and analyze the generalized subsequence problem. In this case, the pattern is
W = (W1, . . . ,Wd) where Wi is a collection of strings (a language). We say
that the generalized pattern W occurs in the text X if X contains W as a sub-

sequence (w1, w2, . . . , wd) where wi ∈ Wi. Clearly, it includes all the problems
discussed so far. We shall analyze this generalized pattern matching for gen-
eral probabilistic dynamic sources (which include among others Markov sources
and mixing sources). The novelty of the analysis lies in translating probabili-
ties into composition of operators. Under a mild decomposability assumption,
these operators entertain spectral representations that allows us to derive precise
asymptotic behavior for quantities of interest.

Finally, in the last section we study a different pattern matching, namely the
one in which the pattern is part of the (random) text. We coin the term self-

repetitive pattern matching. More precisely, we look for the longest substring of
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the text occurring at a given position that has another copy in the text. This
new quantity, when averaged over all possible positions of the text, is actually
the typical depth in a suffix trie (cf. Chapter 2) built over (randomly generated)
text. We analyze it using analytic techniques such as generating functions and
the Mellin transform. We reduce its analysis to the exact pattern matching;
thus we call the technique the string-ruler method. In fact, we prove that the
probability generating function of the depth in a suffix trie is asymptotically
close to the probability generating function of the depth in a trie that is built
over n independently generated texts. Such tries have been extensively studied in
the past and we have pretty good understanding of their probabilistic behaviors.
This allows us to conclude that the depth in a suffix trie is asymptotically
normal.

7.1. Probabilistic models

We study here pattern matching in a probabilistic framework in which the text
is generated randomly. Let us first introduce some general probabilistic models
of generating sequences. The reader is also referred to Chapter 1 for a brief
introduction to probabilistic models. For the convenience of the reader, we
repeat here some definitions.

Throughout we shall deal with sequences of discrete random variables. We
write (Xk)

∞
k=1 for a one-sided infinite sequence of random variables; however, we

often abbreviate it as X provided it is clear from the context that we are talking
about a sequence, not a single variable. We assume that the sequence (Xk)

∞
k=1

is defined over a finite alphabet A = {a1, . . . , aV } of size V . A partial sequence
is denoted as Xn

m = (Xm, . . . , Xn) for m < n. Finally, we shall always assume
that a probability measure exists, and we write P (xn1 ) = P(Xk = xk, 1 ≤
k ≤ n, xk ∈ A) for the probability mass, where we use lowercase letters for a
realization of a stochastic process.

Sequences are generated by information sources, usually satisfying some con-
straints. We also call them probabilistic models. Throughout, we assume the
existence of a stationary probability distribution, that is, for any string w the
probability that the text X contains an occurrence of w at position k is equal
to P (w) independently of the position k. For P (w) > 0, we denote by P (u | w)
the conditional probability equals P (wu)/P (w).

The most elementary source is a memoryless source also known as the
Bernoulli source.

(B) Memoryless or Bernoulli Source

Symbols of the alphabet A = {a1, . . . , aV } occur independently of one an-
other; thusX = X1X2X3 . . . can be described as the outcome of an infinite
sequence of Bernoulli trials in which P(Xj = ai) = pi and

∑V
i=1 pi = 1.

Throughout, we assume that at least for one i we have 0 < pi < 1.

In many cases, assumption (B) is not very realistic. When this is the case,
assumption (B) may be replaced by:
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7.1. Probabilistic models 331

(M) Markov Source of order one

There is a Markovian dependency between consecutive symbols in a string;
that is, the probability pij = P(Xk+1 = aj |Xk = ai) describes the condi-
tional probability of sampling symbol aj immediately after symbol ai. We
denote by P = {pij}Vi,j=1 the transition matrix, and by µ = (π1, . . . , πV )
the stationary vector satisfying µP = µ. (Throughout, we assume that the
Markov chain is irreducible and aperiodic.) A general Markov source of
order r is characterized by the transition matrix V r × V with coefficients
being P (j ∈ A | u) for u ∈ Ar.

In some situations more general sources must be considered (for which one
still can obtain reasonably precise analysis). Recently, Vallée introduced new
sources called dynamic sources that we briefly describe here and use in the
analysis of the generalized subsequence problem in Section 7.5. To introduce
such sources we start with a description of a dynamic system defined by:

• A topological partition of the unit interval I := (0, 1) into a disjoint set
of open intervals Ia, a ∈ A.

• An encoding mapping χ which is constant and equal to a ∈ A on each Ia.

• A shift mapping T : I → I whose restriction to Ia is a bijection of class
C2 from Ia to I. The local inverse of T restricted to Ia is denoted by ha.

Observe that such a dynamic system produces infinite words of A∞ through
the encoding χ. For an initial x ∈ I the source outputs a word, say w(x) =
(χx, χTx, . . .).

(DS) Probabilistic Dynamic Source

A source is called a probabilistic dynamic source, if the unit interval of a
dynamic system is endowed with a density f .

Example 7.1.1. A memoryless source associated with the probability distri-
bution {pi}Vi=1 (where V can be finite or infinite) is modeled by a dynamic source
in which the components wk(x) = χT kx are independent and the corresponding
topological partition of I is defined as

Im := (qm, qm+1], qm =
∑

j<m

pj.

In particular, a symmetric V -ary memoryless source can be described as

T (x) = {V x}, χ(x) = ⌊V x⌋,

where ⌊x⌋ is the integer part of x and {x} = x − ⌊x⌋ is the fractional part of x
(cf. Figure 7.1(a)).
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(a) (b)

Figure 7.1. Dynamic Sources discussed in Example 7.1.1: (a) memo-
ryless with the shift mapping Tm(x) = 〈(x − qm)/pm+1〉 (b) continued
fraction source with Tm(x) = 1/x − m = 〈1/x〉.

Here is another example of a source with memory related to continued frac-
tions. The alphabet A is the set of all natural numbers and the partition of I is
defined as Im = (1/(m+ 1), 1/m). The restriction of T to Im is the decreasing
linear fractional transformation T (x) = 1/x−m, that is,

T (x) = {1/x}, χ(x) = ⌊1/x⌋.

Observe that the inverse branches hm are defined as hm(x) = 1/(x + m) (cf.
Figure 7.1(b)).

Let us observe that a word of length k, say w = w1w2 · · ·wk is associated
with the mapping hw := hw1 ◦hw2 ◦· · ·◦hwk

which is an inverse branch of T k. In
fact, all words that begin with the same prefix w belong to the same fundamental

interval defined as Iw = (hw(0), hw(1)). Furthermore, for probabilistic dynamic
sources with the density f , one easily computes the probability of w as the
measure of the interval Iw.

The probability P (w) of a word w can be explicitly computed through the
special generating operator Gw define as follows

Gw[f ](t) := |h′w(t)|f ◦ hw(t). (7.1.1)

One recognizes in Gw[f ](t) a density mapping, that is, Gw[f ](t) is the density
of f mapped over hw(t). The probability of w can then be computed as

P (w) =

∣∣∣∣∣

∫ hw(1)

hw(0)

f(t)dt

∣∣∣∣∣ =

∫ 1

0

|h′w(t)|f ◦ hw(t)dt =

∫ 1

0

Gw[f ](t)dt. (7.1.2)
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Let us now consider a concatenation of two words w and u. For memory-
less sources P (w · u) = P (w)P (u). For Markov sources one still obtains the
product of conditional probabilities. Dynamic sources replaces the product of
probabilities by the product (composition) of generating operators. To see this,
we observe that

Gw·u = Gu ◦ Gw, (7.1.3)

where we write Gw := Gw[f ](t). Indeed, hwu = hw ◦ hu and Gw·u = h′w ◦ hu ·
h′u ·f ◦hw ◦hu while Gw = h′w ·f ◦hw and then Gu◦Gw = hu ·h′w ◦hu ·f ◦hw◦hu,
as desired.

7.2. Exact string matching

In the exact string matching problem the pattern w = w1w2 · · ·wm of length
m is given while the text X = Xn

1 = X1 . . .Xn of length n is generated by a
random source. Observe that since the pattern W is given, its length m will not

vary with n when n→ ∞ (asymptotic analysis).
There are several parameters of interest in the string matching, but two of

them stand out. Namely, the number of times w occurs in X which we denote
as Nn := Nn(w) and define formally by

Nn(w) = Card({i : X i
i−m+1 = w, m ≤ i ≤ n}).

We can write Nn(w) in an equivalent form as follows

Nn(w) = Im + Im+1 + · · · + In (7.2.1)

where Ii = 1 if w occurs at position i and Ii = 0 otherwise.
The second parameter is the waiting time Tw defined as the first time w

occurs in the text X , that is,

Tw := min{n : Xn
n−m+1 = w}.

One can also define Tj as the minimum length of the text in which the pattern
w occurs j times. Clearly, Tw = T1. These parameters are not independent
since

{Tw > n} = {Nn(w) = 0}. (7.2.2)

More generally,
{Tj ≤ n} = {Nn(w) ≥ j}. (7.2.3)

Relation (7.2.3) is called the duality principle in Chapter 6.
Our goal is to estimate the frequency of pattern occurrences Nn in a text

generated by a Markov source. We allow patterns to overlap when counting
occurrences (e.g., if w = abab, then it occurs twice in X = abababb when
overlapping is allowed; it occurs only once if overlapping is not allowed). We
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study probabilistic behavior of Nn through two generating functions, namely:

Nr(z) =
∑

n≥0

P(Nn(w) = r)zn,

N(z, u) =
∞∑

r=1

Nr(z)u
r =

∞∑

r=1

∞∑

n=0

P(Nn(w) = r)znur

that are defined for |z| ≤ 1 and |u| ≤ 1.
Throughout this section we adopt a combinatorial approach to string match-

ing, that is, we use combinatorial calculus to find combinatorial relationships
between sets of words satisfying certain properties (i.e., languages). Alterna-
tively, we could start with the representation (7.2.1) and use probabilistic tools
along the lines already discussed in Chapter 6.

7.2.1. Languages representations

We start our combinatorial analysis with some definitions. For any language L
we define its generating function L(z) as

L(z) =
∑

u∈L
P (u)z|u|,

where P (u) is the stationary probability of u occurrence, |u| is the length of u,
and we assume that P (ε) = 1. Notice that L(z) is defined for all complex z
such that |z| < 1. In addition, we define the w-conditional generating function

of L as

Lw(z) =
∑

u∈L
P (u|w)z|u| =

∑

u∈L

P (wu)

P (w)
z|u|,

Since we allow overlaps, the structure of the pattern has a profound impact
on the number of occurrences. To capture this, we introduce the autocorrelation
language and the autocorrelation polynomial. Given a string w, we define the
autocorrelation set S as:

S = {wmk+1 : wk1 = wmm−k+1}. (7.2.4)

By P(w) we denote the set of positions k ≥ 1 satisfying wk1 = wmm−k+1. In other
words, if w = vu and w = ux for some words v, x and u, then x belongs to S
and |u| ∈ P(w). Notice that ε ∈ S. The generating function of the language S is
denoted as S(z) and we call it the autocorrelation polynomial. Its w-conditional
generating function is denoted Sw(z). In particular, for Markov sources (of
order one)

Sw(z) =
∑

k∈P(w)

P (wmk+1 | wkk)zm−k. (7.2.5)

Before we proceed, let us present a simple example illustrating the definitions
introduced so far.
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Example 7.2.1. Let us assume that w = aba over a binary alphabet A =
{a, b}. Observe that P(w) = {1, 3} and S = {ε, ba}, where ε is the empty word.

Thus, for the unbiased memoryless source we have S(z) = 1 + z2

4 , while for the
Markovian model of order one, we obtain Saba(z) = 1 + pabpbaz

2.

Our goal is to estimate the number of pattern occurrences in a text. Alter-
natively, we can seek the generating function of a language that consists of all
words containing some occurrences of w. Given a pattern w, we introduce the
following languages:

(i) Tr as a set of words containing exactly r occurrences of w.

(ii) R as a set of words containing only one occurrence of w, located at the
right end.

(iii) U defined as
U = {u : w · u ∈ T1}, (7.2.6)

that is, a word u ∈ U if w · u has exactly one occurrence of w at the left
end of w · u.

(iv) M defined as

M = {v : w · v ∈ T2 and w occurs at the right end of w · v},

that is, M is a language such that any word in w · M has exactly two
occurrences of w at the left and right end.

Example 7.2.2. Let A = {a, b} and w = abab. Then r = aaabab ∈ R since
there is only one occurrence of w at the right end of r. Also, u = bbbb ∈ U
since wu has only one occurrence of w at the left end; but v = abbbb /∈ U
since wv = abababbbb has two occurrences of w. Furthermore, ab ∈ M since
wm = ababab ∈ T2 has two occurrences of w at the left and the right ends.
Finally, t = bbabababbbababbb ∈ T3 and one observes that t = rm1m2u where
r = bbabab ∈ R, m1 = ab ∈ M, m2 = bbabab ∈ M, and u = bb ∈ U .

We now describe languages T≥1 =
⋃
r≥1 Tr (set of words containing at least

once occurrence of w) and Tr in terms of R, M, and U . Recall that Mr denotes
the concatenation of r languages M, and M0 = {ε}. Also, M+ = ∪r≥1M

r and
M∗ = ∪r≥0M

r.

Theorem 7.2.3. The languages Tr for r ≥ 1 and T≥1 satisfy the relations

Tr = R ·Mr−1 · U , (7.2.7)

and therefore
T≥1 = R ·M∗ · U . (7.2.8)

In addition, we have:
T0 · w = R · S. (7.2.9)
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Proof. To prove (7.2.7), we obtain our decomposition of Tr as follows: The first
occurrence of w in a word belonging to Tr determines a prefix p ∈ Tr that is in
R. After concatenating a nonempty word v we create the second occurrence of
w provided v ∈ M. This process is repeated r − 1 times. Finally, after the last
w occurrence we add a suffix u that does not create a new occurrence of w, that
is, wu is such that u ∈ U . Clearly, a word belongs to T≥1 if for some 1 ≤ r <∞
it is in Tr.

The derivation of (7.2.9) is left to the reader as Exercise 7.2.1.

Example 7.2.4. Let w = TAT . The following string belongs to T3:

R︷ ︸︸ ︷
CCTAT AT︸︷︷︸

M

GATAT︸ ︷︷ ︸
M

U︷ ︸︸ ︷
GGA .

We now prove the following result that summarizes relationships between
the languages R, M, and U .

Theorem 7.2.5. The languages M, R, and U satisfy

M∗ = A∗ · w + S, (7.2.10)

U · A = M + U − {ε}, (7.2.11)

w(M− ε) = A · R −R. (7.2.12)

Proof. We first deal with (7.2.10). Clearly, A∗w contains at least one occurrence
of w on the right, hence A∗w ⊂ M∗. Furthermore, a word v in M∗ is not in
A∗ ·w if and only if its size |v| is smaller than |w| (e.g., think of v = ab ∈ M for
w = abab). Then the second w occurrence in wv overlaps with w, which means
that v is in S.

Let us turn now to (7.2.11). When one adds a character a ∈ A right after a
word u from U , two cases may occur. Either wua still does not contain a second
occurrence of w (which means that ua is a nonempty word of U) or a new w
appears, clearly at the right end. Hence U ·A ⊆ M+U −ε. Let now v ∈ M−ε,
then by definition wv ∈ T2 ⊆ UA− U which proves (7.2.11).

We now prove (7.2.12). Let now x = ar be a word in w · (M − ε) where
a ∈ A. As x contains exactly two occurrences of w located at its left and right
ends, r is in R and x is in A · R −R, hence w(M− ε) ⊆ A · R −R. To prove
A ·R−R ⊆ w(M− ε), we take a word arw from A ·R that is not in R. Then
arw contains a second w occurrence starting in ar. As rw is in R, the only
possible position is at the left end, and then x is in w(M − ε). This proves
(7.2.12).
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7.2.2. Generating functions

The next step is to translate the relationships between languages into the as-
sociated generating functions. Therefore, we must now select the probabilistic
model according to which the text is generated. We derive our results for a
Markov model of order one. We adopt the following notation: To extract a
particular element, say with index (i, j), from a matrix, say P, we shall write
[P]i,j = pi,j . We also recall that (I − P)−1 =

∑
k≥0 Pk provided ||P|| < 1 for a

matrix norm || · ||. We also write Π for the stationary matrix that consists of
V identical rows equal to µ. Finally, by Z we denote the fundamental matrix

Z = (I − (P − Π))−1 where I is the identity matrix.
The next lemma translates the relationships between languages (7.2.10)–

(7.2.12) into generating functions Mw(z), Uw(z) and R(z) of languages M, U
and R (we recall that the first two generating function are conditioned on w
appearing just before any word from M and U). We define a function F (z) by

F (z) =
1

µw1

[
∑

n≥0

(P − Π)n+1zn]wm,w1 =
1

µw1

[(P − Π)(I − (P − Π)z)−1]wm,w1

(7.2.13)
for |z| <‖ P−Π ‖−1, where µw1 is the stationary probability of the first symbol
w1 of w. For memoryless sources F (z) = 0.

Lemma 7.2.6. For Markov sources (of order one), the generating functions
associated with languages M,U , and R satisfy

1

1 −Mw(z)
= Sw(z) + P (w)zm

(
1

1 − z
+ F (z)

)
, (7.2.14)

Uw(z) =
Mw(z) − 1

z − 1
, (7.2.15)

R(z) = P (w)zm · Uw(z), (7.2.16)

provided the underlying Markov chain is aperiodic and ergodic.

Proof. We first prove (7.2.15). Let us consider language relationship (7.2.11)
from Theorem 7.2.5, which we rewrite as U · A − U = M − ε. Observe that∑
b∈A pabz = z. Hence, set U · A yields (conditioning on the left occurrence of

w)
∑

u∈U

∑

b∈A
P (ub|w)z|ub| =

∑

a∈A

∑

u∈U ,ℓ(u)=a

P (u|w)z|u|
∑

b∈A
pabz = Uw(z) · z,

where ℓ(u) denotes the last symbol of the word u. Of course, M − ε and U
translate into Mw(z) − 1 and Uw(z), and (7.2.15) is proved.

We now turn our attention to (7.2.16), and we use relationship (7.2.12)
wM − w = AR − R of Theorem 7.2.5. In order to compute the conditional

generating function of A · R we proceed as follows
∑

ab∈A2

∑

bv∈R
P (abv)z|abv| = z2

∑

a∈A

∑

b∈A
µapab

∑

bv∈R
P (v|v−1 = b)z|v|.
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But due to the stationarity of the underlying Markov chain
∑
a µapab = µb. As

µbP (v|v−1 = b) = P (bv), we get zR(z). Furthermore, w ·M−w translates into
P (w)zm · (Mw(z) − 1). By just proved (7.2.15), this is P (w)zm · Uw(z)(z − 1),
and after a simplification, we obtain (7.2.16).

Finally, we deal with (7.2.14), and prove it using (7.2.10) from Theorem 7.2.5.
The left-hand side of (7.2.10) involves language M, hence we must condition
on the left occurrence of w. In particular,

⋃
r≥1 Mr + ε of (7.2.10) translates

into 1
1−Mw(z) . Now we deal with A∗ · w of the right-hand side of (7.2.10).

Conditioning on the left occurrence of w, the generating function Aw(z) of
A∗ · w is

Aw(z) =
∑

n≥0

∑

|u|=n
zn+mP (uw|u−1 = wm)

=
∑

n≥0

∑

|u|=n
znP (uw1|u−1 = wm)P (w2 . . . wm|w1)z

m.

We have P (w2 . . . wm|w1)z
m = 1

µw1
zmP (w), and for n ≥ 0:

∑

|u|=n
P (uw1|u−1 = wm) = [Pn+1]wm,w1

where, we recall, wm is the last character of w. In summary, the language

A∗ ·w contributes P (w)zm
[

1
µw1

∑
n≥0 Pn+1zn

]
wm,w1

, while the language S−{ε}
introduces Sw(z)−1. Using the equality Pn+1−Π = (P−Π)n+1 (which follows
from a consecutive application of the identity ΠP = Π), and observing that for
any symbols a and b


 1

µb

∑

n≥0

Πzn



ab

=
∑

n≥0

zn =
1

1 − z
.

we finally obtain the sum in (7.2.14). This completes the proof of the theorem.

The lemma above together with Theorem 7.2.3 suffice to derive generating
functions Nr(z) and N(z, u) in an explicit form.

Theorem 7.2.7. Let w be a given pattern of size m, and X be a random text
of length n generated according to an ergodic and aperiodic Markov chain with
the transition probability matrix P. Define

Dw(z) = (1 − z)Sw(z) + zmP (w)(1 + (1 − z)F (z)). (7.2.17)

Then

N0(z) =
1 −R(z)

1 − z
=
Sw(z)

Dw(z)
, (7.2.18)

Nr(z) = R(z)M r−1
w (z)Uw(z) , r ≥ 1, (7.2.19)

N(z, u) = R(z)
u

1 − uMw(z)
Uw(z), (7.2.20)
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where

Mw(z) = 1 +
z − 1

Dw(z)
, (7.2.21)

Uw(z) =
1

Dw(z)
, (7.2.22)

R(z) = zmP (w)
1

Dw(z)
. (7.2.23)

We recall that for memoryless sources, F (z) = 0, and hence

D(z) = (1 − z)S(z) + zmP (w). (7.2.24)

Proof. We only comment on the derivation ofN0(z) since the rest follows directly
from our previous results. Observe that

N0(z) =
∑

n≥0

P(Nn = 0)zn =
∑

n≥0

(1 − P(Nn > 0))zn =
1

1 − z
−

∞∑

r=1

Nr(z),

thus the first expression follows form (7.2.19). The second expression is a direct
translation of T0 ·w = R·A (cf. (7.2.9)) which reads N0(z)P (w)zm = R(z)Sw(z)
in terms of the appropriate generating functions.

7.2.3. Moments and limit laws

In the previous section we derived an explicit formula for the generating function
N(z, u) =

∑
n≥0 E(uNn)zn and Nr(z). These formulas can be used to obtain

explicit and asymptotic expressions for moments of Nn (cf. Theorem 7.2.8),
the central limit theorem (cf. Theorem 7.2.11), and large deviations (cf. Theo-
rem 7.2.12). We start with derivation of the mean and the variance of Nn.

Theorem 7.2.8. Under the assumptions of Theorem 7.2.7 and nP (w) → ∞,
one has, for n ≥ m:

E[Nn(w)] = P (w)(n−m+ 1) , (7.2.25)

and
Var[Nn(w)] = nc1 + c2 +O(R−n), for R > 1 (7.2.26)

where

c1 = P (w)(2Sw(1) − 1 − (2m− 1)P (w) + 2P (w)E1)), (7.2.27)

c2 = P (w)((m − 1)(3m− 1)P (w) − (m− 1)(2Sw(1) − 1) − 2S′
w(1))

− 2(2m− 1)P (w)2E1 + 2E2P (w)2, (7.2.28)

and the constants E1, E2 are

E1 =
1

µw1

[(P − Π)Z]wm,w1 , E2 =
1

µw1

[(P2 − Π)Z2]wm,w1 ,
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Proof. Notice that first moment estimate can be derived directly from the
definition of the stationary probability of w. In order to grasp higher mo-
ments we will use analytic tools applied to generating functions. We compute
the first two moments of Nn from N(z, u) since E(Nn) = [zn]Nu(z, 1) and
E(Nn(Nn − 1)) = Nuu(z, 1) where Nu(z, 1) and Nuu(z, 1) are the first and the
second derivatives of N(z, u) with respect to variable u at (z, 1). By Theorem
7.2.7 we find

Nu(z, 1) =
zmP (w)

(1 − z)2
,

Nuu(z, 1) =
2zmP (w)Mw(z)Dw(z)

(1 − z)3
.

Now we observe that both expressions admit as a numerator a function that is
analytic beyond the unit circle. Furthermore, for a positive integer k > 0

[zn](1 − z)−k =

(
n+ k − 1

k − 1

)
=

Γ(n+ k)

Γ(k)Γ(n+ 1)
, (7.2.29)

(where Γ(x) is the Euler gamma function), we find for n ≥ m

E(Nn) = [zn]Nu(z, 1) = P (w)[zn−m](1 − z)−2 = (n−m+ 1)P (w).

In order to estimate variance, we introduce

Φ(z) = 2zmP (w)Mw(z)Dw(z),

and observe that

Φ(z) = Φ(1) + (z − 1)Φ′(1) +
(z − 1)2

2
Φ′′(1) + (z − 1)3f(z),

where f(z) is the remainder of the Taylor expansion of Φ(z) up to order 3 at
z = 1. For memoryless sources, Φ(z) and thus f(z) are polynomials of degree
2m− 2 and [zn](z − 1)f(z) is 0 for n ≥ 2m− 1. Hence, by (7.2.29) we arrive at

E(Nn(Nn− 1)) = [zn]Nuu(z, 1) = Φ(1)
(n+ 2)(n+ 1)

2
−Φ′(1)(n+ 1) +

1

2
Φ′′(1).

But Mw(z)Dw(z) = Dw(z) + (1 − z) and taking into account formula (7.2.24)
for D(z), we finally obtain (7.2.26).

For Markov sources, Dw(z) has an additional term, namely

[zn]
2(z2mP (w)2F (z))

(1 − z)2
,

where F (z), defined in (7.2.13), is analytic beyond the unit circle for |z| ≤ R,
with R > 1. The Taylor expansion of F (z) is E1 + (1 − z)E2, and applying
(7.2.29) again yields the result.
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Recall that P = Π for memoryless sources, so E1 = E2 = 0 and (7.2.26)
reduces to an equality for n ≥ 2m− 1. Thus

Var[Nn(w)] = nc1 + c2 (7.2.30)

with

c1 = P (w)(2S(1) − 1 − (2m− 1)P (w)),

c2 = P (w)((m − 1)(3m− 1)P (w) − (m− 1)(2S(1) − 1) − 2S′(1)).

In passing we should notice that from the generating function N(z, u) we
can compute all moments of Nn. Instead, however, we present some limit
laws for P(Nn = r) for different values of r: We consider r = O(1), r =
E(Nn) + x

√
Var(Nn) (central and local limit regime), and r = (1 + δ)E(Nn)

(large deviations). From the central limit theorem (cf. Theorem 7.2.11 below)
we conclude that the normalized random variable (Nn − E(Nn))/

√
Var(Nn)

converges also in moments to the moments of the standard normal distribution.
This follows from the fact that in the theorem below we prove the convergence
of the normalized generating function to an analytic function, namely eu

2/2 for
u complex in the vicinity of zero. Since an analytic function has well defined
derivatives, convergence in moments follows. We shall leave a formal proof to
the reader (cf. Exercise 7.2.3).

Theorem 7.2.9. Under the assumptions of Theorem 7.2.8, let ρw be the root
of Dw(z) = 0 of the smallest modulus and multiplicity one. Then, ρw is real
such that ρw > 1, and there exists ρ > ρw such that for r = O(1)

P(Nn(w) = r) =

r+1∑

j=1

(−1)jaj

(
n

j − 1

)
ρ−(n+j)
w +O(ρ−n) , (7.2.31)

where

ar+1 =
ρmwP (w) (ρw − 1)

r−1

(D′
w(ρw))

r+1 , (7.2.32)

and the remaining coefficients can be computed according to

aj =
1

(r + 1 − j)!
lim
z→ρw

dr+1−j

dzr+1−j
(
Nr(z)(z − ρw)r+1

)
(7.2.33)

with j = 1, 2, . . . , r.

In order to prove Theorem 7.2.9, we need the following simple result.

Lemma 7.2.10. The equationDw(z) = 0 has at least one root, and all its roots
are of modulus greater than 1.
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Proof. Poles of Dw(z) = (1 − z)/(1 −Mw(z)) are clearly poles of 1
1−Mw(z) . As

1
1−Mw(z) is the generating function of a language, it converges for |z| < 1 and has

no pole of modulus smaller than 1. Since Dw(1) 6= 0, then z = 1 is a simple pole
of 1/(1 −Mw(z)). As all its coefficients are real and non negative, there is no
other pole of modulus |z| = 1. It follows that all roots of Dw(z) are of modulus
greater than 1. The existence of a root is guaranteed since Dw(z) is either a
polynomial (Bernoulli model) or a ratio of polynomials (Markov model).

Proof of Theorem 7.2.9. We first re-write the formula on Nr(z) as follows

Nr(z) =
zmP (w)(Dw(z) + z − 1)r−1

Dr+1
w (z)

. (7.2.34)

Observe that P(Nn(w) = r) is the coefficient at zn of Nr(z). By Hadamard’s
theorem, asymptotics of the coefficients of a generating function depend on the
singularities of the underlying generating function. In our case, the generating
function Nr(z) is a rational function, thus we can only expect poles (for which
the denominatorDw(z) vanishes). Lemma 7.2.10 above establishes the existence
and properties of such a pole. Therefore, the generating function Nr(z) can be
expanded around its root of smallest modulus, let ρw be this smallest modulus,
in Laurent’s series:

Nr(z) =

r+1∑

j=1

aj
(z − ρw)j

+ Ñr(z) (7.2.35)

where Ñr(z) is analytical in |z| < ρ′ and ρ′ is defined as ρ′ = inf{|ρ| : ρ >
ρw and Dw(ρ) = 0}. The constants aj satisfy (7.2.33). This formula simplifies
into (7.2.32) for the leading constant a−r−1. As a consequence of analyticity

we have for 1 < ρw < ρ < ρ′: [zn]Ñ (r)(z) = O(ρ−n). Hence, the term Ñr(z)
contributes only to the lower terms in the asymptotic expansion of Nr(z). After
some algebra, and noting that [zn]1/(1 − z)k+1 =

(
n+k
n

)
, we prove Theorem

7.2.9.

In the next theorem we establish the central limit theorem in its strong form
(i.e., local limit theorem).

Theorem 7.2.11. Under the same assumption as in Theorem 7.2.8 we have

P(Nn(w) ≤ E(Nn) + x
√

Var(Nn)) =

(
1 +O

(
1√
n

))
1√
2π

∫ x

−∞
e−t

2/2dt.

(7.2.36)
If, in addition, pij > 0 for all i, j ∈ A, then for any bounded real interval B

sup
x∈B

∣∣∣∣∣P(Nn(w) = ⌊E(Nn) + x
√

Var(Nn)⌋) −
1√

2πVar(Nn)
e−

1
2x

2

∣∣∣∣∣ = o

(
1√
n

)

(7.2.37)
as n→ ∞.
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Proof. Let r = ⌊E(Nn)+x
√

Var(Nn)⌋ with x = O(1). We compute P(Nn(w) ≤
r) (central limit theorem) and P(Nn(w) = r) (local limit theorem) for r =
E(Nn) + x

√
Var(Nn) when x = O(1). Let νn = E(Nn(w)) = (n−m+ 1)P (w)

and σ2
n = Var(Nn(w)) = c1n+N(1). To establish normality of (Nn(w)−νn)/σn,

it suffices, according to Lévy’s continuity theorem, to prove the following

lim
n→∞

e−τνn/σnNn(e
τ/σn) = eτ

2/2 (7.2.38)

for complex τ (actually, τ = iv suffices). Again, by Cauchy’s theorem

Nn(u) =
1

2πi

∮
N(z, u)

zn+1
dz =

1

2πi

∮
uP (w)

D2
w(z)(1 − uMw(z))zn+1−m dz ,

where the integration is along a circle around the origin. The evaluation of this
integral is standard and it appeals to the Cauchy residue theorem. Namely, we
enlarge the circle of integration to a bigger one, say R > 1, such that the bigger
circle contains the dominant pole of the integrand function. Observe that the
Cauchy integral over the bigger circle is O(R−n). Let us now substitute u = et

and z = eρ. Then, the poles of the integrand are the roots of the equation

1 − etMw(eρ) = 0. (7.2.39)

This equation implicitly defines in some neighborhood of t = 0 a unique C∞

function ρ(t), satisfying ρ(0) = 0. Notably, all other roots ρ satisfy inf |ρ| =
ρ′ > 0. Then, the residue theorem with eρ

′

> R > eρ > 1 leads to

Nn(e
t) = C(t)e−(n+1−m)ρ(t) +O(R−n) (7.2.40)

where

C(t) =
P (w)

D2
w(ρ(t))M ′

w(ρ(t))
.

To study properties of ρ(t), we observe that the cumulant formula implies
E(Nn(w)) = [t] logNn(e

t) and σ2
n = [t2] logNn(e

t) where, we recall, [tr]f(t)
denotes the coefficient of f(t) at tr. In our case, νn ∼ −nρ′(0) as well as
σ2
n ∼ −nρ′′(0). Set now in (7.2.40) t = τ/σn → 0 for some complex τ . Since

uniformly in t we have ρ(t) = tρ′(0)+ ρ′′(0)t2/2+O(t3) for t→ 0, our estimate
(7.2.40) leads to

e−τνn/σnNn(e
τ/σn) = exp

(
τ2

2
+O(nτ3/σ3

n)

)

= eτ
2/2
(
1 +O(1/

√
n)
)
,

which proves (7.2.36) after applying the Berry-Essen inequality that allows to
derive the error term O(1/

√
n) for the probability distribution.

To establish the local limit theorem, we observe that if pij > 0 for all i, j ∈ A,
then ρ(t) > 0 for t 6= 0 (cf. Exercise 7.2.4). We can obtain much more refined
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local limit result. Indeed, we find for x = o(n1/6)

P(Nn = E(Nn) + x
√
nc1) =

1√
2πnc1

e−
1
2x

2

(
1 − κ3

2c
3/2
1

√
n

(
x− x3

3

))

+ O(n−3/2) , (7.2.41)

where κ3 a constant (i.e., the third cumulant). This completes the proof of
Theorem 7.2.11.

Finally, we establish precise large deviations for Nn. Large deviations play
a central role in many applications, most notably in data mining and molec-
ular biology, since it allows to establish a threshold for overrepresented and
underrepresented patterns.

Theorem 7.2.12. Let r = aE[Nn] with a = (1 + δ)P (w) for δ 6= 0. For
complex t, define ρ(t) to be the root of

1 − etMw(eρ) = 0 , (7.2.42)

and define ωa and σa by

−ρ′(ωa) = a, −ρ′′(ωa) = σ2
a.

Then

P(Nn(w) = (1 + δ)E(Nn)) ∼
1

σa
√

2π(n−m+ 1)
e−(n−m+1)I(a)+θa (7.2.43)

where I(a) = aωa + ρ(ωa) and

θa = log
P (w)emρ(ωa)

Dw(eρ(ωa)) + (1 − eρ(ωa))D′
w(eρ(ωa))

, (7.2.44)

and Dw(z) is defined in (7.2.17).

Proof. From (7.2.40) we conclude that

lim
n→∞

logNn(e
t)

n
= −ρ(t) .

By the Gärtner-Ellis theorem we find

lim
n→∞

logP(Nn > na)

n
= −I(a) ,

where
I(a) = aωa + ρ(ωa)

with ωa being a solution of −ρ′(t) = a, A stronger version of the above result
is possible and we derive it in the sequel. In fact, we use (7.2.41) and the “shift
of mean” technique.
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As in the local limit regime, we could use Cauchy’s formula to compute the
probability P(Nn = r) for r = E(Nn) + xO(

√
n). But, formula (7.2.41) is only

good for x = O(1) while we need x = O(
√
n) for the large deviations. To

expand its validity, we shift the mean of the generating function Nn(u) to a new
value, say m = an = (1 + δ)P (w)(n−m+ 1), so we can again apply the central
limit formula (7.2.41) around the new mean. To accomplish this, let us re-write
(7.2.40) as for any R > 0

Nn(e
t) = C(t)[g(t)]n−m+1 +O(R−n)

where g(t) = e−ρ(t). (In the derivation below, for simplicity we dropped O(R−n)
term.) The above suggests that Nn(e

t) is the moment generating function of a
sum Sn of n−m+ 1 “almost” independent random variables X1, . . . , Xn−m+1

having moment generating function equal to g(t) and Y whose moment gener-
ating function is C(t). Observe that E(Sn) = (n −m + 1)P (w) while we need
to estimate the tail of Sn around (1 + δ)(n −m + 1)P (w). To achieve it, we

introduce a new random variable X̃i whose moment generating function g̃(t) is

g̃(t) =
g(t+ ω)

g(ω)

where ω will be chosen later. Then, the mean and the variance of the new
variable X̃ is

E(X̃) =
g′(ω)

g(ω)
= −ρ′(ω) ,

Var(X̃) =
g′′(ω)

g(ω)
−
(
g′(ω)

g(ω)

)2

= −ρ′′(ω) .

Let us now choose ωa such that

−ρ′(ωa) =
g′(ωa)

g(ωa)
= a = P (w)(1 + δ) .

Then, the new sum S̃n−Y = X̃1+. . .+X̃n−m+1 has a new mean (1+δ)P (w)(n−
m+1) = a(n−m+1), and hence we can apply to S̃n−Y the central limit result

(7.2.41). To translate from S̃n − Y to Sn we use the following simple formula

[etM ] (gn(t)) =
gn(ω)

eωM
[etM ]

(
gM (t+ ω)

gM (ω)

)
(7.2.45)

where M = a(n−m+1) and [etn]g(t) denotes the coefficient of g(t) at zn = etn

(where z = et). Now, we can apply (7.2.41) to the right-hand side of the above
to obtain

[etM ]

(
gM (t+ ω)

gM (ω)

)
∼ 1

σa
√

2π(n−m+ 1)
.

To obtain the final result we must take into account the effect of Y whose
moment generating function is C(t). This leads to replacing a = 1 + δ by a =
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Table 7.1. Z score vs p-value of tandem repeats in A.thaliana.

Oligomer Obs. p-val Z-sc.
(large dev.)

AATTGGCGG 2 8.059× 10−4 48.71

TTTGTACCA 3 4.350× 10−5 22.96
ACGGTTCAC 3 2.265× 10−6 55.49

AAGACGGTT 3 2.186× 10−6 48.95

ACGACGCTT 4 1.604× 10−9 74.01
ACGCTTGG 4 5.374 × 10−10 84.93

GAGAAGACG 5 0.687 × 10−14 151.10

1+δ+C′(0)/n resulting the the correction term eθa = eC
′(0)ωa . Theorem 7.2.12

is proved.

We illustrate the above results on an example taken from molecular biology.

Example 7.2.13. Biologists apply the so called Z-score and p-value to deter-
mine whether biological sequences such as DNA or protein contain a biological
signal, that is, an underrepresented or overrepresented patterns. These quanti-
ties are defined as

Z(w) =
E(Nn) −Nn(w)√

Var(Nn(w))
,

pval(r) = P (Nn(w) > r).

Z-score indicates by how many standard deviations the observed value Nn(w)
is away from the mean. Clearly, this score makes sense only if one can prove, as
we did in Theorem 7.2.11, that Z satisfies (at least asymptotically) the Central
Limit Theorem (CLT). On the other hand, p-value is used for rare occurrences,
far away from the mean where one needs to apply the large deviations as in
Theorem 7.2.12.

The range of validity of Z-score and p-value are important as illustrated
in Table 7.2.13 where results for 2008 nucleotides long fragments of A.thaliana

(a plant genome) are presented. In the table for each 9-mer the number of
observations is presented in the first column following by the large deviations
probability computed from Theorem 7.2.12 and Z-score. We observe that for
AATTGGCGG and AAGACGGTT the Z-scores are about 48 while p-values
differ by two order of magnitudes. In fact, occurrences of these 9-mers are very
rare, and therefore Z-score is not an adequate measure.

7.2.4. Waiting times

We shall now discuss the waiting times Tw and Tj, where Tw = T1 is the first
time w occurs in the text, while Tj is the minimum length of the text in which
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w occurs j times. Fortunately, we do not need re-derive generating function of
Tj since, as we have already indicated in (7.2.3), the following duality principle

holds
{Nn ≥ j} = {Tj ≤ n},

and in particular, {Tw > n} = {Nn = 0}. Therefore, if

T (u, z) =
∑

n≥0

∑

j≥0

P(Tj = n)znuj ,

then by the duality principle we have

(1 − u)T (u, z) + u(1 − z)N(z, u) = 1,

and one obtains T (u, z) from Theorem 7.2.7. Waiting times were analyzed in
depth in Chapter 6.

Finally, observe that the above duality principle implies

E(Tw) =
∑

n≥0

P(Nn = 0) = N0(1).

In particular, for memoryless sources, from Theorem 7.2.7 we conclude that

N0(z) =
zmS(z)

(1 − z)S(z) + zmP (w)
.

Hence

E(Tw) =
∑

n≥0

P(Nn(w) = 0) = N0(1) =
S(1)

P (w)

=
∑

k∈P(w)

1

P (wk1 )
=

1

P (w)
+

∑

k∈P(w)−{m}

1

P (wk1 )
(7.2.46)

7.3. Generalized string matching

In this section we consider generalized pattern matching in which a set of pat-
terns (rather than a single pattern) is given. We assume that the pattern is a

pair of sets of words (W0,W) where W =
⋃d
i=1 Wi consists of sets Wi ⊂ Ami

(i.e., all words in Wi have a fixed length equal to mi). The set W0 is called
the forbidden set. For W0 = ∅ one is interested in the number of pattern oc-
currences, Nn(W), defined as the number of patterns from W occurring in the
text Xn

1 generated by a (random) source. Another parameter of interest may be
the number of positions in Xn

1 where a pattern from W appears (clearly, some
patterns may occur more than once at some positions). The latter quantity we

denote as Πn. If we define Π
(i)
n as the number of positions where a word from

Wi occurs, then
Nn(W) = Π(1)

n + · · · + Π(d)
n .
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Notice that at any given position of the text and for a given i only one word
from Wi can occur.

For W0 6= ∅ one studies the number of occurrences Nn(W) under the condi-

tion that Nn(W0) := Π
(0)
n = 0, that is, there is no occurrence of a pattern from

W0 in the text Xn
1 . This could be called a restricted pattern matching since one

restricts the text to those strings that do not contain strings from W0.
Finally, we may set Wi = ∅ for i = 1, . . . , d with W0 6= ∅ and count the

number of text strings that do not contain any pattern from W0. (Alternatively,
we can estimate the probability that a randomly selected text Xn

1 does not
contain any pattern from W0.) In particular, define for ℓ ≤ k

W0 = {0 . . . 0︸ ︷︷ ︸
ℓ

, . . . , 0 . . . 0︸ ︷︷ ︸
k

}, (7.3.1)

that is, W0 consists of runs of zeros of length at least ℓ and at most k. A text
satisfying the property that no pattern from W0 defined in (7.3.1) occurs in it
is called a (ℓ, k) sequence. Such sequences are used for magnetic coding.

In this section, we first present an analysis of the generalized pattern match-
ing with W0 = ∅ and d = 1 that we call the reduced pattern set (i.e., no pattern
is a substring of another pattern) followed by a detailed analysis of the gen-
eralized pattern matching. We describe two methods of analysis. First, we
generalize our language approach from the previous section, and then for the
general pattern matching case we apply de Bruijn’s automaton and spectral
analysis of matrices. Finally, we enumerate (ℓ, k) sequences and compute the so
called Shannon capacity for such sequences.

Throughout this section we assume that the text is generated by a (non-de-
generate) memoryless source (B), as defined in Section 7.1.

7.3.1. String matching over reduced set of patterns

We analyze here a special case of the generalized pattern matching with W0 = ∅
and d = 1. In this case we shall write W1 := W = {w1, . . . , wK} where wi
(1 ≤ i ≤ K) are given patterns with fixed length |wi| = m. We shall generalize
the results from the exact pattern matching section, but we omit most of the
proofs or move them to exercises.

As before, let T≥1 be a language of words containing at least one occurrence
from the set W , and for any nonnegative integer r, let Tr be the language of
words containing exactly r occurrences from W . In order to characterize Tr we
introduce some additional languages for any 1 ≤ i, j ≤ K:

• Mij = {v : wiv ∈ T2 and wj occurs at the right end of v};

• Ri defined as the set of words containing only one occurrence of wi, located
at the right end;

• Ui = {u : wiu ∈ T1}, that is, a set of words u such that the only occurrence
of wi ∈ W in wiu is on the left.
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We also need to generalize the autocorrelation set and the autocorrelation
polynomial to a set of patterns. For any given two strings w and u, let

Sw,u = {umk+1 : wmm−k+1 = uk1}

be the correlation set. The set of positions k satisfying uk1 = wmm−k+1 is denoted
as P(w, u). If w = x · v and u = v · y for some words x, y, v, then y ∈ Sw,u and
|v| ∈ P(w, u). The correlation polynomial, Sw,u(z), of w and u is the associated
generating function of Sw,u, that is,

Sw,u(z) =
∑

k∈P(w,u)

P (umk+1)z
m−k.

In particular, for wi, wj ∈ W we define Si,j := Swi,wj . The correlation matrix

of W is denoted as S(z) = {Swiwj (z)}i,j=1,K .

Example 7.3.1. Consider a DNA sequence over the alphabet A = {A,C,
G, T } generated by a memoryless source with P (A) = 1

5 , P (C) = 3
10 , P (G) = 3

10
and P (T ) = 1

5 . Let w1 = ATT and w2 = TAT . Then the correlation matrix
S(z) is

S(z) =

(
1 1 + z2

25

1 + z
5 1 + z2

25

)
.

In order to analyze the number of occurrences Nn(W) and its generat-
ing functions we first generalize the language relationships discussed in The-
orem 7.2.3. Observe that

Tr =
∑

1≤i,j≤K
RiMr−1

ij Uj ,

T≥1 =
∑

r≥1

∑

1≤i,j≤K
RiMr−1

ij Uj ,

where
∑

denotes disjoint union of sets. As in Theorem 7.2.5, one finds the
following relationships between just introduced languages

⋃

k≥1

Mk
i,j = A∗ · wj + Sij − ε 1 ≤ i, j ≤ K,

Ui · A =
⋃

j

Mij + Ui − ε, 1 ≤ i ≤ K,

A · Rj − (Rj − wj) =
⋃

i

wiMij , 1 ≤ j ≤ K,

T0 · wj = Rj + Ri(Sij − ε), 1 ≤ i, j ≤ K.

Let us now analyzeNn(W) in a probabilistic framework. To simplify our pre-
sentation, we assume that the text is generated by a memoryless source. Then
the above language relationships translate directly into generating functions, as
discussed the last section.
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Before we proceed, we adopt the following notations. Lower-case letters
are reserved for vectors which are assumed to be column vectors (e.g., xt =
(x1, . . . , xK)) except for vectors of generating functions which we denote by
uppercase letters (e.g., Ut(z) = (U1(z), . . . , UK(z)) where Ui(z) is the generating
function of a language Uwi). In the above the upper index ”t“ denotes transpose.
We shall use upper-case letters for matrices (e.g., S(z) = {Swiwj (z)}i,j=1,K). In

particular, we write I for the identity matrix, and ~1t = (1, . . . , 1) for the vector
of all ones.

Now we are ready to present exact formulas for the generating function
Nr(z) =

∑
n≥0 P(Nn(W) = r)zn and N(z, u) =

∑
k≥0Nr(z)u

r. The following
theorem is a direct consequences of our definitions and language relationships.

Theorem 7.3.2. Let W = {w1, . . . , wK} be a given set of reduced patterns
each of lengthm, andX be a random text of length n generated by a memoryless
source. The generating functions Nr(z) and N(z, u) can be computed as follows:

Nr(z) = Rt(z)Mr−1(z)U(z) (7.3.2)

N(z, u) = Rt(z)u(I − uM(z))−1U(z) , (7.3.3)

where, denoting wt = (P (w1), . . . , P (wK)) and ~1t = (1, 1, . . . , 1), we have

M(z) = (D(z) + (z − 1)I)D(z)−1, (7.3.4)

(I − M(z))−1 = S(z) +
zm

1 − z
~1 · wt, (7.3.5)

U(z) =
1

1 − z
(I − M(z)) ·~1, (7.3.6)

Rt(z) =
zm

1 − z
wt · (I − M(z)), (7.3.7)

and
D(z) = (1 − z)S(z) + zm~1 · wt.

Using these results and following footsteps of our analysis for the exact
pattern matching, we arrive at the following asymptotic results.

Theorem 7.3.3. Let the text X be generated by a memoryless source with
P (wi) > 0 for i = 1, . . . ,K and P (W) =

∑
wi∈W P (wi) = wt ·~1.

(i) The following holds

E(Nn(W)) = (n−m+ 1)P (W),

Var(Nn(W)) = (n−m+ 1)
(
P (W) + P 2(W) − 2mP 2(W) + 2wt(S(1) − I)~1

)

+ m(m− 1)P 2(W) − 2wtṠ(1) ·~1 ,

where Ṡ(1) denotes the derivative of the matrix S(z) at z = 1.
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(ii) Let ρW be the smallest root of multiplicity one of detD(z) = 0 outside the
unit circle |z| ≤ 1. There exists ρ > ρW such that for r = O(1)

P(Nn(W) = r) = (−1)r+1 ar+1

r!
(n)rρ

−(n−m+r+1)
W

+

r∑

j=1

(−1)jaj

(
n

j − 1

)
ρ
−(n+j)
W +O(ρ−n) ,

where ar are computable constants.

(iii) Let B be a bounded real interval and r = ⌊E(Nn) + x
√

Var(Nn)⌋. Then

sup
x∈B

∣∣∣∣∣P(Nn(W) = r) − 1√
2πVar(Nn)

e−
1
2x

2

∣∣∣∣∣ = o

(
1√
n

)
,

as n→ ∞.

(iv) Let r = (1 + δ)E(Nn) with δ 6= 0, and let a = (1 + δ)P (W). Define τ(t) to
be the root of

det(I − etM(eτ )) = 0 ,

and ωa and σa to be

−τ ′(ωa) = −a, −τ ′′(ωa) = σ2
a.

Then

P(Nn(W) = r) ∼ 1

σa
√

2π(n−m+ 1)
e−(n−m+1)I(a)+θa

where I(a) = aωa + τ(ωa) and θa is a computable constant (cf. Exercise 7.3.3).

Proof. We only sketch the derivation of part (iii) but we present two proofs.
Our starting point is

N(z, u) = Rt(z)u(I − uM(z))−1U(z)

shown in Theorem 7.3.2 to hold for |z| < 1 and |u| < 1. We may proceed in two
different ways.

Method A: Determinant Approach.
Observe that

(I − uM(z))−1 =
B(z, u)

det(I − uM(z))

where B(z, u) is a complex matrix. Let

Q(z, u) := det(I − uM(z)),

and let z0 := ρ(u) be the smallest root of

Q(z, u) = det(I − uM(z)) = 0.
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Observe that ρ(1) = 1 by (7.3.5).
For our central limit result, we restrict out interest to ρ(u) in a vicinity of

u = 1. Such a root exists and is unique since for real z the matrix M(z) has all
positive coefficients. The Perron–Frobenius theorem implies that all other roots
ρi(u) are of smaller modulus. Finally, one can analytically continue ρ(u) to a
complex neighborhood of u. Thus Cauchy’s formula yields for some A < 1

Nn(u) := [zn]N(z, u) =
1

2πi

∮
Rt(z)B(z, u)U(z)

Q(z, u)

dz

zn+1

= C(u)ρ−n(u)(1 +O(An))

where C(u) = −Rt(ρ(u))B(ρ(u), u)U(ρ(u))ρ−1(u)/Q′(ρ(u), u). As in the proof
of Theorem 7.2.11, we recognize a quasi-power form for Nn(u) that directly
leads to the central limit theorem. An application of a saddle point method
completes the proof of the local limit theorem.

Method B: Eigenvalue Approach

We apply now the Perron–Frobenius theorem for positive matrices together
with a matrix spectral representation to obtain even more precise asymptotics.
Our starting point is the following formula

[I − uM(z)]−1 =

∞∑

k=0

ukMk(z). (7.3.8)

Now, observe that M(z) for real z, say x, is a positive matrix since each element
Mij(x) is the generating function of the language Mij and for any v ∈ Mij we
have P (v) > 0 for memoryless sources. Let then λ1(x), λ2(x), . . . , λK(x) are
eigenvalues of M(x). By Perron–Frobenius result we know that λ1(x) is simple,
real and λ1(x) > |λi(x)| for i ≥ 2. (To simplify our further derivation, we also
assume that λi(x) are simple but this assumption will not have any significant
impact on our asymptotics, as we shall see below.) Let li and ri, i = 1, . . . ,K are
left and right eigenvectors corresponding to λ1(x), λ2(x), . . . , λK(x) eigenvalues,
respectively. We set 〈l1, r1〉 = 1 where 〈x, y〉 is the scalar product of the vectors
x and y. Since ri is orthogonal to the left eigenvector rj for j 6= i, we can write
for any vector x

x = 〈l1, x〉r1 +

K∑

i=2

〈li, x〉ri.

This yields

M(x)x = 〈l1, x〉λ1(x)r1 +
K∑

i=2

〈li, x〉λi(x)ri.

Since Mk(x) has eigenvalues λk1(x), λk2(x), . . . , λkK(x), then — dropping even the
assumption about eigenvalues λ2, . . . , λK being simple — we arrive at

Mk(x)x = 〈l1, x〉r1λk1(x) +
K′∑

i=2

qi(k)〈li, x〉riλki (x) (7.3.9)
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where qi(k) is a polynomial in k (qi(k) ≡ 1 when the eigenvalues λ2, . . . , λK are
simple). Finally, we observe that we can analytically continue λ1(x) to complex
plane due to separation of λ1(x) form other eigenvalues leading to λ1(z).

Applying now (7.3.9) to (7.3.8) and using it in the formula forN(z, u) derived
in Theorem 7.3.2 we obtain

N(z, u) = Rt(z)u[I − uM(z)]−1U(z)

= uRt(z)

( ∞∑

k=0

ukλk1(z)〈l1(z),U(z)〉r1(z)

+
K′∑

i=2

ukλki (z)〈li(z),U(z)〉ri(z)




=
uC1(z)

1 − uλ1(z)
+

K′∑

i=2

uCi(z)

1 − uλi(z)

for some polynomials Ci(z). This representation entails to apply the Cauchy
formula yielding, as before, for A < 1 and a polynomial B(u)

Nn(u) := [zn]N(z, u) = B(u)ρ−n(u)(1 +O(An))

where ρ(u) is the smallest root of 1−uλ(z) = 0 which coincides with the smallest
root of det(I − uM(u)) = 0. In the above A < 1 since λ1(z) dominates all the
other eigenvalues. In the next section we return to this method and discuss it
in some more depth.

7.3.2. Analysis of the generalized string matching

In this section we deal with a general pattern matching problem where words
in W are not of the same length, that is, W =

⋃d
i=1 Wi such that Wi is a

subset of Ami with all mi being different. We still keep W0 = ∅ (i.e., there
are no forbidden words). In the next section, we consider the case W0 6= ∅.
We present here a powerful method based on a finite automata (i.e., de Bruijn
graph). This approach is very versatile, but unfortunately is not as insightful
as the combinatorial approach discussed so far.

Our goal is to derive the probability generating function Nn(u) = E(uNn(W))
of the number of pattern W occurrences in the text. We start with building
an automaton that scans the text X1X2 · · ·Xn and recognizes occurrences of
patterns from the set W . As a matter of fact, our automaton is a de Bruijn
graph that we describe in the sequel: Let M = max{m1, . . . ,md} − 1 and
B = AM . The de Bruijn automaton is built over the state space B. Let b ∈ B
and a ∈ A. Then a transition from a state b upon scanning symbol a of the text
is to b̂ ∈ B such that

b̂ = b2b3 · · · bMa,
that is, the leftmost symbol of b is erased and symbol a is appended on the
right. We shall denote such a transition as ba 7→ b̂ or ba ∈ Ab̂ since the first
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symbol of b has been deleted when scanning symbol a. When scanning a text
of length n −M one constructs an associated path of length n −M in the de
Bruijn automaton that begins at a state formed by the first M symbols of the
text, that is, b = X1X2 · · ·XM .

aa

ab

ba

bba

a

a

b

b

a

b

a

Figure 7.2. The de Bruijn graph for W = {ab, aab, aba}.

To record the number of pattern occurrences we equip the automaton with a
counter φ(b, a). When a transition occurs, we increment φ(b, a) by the number of
occurrences of patterns from W in the text ba. Since all occurrences of patterns
from W that end at a are contained in the text of the form ba, we realize that

φ(b, a) = NM+1(W , ba) −NM (W , b)

where Nk(W , x) is the number of pattern occurrences in the text x of length k.
Having built such an automaton, we construct a transition VM × VM matrix
T(u) as a function of a complex variable u and indexed by B × B such that

[T(u)]b,b̂ := P (a)uφ(b,a)[[ ba ∈ Ab̂ ]]

= P (a)uNM+1(W,ba)−NM(W,b)[[ b̂ = b2b3 · · · bMa ]]
(7.3.10)

where Iverson’s bracket convention is used:

[[B]] =

{
1 if the property B holds,
0 otherwise.

Example 7.3.4. Let W = {ab, aab, aba}. Then M = 2, the de Bruijn graph
is presented in Figure 7.2, and the matrix T(u) is shown below

T(u) =

aa ab ba bb

aa
ab
ba
bb




P (a) P (b)u 0 0
0 0 P (a)u2 P (b)

P (a) P (b) 0 0
0 0 P (a) P (b)



.

Next, we extend the above construction to scan a text of length k ≥ M .
By combinatorial properties of matrix products, the entry of index b, b̂ of the
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power Tk(u) cumulates all terms corresponding to starting in state b, ending

in state b̂, and recording the total number of occurrences of patterns W found
upon scanning the last k letters of the text. Therefore,

[
Tk(u)

]
b,b̂

=
∑

v∈Ak

P (v)uNM+k(W,bv)−NM (W,b). (7.3.11)

Define now a vector x(u) indexed by b as

[x(u)]b = P (b)uNM(W,b).

Then, the summation of all the entries of the row vector x(u)tTk(u) is achieved
by means of the vector ~1 = (1, . . . , 1) so that the quantity x(u)tT(u)k~1 represents
the probability generating function of Nk+M (W) taken over all texts of length
M + k. By setting n = M + k we prove the following theorem.

Theorem 7.3.5. Consider a general pattern W = (W1, . . . ,Wd) with M =
max{m1, . . . ,md} − 1. Let T(u) be the transition matrix defined as

[T(u)]b,b̂ := P (a)uNM+1(W,ba)−NM(W,b)[[ b̂ = b2b3 · · · bMa ]]

where b, b̂ ∈ AM and a ∈ A. Then

Nn(u) = E(uNn(W)) = bt(u)Tn(u)~1 (7.3.12)

where bt(u) = xt(u)T−M (u). Also,

N(z, u) =
∑

n≥0

Nn(z)z
n = bt(u)(I − zT(u))−1~1 (7.3.13)

for |z| < 1.

Let us now return for a moment to the reduced pattern case discussed in
the previous section and compare expression (7.3.13) derived here with (7.3.3)
of Theorem 7.3.2 that we repeat below

N(z, u) = Rt(z)u(I − uM(z))−1U(z).

Although there is a striking resemblance of these formulas they are quite dif-
ferent. In (7.3.3) M(z) is a matrix of z representing generating functions of
languages Mij , while T(u) is a function of u and it is the transition matrix of
the associated de Bruijn graph. Nevertheless, the eigenvalue method discussed
in the proof of Theorem 7.3.3 can be directly applied to derive limit laws of
Nn(W) for general set of patterns W . We shall discuss it next.

To study asymptotics of Nn(W) we need to estimate the growth of T n(u)
which is governed by the growth of the largest eigenvalue, as we have already
seen in the previous sections. Here, however, the situation is a little more
complicated since the matrix T(u) is irreducible but not necessary primitive
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(cf. Chapter 1 for in depth discussion). To be more precise, T(u) is irreducible

if its associated de Bruijn graph is strongly connected, while for primitivity of
T(u) we require that the greatest common divisor of the cycle weights of the de
Bruijn graph is equal to one.

Let us first verify irreducibility of T(u). As easy to check the matrix is

irreducible since for any g ≥ M and b, b̂ ∈ AM there are two words w, v ∈ Ag

such that bw = vb̂ (e.g., for g = M one can take w = b̂ and v = b). Thus
Tg(u) > 0 for u > 0 which is sufficient for irreducibility.

Let us now have a closer look at the primitivity of T(u). We start with a

precise definition. Let ψ(b, b̂) := φ(ba) where ba 7→ b̂ be the counter value when

transitioned form b to b̂. Let also C be a cycle in the associated de Bruijn graph.
Define the total weight of the cycle C as

ψ(C) =
∑

b,b̂∈C

ψ(b, b̂).

Finally, we set ψW = gcd(ψ(C) : C cycle). If ψW = 1, then we say T(u) is
primitive.

Example 7.3.4 (continued). Consider again the matrix T(u) and its associ-
ated graph shown in Figure 7.2. There are six cycles of respective weights
0, 3, 2, 0, 0, 1, therefore ψW = 1 and T(u) is primitive.

Consider now another matrix

T(u) =

(
P (a) P (b)u4

P (a)u2 P (b)u3

)
.

This time there are three cycles of weights 0, 6 and 3 and ψW = 3. The matrix
is not primitive. Observe that the characteristic polynomial λ(u) of this matrix
is a polynomial in u3.

Observe that the diagonal elements of T(u)k (i.e., its trace) are polynomials
in uℓ if and only if ℓ divides ψW ; therefore, the characteristic polynomial det(zI−
T(u)) of T(u) is a polynomial in uψW . Indeed, it is known that for any matrix
A

det(I −A) = exp


∑

k≥0

−Tr[Ak]

k




where Tr[A] is the trace of A.
Asymptotic behavior of the generating function Nn(u) = E(uNn(W)), hence

Nn(W), depends on the growth of Tn(u). The next lemma summarizes some
useful properties of T(u) and its eigenvalues. For the matrix T(u) of dimension
|A|M ×|A|M we denote by λj(u) for j = 1, . . . , R = |AM | its eigenvalues and we
assume that |λ1(u)| ≥ |λ2(u)| ≥ · · · ≥ |λR(u)|. To simplify notation, we often
drop the index of the largest eigenvalue, that is, λ(u) := λ1(u). Observe that
̺(u) = |λ(u)| is known as the spectral radius and it is equal to

̺(u) = lim
n→∞

||T n(u)||1/n
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where || · || is any matrix norm.

Lemma 7.3.6. Let GM (W) and T(u) denote, respectively, the de Bruijn graph
and its associated matrix defined in (7.3.10) for general pattern W . Assume
P (W) > 0.

(i) For u > 0 the matrix T(u) has a unique dominant eigenvalue λ(u) (> λj(u)
for j = 2, . . . , |A|M ) that is strictly positive and a dominant eigenvector r(u)
whose all entries are strictly positive. Furthermore, there exists a complex
neighborhood of the real positive axis on which the mappings u → λ(u) and
u→ r(u) are well-defined and analytic.

(ii) Define Λ(s) := logλ(es) for s complex. For real s the function s → Λ(s) is
strictly increasing and strictly convex. In addition,

Λ(0) = 1, Λ′(0) = P (W) > 0, Λ′′(0) := σ2(W) > 0.

(iii) For any θ ∈ (0, 2π) and x real ̺(xeiθ) ≤ ̺(x).

(iv) For any θ ∈ (0, 2π), if ψW = 1, then for x real ̺(xeiθ) < ̺(x); otherwise
ψW = d > 1 and ̺(xeiθ) = ̺(x) if and only if θ = 2kπ/d.

Proof. We first prove (i). Take u > 0 real positive. Then the matrix T(u)
has positive entries, and for any exponent g ≥ M the gth power of T(u) has
strictly positive entries, as shown above (see irreducibility of T(u)). Therefore,
by the Perron–Frobenius theorem (cf. also Chapter 1) there exists an eigenvalue
λ(u) that dominates strictly all the others. Moreover, it is simple and strictly
positive. In other words, one has

λ(u) := λ1(u) > |λ2(u)| ≥ |λ3(u)| ≥ · · · .

Furthermore, the corresponding eigenvector r(u) has all its components strictly
positive. Since the dominant eigenvalue is separated from other eigenvalues, by
perturbation theory there exists a complex neighborhood of the real positive
axis where the functions u → λ(u) and u → r(u) are well-defined and ana-
lytic. Moreover, λ(u) is an algebraic function since it satisfies the characteristic
equation det(λI − T(u)) = 0.

We now prove part (ii). The increasing property for λ(u) (and thus for Λ(s))
is a consequence of the fact that if A and B are nonnegative irreducible matrices
such that Ai,j ≥ Bi,j for all (i, j), then the spectral radius of A is larger than
the spectral radius of B.

For convexity of Λ(s), it is sufficient to prove that for u, v > 0

λ(
√
uv) ≤

√
λ(u)

√
λ(v).

Since eigenvectors are defined up to a constant, one can always choose the
eigenvectors r(

√
uv), r(u), and r(v) such that

max
i

ri(
√
uv)√

ri(u) ri(v)
= 1.
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Suppose that this maximum is attained at some index i. We denote by Pij the
coefficient at u in T(u), that is, Pij = [uψ][T(u)]ij . By the Cauchy-Schwarz
inequality we have

λ(
√
uv)ri(

√
uv) =

∑

j

Pij (
√
uv)ψ(i,j) rj(

√
uv)

≤
∑

j

Pij(
√
uv)ψ(i,j)

√
rj(u) rj(v)

≤


∑

j

Pij u
ψ(i,j) rj(u)




1/2 
∑

j

Pij v
ψ(i,j) rj(v)




1/2

=
√
λ(u)

√
λ(v)

√
ri(u) ri(v),

which implies convexity of Λ(s). To show that Λ(s) is strictly convex, we argue
as follows: Observe that for u = 1 the matrix T(u) is stochastic, hence λ(1) = 1
and Λ(0) = 0. As we shall see below, the mean and the variance of Nn(W)
are equal asymptotically to nΛ′(0) and nΛ′′(0), respectively. From the problem
formulation, we conclude that Λ′(0) = P (W) > 0 and Λ′′(0) = σ2(W) > 0.
Therefore, Λ′(s) and Λ′′(s) cannot be always 0 and (since they are analytic)
they cannot be zero on any interval. This implies that Λ(s) is strictly increasing
and strictly convex.

We now establish part (iii). For |u| = 1, and x real positive, consider two
matrices T(x) and T(xu). From (i) we know that for T(x) there exist a dominant
strictly positive eigenvalue λ := λ(x) and a dominant eigenvector r := r(x)
whose all entries rj are strictly positive. Consider an eigenvalue ν of T(xu) and
its corresponding eigenvector s := s(u). Denote by vj the ratio sj/rj . One can
always choose r and s such that max1≤j≤R |vj | = 1. Suppose that this maximum
is attained for some index i. Then

|νsi| = |
∑

j

Pij (xu)ψ(i,j) sj | ≤
∑

j

Pij x
ψ(i,j) rj = λri. (7.3.14)

We conclude that |ν| ≤ λ, and part (iii) is proven.

Finally we deal with part (iv). Suppose now that the equality |ν| = λ holds.
Then, all the previous inequalities in (7.3.14) become equalities. First, for all
indices ℓ such that Pi,ℓ 6= 0, we deduce that |sℓ| = rℓ, and vℓ has modulus 1.
For these indices ℓ, we have the same equalities in (7.3.14) as for i. Finally,
the transitivity of the de Bruijn graph entails that that each complex vj is of
modulus 1. Now, the converse of the triangular inequality shows that for every
edge (i, j) ∈ GM (W) we have

uψ(i,j)vj =
ν

λ
vi,

and for any cycle of length L we conclude that
(ν
λ

)L
= uψ(C).
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However, for any pattern W there exists a cycle C of length one with weight
ψ(C) = 0, as easy to see. This proves that ν = λ and that uψ(C) = 1 for any
cycle C. If ψW = gcd(ψ(C), C cycle) = 1, then u = 1 and ̺(xeiθ) < ̺(x) for
θ ∈ (0, 2π).

Suppose now that ψW = d > 1. Then, the characteristic polynomial and the
dominant eigenvalue λ(v) are functions of vd. The lemma is proved.

Lemma 7.3.6 provides the main technical support to prove the forthcoming
results; in particular, to establish asymptotic behavior of Tn(u) for large n. In-
deed, our starting point is (7.3.13) to which we apply the spectral decomposition
as in (7.3.9) to conclude that

N(z, u) =
c(u)

1 − zλ(u)
+
∑

i≥2

ci(u)

(1 − zλi(u))αi
.

where αi ≥ 1 are some integers. In the above, λ(u) is the dominant eigenvalue,
while λi(u) < λ(u) are other eigenvalues. The numerator has the expression
c(u) = bt(u)〈l(u),~1〉r(u) where l(u) and r(u) are the left and the right domi-
nant eigenvectors and bt(u) is defined after (7.3.12). Then Cauchy’s coefficient
formula implies

Nn(u) = c(u)λn(u)(1 +O(An)) (7.3.15)

for some A < 1. Equivalently, the moment generating function for Nn(W) is
given by the following uniform approximation in a neighborhood of s = 0

E(esNn(W)) = d(s)λn(es)(1 +O(An)) = d(s) exp (nΛ(s)) (1 +O(An)) (7.3.16)

where d(s) = c(es) and Λ(s) = logλ(es).
There is another, more general, derivation of (7.3.15). Observe that the

spectral decomposition of T(u) when u lies in a sufficiently small complex neigh-
borhood of any compact subinterval of (0,+∞) is of the form

T(u) = λ(u)Q(u) + R(u) (7.3.17)

where Q(u) is the projection under the dominant eigensubspace and R(u) a
matrix whose spectral radius equals |λ2(u)|. Therefore,

T(u)n = λ(u)nQ(u) +R(u)n,

entails the estimate (7.3.15). The next results follows immediately from (7.3.16).

Theorem 7.3.7. Let W = (W0,W1, . . . ,Wd) be a generalized pattern with
W0 = ∅ generated by a memoryless source. For large n

E(Nn(W)) = nΛ′(0) +O(1) = nP (W) +O(1), (7.3.18)

Var(Nn(W)) = nΛ′′(0) +O(1) = nσ2(W) +O(1) (7.3.19)

where Λ(s) = log λ(es) and λ(u) is the largest eigenvalue of T(u). Furthermore,

P(Nn(W) = 0) = Cλn(0)(1 +O(An))

where C > 0 is a constant and A < 1.
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Now we establish limit laws, starting with the central limit law and its local
limit law.

Theorem 7.3.8. Under the same assumption as for Theorem 7.3.7, the fol-
lowing holds

sup
x∈B

∣∣∣∣P
(
Nn(W) − nP (W)

σ(W)
√
n

≤ x

)
− 1√

2π

∫ x

−∞
e−t

2/2 dt

∣∣∣∣ = O

(
1√
n

)
(7.3.20)

where B is a bounded real interval.

Proof. The uniform asymptotic expansion (7.3.16) of a sequence of moment
generating functions is known as a “quasi-powers approximation”. Then an ap-
plication of the classical Levy continuity theorem leads to the Gaussian limit
law. An application of the Berry-Essen inequality provides the speed of conver-
gence which is O(1/

√
n). This proves the theorem.

Finally, we deal with the large deviations.

Theorem 7.3.9. Under the same assumption as before, Let ωa be a solution
of

ωλ′(ω) = aλ(ω)

for some a 6= P (W), where λ(u) is the largest eigenvalue of T(u). Define

I(a) = a logωa − logλ(ωa). (7.3.21)

Then there exists a constant C > 0 such that I(a) > 0 for a 6= P (W) and

lim
n→∞

1

n
logP (Nn(W) ≤ an) = −I(x) if 0 < x < P (W) (7.3.22)

lim
n→∞

1

n
logP (Nn(W) ≥ na) = −I(x) if P (W) < x < C. (7.3.23)

Proof. We consider now large deviations and establish (7.3.22). The variable
Nn(W) is by definition of at most linear growth, and there exists a a constant
C such that Nn(W) ≤ Cn + O(1). Let 0 < x < P (W). Cauchy’s coefficient
formula provides

P (Nn(W) ≤ k) =
1

2iπ

∫

|u|=r

Nn(u)

uk
du

u(1 − u)
.

For ease of exposition, we first discuss the case of a primitive pattern. We
recall that a pattern is primitive if ψW = gcd(ψ(C), C cycle) = 1. The strict
domination property expressed in Lemma 7.3.6(iv) for primitive patterns implies
that the above integrand is strictly maximal at the intersection of the circle |u| =
r and the positive real axis. Near the positive real axis, where the contribution
of the integrand is concentrated, the following uniform approximation holds,
with k = na:

Nn(u)

uk
= exp (n (logλ(u) − a log u)) (1 + o(1)) (7.3.24)
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The saddle point equation is then obtained by cancelling the first derivative
yielding

F (ω) :=
ωλ′(ω)

λ(ω)
= a. (7.3.25)

Note that the function F is exactly the derivative of Λ(s) at point s := logω.
Since Λ(s) is strictly convex, the left side is an increasing function of its argument
as proved in Lemma 7.3.6(ii). Also, we know form this lemma that the value
F (0) = 0, F (1) = P (W) while we set F (∞) = C. Thus, for any real a in (0, C),
equation (7.3.25) always admits a unique positive solution that we denote by
ω ≡ ωa. Moreover, for a 6= P (W), one has ωa 6= 1. Since the function

u→ − log
λ(u)

ua

admits a strict maximum at u = ωa, hence this maximum I(a) is strictly posi-
tive. Finally, the usual saddle point approximation applies and one finds

P

(
Nn(W)

n
≤ a

)
=

(
λ(ωa)

ωaa

)n
Θ(n),

where Θ(n) is of the order of n−1/2. In summary, the large deviation rate is

I(a) = − log
λ(ωa)

ωaa
with

ωaλ
′(ωa)

λ(ωa)
= a.

as shown in the theorem.
In the general case when the pattern is not primitive, the strict inequality

of Lemma 7.3.6(iv) is not satisfied, and several saddle points may be present
on the circle |u| = r, which will lead to some oscillations. We must, in this
case, use the weaker inequality of Lemma 7.3.6, namely, ̺(xeiθ) ≤ ̺(x), which
replaces the strict inequality. However, the factor (1 − u)−1 present in the
integrand of (7.3.24) attains its maximum modulus on |u| = r solely at u = r.
Thus, the contribution of possible saddle points can only affect a fraction of the
contribution from u = r. Consequently, (7.3.22) and (7.3.21) continue to be
valid. A similar reasoning provides the right tail estimate, with I(a) still given
by (7.3.21). This completes the proof of (7.3.22).

We complete this analysis with a local limit law.

Theorem 7.3.10. If T(u) is primitive, then

sup
x∈B

∣∣∣∣∣P
(
Nn = nP (W) + xσ(W)

√
n
)
− 1

σ(W)
√
n

ex
2/2

√
2π

∣∣∣∣∣ = o

(
1√
n

)
(7.3.26)

where B is a bounded real interval. Furthermore, under the above additional
assumption, one can find constants σa and δa such that

P(Nn(W) = aE(Nn)) ∼
1

σa
√

2πn
e−nI(a)+θa (7.3.27)

where I(a) is defined in (7.3.21) above.
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Proof Stronger “regularity conditions” are needed in order to obtain local limit
estimates. Roughly, one wants to exclude the possibility that the discrete dis-
tribution is of a lattice type, being supported by a nontrivial sublattice of the
integers. (For instance, we need to exclude the possibility for Nn(W) to be
always odd, or of the parity of n, and so on.) Observe first that positivity and
irreducibility of the matrix T(u) is not enough as shown in Example 7.3.4.

By Lemma 7.3.6, one can estimate the probability distribution of Nn(W) by
the classical saddle point method in the case when W is primitive. Again, one
starts from Cauchy’s coefficient integral,

P(Nn(W) = k) =
1

2iπ

∫

|u|=1

Nn(u)
du

uk+1
, (7.3.28)

where k is of the form k = nP (W)n+xσ(W)
√
n. Property (iv) of Lemma 7.3.6

grants us precisely the fact that any closed arc of the unit circle not containing
u = 1 brings an exponentially negligible contribution. A standard application of
the saddle point technique does the job. In this way, the proof of the local limit
law of Theorem 7.3.10 is completed. Finally, the precise large deviations follows
from the local limit result and an application of the method of shift discussed
in the proof of Theorem 7.2.12.

7.3.3. Forbidden words and (ℓ, k) sequences

Finally, consider the general pattern W = (W0,W1, . . . ,Wd) with nonempty
forbidden set W0. In this case, we study the number of occurrencesNn(W|W0 =
0) of patterns W1, . . .Wd under the condition that there is no occurrence in the
text of any pattern from W0.

Fortunately, we can recover almost all results from our previous analysis after
re-defining the matrix T(u) and its de Bruijn graph. We now change (7.3.10) to

[T(u)]b,b̂ := P (a)uφ(b,a)[[ ba ∈ Ab̂ and ba 6⊂ W0]] (7.3.29)

where ba ⊂ W0 means that any subword of ba belongs to W0. In words, we
force the matrix T(u) to be zero at any position that leads to a word containing
patterns from W0, that is, we eliminate from the de Bruijn graph any transition
that contains a forbidden word. Having matrix T(u) constructed, we can repeat
all previous results except that it is much harder to find explicit formulas even
for the mean and the variance (cf. Exercise 7.3.4)

Finally, we consider a degenerated general pattern in which Wi = ∅ for
all i = 1, . . . , d except nonempty W0. In this case, we count the number of
sequences that do not contain a pattern from W0. We only consider the special
case of this problem, that of (ℓ, k) sequences for which W0 is defined in (7.3.1).
In particular, we compute the so called Shannon capacity Cℓ,k defined as

Cℓ,k = lim
n→∞

log(number of (ℓ, k) sequence of length n)

n
.
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We first compute the ordinary generating function Tℓ,k(z) =
∑

w∈Tℓ,k
z|w| of

all (ℓ, k) words denoted as Tℓ,k. To enumerate Tℓ,k we define Dℓ,k as the set of
all words consisting only of runs of 0’s whose length is between ℓ and k. The
generating function D(z) is clearly equal to

D(z) = zℓ + zℓ+1 + · · · + zk = zℓ
1 − zk−ℓ+1

1 − z
.

We now observe that Tℓ,k can be symbolically written as

Tℓ,k = Dℓ,k
(
{1} × ε+ D̄ℓ,k + D̄ℓ,k × D̄ℓ,k + · · · + D̄k

ℓ,k + · · ·
)
, (7.3.30)

where D̄ℓ,k = {1} × Dℓ,k. Above basically says that the collection of (ℓ, k)
sequences, Tℓ,k, is a concatenation of {1} × Dℓ,k. Thus (7.3.30) translates into
the generating functions Tℓ,k(z) as follows

Tℓ,k(z) = D(z)
1

1 − zD(z)
=

zℓ(1 − zk+1−ℓ)

1 − z − zℓ+1 + zk+2

=
zℓ + zℓ+1 + · · · + zk

1 − zℓ+1 − zℓ+2 − · · · − zk+1
. (7.3.31)

Then Shannon capacity Cℓ,k is

Cℓ,k = lim
n→∞

log[zn]Tℓ,k(z)

n
.

If ρ is the smallest root in absolute value of 1 − zℓ+1 − zℓ+2 − · · · − zk+1 = 0,
then clearly

Cℓ,k = − log ρ.

Example 7.3.11. In this example, we show that one can enumerate more
precisely (ℓ, k) sequences. In fact, since the function Tℓ,k(z) is rational we can
compute [zn]Tℓ,k(z) exactly. Let us consider a particular case, namely, ℓ = 1
and k = 3. Then the denumerator in (7.3.31) becomes 1− z2 − z3 − z4, and its
roots are

ρ−1 = −1, ρ0 = 0.682327 . . . , ρ1 = −0.341164 . . .+ i1.161541 . . . , ρ2 = ρ̄1.

Computing residues we obtain

[zn]T1,3(z) =
ρ0 + ρ2

0 + ρ3
0

(ρ1 + 1)(ρ0 − ρ1)(ρ0 − ρ̄1)
ρ−n−1
0

+(−1)n+1 1

(ρ0 + 1)(ρ1 + 1)(ρ̄1 + 1)
+O(r−n),

where r ≈ 0.68. More specifically,

[zn]T1,3(z) = 0.594(1.465)n+1 + 0.189(−1)n+1 + O(0.68n).

for large n.
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7.4. Subsequence pattern matching

In string matching problem, given a pattern W one searches for some/all oc-
currences of W as a block of consecutive symbols in a text. We analyzed var-
ious string matching problems in the previous sections. Here we concentrate
on subsequence pattern matching. In this case we search for a given pattern
W = w1w2 . . . wm in the text X = x1x2 . . . xn as a subsequence, that is, we look
for indices 1 ≤ i1 < i2 < · · · < im ≤ n such that xi1 = w1, xi2 = w2, · · ·,
xim = wm. We also say that the word W is “hidden” in the text; thus we call
this the hidden pattern problem. For example, date occurs as a subsequence in
the text hidden pattern, in fact four times, but not even once as a string.

More specifically, we allow the possibility of imposing an additional set of
constraints D on the indices i1, i2, . . . , im to record a valid subsequence occur-
rence. For a given family of integers dj (dj ≥ 1, possibly dj = ∞), one should
have (ij+1 − ij) ≤ dj . More formally, the hidden pattern specification is deter-
mined by a pair (W ,D) where W = w1 · · ·wm is a word of length m and the
constraint D = (d1, . . . , dm−1) is an element of (N+ ∪ {∞})m−1.

Example 7.4.1. With # representing a ‘don’t-care-symbol’ and the subscript
denoting a strict upper bound on the length of the associated gap, a typical
pattern may look like

ab#2r#ac#a#d#4a#br#a (7.4.1)

where # = #∞ and #1 is omitted; That is ‘ab’ should occur first contiguously,
followed by ‘r’ with a gap of < 2 symbols, followed anywhere later in the text
by ‘ac’, etc.

The case when all the dj ’s are infinite is called the (fully) unconstrained

problem. When all the dj ’s are finite, then we speak of the (fully) constrained

problem. In particular, the case where all dj are equal to one reduces to the
exact string matching problem. Furthermore, observe that when all dj < ∞
(fully constrained pattern), the problem can be treated as the generalized string
matching discussed in Section 7.3. In this case, the general pattern W is a set
consisting of all words satisfying the constraint D. However, if at least one dj
is infinite, then the techniques discussed so far are not well suited to handle
it. Therefore, in this section, we develop new methods that make the analysis
possible.

If an m-tuple I = (i1, i2, . . . , im) (1 ≤ i1 < i2 < · · · < im) satisfies the con-
straint D with ij+1− ij ≤ dj , then it is called a position tuple. Let Pn(D) be the
set of all positions subject to the separation constraint D, satisfying furthermore
im ≤ n. Let also P(D) =

⋃
n Pn(D). An occurrence of pattern W subject to

the constraint D is a pair (I,X) formed with a position I = (i1, i2, . . . , im) of
Pn(D) and a text X = x1x2 · · ·xn for which xi1 = w1, xi2 = w2, . . . , xim = wm.
Thus, what we call an occurrence is a text augmented with the distinguished
positions at which the pattern occurs. The number Ω of occurrences of pattern
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W in text X as a subsequence subject to the constraint D is then a sum of
characteristic variables

Ω(X) =
∑

I∈P|X|(D)

ZI(X), (7.4.2)

where ZI(X) := [[W occurs at position I in X ]]. When the text X is of length
n, then we often write Ωn := Ω(X).

In order to proceed we need to introduce important notion of blocks and
aggregates. In the general case, we assume that the subset F of indices j for
which dj is finite (dj < ∞) has cardinality m − b with 1 ≤ b ≤ m. The two
extreme values of b, namely, b = m and b = 1, describe the (fully) unconstrained
and the (fully) constrained problem, respectively. Thus, the subset U of indices
j for which dj is unbounded (dj = ∞) has cardinality b − 1. It then separates
the pattern W into b independent subpatterns that are called the blocks and
are denoted by W1,W2, . . .Wb. All the possible dj “inside” any Wr are finite
and form the subconstraint Dr, so that a general hidden pattern specification
(W ,D) is equivalently described as a b-tuple of fully constrained hidden patterns
((W1,D1), (W2,D2), . . . , (Wb,Db)).

Example 7.4.1 (continued). Consider again

ab#2r#ac#a#d#4a#br#a,

in which one has b = 6, the six blocks being

W1 =a#1b#2r, W2 = a#1c, W3= a, W4= d#4a, W5=b#1r, W6= a.

In the same way, an occurrence position I = (i1, i2, . . . , im) of W subject to
constraint D gives rise to b suboccurrences, I [1], I [2], . . . I [b], the rth term I [r]

representing an occurrence of Wr subject to constraint Dr. The rth block B[r]

is the closed segment whose end points are the extremal elements of I [r], and
the aggregate of position I, denoted by α(I), is the collection of these b blocks.

Example 7.4.1 (continued). Taking the pattern of Example 7.4.1, the position
tuple

I = (6, 7, 9, 18, 19, 22, 30, 33, 50, 51, 60)

satisfies the constraint D and gives rise to six subpositions,

I[1]︷ ︸︸ ︷
(6, 7, 9),

I[2]︷ ︸︸ ︷
(18, 19),

I[3]︷︸︸︷
(22),

I[4]︷ ︸︸ ︷
(30, 33),

I[5]︷ ︸︸ ︷
(50, 51),

I[6]︷︸︸︷
(60) ;

accordingly, the resulting aggregate α(I),

B[1]

︷︸︸︷
[6, 9],

B[2]

︷ ︸︸ ︷
[18, 19],

B[3]

︷︸︸︷
[22] ,

B[4]

︷ ︸︸ ︷
[30, 33],

B[5]

︷ ︸︸ ︷
[50, 51],

B[6]

︷︸︸︷
[60] ,

is formed with six blocks.
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7.4.1. Mean and variance analysis

Hereafter, we assume that W is given and the text X is generated by a (non-
degenerate) memoryless source. The first moment of the number of occurrences,
Ω(X), is easily obtained by describing the collection of all occurrences in terms
of formal languages, as already discussed in previous sections. We consider the
collection of position-text pairs

O := {(I,X) ; I ∈ P|X|(D)},

with the size of an element being by definition the length n of the text X . The
weight of an element of O is taken to be equal to ZI(X)P (X), where P (X) is
the probability of the text. In this way, O can also be regarded as the collection
of all occurrences weighted by probabilities of the text. The corresponding
generating function of O equipped with this weight is

O(z) =
∑

(I,X)∈O
ZI(X)P (X) z|X| =

∑

X


 ∑

I∈P|X|(D)

ZI(X)


 P (X)z|X|, (7.4.3)

and, with the definition of Ω,

O(z) =
∑

X

Ω(X)P (X) z|X| =
∑

n

E(Ωn)z
n. (7.4.4)

As a consequence, one has [zn]O(z) = E(Ωn), so that O(z) serves as the gener-
ating function of the sequence of expectations E(Ωn).

On the other hand, each occurrence can be viewed as a “context” with an
initial string, then the first letter of the pattern, then a separating string, then
the second letter, etc. The collection O is therefore described combinatorially
by

O = A⋆×{w1}×A<d1 ×{w2}×A<d2 × . . .×{wm−1}×A<dm−1 ×{wm}×A⋆.
(7.4.5)

There, for d <∞, A<d denotes the collection of all words of length strictly less
d, i.e., A<d :=

⋃
i<dAi, whereas, for d = ∞, A<∞ denotes the collection of

all finite words, i.e., A<∞ := A⋆ =
⋃
i<∞ Ai. Since the source is memoryless,

the rules discussed at the end of the last section can be applied, and they give
access to O(z) from the description (7.4.5). The generating function functions
associated to A<d and A<∞ are

A<d(z) = 1+z+z2+· · ·+zd−1 =
1 − zd

1 − z
, A<∞(z) = 1+z+z2+· · · =

1

1 − z
.

Thus, the description (7.4.5) of occurrences automatically translates into

O(z) ≡
∑

n≥0

E[Ωn] z
n =

(
1

1 − z

)b+1

×
(

m∏

i=1

pwiz

)
×
(
∏

i∈F

1 − zdi

1 − z

)
. (7.4.6)
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One finally finds

E(Ωn) = [zn]O(z) =
nb

b!

(
∏

i∈F
di

)
P (W)

(
1 + O

(
1

n

))
, (7.4.7)

and a complete asymptotic expansion could be easily obtained.
For the analysis of variance and especially of higher moments, it is essential

to work with a centered random variable Ξ defined, for each n, as

Ξn := Ωn − E(Ωn) =
∑

I∈Pn(D)

YI , (7.4.8)

where YI := ZI − E(ZI) = ZI − P (W). The second moment of the centered
variable Ξ equals the variance of Ωn and with the centered variables defined
above by (7.4.8), one has

E(Ξ2
n) =

∑

I,J∈Pn(D)

E(YIYJ ). (7.4.9)

From this last equation, we need to analyze pairs of positions (I,X), (J,X) =
(I, J,X) relative to a common text X . We denote by O2 this set, that is,

O2 := {(I, J,X) ; I, J ∈ P|X|(D)},

and we weight each element (I, J,X) by YI(X)YJ(X)P (X). The corresponding
generating function, which enumerates pairs of occurrences, is

O2(z) :=
∑

(I,J,X)∈O2

YI(X)YJ(X)P (X) z|X|

=
∑

X


 ∑

I,J∈P|X|(D)

YI(X)YJ (X)


 P (X)z|X|

and, with (7.4.9),

O2(z) =
∑

n≥0

∑

I,J∈Pn(D)

E(YIYJ) zn =
∑

n≥0

E(Ξ2
n) zn.

The process entirely parallels the derivation of (7.4.3) and (7.4.4), and, one has
[zn]O2(z) = E(Ξ2

n), so that O2(z) serves as the generating function (in the usual
sense) of the sequence of moments E(Ξ2

n).
There are two kinds of pairs (I, J) depending whether they intersect or not.

When I and J do not intersect, the corresponding random variables YI and
YJ are independent, and the corresponding covariance E[YIYJ ] reduces to 0.
As a consequence, one may restrict attention to pairs of occurrences I, J that
intersect at one place at least. Suppose that there exist two occurrences of
pattern W at positions I and J which intersect at ℓ distinct places. We then
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-� -� -� -�

Figure 7.3. A pair of position tuples I, J with b = 6 blocks each and the
joint aggregates; the number of degrees of freedom is here β(I, J) = 4.

denote by WI∩J the subpattern of W that occurs at position I ∩ J , and by
P (WI∩J) the probability of this subpattern. Since the expectation E(ZIZJ)
equals P (W)2/P (WI∩J) provided that W agrees on every position of I ∩J , the
expectation E(YIYJ) = P (W)2e(I, J) involves a correlation number e(I, J)

e(I, J) =
[[W agree I ∩ J ]]

P (WI∩J)
− 1. (7.4.10)

Remark that this relation remains true even if the pair (I, J) is not intersecting,
since, in this case, one has P (WI∩J) = P (ε) = 1.

The asymptotic behavior of variance is driven by the overlapping of blocks
involved in I and J , rather than plainly by the cardinality of I ∩ J . In order to
formalize this, define first the (joint) aggregate α(I, J) to be the system of blocks
obtained by merging together all intersecting blocks of the two aggregates α(I)
and α(J). The number of blocks β(I, J) of α(I, J) plays a fundamental rôle
here, since it measures the degree of freedom of pairs; we also call β(I, J) the
degree of pair (I, J). Figure 7.3 illustrates graphically this notion.

Example 7.4.2. Consider the pattern W = a#3b#4r # a#4c composed of

two blocks. Then the text aarbarbccaracc contains several valid occurrences
of W including two at positions I = (2, 4, 6, 10, 13) and J = (5, 7, 11, 12, 13).
The individual aggregates are α(I) = {[2, 6], [10, 13]}, α(J) = {[5, 11], [12, 13]}
so that the joint quantities are: α(I, J) = [2, 13] and β(I, J) = 1. This pair has
exactly degree 1.

When I and J intersect, there exists at least one block of α(I) that intersects
a block of α(J), so that the degree β(I, J) is at most equal to 2b− 1. Next, we
partition O2 according to the value of β(I, J) and write

O[p]
2 := {(I, J,X) ∈ O2 ; β(I, J) = 2b− p}

for the collection of intersecting pairs (I, J,X) of occurrences for which the
degree of freedom equals 2b − p. From the preceding discussion, only p ≥ 1
needs to be considered and

O2(z) = O
[1]
2 (z) +O

[2]
2 (z) +O

[3]
2 (z) + · · · +O

[2b]
2 (z).

As we see next, it is only the first term of this sum that matters asymptotically.
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In order to conclude the discussion, we need the notion of full pairs: a pair
(I, J) of Pq(D) × Pq(D) is full if the joint aggregate α(I, J) completely covers
the interval [1, q]; see Figure 7.4. (Clearly, the possible values of length q are
finite, since q is at most equal to 2ℓ, where ℓ is the length of the constraint D.)

Example 7.4.3. Consider the pattern W = a#3b#4r#a#4c. The text -
aarbarbccaracc also contains two other occurrences of W , at positions I ′ =
(1, 4, 6, 12, 13) and J ′ = (5, 7, 11, 12, 14). Now, I ′ and J ′ are intersecting, and
the aggregates are α(I ′) = {[1, 6], [12, 13]}, α(J ′) = {[5, 11], [12, 14]} so that
α(I ′, J ′) = {[1, 11], [12, 14]. We have here an example of a full pair of occur-
rences with a number of blocks β(I ′, J ′) = 2.

There is a fundamental translation invariance due to the independence of
symbols in the Bernoulli model that entails a combinatorial isomorphism (∼=
represents combinatorial isomorphism)

O[p]
2

∼= (A⋆)
2b−p+1 × B[p]

2 ,

where B[p]
2 is the subset of O2 formed of full p airs such that β(I, J) equals 2b−p.

In essence, the gaps can be all grouped together (their number is 2b−p+1, which

is translated by the prefactor (A⋆)
2b−p+1

), while what remains constitutes a full

occurrence. The generating function of O[p]
2 is accordingly

O
[p]
2 (z) =

(
1

1 − z

)2b−p+1

×B
[p]
2 (z)

where B
[p]
2 (z) is the generating function of the collection B[p]

2 . From our earlier
discussion, it is a polynomial. Now, an easy dominant pole analysis entails

that [zn]O
[p]
2 = O(n2b−p). This proves that the dominant contribution to the

variance is given by [zn]O
[1]
2 , which is of order O(n2b−1).

The variance E(Ξ2
n) involves the constant B

[1]
2 (1) that is the total weight of

the collection B[1]
2 . Recall that this collection is formed of intersecting full pairs

of occurrences of degree 2b− 1. The polynomial B
[1]
2 (z) is itself the generating

function of the collection B[1]
2 , and it is conceptually an extension of Guibas and

Odlyzko’s autocorrelation polynomial. We shall later make precise the relation
between both polynomials.

We summarize our findings in the following theorem.

-� -� -� -�

Figure 7.4. A full pair of position tuples I, J with b = 6 blocks each.
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Theorem 7.4.4. Consider a general constraint D with a number of blocks
equal to b. The mean and the variance of the number of occurrences Ωn of a
pattern W subject to constraint D satisfy

E(Ωn) =
P (W)

b!

( ∏

j : dj<∞
dj

)
nb
(
1 +O(n−1)

)
,

Var(Ωn) = σ2(W)n2b−1
(
1 +O(n−1)

)
,

where the “variance coefficient” σ2(W) involves the autocorrelation κ(W)

σ2(W) =
P 2(W)

(2b− 1)!
κ2(W) with κ2(W) :=

∑

(I,J)∈B[1]
2

e(I, J) (7.4.11)

The set B[1]
2 is the collection of all pairs of position tuple (I, J) that satisfy three

conditions: (i) they are full; (ii) they are intersecting; (iii) there is a single pair
(r, s) with 1 ≤ r, s ≤ b for which the rth block B[r] of α(I) and the sth block
C [s] of α(J) intersect.

The computation of the autocorrelation κ(W) reduces to b2 computations
of correlations κ(Wr,Ws), relative to pairs (Wr,Ws) of blocks. Note that each
correlation of the form κ(Wr,Ws) involves a totally constrained problem and is
discussed below. Let D(D) :=

∏
i: di<∞ di. Then, one has

κ2(W) = D2(D)
∑

1≤r,s≤b

1

D(Dr)D(Ds)

(
r + s− 2

r − 1

)(
2b− r − s

b− r

)
κ(Wr,Ws),

(7.4.12)
where κ(Wr,Ws) is the sum of the e(I, J) taken over all full intersecting pairs
(I, J) formed with an position tuple I of block Wr subject to constraint Dr and
an position tuple J of block Ws subject to constraint Ds. Let us explain the

formula (7.4.12) in words: for a pair (I, J) of the set B[1]
2 , there is a single pair

(r, s) of indices with 1 ≤ r, s ≤ b for which the rth block B[r] of α(I) and the sth
block C [s] of α(J) intersect. Then, there exist r+ s− 2 blocks before the block
α(B[r], C[s]) and 2b− r− s blocks after it. We then have three different degrees
of freedom: (i) the relative order of blocks B[i](i < r) and blocks C [j](j < s),
and similarly the relative order of blocks B[i](i > r) and blocks C [j](j > s); (ii)
the lengths of the blocks (there are Dj possible lengths for the jth block); (iii)
finally the relative positions of the blocks B[r] and C [s].

In particular, in the unconstrained case, the parameter b equals m, and each
block Wr is reduced to the symbol wr. Then the “correlation coefficient” κ2(W)
simplifies to

κ2(W) :=
∑

1≤r,s≤m

(
r + s− 2

r − 1

)(
2m− r − s

m− r

)
[[wr = ws]]

(
1

pwr

− 1

)
. (7.4.13)

In words, once you fix the position of the intersection, called pivot, then amongst
the r+ s− 2 elements smaller than the pivot one assigns freely r− 1 to the first
occurrence and the remaining s − 1 to the second. One proceeds similarly for
the 2m− r − s elements larger than the pivot.
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7.4.2. Autocorrelation polynomial revisited

Finally, we compare the autocorrelation coefficient κ(W) with the autocorrela-
tion polynomial Sw(z) introduced in the last section for the exact string match-
ing problem. Let now w = w1w2 . . . wm be again a string of length m, and all
the symbols of w must occur at consecutive places, so that a valid position I is
an interval of length m. We recall that the autocorrelation set P(w) ⊂ [1..m]
involves all indices k such that the prefix wk1 coincides with the suffix wmm−k+1.
Here, an index k ∈ P(w) is relative to a intersecting pair of positions (I, J) and
one has wk1 = wI∩J .

In the previous section, we introduced the autocorrelation polynomial Sw(z)
as

Sw(z) =
∑

k∈Pw

P (wmk+1)z
m−k = P (w)

∑

k∈P(w)

1

P (wk1 )
zm−k.

We also define
Cw(z) =

∑

k∈P(w)

zm−k.

Since the polynomial B
[1]
2 involves coefficients e(I, J) this polynomial can be

written as function of the two autocorrelations polynomials Aw and Cw,

B
[1]
2 (z) = P (w)zm [Aw(z) − P (w)Cw(z)].

Put simply, the variance coefficient of the hidden pattern problem extends the
classical autocorrelation quantities associated with strings.

7.4.3. Central limit laws

Our goal is to prove that the sequence Ωn appropriately centered and scaled
tends to the normal distribution. We consider the following standardized ran-
dom variable Ξ̃n which is defined for each n by

Ξ̃n :=
Ξn

nb−1/2
=

Ωn − E(Ωn)

nb−1/2
, (7.4.14)

where b is the number of blocks of the constraint D. We shall show that Ξ̃n
behaves asymptotically as a normal variable with mean 0 and standard devia-
tion σ. By the classical moment convergence theorem this is established once
all moments of Ξ̃n are known to converge to the appropriate moments of the
standard normal distribution.

We remind the reader that if G is a standard normal variable (i.e., a Gaus-
sian distributed variable with mean 0 and standard deviation 1), then for any
integral s ≥ 0

E(G2s) = 1 · 3 · · · (2s− 1), E(G2s+1) = 0. (7.4.15)
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We shall accordingly distinguish two cases based on the parity of r, r = 2s and
r = 2s+ 1, and prove that

E[Ξ2s+1
n ] = o(n(2s+1)(b−1/2)), E(Ξ2s

n ) ∼ σ2s (1 · 3 · · · (2s− 1))n2sb−s,
(7.4.16)

which implies Gaussian convergence of Ξ̃n.

Theorem 7.4.5. The random variable Ωn over a random text of length n
generated by a memoryless source asymptotically obeys a Central Limit Law in
the sense that its distribution is asymptotically normal: for all x = O(1), one
has

lim
n→∞

P

(
Ωn − E(Ωn)√

Var(Ωn)
≤ x

)
=

1√
2π

∫ x

−∞
e−t

2/2 dt. (7.4.17)

Proof. The proof below is combinatorial; it basically reduces to grouping and
enumerating adequately the various combinations of indices in the sum that
expresses E(Ξrn). Once more, Pn(D) is formed of all the sets of positions in
[1, n] subject to the constraint D and we set P(D) :=

⋃
n Pn(D). Then totally

distributing the terms in Ξr yields

E(Ξrn) =
∑

(I1,...,Ir)∈Pr
n(D)

E(YI1 · · ·YIr ). (7.4.18)

An r-tuple of sets (I1, . . . , Ir) in Pr(D) is said to be friendly if each Ik intersects
at least one other Iℓ, with ℓ 6= k and we let Q(r)(D) be the set of all friendly
collections in Pr(D). For Pr, Q(r), and their derivatives below, we add the
subscript n each time the situation is particularized to texts of length n. If
(I1, . . . , Ir) does not lie in Q(r)(D), then E(YI1 · · ·YIr ) = 0, since at least one
of the YI ’s is independent of the other factors in the product and the YI ’s have
been centered, E(YI) = 0. One can thus restrict attention to friendly families
and get the basic formula

E(Ξrn) =
∑

(I1,...,Ir)∈Q(r)
n (D)

E(YI1 · · ·YIr ), (7.4.19)

where the expression involves fewer terms than in (7.4.18). From there, we
proceed in two stages. First, restrict attention to friendly families that give rise

to the dominant contribution and introduce a suitable subfamily Q(r)
⋆ ⊂ Q(r);

in so doing, moments of odd order appear to be negligible. Next, for even

order r, the family Q(r)
⋆ involves a symmetry and it suffices to consider another

smaller subfamily Q(r)
⋆⋆ ⊂ Q(r)

⋆ that corresponds to a “standard” form of position
tuple intersection; this last reduction precisely gives rise to the even Gaussian
moments.

Odd moments. Given (I1, . . . , Ir) ∈ Q(r), the aggregate α(I1, I2, . . . , Ir) is
defined as the aggregation (in the sense of the variance calculation above) of
α(I1) ∪ · · · ∪ α(Ir). Next, the number of blocks of (I1, . . . , Ir) is the number
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of blocks of the aggregate α(I1, . . . , Ir); if p is the total number of intersecting
blocks of the aggregate α(I1, . . . , Ir), the aggregate α(I1, I2, . . . Ir) has rb − p

blocks. Like previously, we say that the family (I1, . . . , Ir) of Q(r)
q is full if the

aggregate α(I1, I2, . . . Ir) completely covers the interval [1, q]. In this case, the
length of the aggregate is at most rd(m − 1) + 1, and the generating function
of full families is a polynomial Pr(z) of degree at most rd(m − 1) + 1 with
d = maxj∈F dj . Then, the generating function of families of Q(r) whose block
number equals k is of the form

(
1

1 − z

)k+1

× Pr(z),

so that the number of families of Q(r)
n whose block number equals k is O(nk).

This observation proves that the dominant contribution to (7.4.19) arises from
friendly families with a maximal block number. It is clear that the minimum
number of intersecting blocks of any element of Q(r) equals ⌈r/2⌉, since it co-
incides exactly with the minimum number of edges of a graph with r vertices
which contains no isolated vertex. Then the maximum block number of a f
friendly family equals rb − ⌈r/2⌉. In view of this fact and the remarks above
regarding cardinalities, we immediately have

E
[
Ξ2s+1
n

]
= O

(
n(2s+1)b−s−1

)
= o

(
n(2s+1)(b−1/2)

)

which establishes the limit form of odd moments in (7.4.16).

Even Moments. We are thus left with estimating the even moments. The
dominant term is relative to friendly families of Q(2s) with an intersecting block

number equal to s, whose set we denote by Q(2s)
⋆ . In such a family, each subset

Ik intersects one and only one other subset Iℓ. Furthermore, if the blocks

of α(Ih) are denoted by B
[u]
h , 1 ≤ u ≤ b, there exists only one block B

[uk]
k

of α(Ik) and only one block B
[uℓ]
ℓ that contains the points of Ik ∩ Iℓ. This

defines an involution τ such that τ(k) = ℓ and τ(ℓ) = k for all pairs of indices
(ℓ, k) for which Ik and Iℓ intersect. Furthermore, given the symmetry relation
E(YI1 · · ·YI2s) = E(YIρ(1)

· · ·YIρ(2s)
) it suffices to restrict attention to friendly

families of Q(2s)
⋆ for which the involution τ is the standard one with cycles (1, 2),

(3, 4), etc; for such “standard” families whose set is denoted by Q(2s)
⋆⋆ , the pairs

that intersect are thus (I1, I2), . . . , (I2s−1, I2s). Since the set K2s of involutions
of 2s elements has cardinality K2s = 1 · 3 · 5 · · · (2s− 1) , the equality

∑

Q(2s)
⋆n

E(YI1 · · ·YI2s) = K2s

∑

Q(2s)
⋆⋆n

E(YI1 · · ·YI2s), (7.4.20)

entails that we can work now solely with standard families.
The class of position tuples relative to standard families is A⋆×(A⋆)2sb−s−1×

B[s]
2s × A⋆; this class involves the collection B[s]

2s of all full friendly 2s-tuples of
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position tuples with a number of blocks equal to s. Since B[s]
2s is exactly a shuffle

of s copies of B[1]
2 (as introduced in the study of the variance), the associated

generating function is

(
1

1 − z

)2sb−s+1

(2sb− s)!

(
B

[1]
2 (z)

(2b− 1)!

)s
,

where B
[1]
2 (z) is the already introduced autocorrelation polynomial. Upon tak-

ing coefficients, we obtain the estimate
∑

Q(2s)
⋆⋆n

E(YI1 · · ·YI2s) ∼ n(2b−1)sσ2s. (7.4.21)

In view of the formulæ (7.4.18), (7.4.19), (7.4.20), and (7.4.21) above, this yields
the estimate of even moments and leads to the second relation of (7.4.16). This
completes the proof of Theorem 7.4.5.

The even Gaussian moments eventually come out as the number of involu-
tions, which corresponds to a fundamental asymptotic symmetry present in the
problem. In this perspective the specialization of the proof to the fully uncon-
strained case is reminiscent of the derivation of the usual central limit theorem
(dealing with sums of independent variables) by moments methods.

7.4.4. Limit laws for fully constrained pattern

In this section, we strengthen our results for fully constrained pattern in which
all gaps dj are finite. We set D =

∏
j dj , and ℓ =

∑
j dj . Observe that in this

case, we can reduced the subsequence problem to a generalized string matching
problem with the generalized pattern W consisting of all words that satisfy
(W ,D). Thus our previous results apply, in particular, Theorems 7.3.8 and
7.3.10. This leads to the following result.

Theorem 7.4.6. Consider a fully constrained pattern with mean and variance
found in Theorem 7.4.4 for b = 1.

(i) The random variable Ωn satisfies a Central Limit Law with speed of conver-
gence 1/

√
n:

sup
x

∣∣∣∣P
(

Ωn −DP (W)n

σ(W)
√
n

≤ x

)
− 1√

2π

∫ x

−∞
e−t

2/2 dt

∣∣∣∣ = O

(
1√
n

)
. (7.4.22)

(ii) Large deviations from the mean value have exponentially small probability:
there exist a constant η > 0 and a nonnegative function I(x) defined throughout
(0, η) such that I(x) > 0 for x 6= DP (W) and





lim
n→∞

1

n
logP

(
Ωn
n

≤ x

)
= −I(x) if 0 < x < DP (W)

lim
n→∞

1

n
logP

(
Ωn
n

≥ x

)
= −I(x) if DP (W) < x < η

, (7.4.23)
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except for at most a finite number of exceptional values of x. More precisely,

I(x) = − log
λ(ζ)

ζx
with ζ ≡ ζ(x) defined by

ζλ′(ζ)

λ(ζ)
= x (7.4.24)

where λ(u) is the largest eigenvalue of the matrix T(u) of the associate de
Bruijn graph constructed for W = {v : v = w1u1w2 · · ·wm−1um−1wm, where
ui ∈ Adi−1, 1 ≤ i ≤ m− 1}.
(iii) For primitive patterns (cf. Section 7.3.2) a Local Limit Law holds:

sup
k

∣∣∣∣∣P (Ωn = k) − 1

σ(W)
√
n

ex(k)
2/2

√
2π

∣∣∣∣∣ = o

(
1√
n

)
, (7.4.25)

where

x(k) =
k −DP (W)n

σ(W)
√
n

for n→ ∞.

Example 7.4.7. We motivated our desire to study the subsequence problem
by an example form computer security. Indeed, if one wants to detect “suspi-
cious” activities (e.g., signatures viewed as subsequences in an audit file), it is
important to set up a threshold in order to avoid false alarms. This problem
can be rephrased as one of finding a threshold α0 = α0(W ;n, β) such that

P(Ωn > α0) ≤ β,

for small given β (say β = 10−5). Based on frequencies of letters and the
assumption that a memoryless model is (at least roughly) relevant, one can
estimate the mean value and the standard deviation coefficients P (W), σ(W)
as discussed above. The Gaussian limits granted by Theorems 7.4.5 and 7.3.8
then reduce the problem to solving an approximate system, which in the (fully)
constrained case reads

α0 = nP (W) + x0σ(W)
√
n, β =

1√
2π

∫ ∞

x0

e−t
2/2 dt.

This system admits the approximate solution

α0 ≈ nπ(ω) + σ(W)
√

2n log(1/β). (7.4.26)

for small β.

7.5. Generalized subsequence problem

In the generalized subsequence problem the pattern is W = (W1, . . . ,Wd) where
Wi is a set of strings (a language). We say that the generalized pattern W
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occurs in the text X if X contains W as a subsequence (w1, w2, . . . , wd) where
wi ∈ Wi. An occurrence of the pattern in X is a sequence

(u0, w1, u1, . . . , wd, ud)

such that X = u0w1u1 · · ·wdud. We shall study the associated language L that
can be described as

L = A∗ · W1 · A∗ · · ·Wd · A∗. (7.5.1)

More precisely, an occurrence of W is a sequence of d disjoint intervals
I = (I1, I2, . . . Id) such that Ij := [k1

j , k
2
j ] where 1 ≤ k1

j ≤ k2
j ≤ n is a portion of

text Xn
1 where wj ∈ Wj occurs. We denote by Pn := Pn(W) the set of all valid

occurrences I. The number of occurrences Ωn of W in the text X of size n is
then

Ωn =
∑

I∈Pn(L)

ZI , (7.5.2)

where ZI(X) := [[W occurs at position I in X ]].
In passing, we observe that the generalized subsequence problem is the most

general pattern matching considered so far. It contains the exact string match-
ing (cf. Section 7.2), generalized string matching (cf. Section 7.3), and the
subsequence pattern matching known also as hidden patterns (cf. Section 7.4).
In this section we present an analysis of the first two moments of Ωn for the gen-
eralized subsequence pattern matching problem for dynamic sources discussed
in Section 7.1.

7.5.1. Generating operators for dynamic sources

In Section 7.1 we have introduced a general probabilistic source known as a
dynamic source. In this section we analyze the generalized subsequence model
for such sources.

We start with a brief description of the methodology of generating operators
that are used in the analysis of dynamic sources. We recall from Section 7.1
that the generating operator Gw is defined as Gw[f ](t) := |h′w(t)|f ◦ hw(t) for
a density function f and a word w. In particular, in (7.1.2) we proved that

P (w)
∫ 1

0 f(t)dt =
∫ 1

0 Gw[f ](t)dt for any function f(t), which implies that P (w)
is an eigenvalue of the operator Gw. Furthermore, the generating operator for
w · u is Gw·u = Gu ◦ Gw, where w and u are words (cf. (7.1.3)) and ◦ is the
composition of operators.

Consider now a language B ⊂ A∗. Its generating operator B(z) is then
defined as

B(z) :=
∑

w∈B
z|w| Gw.

We observe that the ordinary generating function of a language B is related to
the generating operators. Indeed,

B(z) :=
∑

w∈B
z|w|P (w) =

∑

w∈B
z|w|

∫ 1

0

Gw[f ](t)dt =

∫ 1

0

B(z)[f ](t)dt. (7.5.3)
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If B(z) is well defined at z = 1, then B(1) is called the normalized operator of
B. In particular, using (7.1.1) we can compute

P (B) =
∑

w∈B
P (w) =

∫ 1

0

B(1)dt.

Furthermore, the operator

G :=
∑

a∈A
Ga, (7.5.4)

is the normalized operator of the alphabet A and plays a fundamental role in
the analysis.

From the product formula (7.1.3) of the generating operators Gw we con-
clude that unions and Cartesian products of languages translates into sums and
compositions of the associated operators. For instance, the operator associated
with A⋆ is

(I − zG)−1 :=
∑

i≥0

ziGi.

where Gi = G ◦ Gi−1.
In order to proceed, we must restrict our attention to a class of dynamic

sources called decomposable that satisfy two properties: (i) there exists a unique
positive dominant eigenvalue λ and a dominant eigenvector denoted as ϕ (which
is unique under the normalization

∫
ϕ(t)dt = 1); (ii) there is a spectral gap

between the dominant eignevalue and other eignevalues. These properties entail
the separation of the operator G into two parts

G = λP + N (7.5.5)

such that the operator P is the projection relative to the dominant eigenvalue
λ while N is the operator relative to the remainder of the spectrum (cf. Sec-
tion 7.3). Furthermore (cf. Exercise 7.5.1)

P ◦ P = P, (7.5.6)

P ◦ N = N ◦ P = 0. (7.5.7)

The last property implies that for any i ≥ 1

Gi = λiP + Ni. (7.5.8)

In particular, for the density operator G the dominant eigenvalue λ =
P (A) = 1 and ϕ is the unique stationary distribution. The function 1 is the left
eigenvector. Then using (7.5.8) we arrive at

(I − zG)−1 =
1

1 − z
P + R(z), (7.5.9)

where
R(z) := (I − zN)−1 − P =

∑

k≥0

zk(Gk − P). (7.5.10)

Version May 18, 2004
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Observe that the first part of (7.5.9) has a pole at z = 1 and due to the spectral
gap the operator N has spectral radius ν < λ = 1. Furthermore, the operator
R(z) is analytic in |z| < (1/ν) and again thanks to the existence of the spectral
gap, the series R(1) is of geometric type. We shall point out below that the
speed of convergence of R(z) is closely related to the decay of the correlation
between two consecutive symbols. Finally, we list some additional properties of
just introduced operators (cf. Exercise 7.5.2) true for any function g(t) defined
between 0 and 1.

N[ϕ] = 0, P[g](t) = ϕ(t)

∫ 1

0

g(t′)dt′ (7.5.11)

∫ 1

0

P[g](t)dt =

∫ 1

0

g(t)dt,

∫ 1

0

N[g](t)dt = 0, (7.5.12)

where ϕ is the stationary density.
Theory built so far allows us, among others, to define precisely the correlation

between languages in terms of the generating operators. From now on we restrict
our analysis to the so called nondense languages B for which the associated
generating operator B(z) is analytic in a disk |z| > 1. First, observe that for a
nondense language B, the normalized generating operator B satisfies

∫ 1

0

P ◦ B ◦ P[g](t) = P (B)

(∫ 1

0

g(t)dt

)
. (7.5.13)

Let us now define the correlation coefficient between two languages, say B
with the generating operator B and C with generating operator C. Two types
of correlations may occur between such languages. If B and C do not overlap,
then B may be before C, or after C. We define the correlation coefficient c(B, C)
(and in an analogous way c(C,B)) as

P (B)P (C)c(B, C) :=
∑

k≥0

[
P (B ×Ak × C) − P (B)P (C)

]
(7.5.14)

=

∫ 1

0

C ◦ R(1) ◦ B[ϕ](t).

To see this we observe, using (7.5.5)–(7.5.13),

∫ 1

0

C ◦ R(1) ◦ B[ϕ](t)dt =

∫ 1

0

C ◦


∑

k≥0

(Gk − P)


 ◦ B[ϕ](t)dt

=
∑

k≥0

(∫ 1

0

C ◦ Gk ◦ B[ϕ](t)dt −
∫ 1

0

C ◦ P ◦ B[ϕ](t)

)

=
∑

k≥0

(
P (B ×Ak × B) − P (B)P (C)

)
.

We say that B and C overlap if there exist words b, u and c such that u 6= ε
and (bu, uc) ∈ (B×C)∪ (C ×B). Then we denote by B ↑ C the set of words that
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be obtained by overlapping words from B and C. The correlation coefficient of
the overlapping languages B and C is defined as

d(B, C) :=
P (B ↑ C)

P (B)P (C)
(7.5.15)

Finally, the total correlation coefficient m(B, C) between B and C is defined as

m(B, C) = c(B, C) + c(C,B) + d(B, C), (7.5.16)

that is,

P (B)P (C)m(B, C) = P (B ↑ C)

+
∑

k≥0

[
P (B × Ak × C) + P (C × Ak × B) − 2P (B)P (C)

]
.

We shall need these coefficients in the analysis of the generalized subsequence
problem for dynamic sources.

7.5.2. Mean and variance

In this section we shall derive the mean and the variance of the number of
occurrences Ωn(W) of the generalized pattern as a subsequence for a dynamic
source.

We first give a sketch of the forthcoming proof:

• We first describe the generating operators of the language L defined in
(7.5.1) that we repeat it here

L = A∗ ×W1 ×A∗ · · ·Wd ×A∗.

It turns out that the quasi-inverse (I−zG)−1 operator is involved in such
a generating operator.

• We then decompose the operator with the help of (7.5.9). We obtain
a term related to (1 − z)−1P that gives the main contribution to the
asymptotics, and another term coming from the operator R(z).

• We then compute the generating function of L using (7.5.3).
• Finally, we extract asymptotic behavior from the generating function.

The main finding of this section is summarized in the next theorem.

Theorem 7.5.1. Consider a decomposable dynamical source endowed in the
stationary density ϕ and let W = (W1,W2, . . . ,Wd) be a generalized nondense
pattern.
(i) The expectation E(Ωn) of the number of occurrences of the generalized
pattern W in a text of length n satisfies asymptotically

E(Ωn(W)) =

(
n+ d

d

)
P (W) +

(
n+ d− 1

d− 1

)
P (W) [C(W)− T (W)] +O(nd−2),
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where

T (W) =

d∑

i=1

∑

w∈Wi

|w|P (w)

P (Wi)
(7.5.17)

is the average length, and the correlation coefficient C(W) is the sum of the
correlations c(Wi−1,Wi) between languages Wi and Wi+1 as defined in (7.5.14).
(ii) The variance of Ωn is asymptotically equal to

Var(Ωn(W)) = σ2(W) n2d−1
(
1 +O(n−1)

)
, (7.5.18)

where the coefficient

σ2(W) = P 2(W)

[
d− 2T (W)

d!(d− 1)!
+

m(W)

(2d− 1)!

]

and the total correlation–coefficient m(W) can be computed as

m(W) :=
∑

1≤i,j≤d

(
i+ j − 2

i− 1

)(
2d− i− j

d− i

)
m(Wi,Wj).

where m(Wi,Wi+1) are defined in (7.5.16).

Proof. We only prove part (i) leaving the proof of part (ii) as an exercise (cf.
Exercise 7.5.3). We shall start with the language representation L defined in
(7.5.1) that we recalled above. Its generating operator is

L(z) = (I − zG)−1 ◦ Lr(z) ◦ (I − zG)−1 ◦ · · · ◦ L1(z) ◦ (I − zG)−1. (7.5.19)

After applying the transformation (7.5.8) to L(z), we obtain an operator M1(z)

M1(z) =

(
1

1 − z

)d+1

P ◦ Lr(z) ◦ P ◦ · · · ◦ P ◦ L1(z) ◦ P

that has a pole of order r + 1 at z = 1. Near z = 1, each operator Li(z) is
analytic and admits the expansion

Li(z) = Li + (z − 1)L′
i(1) +O(z − 1)2.

Therefore, the leading term of the expansion is

(
1

1 − z

)d+1

P ◦ Lr ◦ P ◦ · · · ◦ P ◦ L1 ◦ P. (7.5.20)

The second main term is a sum of r terms, each of them obtained by replac-
ing the operator Li(z) by its derivative L′

i(1) at z = 1. The corresponding
generating function M1(z) satisfies near z = 1

M1(z) =

(
1

1 − z

)d+1

P (W) −
(

1

1 − z

)d
P (W)T (W) +O

(
1

1 − z

)d−1

.

(7.5.21)
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where the average length T (W) is defined in (7.5.17).
After applying (7.5.8) in L(z), we obtain an operator M2(z) that has a pole

of order r at z = 1. This is a sum of d+1 terms, each of the term containing an
occurrence of the operator R(z) between two generating operators of languages
Wi−1,Wi. The corresponding generating function M2(z) has also a pole of order
r at z = 1 and satisfies near z = 1

M2(z) =

(
1

1 − z

)d
P (W)

d∑

i=2

c(Li−1,Li) +O

(
1

1 − z

)d−1

.

Here, the correlation number c(B, C) between B and C is defined in (7.5.14). To
complete the proof we need only to extract the coefficients of P (z)/(1− z)d, as
already discussed in previous sections.

7.6. Self-repetitive pattern matching

In this last section of the chapter, we change the model. So far we postulated
the pattern w is given. Hereafter, we make the pattern part of the text, which
is still randomly generated. To simplify our presentation, we assume that the
text is emitted by a memoryless source. We should point out that the quantity
analyzed here is in fact the typical depth in a (compact) suffix trie built over
the suffixes of a randomly generated text.

7.6.1. Formulation of the problem

Let i be an arbitrary integer smaller than or equal to n. We define Dn(i) to
be the largest value of k ≤ n such that X i+k−1

i occurs at least twice in the
text Xn

1 of length n; in other words, such that Nn(X
i+k−1
i ) ≥ 2. We recall

that Nn(w) is the number of times pattern w occurs in the text Xn
1 . Clearly,

Nn(X
i+k−1
i ) ≥ 1. Our goal is to determine probabilistic behavior of a “typical”

Dn(i), that is, we define Dn to be equal to Dn(i) when i is randomly and
uniformly selected between 1 and n. More precisely,

P(Dn = ℓ) =
1

n

n∑

i=1

P(Dn(i) = ℓ)

for any 1 ≤ ℓ ≤ n.
Let w ∈ Ak be an arbitrary word of size k. Observe that

P(Dn(i) ≥ k & X i+k−1
i = w) = P(Nn(w) ≥ 2 & X i+k−1

i = w),

and
n∑

i=1

P(Nn(w) = r & X i+k−1
i = w) = rP(Nn(w) = r).
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Recall that Nn(u) = E(uNn(w)) =
∑

r≥0 P(Nn(w) = r)ur is the probability
generating function of Nn(w). We sometimes shall write Nn,w(u) to underline
the fact that the pattern w is given. From above we conclude that

P(Dn ≥ k) =
1

n

n∑

i=1

P(Dn(i) ≥ k)

=
∑

w∈Ak

1

n

n∑

i=1

P(Dn(i) ≥ k & X i+k−1
i = w)

=
1

n

∑

w∈Ak

∑

r≥2

rP(Nn(w) = r)

=
∑

w∈Ak

(
P(w) − 1

n
N ′
n,w(0)

)

= 1 − 1

n

∑

w∈Ak

N ′
n,w(0),

where N ′
n,w(0) denotes the derivative of Nn(u) at u = 0

Let now Dn(u) = E(uDn) =
∑
k P(Dn = k)uk be the probability generating

function of Dn. Then above implies

Dn(u) =
1

n

(1 − u)

u

∑

w∈A∗

u|w|N ′
n,w(0),

and the bivariate generating function D(z, u) =
∑

n nDn(u)z
n becomes

D(z, u) =
1 − u

u

∑

w∈A∗

u|w| ∂

∂u
Nw(z, 0) (7.6.1)

where Nw(z, u) =
∑∞
n=0

∑∞
r=0 P(Nn(w) = r)znur. In Section 7.2 we worked

with
∑∞

n=0

∑∞
r=1 P(Nn(w) = r)znur and in (7.2.20) of Theorem 7.2.7 we pro-

vided a formula for it. Adding the term N0(z) = Sw(z)/Dw(z) we finally arrive
at

Nw(z, u) =
z|w|P(w)

D2
w(z)

u

1 − uMw(z)
+
Sw(z)

Dw(z)
,

where Mw(z) is defined in (7.2.21) and Dw(z) = (1 − z)Sw(z) + z|w|P(w) (cf.
7.2.24) with Sw(z) being the autocorrelation polynomial for w. Since

∂

∂u
Nw(z, 0) = z|w| P(w)

D2
w(z)

,

we finally arrive at the following lemma that is the starting point of the subse-
quent analysis.
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Lemma 7.6.1. The bivariate generating function for Dn is

D(z, u) =
1 − u

u

∑

w∈A∗

(zu)|w| P(w)

((1 − z)Sw(z) + z|w|P(w))2
(7.6.2)

for |u| < 1 and |z| < 1, where Sw(z) is the autocorrelation polynomial for w.

In this section, we prove the following result for a random text generated
by a memoryless source over a finite alphabet A of size V with pi being the
probability of emitting symbol i ∈ A. We denote by h = −∑V

i=1 pi log pi the

entropy rate of the source, and h2 =
∑V
i=1 pi log2 pi. The reader is asked in

Exercise 7.6.1 to extend below theorem to Markov sources.

Theorem 7.6.2. (i) For a biased memoryless source (i.e., pi 6= pj for some
i 6= j) and any ε > 0

E(Dn) =
1

h
logn+

γ

h
+
h2

h2
+ P1(log n) +O(n−ε), (7.6.3)

Var(Dn) =
h2 − h2

h3
log n+O(1) (7.6.4)

where P1(·) is a periodic function with small amplitude in the case where the
tuple (log p1, . . . ,
log pV ), is collinear with a rational tuple (i.e., log pj/ log p1 = r/s for some
integers r and s) and converges to zero otherwise.
Furthermore, (Dn−E(Dn))/Var(Dn) is asymptotically normal with mean zero
and variance one that is, for fixed x ∈ R

lim
n→∞

P{Dn ≤ E(Dn) + x
√

Var(Dn)} =
1√
2π

∫ x

−∞
e−t

2/2dt ,

and for all integer m

lim
n→∞

E

[
Dn − E(Dn)√

VarDn

]m
=

{
0 when m is odd

m!
2m/2( m

2 )!
when m is even.

(ii) For the unbiased source (i.e., p1 = · · · = pV = 1/V ), h2 = h2, the expected
value E(Dn) is given by (7.6.3) above, and for any ε > 0

Var(Dn) =
π2

6 log2 V
+

1

12
+ P2(log n) +O(n−ε)

where P2(log n) is a periodic function with small amplitude The limiting distri-
bution of Dn does not exist, but one finds

lim
n→∞

sup
x

| P(Dn ≤ x) − exp(−nV −x) |= 0

for any fixed real x.
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In passing we observe that the quantity Dn is also the depth of a randomly
selected suffix in a compact suffix trie. Such a trie is a compacted version of
suffix tries defined in Chapter 2. In a compact suffix trie one deletes all unary
nodes at the bottom of the non-compact suffix trie. Observe that in a compact
suffix trie, which we further call simply a suffix trie, the path from the root to
node i (representing the ith suffix) is the shortest suffix that distinguishes it
from all other suffixes. The quantity Dn(i) defined above represents the depth
of the i suffix in the associated suffix trie, while Dn is the typical depth, that is,
the depth of a randomly selected terminal node in the suffix trie. Theorem 7.6.2
tells us that the typical depth is normally distributed with the average depth
asymptotically equal to 1

h logn and variance Θ(logn) for biased memoryless
source. In the unbiased case variance is O(1) and the (asymptotic) distribution
is of the extreme distribution type. Interestingly, as proved below, the depth
in a suffix trie (built over one sequence generated by a memoryless source)
is asymptotically equivalent to the depth in a trie built over n independently

generated strings. Thus suffix tries resemble tries!

7.6.2. Random tries resemble suffix tries

The proof of Theorem 7.6.2 hinges on establishing asymptotic equivalence be-
tween Dn introduced above and a new random variable DT

n defined as follows:
First, for n independently generated texts (by the same memoryless source as for
Dn) we denote by DT

n (i) for an integer i ≤ n the length of the longest prefix of
the ith text that is also a prefix of another text, say the jth text, j 6= i. Then the
random variable DT

n is defined by selecting integer i uniformly between 1 and n.
We also define DT

n (u) =
∑

k P(DT
n = k)uk and DT (z, u) =

∑
n nD

T
n (u)zn. Ob-

serve that DT
n is in fact the typical depth in a trie built over these n independent

texts.
It is relatively easy to derive the generating function of DT

n , as shown below.

Lemma 7.6.3. For all n ≥ 1

DT
n (u) =

1 − u

u

∑

w∈A∗

u|w|P(w)(1 − P(w))n−1,

DT (z, u) =
1 − u

u

∑

w∈A∗

u|w| zP(w)

(1 − z + P(w)z)2

for all |u| ≤ 1 and |z| < 1.

Proof. It suffices to observe that

P(DT
n (i) < k) =

∑

w∈Ak

P(w)(1 − P(w))n−1.

Indeed, DT
n (i) < k if there is a word w ∈ Ak such the a prefix of the ith string

is equal to w and none of the other text prefixes are equal to w.
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Our goal now is to prove that Dn(u) and DT
n (u) are asymptotically close as

n → ∞. This requires several preparatory steps outlined below that will lead
to

DT
n (u) −Dn(u) = (1 − u)O(n−ε) (7.6.5)

for some ε > 0 and all |u| < β for β > 1. Consequently,

|P(Dn ≤ k) − P(DT
n ≤ k)| = O(n−εβ−k)

for all positive integers k. In Lemma 7.6.11 we shall prove that DT
n is asymp-

totically normal, hence Dn is normal. This will prove Theorem 7.6.2.
We start with a lemma indicating that for most words w the autocorrelation

polynomial Sw(z) is very close to 1 for z non-negative. This lemma provides
information about analytical properties of the autocorrelation polynomial.

Lemma 7.6.4. There exist δ < 1, θ > 0 and ρ > 1 such that ρδ < 1 and

∑

w∈Ak

[[|Sw(ρ) − 1| ≤ (ρδ)kθ]]P(w) ≥ 1 − θδk. (7.6.6)

Proof. To simply notations, let Pk be the probability measure on Ak such
that Pk(A) =

∑
w∈Ak [[w ∈ A]]P(w). Thus we need to prove that Pk(Sw(ρ) ≤

1 + (ρδ)kθ) ≥ 1 − θδk.
Let i be an integer smaller than k ∈ P(w), where P(w) is the autocorrelation

set for w. It is easy to see that (cf. Exercise 7.6.2)

Pk(k − i ∈ P(w)) =




V∑

j=1

p
⌊k/i⌋+1
j



r


V∑

j=1

p
⌊k/i⌋
j



i−r

(7.6.7)

where r = k − ⌊k/i⌋i. Denoting p = maxi pi we have

Pk(k − i ∈ P(w)) ≤ pk−i.

Thus Pk(max(P(w) − {k}) ≥ k/2) ≤∑⌊k/2⌋
i=1 Pk(i+ 1 ∈ P(w)) ≤ pk/2

1−p . Now, if

the word w is such that max(P(w)−{k}) < k/2, then Sw(ρ) ≤∑k
i>⌊k/2⌋ ρ

ipi ≤
ρk p

k/2

1−p . Therefore, it suffices for (7.6.6) to select δ =
√
p, θ = (1 − p)−1 and

ρ > 1 such that ρδ < 1.

In the next lemma we show that D(z, u) can be analytically continued above
the unit disk, that is, for |u| > 1.

Lemma 7.6.5. The generating function D(z, u) can be analytically continued
for all |u| < δ−1 and |z| < 1 where δ < 1.
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Proof. Let |u| < 1 and |z| < 1. Consider the following identity

∑

w

(uz)|w| P(w)

(1 − z)2
=

1

(1 − uz)(1 − z)2
.

Therefore, for |z| < 1

uD(z, u) − (1 − u)

(1 − uz)(1 − z)2
= (1 − u)

∑

w

(zu)|w|P(w)

(
1

D2
w(z)

− 1

(1 − z)2

)

= (u− 1)
∑

w

(zu)|w|P(w)
1

D2
w(z)(1 − z)2

(Dw(z) − (1 − z))(Dw(z) + (1 − z)),

where we recallDw(z)−(1−z) = (1−z)(Sw(z)−1)+P(w)z|w|. By Lemma 7.6.4

Pk(|Dw(z) − (1 − z)| ≤ (|1 − z|+ 1)δ|w|) ≥ 1 −O(δ|w|)

for all w such that |w| = k. Moreover, for any bounded function f(w) such that
f(w) ≤ fmax for all w with |w| = k, we also have the following estimate for all
y: ∑

|w|=k
P(w)f(w) ≤ y + fmaxPk(f(w) > y) . (7.6.8)

In particular, we take f(w) = Dw(z) − (1 − z) and we have fmax = O(1) since
|Sw(z)| < (1 − p)−1 (p as defined as in proof of lemma 7.6.4). Now taking
y = (|1 − z|+ 1)δk, using the above we obtain

uD(z, u) − 1 − u

(1 − uz)(1 − z)2
= (u− 1)

∞∑

k=0

(zu)kO((|1 − z|+ 1)δk + δk)

for all w. In conclusion,

uD(z, u)− (1 − u)

(1 − uz)(1 − z)2
= O

(
u− 1

1 − δ|u|

)

for δ < 1 and |z| < 1, which completes the proof.

Before we proceed, we need two technical lemmas.

Lemma 7.6.6. There exists K, a constant ρ′ > 1 and α > 0 such that for all
w with |w| ≥ K we have

|Sw(z)| ≥ α

for |z| ≤ ρ′ with ρ′ > 1 such that pρ′ < 1.

Proof. Let ℓ be an integer and ρ′ > 1 such that pρ′ + (pρ′)ℓ < 1. Let k > ℓ and
let w such that |w| > k. Let i = max(P −{k}). If i ≤ ℓ, then for all z such that
|z| ≤ ρ′ we have

|Sw(z)| ≥ 1 − (pρ′)ℓ

1 − pρ′
.
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If i > ℓ, let q = ⌊k/i⌋, then w = uqv where u is the prefix of length i of word w,
and v is the suffix of length k − iq. Thus

Sw(z) =
1 − (P(u)zi)q

1 − P(u)zi
+ (P(u)zi)qSuv(z),

where Suv(z) is the autocorrelation polynomial of uv. This implies

|Sw(z)| ≥ 1 − (pρ′)qi

1 + (pρ′)i
− (pρ′)iq − (pρ′)k

1 − pρ′
.

But since i > ℓ, we obtain

|Sw(z)| ≥ 1 − (pρ′) − 3(pρ′)k−ℓ

1 + pρ′
> 0,

which completes the proof.

Lemma 7.6.7. There exists an integer K ′ such that for |w| ≥ K ′ there is only
one root of Dw(z) in the disk |z| ≤ ρ′ for ρ′ > 1.

Proof. Let K1 be such that (pρ′)K1 < α(ρ′ − 1) holds for the α and ρ′ as in
Lemma 7.6.6. Denote K ′ = max{K,K1}, where K is defined above. Note also
that the above condition implies that for all w such that |w| = k > K ′ we have
P(w)(ρ′)k < α(ρ−1). Hence, for |w| > K ′ we have |P(w)zk| < |(z−1)Sw(z)| on
the circle |z| = ρ′ > 1. Therefore, by Rouché’s theorem the polynomial Dw(z)
has the same number of roots as (1 − z)Sw(z) in the disk |z| ≤ ρ′. But, the
polynomial (1−z)Sw(z) has only a single root in this disk since by Lemma 7.6.6
we have |Sw(z)| > 0 in |z| ≤ ρ′.

We just establish that there exists the smallest root of Dw(z) = 0 that we
denote as Aw. Let also Cw and Dw be the first and the second derivatives of
Dw(z) at z = Aw, respectively. Using bootstrapping, one easily obtains the
following expansions

Aw = 1 +
1

Sw(1)
P(w) +O(P(w)2),

Cw = −Sw(1) +

(
k − 2S′

w(1)

Sw(1)

)
P(w) +O(P(w)2),

Ew = −2S′
w(1) +

(
k(k − 1) − 3S′′

w(1)

Sw(1)

)
P(w) +O(P(w)2),

where S′
w(1) and S′′

w(1), respectively, denote the first and the second derivatives
of Sw(z) at z = 1.

Finally, we are ready to compare Dn(u) with DT
n (u) to conclude that they

do not differ too much as n → ∞. Let us define two new generating functions
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Qn(u) and Q(z, u) that represent the difference between Dn(u) and DT
n (u), that

is,

Qn(u) =
u

1 − u

(
Dn(u) −DT

n (u)
)
,

and

Q(z, u) =

∞∑

n=0

nQn(u)z
n =

u

1 − u

(
D(z, u) −DT (z, u)

)
.

Then

Q(z, u) =
∑

w

u|w|P(w)

(
z|w|

Dw(z)2
− z

(1 − z + P(w)z)2

)
.

It is not difficult to establish asymptotics of Qn(u) by appealing to the Cauchy
theorem. This is done in the following lemma.

Lemma 7.6.8. There exists B > 1 such that for all |u| ≤ β the following
evaluation holds

Qn(u) =
1

n

∑

w

u|w|P(w)

(
A|w|−n−1
w

(
n+ 1 − |W|
C2
wAw

+
Ew
C3
w

)
− n(1 − P(w))n−1

)

+ O(B−n)

for some β > 1.

Proof. By Cauchy’s formula

nQn(u) =
1

2iπ

∮
Q(z, u)

dz

zn+1
,

where the integration is along a loop contained in the unit disk that encircles the
origin. Let w be such that |w| ≥ K ′, where K ′ is defined in Lemma 7.6.7. From
the proof of Lemma 7.6.7 we conclude that Dw(z) and (1 − z + P(w)z) have
only one root in |z| ≤ ρ for some ρ > 1. Applying Cauchy’s residue theorem we
obtain

1

2iπ

∮
u|w|P(w)

dz

zn+1

(
z|w|

Dw(z)2
− z

(1 − z + P(w)z)2

)
=

= u|w|P(w)

(
A

|w|−n−1
w

u

(
n+ 1 − |w|
C2
wAw

+
Ew
C3
w

)
− n(1 − P(w))n−1

)
+ Iw(ρ, u),

where

Iw(ρ, u) =
P(w)

2iπ

∫

|z|=ρ
u|w| dz

zn+1

(
z|w|

Dw(z)2
− z

(1 − z + P(w)z)2

)
.

To establish a bound for Iw(ρ, u) we argue exactly in the same manner as in the
proof of Theorem 7.6.5. This leads for |w| > K ′ to

∑

|w|=k
Iw(ρ, u) = O((δρu)kρ−n)
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since for all w we also have Sw(ρ) ≤ 1/(1−pρ) and Dw(z) = O(ρk) in the circle
|z| ≤ ρ. Set now β = (δρ)−1 > 1. Then, for |u| < β we have

∑

{w: |w|>K′}
Iw(ρ, u) = O(

∑

w

P(w)ρ|w|−n) = O(ρ−n).

This proves our bound since the other terms (|w| < K ′) contribute only B−n

for some B > 1 due to the fact that all roots of Dw(z) have magnitudes greater
than 1.

In the next lemma we show that Qn(u) → 0 as n→ ∞.

Lemma 7.6.9. For all 1 < β < δ−1, there exists ε > 0 such that Qn(u) =
(1 − u)O(n−ε) uniformly for |u| ≤ β.

Proof. The expansion of Ew with respect to P(w), and Lemma 7.6.4 show that
as n → ∞ the following holds

∑
w u

|w|P(w)A−n
w Ew/C

3
w = O(1). Therefore, by

Lemma 7.6.8 we have

Qn(u) =
∑

w

u|w|P(w)

(
A

|w|−n−2
w

C2
w

− (1 − P(w))n−1

)
+O(1/n) .

Let now fw(x) be a function defined for x real by

fw(x) =
A

|w|−x−2
w

C2
w

− (1 − P(w))x−1.

By the same arguments as used in proving (7.6.8) in Theorem 7.6.5, we
note that

∑
w u

|w|P(w)fw(x) is absolutely convergent for all x and u such that
|u| ≤ β. The function f̄w(x) = fw(x) − fw(0)e−x is exponentially decreasing
when x→ +∞ and is O(x) when x→ 0; therefore its Mellin transform defined
as

f̄∗
w(s) =

∫ ∞

0

f̄w(x)xs−1dx

is well defined for ℜ(s) > −1. In this region we obtain

f̄∗
w(s) = Γ(s)

(
A|w|−1
w

(logAw)−s − 1

AwC2
w

− (− log(1 − P(w))−s − 1

1 − P(w)

)
,

where Γ(s) is the gamma function. Let g∗(s, u) be the Mellin transform of the
series

∑
w u

|w|P(w)f̄w(x) which exists at least in the strip (−1, 0). Formally,
we have

g∗(s, u) =
∑

w

u|w|P(w)f̄∗
w(s) .

We can reverse the Mellin transform g∗(s, u) provided that the following holds.

Lemma 7.6.10. The function g∗(s, u) is analytical in ℜ(s) ∈ (−1, c) for some
c > 0.
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Assuming Lemma 7.6.10 is granted, we have

Qn(u) =
1

2iπ

∫ ε+i∞

ε−i∞
g∗(s, U)n−sds+O(1/n) +

∑

w

u|w|P(w)fw(0)e−n,

for some ε ∈ (0, c). Notice that the last term of the above contributes O(e−n),
and can be safely ignored. Furthermore, a simple majorization under the inte-
gral gives the evaluation Qn(u) = O(n−ε) which completes the proof.

Proof of Lemma 7.6.10: We establish the absolute convergence of g∗(s, u) for all

s such that ℜ(s) ∈ (−1, c) and |u| ≤ β. Let us define h∗(s, u) = g∗(s,u)
Γ(s) . Note

that for any fixed s we have the following

(logAw)−s =

(
P(w)

1 + Sw(1)

)−s
(1 +O(P(w))) ,

(− log(1 − P(w)))−s = P(w)−s(1 +O(P(w))) .

Thus

(logAw)−s − 1

A
2−|w|
w C2

w

− (− log(1 − P(w)))−s − 1

1 − P(w)
=

= P(w)−s [(1 + aw(1))s(1 +O(|w|P(w)) − (1 +O(P(w))] +O(|w|P(w)) .

By Lemma 7.6.4, Pk(Sw(1) ≤ 1 + θδk) ≥ 1 −O(δk), and hence

h∗(s, u) =
∞∑

k=0

(
sup{p−ℜ(s), q−ℜ(s)}|u|δ

)k
O(1)

that absolutely converges for all values of s such that ℜ(s) < c where c satisfies
sup{p−c, q−c} < (δβ)−1. Since h∗(0, u) = 0 by definition, the pole of Γ(s) at s =
0 is canceled in g∗(s, u), and therefore h∗(s, u) does not show any singularities
in the strip ℜ(s) ∈ (−1, c).

To complete the proof of our main Theorem 7.6.2, we need an asymptotic
analysis of DT

n (u) which is presented next. We recall that DT
n represents also

the typical depth in a trie built from n independently generated strings.

Lemma 7.6.11. There exists ε > 0 such that

DT
n (u) = (1 − u)nκ(u)(Γ(κ(u)) + P (logn, u))) +O(nε),

where

u

V∑

i=1

p
1−κ(u)
i = 1

and P (logn, u) is periodic function with small amplitude in the case where the
vector (log p1,
. . . , log pV ) is collinear with a rational tuple, and converges to zero when n→ ∞
otherwise.
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Proof. We begin with the identity

DT
n (u) =

1 − u

u

∑

w∈A∗

u|w|P(w)(1 − P(w))n−1.

We argue exactly in the same manner as in the proof of Lemma 7.6.8. We find
the Mellin transform T ∗(s, u) =

∫∞
0
xs−1dxu/(1 − u)DT

x (u)dx to be

T ∗(s, u) =
∑

w∈A∗

u|w|P(w)(− log(1 − P(w)))−sΓ(s).

Using the fact that for s bounded (− log(1−P(w)))−s = P(w)−s(1+O(sP(w))),
we conclude

T ∗(s, u) = Γ(s)

(
u
∑V
i=1 p

1−s
i

1 − u
∑V
i=1 p

1−s
i

+ g(s, u)

)
,

where

g(s, u) = O

(
us
∑V
i=1 p

2−ℜ(s)
i

1 − |u|∑V
i=1 p

2−ℜ(s)
i

)
.

Let κ(u) be the main root of 1 = u
∑V
i=1 p

1−s
i . The other roots of 1 =

u
∑V
i=1 p

1−s
i , are countable and we denote them as κk(u) for k 6= 0 integer.

For all integers k we have ℜ(κk(u)) ≥ κ(u). Using the inverse Mellin we find

DT
n =

1 − u

2iπu

∫ +i∞

−i∞
T ∗(s, u)n−sds.

We now consider |u| < δ−1 for δ < 1. Then there exists ε such that for ℜ(s) ≤ ε
the function g(s, u) has no singularity. Moving the integration path to the left
of ℜ(s) = ε, and applying the reside theorem we find the following estimate

DT
n (u) = (1 − u)

Γ(κ(u))

h(u)
nκ(u) + (1 − u)

∑

k

Γ(κk(u))

hk(u)
nκk(u) +O(n−ε) (7.6.9)

with h(u) = −∑i p
1−κ(u)
i log pi and hk(u) = −∑i p

1−κk(u)
i log pi. When log pi’s

are collinear with a rational vector, then there is subset of κk(u) that have the
same real part as κ(u) and also equally spaced on the vertical line ℜ(s) =
ℜ(κ(u)). In this case their contribution to (7.6.9) is

nκ(u)
∑

k

Γ(κk(u))

h(u)
exp((κk(u) − κ(u))i logn).

When the log pi’s are not collinear with a rational vector the contribution of the
κk(u) divided by nκ(u) converges to zero when n→ ∞.

The last lemma completes the proof of Theorem 7.6.2. Indeed, it suffices to
observe that for t→ 0

κ(et) = c1t+
c2
2
t2 +O(t3) (7.6.10)
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where c1 = 1/h and c2 = (h2 − h2)/h3. We concentrate first on the asymmetric
case. From the expression of DT

n (u) we find immediately the first and the second
moments via the first and the second derivatives of DT

n (u) at u = 1 with the
appropriate asymptotic expansion in c1 logn and in c2 logn. In order to obtain
the limiting normal distribution we prove

e−tc1 logn/
√
c2 lognDT

n

(
et/

√
c2 logn

)
→ et

2/2

using nκ(u) = exp(κ(u) logn) and referring to expansion (7.6.10).
For the symmetric case there is no normal limiting distribution since variance

is O(1). However, there are oscillation due to the fact that all κk(u) are aligned
on a vertical line. This completes the proof of Theorem 7.6.2.

Problems

Section 7.2

7.2.1 Prove (7.2.9).

7.2.2 In Theorem 7.2.8 we prove that for irreducible aperiodic Markov chain
the variance Var(Nn) = nc1 + c2 (cf. (7.2.26)). Prove that c1 > 0.

7.2.3 Prove that (Nn − E(Nn))/
√

Var(Nn) converges in moments to the ap-
propriate moments of the standard normal distribution.

7.2.4 Let ρ(t) be a root of 1 − etMW(eρ) = 0. Observe that ρ(0) = 0. Prove
that ρ(t) > 0 for t 6= 0 for pij > 0 for all i, j ∈ A.

7.2.5 Prove the expression (7.2.44) for θa of Theorem 7.2.12 (cf. Denise and
Régnier (2004)).

Section 7.3

7.3.1 Extend the analysis of Section 7.3 to multisets W , that is, a word wi
may occur several times in W .

7.3.2 Prove language relationships (7.3.2)–(7.3.2).

7.3.3 Derive explicit formulas for θa appearing in Theorem 7.3.3(iv).

7.3.4 Find explicit formulas for the values of the mean E(Nn(W)) and of the
variance Var(Nn(W)) for the generalized pattern matching discussed in
Section 7.3.2 for W0 = ∅ and W0 6= ∅.

7.3.5 Derive explicit formulas for σa and θa in (7.3.27) appearing in Theo-
rem 7.3.10.

7.3.6 Enumerate (ℓ, k) sequences over a non binary alphabet (i.e., generalize
the analysis of Section 7.3.3).

Section 7.4

7.4.1 Find an explicit formula for the generating function B
[p]
2 (z) of the col-

lection B[p]
2 .
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7.4.2 Design a dynamic programming algorithm to compute the correlation
algorithm, κ2(W).

7.4.3 Establish the rate of convergence for the Gaussian law from Theo-
rem 7.4.5.

7.4.4 For the fully unconstrained subsequence problem establish the large
deviations (cf. Janson (pear)).

7.4.5 Provide details of the proof for Theorem 7.4.6.

7.4.6 Let W = {w1, . . . , wd} be a set of patterns wi. The pattern W occurs as
a subsequence in the text if any of wi occurs as a subsequence. Analyze
this generalization of the subsequence pattern matching.

7.4.7 Let w be a pattern. Set W to be a window size with |w| ≤ W ≤ n.
Consider the windowed subsequence pattern matching in which w must
appear as a subsequence within the window W . Analyze the number of
windows that has at least one occurrence of w as a subsequence within
the window (cf. Gwadera, Atallah, and Szpankowski 2003).

Section 7.5

7.5.1 Prove the generating operators identities (7.5.5)–(7.5.8).

7.5.2 Prove (7.5.11)–(7.5.13).

7.5.3 Prove the second part of Theorem 7.5.1, that is, derive formula (7.5.18)
for variance of Ωn(W).

7.5.4 Does the central limit theorem holds for the generalized subsequence
problem discussed in Section 7.5? What about large deviations?

Section 7.6

7.6.1 Extend Theorem 7.6.2 for Markov sources.

7.6.2 Prove (7.6.7) and extend it to Markov sources (cf. Apostolico and Sz-
pankowski 1992).

7.6.3 Let κ(u) be the main root of 1 = u
∑V
i=1 p

1−s
i , and κk(u) for k 6= 0

integer are other roots of 1 = u
∑V
i=1 p

1−s
i . Prove that for all integers k

we have ℜ(κk(u)) ≥ κ(u).

Notes

Algorithmic aspects of pattern matching are presented in numerous books. We
mention here Crochemore and Rytter (1994) and Gusfield (1997) (cf. also Apos-
tolico (1985)). Public domain utilities like agrep, grappe, webglimpse for find-
ing general patters were recently developed by Wu and Manber (1995), Kucherov
and Rusinowitch (1997), and others. Various data compression schemes are
studied in Wyner and Ziv (1989), Wyner (1997), Yang and Kieffer (1998),
Ziv and Lempel (1978), Ziv and Merhav (1993)). Prediction based on pattern
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matching is discussed in Jacquet, Szpankowski, and Apostol (2002). Algorith-
mic aspect of pattern matching can also be found in Chapter 2 and Chapter 8
of this book.

In this chapter the emphasis is on analysis of pattern matching problems
by analytic methods in a probabilistic framework. Probabilistic models are dis-
cussed in Section 7.1 and Chapter 1. Markov models are presented in many
standard books (cf. Karlin and Ost (1987)). Dynamic sources were intro-
duced by Vallée (2001) (cf. also Clement, Flajolet, and Vallée (2001), Bourdon
and Vallée (2002)). General stationary ergodic sources are discussed in Shields
(1969).

In this chapter analytic tools are used to investigate combinatorial pattern
matching problems. The reader is referred to Alon and Spencer (1992), Sz-
pankowski (2001), Waterman (1995) (cf. also Arratia and Waterman (1989,
1994)) for in-depth discussion of probabilistic tools. Analytic techniques are
thoroughly explained in Sedgewick and Flajolet (1995) and Szpankowski (2001).
The reader may also consult Atallah, Jacquet, and Szpankowski (1993), Bender
(1973), Clement et al. (2001), Hwang (1996), Jacquet and Szpankowski (1994,
1998). The Perron–Frobenius theory and the spectral decomposition of matri-
ces can be found in Gantmacher (1959), Karlin and Taylor (1975), Kato (1980),
Szpankowski (2001). Operator theory is discussed in Kato (1980).

Exact string matching is presented in Section 7.2. There are numerous
references. Our approach is founded in the work of Guibas and Odlyzko (1981a)
and Guibas and Odlyzko (1981b). The presentation of this section follows very
closely recent work of Régnier and Szpankowski (1998a) and Régnier (2000).
More probabilistic approach is adopted in Chapter 2 and in Prum et al. (1995).
Example 7.2.13 is taken from Denise, Régnier, and Vandenbogaert (2001).

Generalized string matching problem discussed in Section 7.3 was introduced
in Bender and Kochman (1993). The analysis of string matching over reduced
set of patterns appears in Régnier and Szpankowski (1998b) (cf. also Guibas
and Odlyzko (1981b)). An automaton approach to motif finding was proposed
in Nicodème et al. (2002). The general string matching was first dealt with in
Bender and Kochman (1993), however, our presentation follows a different path
simplifying previous analyses. It is closely related to the subsequence pattern
matching analysis presented in Flajolet, Guivarc’h, Szpankowski, and Vallée
(2001). The (ℓ, k) sequence analysis is taken from Szpankowski (2001).

The subsequence pattern matching or the hidden pattern matching discussed
in Section 7.4 is based on Flajolet et al. (2001). Proceeding along different
tracks, Janson (pear) has related this particular case to his treatment of U–
statistics via Gaussian Hilbert spaces; see Chapter XI of Janson’s book Janson
(1997) for the type of method employed. Example 7.4.7 was fully developed in
Gwadera et al. (2003).

The generalized subsequence pattern matching discussed in Section 7.5 is
taken from Bourdon and Vallée (2002). The operator generating function ap-
proach for dynamic sources was developed by Vallée (2001).

In Section 7.6 we present some results for the self-repetitive pattern match-
ing. Theorem 7.6.2 was proved in Jacquet and Szpankowski (1994), however, our
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proof in this section is somewhat simplified. In particular, proof of the crucial
Lemma 7.6.1 is new and based on results presented in Section 7.2. Lemma 7.6.11
is due to Jacquet and Régnier (1986) (for an extension to Markov sources see
Jacquet and Szpankowski (1991)). Mellin transform is explained in depth in
Flajolet, Gourdon, and Dumas (1995), Szpankowski (2001). Tries are treated in
depth in Mahmoud (1992) and Szpankowski (2001). As mentioned, the quantity
Dn analyzed in the section is also the typical depth in a suffix tries introduced in
Chapter 2 (cf. also Apostolico (1985)). Probabilistic analysis of suffix tries can
be found in Apostolico and Szpankowski (1992), Devroye, Szpankowski, and
Rais (1992), Szpankowski (1993a, 1993b). As discussed in the section, suffix
tries are often appear in analysis of data compression schemes (cf. Wyner and
Ziv (1989), Wyner (1997), Yang and Kieffer (1998), Ziv and Lempel (1978), Ziv
and Merhav (1993)).
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