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ABSTRACT

Theoretical results show that Bayesian methods can achieve lower bounds on re-
gret for online logistic regression. In practice, however, such techniques may not
be feasible especially for very large feature sets. Various approximations that, for
huge sparse feature sets, diminish the theoretical advantages, must be used. Of-
ten, they apply stochastic gradient methods with hyper-parameters that must be
tuned on some surrogate loss, defeating theoretical advantages of Bayesian meth-
ods. The surrogate loss, defined to approximate the mixture, requires techniques
as Monte Carlo sampling, increasing computations per example. We propose low
complexity analytical approximations for sparse online logistic and probit regres-
sions. Unlike variational inference and other methods, our methods use analytical
closed forms, substantially lowering computations. Unlike dense solutions, as
Gaussian Mixtures, our methods allow for sparse problems with huge feature sets
without increasing complexity. With the analytical closed forms, there is also no
need for applying stochastic gradient methods on surrogate losses, and for tuning
and balancing learning and regularization hyper-parameters. Empirical results top
the performance of the more computationally involved methods. Like such meth-
ods, our methods still reveal per feature and per example uncertainty measures.

1 INTRODUCTION

We consider online (Bottou, 1998; Shalev-Shwartz et al., 2011) binary logistic regression over a
series of rounds t ∈ {1, 2, . . . , T}. At round t, a sparse feature vector xt ∈ [−1, 1]d with dt � d
nonzero values, is revealed, and a prediction for the label yt ∈ {−1, 1} must be generated. The
dimension d can be huge (billions), but dt is usually tens or hundreds. Logistic regression is used
in a huge portion of existing learning problems. It can be used to predict medical risk factors, to
predict world phenomena, stock market movements, or click-through-rate in online advertising. The
online sparse setup is also very common to these application areas, particularly, if predictions need
to be streamed in real time as the model keeps updating from newly seen examples.

A prediction algorithm attempts to maximize probabilities of the observed labels. Online meth-
ods sequentially learn parameters for the d features. With stochastic gradient methods (Bottou,
2010; Duchi et al., 2011), these are weights wi,t associated with feature i ∈ {1, · · · , d} at round
t. Bayesian methods keep track of some distribution over the parameters, and assign an expected
mixture probability to the generated prediction (Hoffman et al., 2010; Opper & Winther, 1998). The
overall objective is to maximize a sequence likelihood probability, or to minimize its negative log-
arithm. A benchmark measure of an algorithm’s performance is its regret, the excess loss it attains

over an algorithm that uses some fixed comparator values of w∗
4
= (w1, w2, . . . , wd)

T (T denoting
transpose). A comparator w∗ that minimizes the cumulative loss can be picked to measure the regret
relative to the best possible comparator in some space of parameter values.

Kakade & Ng (2005); Foster et al. (2018); Shamir (2020) demonstrated that, in theory, Bayesian
methods are capable to achieve regret, logarithmic with the horizon T and linear with d, that even
matches regret lower bounds for d = o(T ). Classical stochastic gradient methods are usually im-
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plemented as proper learning algorithms, that determine wt prior to observing xt, and are inferior
in the worst-case (Hazan et al., 2014), although, in many cases depending on the data, they can still
achieve logarithmic regret (Bach, 2010; 2014; Bach & Moulines, 2013). Recent work (Jézéquel
et al., 2020) demonstrated non-Bayesian improper gradient based algorithms with better regret.

Unfortunately, superiority of Bayesian methods diminishes by their intractability. A theoretically
optimal prior has a diagonal covariance matrix, with each component either uniformly or Normally
distributed with large variance. Effects of such a prior cannot be maintained in practical online
problems with a large sparse feature set, as the posterior of such a prior no longer has the properties
of the prior, but must be maintained as a subsequent prior. Gaussian approximations that rely on
diagonalization of the covariance must be used. Neither normal nor the diagonal assumptions are
true for the real posterior (even with diagonal prior). They thus lead to performance degradations.
Diagonalization is similar to linearization in convex optimization, specifically for stochastic gradient
descent (SGD) (Zinkevich, 2003). It allows handling features independently, but limits performance.

Bayesian learning literature focused on applying such methods to predict posterior probabilities, and
provide model (epistemic) uncertainty measurements (Bishop, 2006; Dempster, 1968; Huelsenbeck
& Ronquist, 2001; Knill & Richards, 1996). However, uncertainty of a feature is, in fact, mostly
a function of the number of examples in which it was present; a measure that can be tracked, not
estimated. Methods, such as Variational Bayesian (VB) Inference (Bishop, 2006; Blei et al., 2017;
Drugowitsch, 2019; Drugowitsch et al., 2019; Ranganath et al., 2014), track such measurements by
matching the posterior. However, as demonstrated in Rissanen (1984) seminal work, minimizing re-
gret is identical to uncertainty reduction, as regret is merely a different representation of uncertainty.
Regret can be universally minimized over the possible parameter space through a good choice of a
prior. Hence, to minimize uncertainty, the role of an approximation is to preserve the effect of such
a prior at least in the region of the distribution that dominates the ultimate posterior at the hori-
zon T . This is a simpler problem than matching the posterior, and opens possibilities for simpler
approximations that can lead to results identical to those of heavy methods as VB.

VB methods are typically used offline to match a tractable posterior to the true one by upper bound-
ing overall loss. They are computationally involved, requiring either iterative techniques (Bishop,
2006; Blei et al., 2017; Murphy, 2012) like Expectation Maximization (EM) (Dempster et al., 1977;
Moon, 1996); or Monte Carlo (MC) sampling, replacing analytical expectation by an empirical one
over a randomly drawn set. To converge, MC can be combined with gradient descent, either requir-
ing heavy computations, or adapting stochastic gradient methods to update posteriors (Broderick
et al., 2013; Knowles, 2015; Nguyen et al., 2017a;b). For online problems, the posterior of an exam-
ple is the prior of the subsequent one. To minimize losses, online VB must converge to the optimal
approximation at every example. Otherwise, additional losses may be incurred, as the algorithm
may not converge at each example, while the target posterior keeps moving with subsequent exam-
ples. Moreover, combining methods that need to tune hyper-parameters defeats the parameter free
nature (Abdellaoui, 2000; Mcmahan & Streeter, 2012; Orabona & Pál, 2016) of Bayesian methods.

Most Bayesian literature addressed the dense problem, where xt consists of mostly nonzero entries
for every t, and the dimension d of the feature space is relatively small. Techniques, like Gaussian
Mixtures (Herbrich et al., 2003; Montuelle et al., 2013; 2014; Rasmussen, 2000; Reynolds et al.,
2000; Sung, 2004), that may use VB, usually apply matrix computations quadratic in d on the
covariance matrix. In many practical problems, however, a very small feature subset is present in
each example. For categorical features, only one of the features in the vector is present at any
example. Techniques, useful for the low dimensional dense problem, may thus not be practical.

Paper Contributions: We provide a simple analytical Bayesian method for online sparse logistic
and probit regressions with closed form updates. We generalize the method also for dense multi-
dimensional updates, if the problem is not completely sparse. Our results are first to study regret
for Bayesian methods that are simple enough to be applied in practice. They provide an example to
the connection between uncertainty and regret, and more broadly the Minimum Description Length
(MDL) principle (Grunwald, 2007; Rissanen, 1978a;b; 1984; 1986; Shamir, 2015; 2020). Empirical
results demonstrate the advantages of our method over computationally involved methods and over
other simpler approximations, both by achieving better regret on synthetic data and better loss on
real data. As part of the algorithm, uncertainty measures are provided with no added complexity.
We specifically demonstrate that it is sufficient to have an approximation focus on the location of
the peak of the posterior and its curvature or value, which are most likely to dominate regret, instead
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of approximating the full posterior, which brings unnecessary complexity missing the real goal of
preserving the effects of a good prior. In fact, approximating the full posterior may eventually lead to
poor generalization and overfitting by focusing too much on the tails of the posterior. Our approach
directly approximates the posterior, unlike VB methods that approximate by minimizing an upper
bound on the loss. Finally, our approach leverages sparsity to solve a sparse problem.

Related Work: The simplest single dimensional online logistic regression problem (d = 1 and

x1,t = 1,∀t) was widely studied. Jefferys’ prior, ρ(θ)
4
= 1/

(
π
√
θ(1− θ)

)
, is asymptotically

optimal (Clarke & Barron, 1994; Xie & Barron, 1997; 2000; Drmota & Szpankowski., 2004)). It
can be expressed in terms of log-odds weights w as ρ(w) = ew/2/[π (1 + ew)]. Applying a mixture
leads to the Krichevsky & Trofimov (1981) (KT) add-1/2 estimator Q

(
yt|yt−1

)
= [nt−1 (yt) +

0.5]/t, where nt−1(yt) counts occurrences of yt. We use yt to express a sequence from 1 to t.
Applying this prior in a Follow The Regularized Leader (FTRL) setting (McMahan, 2011) also
leads to the KT estimator. This raised the question whether regret optimality generalizes to large
dimensions (McMahan & Streeter, 2012). Hazan et al. (2014) showed that this was not the case
for proper methods. Theoretically achievable bounds of Bayesian methods, however, do generalize
(Kakade & Ng, 2005; Foster et al., 2018; Shamir, 2020), with large variance Gaussian or uniform
prior with diagonal covariance. Peaked priors fail, as for each feature in an example, other features
provide a self excluding log-odds prior, that shifts the relation between the overall distribution and
the feature weight. While wide priors are good theoretically, because of the intractability of the
Bayesian mixture integrals, diagonal approximations that are used unfortunately degrade their effect.

Bayesian methods have been studied extensively for estimating posteriors and uncertainty (Bishop,
2006; Makowski et al., 2002; Sen & Stoffa, 1996). There is ample literature researching such tech-
niques in deep networks (see, e.g., Blundell et al. (2015); Hwang et al. (2020); Kendall & Gal
(2017); Lakshminarayanan et al. (2017); Malinin & Gales (2018); Wilson (2020)). Most of the
work focuses on the ultimate posterior after the full training dataset has been visited. One attempts
to leverage the uncertainty measurements to aid in inference on unseen examples. Techniques like
expectation propagation (EP) (Minka, 2001; 2013) (see also Bishop (2006); Chu et al. (2011); Cun-
ningham et al. (2011); Graepel et al. (2010)) and VB are used to generate estimates of the posterior.
In a dense setup, where there is a relatively small number features (or units in a deep network),
Gaussian Mixture models can also be learned, where a jointly Gaussian posterior is learned, usually
with some kernel that is used to reduce the dimensionality of the parameters that are actually being
trained. Such methods, however, do not fit the sparse online setup.

Variational methods are derived utilizing Jensen’s inequality to upper bound the loss of the Bayesian
mixture expectation by expectation of the negative logarithm of the product of the prior ρ(w) and
data likelihood P (yT |xT ,w). Normalizing this joint by the expected label sequence probability
gives the posterior P (w|xT , yT ). Then, a posterior Q(·) with a desired form is matched by mini-
mizing the KL divergence KL(Q||P ), which decomposes into expectation w.r.t. Q()̇ over the loss
on yT and KL(Q||ρ) between the approximated posterior and the true prior. The first term may re-
quire techniques like the iterative mean field approximation EM (Bishop, 2006; Jaakkola & Jordan,
1998), or MC sampling to be approximated. Gradient methods can also minimize KL(Q||P ). In
the sparse setup, it is standard to assume a diagonal Q(·). In an online setting, the process can be
iterated over the examples (or mini-batches), where the posterior at t is the prior at t+1. Computing
the approximate posterior may be very expensive if done for every example. SGD can be used with
MC sampling, but that would incur additional losses, as the posterior changes between successive
examples. Like VB, EP minimizes the opposite divergenceKL(P ||Q) between the posterior and its
approximate.

2 PRELIMINARIES

Let ρt(w) be the prior on the weights at round t, where we start by initializing some ρ1(w). We will
assume that ρ(·) is approximated by a diagonal covariance Gaussian, with means µi,t and variances
σ2
i,t for component i at time t. Leveraging results in Kakade & Ng (2005); Foster et al. (2018);

Shamir (2020), if we restrict wi ∈ [−B,B], a uniform prior over this interval or a normal prior
with standard deviation proportional to B can be picked. (To approximate a Dirichlet-1/2, 0-mean
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normal prior with variance 2π can be used.) Observing sparse xt, the prediction for yt is given by

pt
4
= P (yt|xt) =

∫
w

p(yt|xt,w)ρt(w)dw
4
=

∫
w

pt(yt,w|xt)dw, (1)

where for binary logistic regression, the probability of the label given the example and weights is
given by the Sigmoid of the label weighted dot product of the example and weights

p(yt|xt,w)
4
=

1

1 + exp
(
−ytxTt w

) 4= Sigma
(
ytx
T
t w
)
. (2)

The expected prediction pt in (1) marginalizes out the weights w according to the prior ρt(·) from
the joint probability of w and yt. The prediction pt is a function also of all prior pairs sequence
{xt−1, yt−1} through the prior ρt(·). After observing yt, we try to match a (diagonal) posterior
Q(·) to the weights that will equal the next round’s prior

ρt+1(w)
4
= Qt(w) ≈ p(w|xt, yt) =

p(yt|xt,w)ρt(w)

P (yt|xt)
=
p(yt|xt,w)ρt(w)

pt
. (3)

Using ST
4
= {xT , yT }, the logarithmic loss incurred by approximation Q(·) on the sequence of

predictions is L(ST , Q)
4
= −

∑T
t=1 log pt. Let w∗ be some fixed comparator in the parameter

values’ space. Then, the regret of approximation Q(·) relative to comparator w∗ is given by

R(ST , Q,w∗)
4
= L(ST , Q)− L(ST ,w∗) = −

T∑
t=1

[
log pt + log(1 + exp(−ytxTt w∗)

]
. (4)

The regret can measure the excess loss relative to the best possible w∗ comparator, if it is chosen.

3 MARGINALIZED BAYESIAN GAUSSIAN APPROXIMATION

In this section, we describe the proposed method. First, the Sigmoid is approximated by a normal
Cumulative Distribution Function (CDF). A prediction for the label of the current example is gen-
erated shrinking the cumulative mean score as function of the cumulative variance over all features.
The main idea for updating feature distributions is marginalizing away all other covariates for each
feature in an example at a given round, such that the mean and variance of the feature can be updated
to match the location of the peak and either its curvature or value to the true marginalized posterior.
In Appendix B, we demonstrate the same approach for Probit Regression. It follows the same steps,
except that it does not require the initial approximation. Finally, Appendix D.1 shows how similar
approximation methodology can be used to apply simple multi-dimensional updates instead of a
marginalized one, the can be performed when sparsity is limited.

Gaussian Approximation of a Sigmoid: The relation between the logistic distribution and the
Normal one was well studied in the statistics literature (see, e.g., Bishop (2006); Murphy (2012)).
The Sigmoid function in (2) can be viewed as a CDF, which can be approximated by a normal CDF
Φ(z) (The inverse of Φ(·) is the Probit function.) The derivative of the Sigmoid function is the
0-mean Logistic Probability Density Function (PDF). Matching the PDFs, we have ew/(1 + ew)2 ≈
1/
√

2πσ2 exp
{
−w2/2σ2

}
. This yields that the Sigmoid function can be approximated by a 0-mean

Gaussian CDF with variance 8/π. Using the standard 0-mean normal Φ(·) function, the argument
is scaled by the inverse of the standard deviation

√
π/8, giving

Sigma(w)
4
=

1

1 + e−w
≈ Φ

(√
π

8
· w
)
. (5)

More details about this approximation are in Appendix A.

Approximation approach and some notation: With the diagonal and Gaussian assumptions, for
each sparse example (with only dt � d nonzero entries in xt), we can assume that we have a single
normal random variable, whose mean is the xt weighted mean of covariate weights, and whose
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variance is the quadratically weighted sum of variances. Denote the example total weight, mean,
and variance by

wt
4
=

d∑
i=1

xi,twi,t, µt
4
=

d∑
i=1

xi,t · µi,t, σ2
t
4
=

d∑
i=1

x2
i,t · σ2

i,t (6)

(where the diagonalization assumption is important for the simplicity of the approximation of σ2
t ).

Since we consider a sparse problem, there is benefit to breaking the dependencies between features
present in a given example and updating each independently. We can achieve that by marginaliz-
ing the prior at t over all other features. Because we assume all features are jointly independent
Gaussians, we can break the joint prior into a product of two components; one, the marginal of the
feature, and the other the marginal of all other features together, i.e., the self excluding prior. To
match the posterior, we then marginalize on the latter, and match a single dimensional posterior for
each feature. We define the self excluding prior for feature i at time t, its mean and variance as

w−i,t =

d∑
j=1

xj,twj,t−xi,twi,t =
∑
j 6=i

xj,twj,t; µ−i,t
4
= µt−xi,tµi,t; σ2

−i,t
4
= σ2

t −x2
i,tσ

2
i,t. (7)

Prediction: With the probit approximation in (5) and the single dimensional variable wt, we can
compute pt in (1), replacing p(yt|xt,w) in (2) by a normal CDF. Approximating this integral (see,
e.g. Murphy (2012), Section 8.4.4.2, and Bishop (2006)) gives

pt ≈ Sigma

 ytµt√
1 + π

8σ
2
t

 . (8)

This result demonstrates how the prediction variance shrinks the prediction towards probability 0.5.

Marginalization: Given the diagonalization assumption, the prior at t can be expressed as ρt(w) =
ρi,t(wi) · ρ−i,t(w−i), where ρ−i,t(·) is the prior on the self excluding prior of wi. Hence,

p(yt,w|xt) = p(yt|xt,w)ρi,t(wi)ρ−i,t(w−i). (9)

Marginalizing on w−i gives

p(yt, wi|xt) = ρi,t(wi)

∫ ∞
−∞

p(yt|xt,w)ρ−i,t(w−i)dw−i
4
= ρi,t(wi)Iw−i,t. (10)

The inner integral, which marginalizes over w−i with its prior ρ−i,t(w−i), can be approximated by

Iw−i,t =

∫ ∞
−∞

1√
2πσ2

−i,t

exp

(
− (w−i − µ−i,t)2

2σ2
−i,t

)
· Sigma [yt(xi,twi + w−i)] dw−i

(a)
≈

∫ ∞
−∞

1√
2πσ2

−i,t

exp

(
− (w−i − µ−i,t)2

2σ2
−i,t

)
· Φ
[√

π

8
yt(xi,twi + w−i)

]
dw−i

(b)
=

∫ ∞
−∞

φ(z) · Φ
[√

π

8
yt(xi,twi + µ−i,t + σ−i,tz)

]
dz

(c)
= Φ

√π
8 yt(µ−i,t + xi,twi)√

1 + π
8σ

2
−i,t


(d)
≈ Sigma

yt(µ−i,t + xi,twi)√
1 + π

8σ
2
−i,t

 . (11)

Step (a) follows, again, from the approximation in (5). For (b), we apply the change of variables z =

(w−i−µ−i,t)/σ−i,t, where φ(·) is the standard Gaussian PDF. The integral in (b) gives Φ
(

a√
1+b2

)
,
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with a =
√

π
8 yt(µ−i,t + xi,twi) and b2 = π

8σ
2
−i,t to lead to (c). Finally, the approximation in (5) is

used to go back from a Normal CDF to a Sigmoid in (d).

Posterior: The posterior on wi is given by plugging (11) into (10) normalizing by pt given in (1).

ρi,t+1(wi) = Qi,t(wi) ≈ p(wi|xt, yt) =
1

pt
· ρi,t(wi) · Sigma

yt(µ−i,t + xi,twi)√
1 + π

8σ
2
−i,t

 . (12)

The approximation on the right implies matching the current true posterior with the ith component
of the approximate posterior Q(·). It can be simplified to

1

σi,t+1
exp

(
− (wi − µi,t+1)2

2σ2
i,t+1

)
≈ 1

ptσi,t
exp

(
− (wi − µi,t)2

2σ2
i,t

)
· Sigma

yt(µ−i,t + xi,twi)√
1 + π

8σ
2
−i,t

 .

(13)

Approximations: Because the functional form of the posterior is not Gaussian, there are multiple
ways to fit a Gaussian. We review alternatives in Appendix D. However, we want to ensure that the
regions of the true posterior we are most likely to converge to at the horizon are not scaled down too
much, as this will incur additional loss. It is thus desirable to match the peak of the true posterior
with the peak of the approximation. One method is to match both the location and hight of the peak.
The other, Laplace approximation (Bishop, 2006), matches the location and curvature at the peak.
Both methods give the same approximate for µi,t+1, but a somewhat different one for σ2

i,t+1.

To give µi,t+1, we find wi that maximizes the r.h.s. of (13), or minimizes its negative logarithm. Let

pi,t+
4
= Sigma

yt (µ−i,t + xi,tµi,t+1)√
1 + π

8σ
2
−i,t

 =

1 + exp

−yt (µ−i,t + xi,tµi,t+1)√
1 + π

8σ
2
−i,t

−1

(14)

be almost pt in (8), except that µi,t+1 replaces µi,t and σ2
−i,t replaces σ2

t . Thus pi,t+ is the prob-
ability predicted for yt if we update µi,t and shrink as function of σ2

−i,t. The minimization gives

µi,t+1 = µi,t +
ytxi,tσ

2
i,t√

1 + π
8σ

2
−i,t

· (1− pi,t+) . (15)

Eq. (15) can be solved iteratively, where Newton’s method can be used, as described in Appendix C.
The solution for µi,t+1 can also be expressed in terms of the r generalized Lambert W function
(Corless et al., 1996; Mezo & Baricz, 2015).

Alternatively, to avoid multiple iterations per update when using Newton’s method, we can use a
Taylor series approximation of 1− pi,t+ around 1− pi,t, where

pi,t
4
= Sigma

yt (µ−i,t + xi,tµi,t)√
1 + π

8σ
2
−i,t

 = Sigma

 ytµt√
1 + π

8σ
2
−i,t

 . (16)

Like pi,t+, pi,t is not pt. Instead, it is the probability of yt as projected by the means of the weights
at t, shrunk as function of σ2

−i,t instead of σ2
t . More importantly, it depens only on parameters before

the update at t+ 1 is applied, giving a closed form solution. Applying first order approximation we
have

µi,t+1 = µi,t +
ytxi,tσ

2
i,t (1− pi,t)√

1 + π
8σ

2
−i,t

[
1 + 1

1+π
8 σ

2
−i,t

y2
t x

2
i,tσ

2
i,t (1− pi,t) pi,t

] . (17)

If may be simpler to store the precision 1/σ2
i,t, in which case, (17) may be easier to compute by

normalizing both numerator and denominator by σ2
i,t, applying this normalization on the right term

of the denominator. Second or higher orders approximations can also be applied, but may not be
necessary, as the first order one already gives identical performance to the iterative method.
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After updating µi,t+1, we can apply (13) to update σi,t+1. Plugging (15) in (13), we solve for σi,t+1,

σi,t+1 =
ptσi,t
pi,t+

· exp

{
(µi,t+1 − µi,t)2

2σ2
i,t

}
=
ptσi,t
pi,t+

· exp

{
y2
t x

2
i,tσ

2
i,t

2(1 + π
8σ

2
−i,t)

· (1− pi,t+)
2

}
. (18)

Alternatively to (18), Laplace approximation can be used by finding the second derivative of the
negative logarithm of the posterior, giving

σ2
i,t+1 =

[
1

σ2
i,t

+
y2
t x

2
i,t

1 + π
8σ

2
−i,t
· pi,t+ · (1− pi,t+)

]−1

. (19)

The procedures described are summarized in Algorithm 1. In Appendix D, we describe several
different methods and approximations that can be used, including one that applies the same approxi-
mation steps we applied in this section without the marginalization. As empirical results, in the next
section, show, however, there is no performance advantage to applying any of the more involved
methods.

Algorithm 1 Marginalized Bayesian Gaussian Approximation
1: procedure MARGINALIZED BAYESIAN GAUSSIAN APPROXIMATION(Parameters: µ0, σ2

0)
2: ∀i ∈ 1, . . . , d; µi,1 ← µ0, σ2

i,1 ← σ2
0 .

3: for t=1,2,. . . ,T do
4: Get xt.
5: Compute µt, σ2

t with (6).
6: Generate pt for yt ∈ {−1, 1} with (8).
7: Observe yt.
8: for i : xi,t 6= 0 do
9: Compute pi,t pi,t+ with (16) and (14), respectively, using µi,t+1 = µi,t for (14).

10: Iterate on (15) and (14) with Newton’s method, or use (17) to update µi,t+1.
11: Update σ2

i,t+1 with either (18) or (19)
12: end for
13: end for
14: end procedure

4 NUMERICAL RESULTS

To benchmark regret of an algorithm, one needs the ground truth of real or loss minimizing param-
eters. On real data, the loss minimizing parameters are unknown. Furthermore, true benchmark
datasets can consist of non-stationary data, and the feature sets selected by a model one trains may
misspecify the “true” features of such a model. Thus real data may not give clean evaluation of
the proposed methods. We present results on a benchmark dataset at the end of this section, but to
measure regret performance of different algorithms, we present results on synthetic data.

Synthetic Data: We simulated data by setting d features with true log-odds weights that were drawn
randomly with some prior (or with multiple priors, each governing a subset of the features). At round
t, dt � d features were selected in random from the set of d features, where different rules were used
for different simulations to draw the dt features. In the fully random case, we set a random fraction
α = dt/d parameter, and each feature was activated with probability α. We either used binary
features xi,t ∈ {0, 1}, or also drew xi,t randomly in [0, 1]. For categorical features, the d features
were partitioned into categories, and for every example, one or a preset number of features from
each category were randomly selected, with different types of randomness, including fast decaying
long tail distributions. Let θ be the vector of true parameters, then, Pr(Yt = 1) was computed as
Sigma(xTt θ). The probability was used to randomly draw yt. We used Algorithm 1, as well as other
algorithms, described in Appendix D, to sequentially predict yt and update posterior parameters. For
gradient methods, we used Stochastic Gradient Descent (SGD) with AdaGrad scheduling (Duchi
et al., 2011).
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Figure 1: Rt/ log t vs. round t for different methods for randomly drawn d = 200 binary features,
expected dt/d features per example with dt = 20 (left) and dt = 40 (right), and standard deviation
1 of true log-odds.

Table 1: Runtime and regret coefficients rT = RT / log T for different algorithms on synthetic 200
features models with true log-odds standard deviation of 1 and algorithm parameters as in Fig. 1.

Per Example Mean: 20 Per Example Mean: 40
1M Examples 10M Examples 1M Examples 10M Examples

Alg. Time rT Time rT Time rT Time rT
SGD 8s 117.6 58s 135.9 10s 246.3 1:18m 219.88
ADF 6s 190.3 45s 540.3 7s 178.6 53s 388.51
DimGauss 9s 78.02 1:01m 82.54 14s 97.52 1:42m 109.16
Gauss 9s 77.66 1:05m 93.85 14s 91.5 1:32m 144.28
ApproxG 9s 77.66 1:05m 93.85 12s 91.5 1:32m 144.28
AppG 0.9 83.4 90.6
VB-100 3:47m 144.22 35:25m 649.57 7:21m 202.9 1:10:25h 1125.3
VB-1000 35:16m 85.07 1:11:01h 104.31

We ran grids of algorithm hyper-parameters for all algorithms to find optimal ones, and we
show results for these optimal hyper-parameters for all algorithms. Since we know the true
weights θ, we use them for a comparator baseline w∗. Curves show progressive validation
(Blum et al., 1999) regret. At round t we measure the cumulative regret up to t given by

Rt
4
= −

∑t
τ=1

[
log pτ + log(1 + exp(−yτxTτ w∗)

]
. Instead of showing Rt, we plot Rt/ log t.

If an algorithm has logarithmic regret, the normalized curve of the algorithm will converge to the
constant. This methodology thus allows us to observe whether an algorithm has logarithmic regret
or not. Results are shown for Algorithm 1 with its different variations (labeled by Gauss for updates
with (15), and by Gauss Approx with (17)). Labels also designate the prior used (σ2

0 and µ0), and
which variance approximation was used (G for (18) and L for (19)). Reference results are shown for
SGD, multi-dimensional Gaussian approximation update (DimGauss) described in Appendix D.1,
EP; using Assumed Density Filtering (ADF) Minka (2001), and marginalized VB (VBApprox), de-
scribed in Appendix D.3.

Fig. 1 shows normalized regret for two different true data configurations described at the top of each
graph with random binary features. More detailed results on multiple configurations are shown in
Appendix E. Unfortunately, unlike theoretical results (Shamir, 2020), the prior has to fit the data
for all methods of Gaussian approximation for good regret. This is true for any known practical
Bayesian method. However, this is also true for SGD and AdaGrad, whose learning parameters
(learning rate, regularization strength) must also be tuned to the data. If we choose a prior that
matches the empirical distribution of the optimal weights, regret rates, that appear to match the
lower bound of 0.5 log T per parameter, are achieved on all experiments with Algorithm 1. The
same results are achieved whether we use the iterative version in (15) or its simpler approximation
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(17), and whether the variance is updated by (18) or (19). Unlike Algorithm 1, both, DimGauss
and ADF appear to be optimized for priors that are different from the true one, and that depend
on the fraction or number of features that occur in each example. DimGauss requires larger prior
with more features. As the sparsity is reduced, DimGauss with its optimal prior seems to improve
relative to Algorithm 1. This is expected, as the sparsity assumption becomes less valid. Algorithm 1
outperforms both ADF and SGD in all cases. We can find SGD hyper-parameters that seem to still
exhibit logarithmic regret for each configuration, but are inferior to Algorithm 1, with increasing
gaps with more active features.

Table 1 shows both execution runtimes and regret coefficients rT
4
= RT / log T for the full simu-

lations with the algorithms and configurations in Fig 1. Simulations were run on a single Ubuntu
machine and included synthetic data generation and similar outputs for all algorithms compared.
DimGauss, VB, and ADF may have a slight advantage, as they were implemented with the Eigen
package, which is highly optimized for matrix operations. We show benchmarks for 106 and 107

examples. We observe rather equal runtimes for SGD, ADF, DimGauss and Algorithm 1, with slight
advantage to ADF, which may be due to the highly optimized matrix operations. Good regret is
obtained for both methods of Algorithm 1, but DimGauss slowly improves towards the regret of
Algorithm 1. This is true because selecting 20 or 40 features out of 200 results in repetitions of
co-occurrences as more data is observed, and DimGauss utilizes these co-occurrences. We show
below and also observe from the results in Appendix E, however, that with higher degrees of spar-
sity, the DimGauss algorithm degrades, while Algorithm 1 retains its advantages. The “Gauss” and
“ApproxG” entries in the table use a prior with σ2

0 = 1 (as in Fig. 1). The table demonstrates worse
rates than d/2 log T for 107 examples. However, using σ2

0 = 0.9, as shown for entry “AppG 0.9” in
the table, gives rates that match the lower bound. This is because the empirical distribution of the
true weights drawn has variance closer to 0.9 than to 1 for this particular drawn example.

Interestingly, the Newton method in the Gauss algorithm does not require more time than its Taylor
approximation, and both regret and runtime are matched between the two. This is attributed to the
fact that the Newton method requires very few iterations to converge.

Boldfaced in Table 1 are the poor runtime results of the VB methods (shown with 100 and 1000
samples), whose worst-case complexity is O(dtNJT ), where N is the number of samples and
J is the maximal number of iterations per example. The table illustrates how runtime increases
substantially relative to all other algorithms whose complexity is O(dtT ). Regret only approaches
that of Algorithm 1 with 1000 samples, and is far inferior with 100 samples.

Fig. 2 (left) shows normalized regret of the different methods for a synthetic categorical model,
with 22 categories. Category j, j = 1, 2, . . . consists of 2j features (a total of over 8M ). For each
example, a single feature is randomly drawn from each category with Zipf distribution c/(n+1)1.75,
where c is a normalizer and n is the feature index in its category. The true weights are randomly
drawn as before, with standard deviation 2. This gives a long tail distribution over features, where
for each category small indices are drawn more often, but many features from the long tail do occur
in examples. This models a realistic sparse dataset. Algorithm 1 outperforms other methods, and
the best hyper-parameters of the DimGauss algorithm are inferior to the other algorithms due to the
sparsity.

Criteo display advertising challenge benchmark Dataset: The right graph in Fig. 2 gives relative
percent aggregate loss performance of the Bayesian algorithms relative to the best configuration
we found for an AdaGrad SGD on the Criteo dataset1. We trained all algorithms on the over 45M
examples in this dataset, which consists of 13 integer valued features, and 26 categorial features with
different category counts. For each example, we generated a prediction, computed its log loss on the
label, and applied update. The aggregate log loss is a sum of data uncertainty and regret. The first is
equal for all algorithms and linear in the size of the data, where the second is sub-linear in T for a
good algorithm. Since in real data, there is no prior knowledge of the true parameters, the measured
loss does not distinguish between the two terms. Because the regret, which differentiates between
the different algorithms is sub-linear, while the data uncertainty component which is equal for all
algorithms is linear in T , even small noticeable percent improvements imply possible substantial
improvements of regret. Algorithm 1 (using a linear model) achieved 0.465 progressive validation
log loss, which is better, for example, than results reported using deep networks in (Cheng et al.,

1https://www.kaggle.com/c/criteo-display-ad-challenge
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Figure 2: Left: Rt/ log t vs. t for synthetic data with millions of long tail features. Right: Loss
relative to the best SGD on the Criteo benchmark dataset for multiple algorithms.

2016). We observe advantages to the Bayesian methods over SGD, where Algorithm 1 was superior
to all methods. The DimGauss method slowly degrades relative to the other methods due to the
sparsity of some of the categorical features.

5 CONCLUSIONS

We introduced a simple Bayesian mixture diagonal Gaussian approximation method based on
marginalization for sparse online logistic regression and probit regression, that attempts to retain
the affects of a good prior around the optimal values of the weights. The method does not require
the complexities of standard Bayesian methods, as VB, but was empirically shown to achieve regret
rates as good and even better. With proper priors, empirical results matched regret lower bounds,
and were superior to other Bayesian methods also measured with their best choices of priors. With
the strong relation between regret and uncertainty, this approach gives good uncertainty estimates.
The methodology was proposed for logistic regression, and extended to probit regression, but can
be further extended to other settings. We also demonstrated a matching approach that performs high
dimensional updates, and can be used for dense problems.
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Figure 3: Left: Logistic and NormalN (0, 8/π) distributions and their differences. Middle: Sigmoid
and Normal CDF N (0, 8/π) and their differences. Right: Differences between logistic and normal
(PDFs and CDFs).

A RELATION BETWEEN GAUSSIAN AND SIGMOID

The Sigmoid function, which converts log-odds to probability is very close in shape to the Gaussian
Cumulative Distribution Function (CDF) Φ(z), as well established in the statistics literature (see,
e.g., Bishop (2006); Murphy (2012)). The derivative of the Sigmoid function is given by

dSigma(w)

dw
=

ew

(1 + ew)2
(20)

and equals the PDF of a 0-mean Logistic distribution. We can approximate the logistic PDF by a
Gaussian by matching the PDFs,

ew

(1 + ew)2
≈ 1√

2πσ
exp

{
− w2

2σ2

}
. (21)

Matching the distributions at w = 0 yields σ =
√

8/π,

ew

(1 + ew)2
≈ 1

4
exp

{
−πw

2

16

}
=

√
π

8
· 1√

2π
exp

{
− w2

2 · 8
π

}
. (22)

Thus, we can approximate the Sigmoid with a 0-mean Gaussian CDF with variance 8/π, giving (5).

It remains to demonstrate that the PDFs (and CDFs) are close to each other not only at the peak.
Figure 3 demonstrates the approximation of the Logistic distribution (left) and the Sigmoid function
(middle) by a normal PDF and a normal CDF both with variance 8/π, respectively. The green curve
shows the differences between the logistic/Sigmoid and the normal, which are also plotted on the
right plot at larger scale. The magnitude of the difference between the Sigmoid and the normal
CDF is bounded by 0.02 over the whole region. The differences appear asymmetric around the
origin, and are substantially small at 1/3 standard deviation from the origin, or less. While they
can accumulate over multiple examples, it appears that the most probable scenario is that positive
and negative differences over multiple examples cancel each other. Furthermore, the motivation of
a Bayesian method is to converge toward a peaked point mass, at the loss minimizing value of the
parameter. As the variance is narrowed closer to such a point mass, the approximation tends to exist
in the flat region around the origin, where the difference between the Sigmoid and the normal CDF
is very small.

B PROBIT REGRESSION

In this appendix, we show the derivation of the method proposed in this paper for Probit Regression,
where, in a similar manner to (2), the predicted label probability with weight vector w, label yt, and
covariates xt is given by the normal CDF

p(yt|xt,w)
4
=

∫ ytx
T
t w

−∞

1√
2π

exp

(
−α

2

2

)
dα
4
=

∫ ytx
T
t w

−∞
φ(α)dα

4
= Φ

(
ytx
T
t w
)

(23)

where, as we recall, φ(·) and Φ(·) are the standard Gaussian (normal) PDF and CDF, respectively.
While for logistic regression, we used a Gaussian approximation to obtain analytical expressions for

14



the prediction in (8) and the marginalization integral in (11), for probit regression, these are no longer
approximations. For the posterior, we will still apply a Gaussian and a diagonal approximations, as
in the derivations based on (13).

Prediction: The approach for probit regression is similar to the one described in Section 3 for
logistic regression. For each feature we track the mean µi,t and the variance σ2

i,t for the ith feature.
For example t, we use (6) to compute the total weight wt, its mean µt and variance σ2

t . Eq. (7) gives
the self excluding weights, their means, and their variances. Similarly to (8), using the approximate
normal prior at t, we can derive the label prediction for yt,

pt = P (yt|xt) =

∫ ∞
−∞

1√
2πσ2

t

· exp

{
− (wt − µt)2

2σ2
t

}
· Φ
(
ytx
T
t w
)
· dwt

(a)
=

∫ ∞
−∞

1√
2πσ2

t

· exp

{
− (wt − µt)2

2σ2
t

}
·
∫ ytwt

−∞

1√
2π

exp

(
−z

2

2

)
· dz · dwt

(b)
=

∫ ∞
−∞

1√
2π
· exp

{
−v

2

2

}
·
∫ yt(σtv+µt)

−∞

1√
2π

exp

(
−z

2

2

)
· dz · dv

(c)
=

∫ ∞
−∞

φ(v) · Φ [yt(σtv + µt)] dv

(d)
= Φ

(
ytµt√
1 + σ2

t

)
. (24)

For (a), we use the definition of wt in (6). Step (b) follows from substituting v = (wt − µt)/σt.
Step (c) identified the integrands as a product of the standardized N (0, 1) normal PDF multiplied
by a standardized normal CDF at yt(σtv + µt). This integral gives a normal CDF Φ

(
a√

1+b2

)
for

a = ytµt and b2 = y2
t σ

2
t = σ2

t leading to (d).

Marginalization: Following the marginalization steps in Section 3, we can express the joint proba-
bility of weight wi and label yt conditioned on the covariates xt and marginalized over all the other
nonzero covariates at example t as in (10) by

p(yt, wi|xt) = ρi,t(wi) · Φ

yt(µ−i,t + xi,twi)√
1 + σ2

−i,t

 (25)

where we use the steps of (11), excluding the approximations, to derive (25).

Posterior: The posterior on wi is given as in (12), normalizing p(yt, wi|xt) by pt from (24).

ρi,t+1(wi) ≈ p(wi|xt, yt) =
1

pt
· ρi,t(wi) · Φ

yt(µ−i,t + xi,twi)√
1 + σ2

−i,t

 . (26)

This posterior can now be matched by a normal posterior Qi,t(wi) as in (13).

Approximation: Here, we follow the Laplace approximation applied in Section 3. All other meth-
ods mentioned in the paper are also possible. To find µi,t+1 that minimizes the negative logarithm
of the r.h.s. of (26), define, similarly to (14),

zi,t+
4
=
yt(µ−i,t + xi,tµi,t+1)√

1 + σ2
−i,t

(27)

as the probit score, which serves as the argument of the normal CDF, where the ith mean has been
updated, but all other means have not. We can now express the update of the ith mean by

µi,t+1 = µi,t +
ytxi,tσ

2
i,t√

1 + σ2
−i,t

· φ(zi,t+)

Φ(zi,t+)
. (28)

Eq. (28) is a similar update for probit regression to that of (15) for logistic regression, where the ratio
φ(zi,t+)/Φ(zi,t+) replaces 1− pi,t+ (and the scaling of the self excluding variance is unnecessary).
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As (15), (28) must be solved iteratively because the term φ(zi,t+)/Φ(zi,t+) is a function of µi,t+1

through the definition of zi,t+. As in Section 3, we can use a first order Taylor approximation of
φ(zi,t+)/Φ(zi,t+) around its value for µi,t. Similarly to (16), we define

zi,t
4
=
yt(µ−i,t + xi,tµi,t)√

1 + σ2
−i,t

(29)

which is the score before update of all means µi,t, but unlike the one used to compute pt, normal-
ized by the ith self excluding variance σ2

−i,t instead of σ2
t . With some algebra, this gives a single

operation update, similar to that in (17), given by

µi,t+1 = µi,t +
ytxi,tσ

2
i,tφ(zi,t)/Φ(zi,t)√

1 + σ2
−i,t

{
1 + 1

1+σ2
−i,t

y2
t x

2
i,tσ

2
i,t ·

φ(zi,t)
Φ(zi,t)

·
[
zi,t +

φ(zi,t)
Φ(zi,t)

]} . (30)

The term zi,t + φ(zi,t)/Φ(zi,t) in the denominator replaces pi,t in the logistic regression update
equation.

Taking the second derivative of the negative logarithm of the posterior and approximating 1/σ2
i,t+1

by it, gives a single operation update of the variance, similarly to (19),

σ2
i,t+1 =

{
1

σ2
i,t

+
y2
t x

2
i,t

1 + σ2
−i,t
· φ(zi,t+)

Φ(zi,t+)
·
[
zi,t+ +

φ(zi,t+)

Φ(zi,t+)

]}−1

. (31)

C MEAN AND VARIANCE UPDATES

Eq. (15) gives an update for the mean µi,t+1 that cannot be solved in closed form. This is beacuse
pi,t+ is a function of µi,t+1. However, the update is easily solvable with a few iterations of Newton’s
method. We start by plugging µ(`=0)

i,t+1 = µi,t for iteration ` = 0. We follow by computing p(0)
i,t+ with

(14). The solution for µi,t+1 is the value of wi that minimizes the negative logarithm of the r.h.s.
of (12) where ρi,t(wi) is Gaussian with mean µi,t and variance σ2

i,t. At iteration `, we can compute

p
(`−1)
i,t+ with (14), using µ(`−1)

i,t+1 . The gradient of the negative logarithm of the posterior w.r.t. wi at

wi = µ
(`−1)
i,t+1 is given by

g` =
µ

(`−1)
i,t+1 − µi,t

σ2
i,t

− ytxi,t√
1 + π

8σ
2
−i,t

·
(

1− p(`−1)
i,t+

)
. (32)

The second derivative w.r.t. wi is given by

h` =
1

σ2
i,t

+
y2
t x

2
i,t

1 + π
8σ

2
−i,t
· p(`−1)
i,t+ ·

(
1− p(`−1)

i,t+

)
(33)

Then, µi,t+1 is updated by
µ

(`)
i,t+1 = µ

(`−1)
i,t+1 −

g`
h`
. (34)

The process terminates when the difference
∣∣∣µ(`)
i,t+1 − µ

(`−1)
i,t+1

∣∣∣ is smaller than some threshold, or a
specified number of iterations had already executed. Note that the second derivative in (33) (the
Newton Hessian step) gives the same expression as the update to the precision (inverse variance) in
(19).

Eq. (18) gives an update to the variance. It is interesting to interpret some observations from this
update. For xi,t ≥ 0 , pi,t+ ≥ pt. This leads to ytxi,t(µi,t+1 − µi,t) > 0 because for every yt,
µi,t+1 has to move away from µi,t with the sign of yt. This implies that we add a positive term from
the log-odds converted to pt to those converted into pi,t+ and also apply less shrinkage using σ2

−i,t
instead of σ2

t , yielding this claim. Hence, the coefficient of σi,t outside the exponential term in (18)
is upper bounded by 1. The argument of the exponential term is always nonnegative, which implies
that the exponential term is lower bounded by 1. However, if the self-excluding variance σ2

−i,t is
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large, it makes the argument small. Similarly, if pi,t+ is large relative to pt it makes the whole
expression smaller. These two observations imply that if the self excluding prior is less certain, or
if the self excluding prior has a different belief about the label from the one observed overall, the
uncertainty of the current feature reduces more, because it is deemed responsible for the observation
yt. On the other hand, if the opposite holds, i.e., either the uncertainty of the self excluding prior is
low, or the self excluding prior agrees more with the observed label yt, then, feature i matters less
for the observation, and therefore, its uncertainty is not reduced as much.

D OTHER METHODS

In this appendix, we describe updates we perform with other Gaussian approximation methods. We
can update the mean vector and covariance of dt features that occur at t, without marginalization,
discarding off-diagonal covariance terms. This approach, that otherwise uses similar approximations
to the ones we used in Section 3, is described in Section D.1, where some of the approximation steps
are novel to this paper.

Alternatively, one can choose any two points on the true posterior and match Q(·) on these. Least
squares can be used with several points that represent a region of wi, for which the posterior at T is
likely to have most mass. EP and VB can be applied, discussed in Sections D.2 and D.3, respectively.
For the latter, specifically, single dimensional VB on the marginalized posterior can be applied to
minimize KL(Qi,t(wi)||p(wi|xt, yt)), where p(wi|xt, yt) is the true posterior on the r.h.s. of (12)
given by p(yt, wi|xt)/pt, where p(yt, wi|xt) is in (10). This still requires expensive Monte Carlo
estimation of expectations with an iterative Newton method. Without marginalization, however, a
similar VB approach would require even more expensive Monte Carlo sampling or iterative mean
field approximation EM to converge on all components.

D.1 MULTI-DIMENSIONAL GAUSSIAN APPROXIMATION

Instead of marginalizing on all other features to update wi for which xi,t 6= 0, we can apply multi-
dimensional update on all features for which xi,t 6= 0 at round t. Such updates will enhance cor-
relation between these features, and may be a better fit to problems in which such correlation is
expected. For this update, we assume that the true posterior consists of a product between a prior
with a diagonal covariance matrix and a Sigmoid, and we apply Lapace approximation to obtain new
mean vector and covariance. With some abuse of notation, let all values at t consist only of the dt
nonzero components of xt. Let Σt be the diagonal covariance matrix, with diagonal elements σ2

i,t.
Let ut be the estimated mean vector at t. Then, the true posterior at t is given by

p(w|xt, yt) =
1

pt
·

exp
{
− 1

2 (w − ut)
T Σ−1

t (w − ut)
}√

(2π)dt |Σt|
· 1

1 + exp
{
−ytxTt w

} (35)

Similarly to (14), define

pt+
4
= Sigma

(
ytx
T
t ut+1

)
(36)

as the probability of yt computed with weights after they had been updated (and this time with no
shrinkage), where ut+1 is the updated vector of means. Then, with Laplace approximation, taking
the value of the mean vector that maximizes the posterior, the mean can be updated as in (15) by

ut+1 = ut + Σtytxt (1− pt+) . (37)

This is, again, an equation that must be solved either numerically, or using methods such as Newton’s
method. Again, we can assign u

(0)
t+1 = ut, and apply (36) on it to obtain p(0)

t+ . Then, at iteration `,

g` = Σ−1
t (u

(`−1)
t+1 − ut)− ytxt · (1− p(`−1)

t+ ) (38)

and
H(`) = Σ−1

t + y2
t xtx

T
t · p

(`−1)
t+ · (1− p(`−1)

t+ ). (39)

Then, ut+1 is updated by
u

(`)
t+1 = u

(`−1)
t+1 −H−1

(`) g`. (40)
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Termination is either when the update on all components of ut+1 is less than some threshold, or
after a set number of iterations. Inverting the Hessian H also gives the updated covariance Σt+1,
whose diagonal elements can be now used to update σ2

i,t+1, if we apply the algorithm for a sparse
problem, where it is infeasible to store all covariances.

Instead of updating H`, we can keep track of its inverse H−1
(`) , and there is no need to invert the

covariance matrix Σt. With the diagonal form of Σt, all operations can be implemented with linear
complexity in dt using the Sherman & Morrison (1950) formula, which simplifies matrix inversions
for special matrices. For our specific need here, if A is some matrix, α some constant, and x some
vector, then, the Sherman-Morrison formula is(

A+ αxxT
)−1

= A−1 − A−1αxxT A−1

1 + αxT A−1x
. (41)

Substituting A = Σ−1
t , x = xt, and α = y2

t p
(`−1)
t+ (1− p(`−1)

t+ ), we update H−1
(`) , inverting (39).

As in the marginalization method described in Section 3, we can avoid the iterative Newton method
with a first order Taylor approximation of 1− pt+ around 1− p̃t, where p̃t is defined in an analogy
to (16) as

p̃t
4
= Sigma

(
ytx
T
t ut

)
(42)

as the un-shrunk prediction of yt at round t (which is different from pt, which is shrunk by the
variance). The approximation leads to the following set of equations to update both ut+1 and Σt+1.
For simplification, define

vt = Σtxt. (43)
Then, temporarily update Σt, using Sherman-Morrison formula, to

Σ̃t+1 = Σt −
y2
t p̃t(1− p̃t)ΣtxtxTt ΣTt

1 + y2
t p̃t(1− p̃t)xTt Σtxt

= Σt −
y2
t p̃t(1− p̃t)vtvTt

1 + y2
t p̃t(1− p̃t)xTt vt

. (44)

Since Σt is diagonal, the transpose on the last term of the numerator in the first equality is unneces-
sary. The second equality gives vector multiplications, showing that the complexity is linear in the
dimension of the vectors dt. (This is true also to the computation of vt when Σt is diagonal.) Next,
ut+1 can be updated

ut+1 = ut + yt(1− p̃t)Σ̃t+1xt. (45)
Now, we can update pt+ in (36), using ut+1, and use it to update Σt+1 using Sherman-Morrison,

Σt+1 = Σt −
y2
t pt+(1− pt+)vtv

T
t

1 + y2
t pt+(1− pt+)xTt vt

. (46)

In the sparse case, we can now take the terms of the diagonal of Σt+1 to update σ2
i,t+1 of the nonzero

covariates at round t.

Finally, it may be simpler to update the precision matrix Ht+1 = Σ−1
t+1 instead of the covariance

Σt+1. Specifically, if multiple updates are performed in a mini batch, the update applied to the
covariance cannot be applied additively. However, additive updates on the precision are valid. Thus
the updates in (44) and (46) can be replaced by

H̃t+1 = Ht + y2
t p̃t(1− p̃t)xtxTt (47)

and
Ht+1 = Ht + y2

t pt+(1− pt+)xtx
T
t (48)

respectively. To update ut+1, we still need to invert H̃t+1. We can use (44) if an update was applied
to a single round only. If a mini-batch update additively applied multiple updates at once in (47),
the updated H̃t+1 must be inverted to obtain Σ̃t+1.

The multi-dimensional approach described in this section can be applied to sparse problems, but
also to dense problems. In the dense case, the operation in (43) is no longer linear in dt, as the
covariance matrix is not necessarily diagonal. The use of Sherman-Morrison formula, however, to
invert the precision and covariance, still applies and lowers the complexity of the approach. In the
sparse problem, however, this approach may try to force correlations that are not there, that are
then ignored. As empirical results suggest, it may not be as good as the marginalization approach
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because of that. Furthermore, unlike the marginalization approach in Section 3, which achieves
best performance if the true prior matches the one used to initialize the algorithm, empirical results
demonstrate that the best performances are obtained with priors that are different from the true one
with the multi-dimensional method when applied on sparse problems.

D.2 EXPECTATION PROPAGATION - ASSUMED DENSITY FILTERING

Instead of minimizing the divergence between the approximate Q and the true posterior, we can use
the expectation propagation approach, as proposed in Minka (2001), which essentially minimizes
the opposite KL divergence, and attempts to match the first two moments. More details can be found
in Minka (2001).

D.3 MARGINALIZED VARIATIONAL BAYES

Instead of using Laplace approximation or matching the location of the peak of the true posterior and
the estimated one together with either its curvature or its value, we can apply full VB, by matching
the approximate posteriorQwith the true one through minimizing the KL divergenceKL(Q||P ) be-
tween Q, the approximate posterior, and the true posterior. This requires either iterative approaches,
such as mean field approximation EM, or Monte Carlo sampling in order to approximate expectation
over a yet unknown Q. One can apply this approach in dt dimensions as the Laplace approximation
in Subsection D.1. However, due to the inability to separate the covariates (in the Sigmoid), we
would require a power set of samples. If we use N samples per dimension, this approach would
use Ndt samples. This can be infeasible and complex if there are a large number dt of nonzero
covariates. Instead, we can use VB only in the ith dimension for each feature separately together
with the marginalization proposed in Section 3. This can be done by matching the approximate
posterior Qi,t(wi) with the posterior p(wi|xt, yt) we obtained on the r.h.s. of (12) on feature i after
we marginalized on all other features.

The KL divergence can be decomposed into three terms; the KL divergence betweenQ and the prior
ρi,t, the contribution of conditioning the posterior on the probability pt predicted for yt , and the log
loss (negative log likelihood) term, emerging from the Sigmoid.

KL(Qi,t(Wi)||p(Wi|xt, yt))

= KL(Qi,t||ρi,t) + EQi,t log pt + EQi,t

log

1 + exp

−yt (µ−i,t + xi,tWi)√
1 + π

8σ
2
−i,t




= EQi,t

[
log

σi,tpt
σi,t+1

− (Wi − µi,t+1)2

2σ2
i,t+1

+
(Wi − µi,t)2

2σ2
i,t

+

log

1 + exp

−yt (µ−i,t + xi,tWi)√
1 + π

8σ
2
−i,t




= log
σi,tpt
σi,t+1

− 1

2
+

1

2σ2
i,t

[
σ2
i,t+1 + µ2

i,t+1 + µ2
i,t − 2µi,tµi,t+1

]
+

EQi,t

log

1 + exp

−yt (µ−i,t + xi,tWi)√
1 + π

8σ
2
−i,t


 . (49)

All expectations are w.r.t.Qi,t. The KL term can be computed in closed form, giving the second and
third equalities.

The last term on the r.h.s. of (49) cannot be analytically computed without knowledge of the posterior
Qi,t at t. Instead, we use Monte Carlo, by drawing N samples Sj ∼ N (0, 1), letting Wi,j =
µi,t+1 + Sjσi,t+1. With known µi,t+1 and σi,t+1, we can now approximate the expectation term in
(49) as

1

N

N∑
j=1

log

1 + exp

−yt (µ−i,t + xi,t(µi,t+1 + sjσi,t+1))√
1 + π

8σ
2
−i,t
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where sj is the jth randomly drawn sample. Unfortunately, µi,t+1 and σ2
i,t+1 must be updated in this

step, and are not known. This requires, again, an iterative update using Newton’s method. Similarly
to (14) in Section 3, we need to define a prediction pi,j,t+ for which the prior (time t) means and
variances are used for all covariates except the ith one, and the updated µi,t+1 and σ2

i,t+1 are used
for the ith mean and variance, respectively. This time, however, this prediction is defined N times,
uniquely for each of the jth samples

pi,j,t+ = Sigma

yt (µ−i,t + xi,t(µi,t+1 + sjσi,t+1))√
1 + π

8σ
2
−i,t

 . (50)

Then, the updated mean satisfies

µi,t+1 = µi,t +
ytxi,tσ

2
i,t√

1 + π
8σ

2
−i,t

· 1

N

N∑
j=1

(1− pi,j,t+). (51)

However, in order to compute both µi,t+1 and σi,t+1, we need to apply Newton’s method, optimizing
µi,t+1 and σi,t+1 together. We start with µ(0)

i,t+1 = µi,t and σ(0)
i,t+1 = σi,t. For simplicity, we omit

the iteration number (`) from the notation. The following should be read as updates at iteration `

which use p(`−1)
i,j,t+ for the updates. For simplicity, let αt

4
= ytxi,t/

√
1 + (π/8)σ2

−i,t. Then, the joint
gradient w.r.t. µi,t and σi,t is given by

g =

 µi,t+1−µi,t
σ2
i,t

− αt
N

∑N
j=1(1− pi,j,t+)

− 1
σi,t+1

+
σi,t+1

σ2
i,t
− αt

N

∑N
j=1 sj(1− pi,j,t+)

 . (52)

The joint Hessian is given by

H =

 1
σ2
i,t

+
α2
t

N

∑N
j=1 pi,j,t+(1− pi,j,t+)

α2
t

N

∑N
j=1 sjpi,j,t+(1− pi,j,t+)

α2
t

N

∑N
j=1 sjpi,j,t+(1− pi,j,t+) 1

σ2
i,t+1

+ 1
σ2
i,t

+
α2
t

N

∑N
j=1 s

2
jpi,j,t+(1− pi,j,t+)

 .
(53)

Finally, at iteration `, [
µ

(`)
i,t+1

σ
(`)
i,t+1

]
=

[
µ

(`−1)
i,t+1

σ
(`−1)
i,t+1

]
−H−1g. (54)

As before, the update terminates if the differences between the values of two iterations are less than
some threshold, or after a set number of iterations.

As observed, this method requires O(dtNJ) operations for a single update (and O(dtNJT ) oper-
ations overall), where J is the set number of Newton iterations. Empirical results demonstrate that
even with N as large as 1000, results are not as good as those with the marginalization with Laplace
approximation, presented in Section 3. We note that one can use a two dimensional first order Taylor
approximation on pi,j,t+ around pi,j,t, which is defined similarly to pi,j,t+, with the exception of
using µi,t and σi,t instead of µi,t+1 and σi,t+1, to obtain an approximation for updating µi,t+1 and
σi,t+1, as in (17). The approximation should be made for every j. It will, however, not require the
O(J) operations of the Newton method. The complexity is still of O(N) factor greater than that of
the method in Section 3.

E ADDITIONAL EMPIRICAL RESULTS

In this appendix, we bring a collection of simulation results demonstrating the performance of Algo-
rithm 1 and the other methods in different settings. In all the simulations we performed we observed
that Algorithm 1, with a proper prior for the setting, consistently gives regret close to the lower
bound (e.g., 0.5 log T cost for each unknown parameter). The other methods, while in some cases
exhibit performance close to that of Algorithm 1, fail to do so consistently in all conditions. The
marginalized VB approach requires very large complexity as shown in Table 1 and Fig. 1 to approach
the performance of Algorithm 1.
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Figure 4: Normalized Rt/ log t vs. round t for various methods with randomly drawn binary fea-
tures, with d, expected dt/d, and standard deviation of true log-odds noted in each graph. Graphs
shown for d = 200, E[dt] ∈ {5, 20, 40} and true log-odds std in {1, 2, 3}.

Fig. 4 gives a two dimensional grid of varying dt and varying true feature weights. In all these
simulations, Algorithm 1 with prior matched to the true one, gives minimal regret curves. While
SGD seems, with the right choices of parameters, to approach logarithmic regret, its regret is larger,
and increases with the true parameters’ variance and number of active features dt. Multi-dimensional
Gaussian approximation appears to be mis-calibrated on the prior, and depending on the feature
density dt tends to become better only with much larger priors. EP ADF gives larger regrets and
while appearing reasonable with higher feature density, seems to be inferior with lower feature
densities. Similar results are obtained when replacing the data generation model with models with
uniform priors on the feature weights with various ranges.

Fig. 5 shows curves for simulations with different models. On the left, features are nonbinary, and
on the right, the model consists of order of magnitude more features, where in average an order of
magnitude more features occur in each example. In both cases, Algorithm 1 persists with similar
regret rates, whereas other algorithms exhibit larger regrets. With a large number of features, both
the multi dimensional Gaussian approximation and SGD have larger regrets, although with even
lower prior / learning rates slightly better regret may be possible.

Fig. 6 demonstrates curves of the various algorithms for categorical features, where in each example
a fixed set of features are selected from each category. On the right, the selection gives exponentially
decaying distribution over the features, so that some features are selected very often while others
rarely occur. Again, regret rates behave similarly for Algorithm 1 and SGD. The multi-dimensional
Gaussian approximation completely breaks in this setting. This is because it hypothesizes correla-
tions in its updates with features that rarely reoccur.
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Figure 5: Normalized Rt/ log t vs. round t for different algorithms and different data generation
models. On the left, a model with d = 200 features, out of which in average dt = 40 occur in an
example, and weight standard deviation is 2, with nonbinary feature values uniform in [0, 1]. Right:
models with d = 2000, average dt = 200, data generation standard deviation of 2, with binary
features.

Figure 6: Normalized byRt/ log t vs. round t for categorical models and different algorithms. Left:
2000 features in 10 categories of 200 features each, where in each example 5 features from each
category are present, with true weight standard deviation of 2. On the right: A similar setting, except
that in each category features are selected with a long tail exponential distribution (prioritizing a few
features and rarely selecting others).
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