
A Note on a Problem Posed by D. E. Knuth on a
Satisfiability Recurrence

Dedicated to Philippe Flajolet 1948-2011

July 4, 2013

Philippe Jacquet Charles Knessl1 Wojciech Szpankowski2

Bell Labs Dept. Math. Stat. & Compt. Sci. Dept. Computer Science
Alcatel-Lucent University of Illinois at Chicago Purdue University
91620 Nozay Chicago, Illinois 60607-7045 W. Lafayette, IN 47907
France U.S.A. U.S.A.
philippe.jacquet@inria.fr knessl@uic.edu spa@cs.purdue.edu

Abstract

We resolve a conjecture proposed by D.E. Knuth concerning a recurrence arising

in the satisfiability problem. Knuth’s recurrence resembles recurrences arising in the

analysis of tries, in particular PATRICIA tries, and asymmetric leader election. We solve

Knuth’s recurrence exactly and asymptotically, using analytic techniques such as the

Mellin transform and analytic depoissonization.

1 Introduction

In this note we consider the following recurrence for the sequence {Tn} :

Tn = n+ 2

n−1∑
k=1

(
n

k

)
pkqn−kTk, n ≥ 2, (1)

with T0 = 0, T1 = 1, 0 < p < 1 and p+q = 1. At the Analysis of Algorithms (AoA) conference

in Montreal in 2012, R. Sedgewick [12] reported that D. E. Knuth [10] was interested in its

solution, especially for p = 2
3 , but also for general p. Here we compute explicitly, for any p,

the exponential generating function of Tn, and then give asymptotic results for n→∞. The

asymptotics involve nearly constant (i.e., small amplitude) periodic functions of log1/p n, and

these we explicitly calculate. The analysis is different for p = 1
2 and p 6= 1

2 .

The motivation for studying recurrences such as (1) arises from analyzing the “satisfiabil-

ity problem”. As defined in [3], satisfiability is NP-complete, and the procedure is exponential

in the worst case. The Davis-Putnam procedure [1] is a method for solving the satisfiability

problem, and the method determines if a conjugate normal form (CNF) is satisfiable. We

do not describe this procedure in detail, referring the reader to [3] for the description of the

five steps in the Davis-Putnam procedure. A distribution on the CNF involves two integer

1This author was supported by NSA Grant H98230-11-1-0184.
2This author was supported by NSF Science & Technology Center Grant CCF-0939370, NSF Grants DMS-

0800568, and CCF-0830140, and NSA Grant H98230-11-1-0141. He is also a Visiting Professor at ETI, Gdańsk
University of Technology, Poland.
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variables, the number of clauses n and the number of variables L. The average time analysis

then involves solving the two variable recurrence

TL+1
n = anL+ 2

n−1∑
k=1

(
n

k

)
pkqn−kTLk , n ≥ 1, L ≥ 0, (2)

with the boundary conditions T 0
n = 0 and TL0 = 0, and a is a constant. There are also alternate

versions of the Davis-Putnam procedure that lead to similar recurrences (see equation (1.1)

in [3]).

In [2] and [3] some bounds on the solution were obtained, using the solutions to simpler,

one variable recurrences, such as that in (1). The particular recurrence in (1) is discussed

in [2], and there the special case p = 2
3 is further motivated [10]. In [2] it was conjectured

that for n→∞, Tn in (1) is of order nβ∗ , where β∗ = d log 2
log(1/p)e, and this we verify, giving a

more precise estimate in Theorem 1. We hope that our detailed analysis of (1) will help in

the understanding of more complicated recurrences such as (2), which we plan to analyze in

the future.

Knuth’s recurrence (1) resembles recurrences arising in the analysis of tries [9, 14], in

particular, PATRICIA tries [11, 13] and also asymmetric leader election algorithms [8]. In

fact, the Poisson transform of Knuth’s recurrence reduces to a certain functional equation

often arising in the analysis of algorithms and data structures (cf. [4, 8]), namely,

f(z) = f(pz) + f(qz)e−pz + a(z) (3)

where p+ q = 1 and a(z) is a given function. Such a functional equation was studied before

in [4, 8]. The point to observe is that f(qz) is multiplied by the coefficient function e−pz.

This makes the problem interesting (otherwise a standard approach can be applied; cf. [14]).

Second-order asymptotics of (3), and ultimately the recurrence (1), are quite challenging,

especially if one strives to compute explicitly all of the constants and periodic functions

involved. We believe that the novelty of our work lies in deriving exact and asymptotic

solutions to Knuth’s recurrence, including the constants and periodic functions. We also

suggest a quickly converging numerical procedure to estimate these quantities.

The paper is organized as follows. In Section 2 we state our main results and discuss

some of the basic asymptotics of Tn. In Section 3 we give the asymptotics more precisely,

characterizing explicitly the periodic fluctuations of Tn. In Section 4 we develop an efficient

numerical approach for evaluating some parts of the asymptotic formula for Tn.

2 Main Results

We summarize below our main results. We focus on the large n asymptotics, but our analysis

(cf. (17)) also leads to an exact expression for the generating function T (z) of Tn.

Theorem 1 (i) Assume p 6= 1
2 . Then

Tn = Cn
− log 2

log p
[
1 + P (log n) +O(n−1)

]
+

1

1− 2p
n (4)
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where C is constant that can be expressed as

C =
2p

2p− 1

1

log(1/p)

∞∑
k=−∞

(2p)k
∫ 1/p

1
y

log 2
log p e−qp

ky

 ∞∏
j=1

(
1− e−qpk−jy

) dy (5)

(see also (51)), and P (x) is a periodic function of period − log p and small amplitude that

can be explicitly expressed as

CP (log n) :=

∞∑
`=−∞,` 6=0

c`e
2πi` log1/p(n) (6)

where

c` =
2p

2p− 1

∫ 1

0
e−2πix`

∞∑
k=−∞

(2p)k−xe−qp
k−x

 ∞∏
j=1

(
1− e−qpk−x−j

) dx
for integer `.

(ii) For p = 1
2 we have

Tn =
n log n

log 2
+ nP∗(log n) +O(1) , (7)

where P∗(x) is a periodic function of period log 2, explicitly shown in (49) and (50), which

is constant to four decimal places, with P∗(log n) ≈ .6295.

In the Table 1 we present the values of the constant C = C(p) for p 6= 0.5. The reader is

referred to Sections 3 and 4 for a more detailed discussion of this constant. Furthermore, we

p C(p)

0.1 –0.123

0.2 –0.459

0.3 –1.292

1/3 –1.822

0.4 –3.947

0.6 4.837

2/3 2.161

0.7 1.344

0.8 0.102

0.9 3.687 ×10−6

Table 1: The constant C(p) versus p for some p 6= 0.5.

point out that the amplitude of the periodic function CP (log n) is very small, unless p itself

is small. Let x = log1/p n, and define amplitude as A = max(x)−min(x) where max(x) and

min(x) are the maximum and minimum of P over the period 0 ≤ x < 1. For example for

p = 2/3 we find that

max(x) = .1542× 10−10 . . . for x = 0.52,

min(x) = −.1548× 10−10 . . . for x = 0.02
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so the amplitude is of order 10−10.

Note that for 0 < p < 1
2 we have Tn = O(n) and the term n/(1 − 2p) dominates the

asymptotics in (4), while for 1
2 < p < 1 we have Tn = O(n

log 2
log(1/p) ). This means that for

0 < p < 1
2 both the term n and the sum in the right side of (1) are asymptotically important,

while if 1
2 < p < 1 the sum dominates.

3 Proof of Main Results

We now give a proof of the theorem using analytic techniques such as the Mellin transform

[5] and depoissonization [7] (see also [6, 14]). In the following we will set

β = − log 2

log p
.

We will first establish a rough estimate. We shall prove that there exists an α such that for

all integer n: Tn < eαn. Let N and α be large enough such that for all integer n ≤ 1
2e
αn and

for all n ≤ N :

Tn ≤ eαn (8)

peα + q ≤ eα

21/N
(9)

where we recall that q = 1 − p. We show by recursion that Tn ≤ eαn for n > N . Indeed

assuming that the hypothesis is true up to n− 1, from (1) we have

Tn = n+ 2

n−1∑
k=1

(
n

k

)
pkqn−kTk

≤ n+ 2

n−1∑
k=1

(
n

k

)
pkqn−keαk

= n+ 2(peα + q)n.

Since n ≤ 1
2e
αn and

(peα + q)n <
1

2n/N
eαn <

1

2
eαn,

we get Tn ≤ eαn.

We define the Poisson transform as T (z) =
∑

n Tn
zn

n! e
−z which exists for all complex z

since the series converges due to the estimate Tn ≤ enα. We find from (1) that

T (z) = z + 2T (pz)− 2e−qzT (pz). (10)

We can prove that for | arg(z)| < π
2 − ε and any fixed ε > 0, the following is true

|T (z)| ≤ (|z|+ |z|β)B (11)

for some B > 0. Considering the sequence

Bk = max
|z|≤p−k

{
|T (z)|
|z|+ |z|β

}
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we can show, using similar arguments as in [7] or Theorem 10.5 of [14], that

Bk ≤ (1 + e−qp
−k

)Bk−1 (12)

and thus the sequence {Bk} is uniformly bounded.

On the other side, when arg(z) > π
2 − ε then we can prove that there exists α′ < 1 such

that |T (z)ez| ≤ eα′|z| as described in [7]. Then by analytic depoissonization (for more details

see [7]) we conclude that

Tn = T (n)
(
1 +O(n−1)

)
.

Thus we need to establish asymptotic behavior of T (z) for z → ∞ in a cone around the

real axis. We rewrite equation (10) as

T (z) = z + 2(1− e−qz)T (pz) (13)

and let

f(z) =
∏
m>0

(1− e−qp−mz). (14)

The function f(z) satisfies

f(pz) = (1− e−qz)f(z).

We have f(z)→ 1 when z → +∞, in fact f(z) = 1−O(e−qz/p). Also f(z)→ 0 when z → 0,

and in fact from (14) we have f(z) = o(zM ) for all M > 0. Let

τ(z) = f(z)T (z) . (15)

Then from (13) we obtain a new equation for τ(z)

τ(z) = zf(z) + 2τ(pz) (16)

that can be solved to give

τ(z) =
∑
m≥0

2mpmzf(pmz).

We thus have the solution of (13) in the form

T (z) = z +
∑
m≥0

(2p)m+1z
m∏
i=0

(1− e−qpiz). (17)

The Mellin transform

f∗(s) =

∫ ∞
0

f(z)zs−1dz (18)

of f(z) is defined for <(s) < 0 while the Mellin transform of zf ′(z), that is −sf∗(s), is defined

for all complex s. We also have

lim
s→0

sf∗(s) = −
∫ ∞

0
f ′(z)dz = −f(∞) = −1 . (19)
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For z real and positive, our previous estimates show that τ(z) = O(z+ zβ) when z →∞ and

τ(z) = o(zM ) for all M > 0 when z → 0. The Mellin transform τ∗(s) of the function τ(z) is

defined for <(s) < −max{1, β} and satisfies

τ∗(s) =
f∗(s+ 1)

1− 2p−s
. (20)

Via the inverse Mellin transform [5] we find that

τ(z) =
1

2iπ

∫ c+i∞

c−i∞

f∗(s+ 1)

1− 2p−s
z−sds. (21)

Let us assume that p 6= 1
2 . The function f∗(s+1)

1−2p−s has simple poles:

(i) at s = −1, from f∗(s+ 1),

(ii) at s = sk, from (1− 2p−s)−1, where

sk = −β +
2ikπ

log p
, k ∈ Z.

Thus

τ(z) =
z

1− 2p
+
∑
k∈Z

f∗(1 + sk)

log p
z−sk + o(z−M ) (22)

for any arbitrary M > 0. The factor 1
1−2p is a consequence of the residue of −f∗(s+1)

1−2p−s at

s = −1, and (19). Notice also that

T (z) =
τ(z)

f(z)
= τ(z)(1 +O(e−qz/p))

since f(z) converges to 1 exponentially fast.

Finally, when p = 1
2 the singularity at s = s0 = −1 becomes a double pole and then

τ(z) =
z log z

log 2
+
z

2
+

(sf∗)′(0)

log 2
z +

∑
k∈Z∗

f∗(1 + sk)

− log 2
z−sk + o(z−M ) . (23)

Here Z∗ = Z− {0} denotes the set of all integers except k = 0.

4 Periodic Oscillations

In this section we shall obtain explicitly the periodic functions that appear in (4) and (7)

within Theorem 1. We shall also obtain alternate expressions for the Poisson transform T (z),

from which the large z behavior is easily obtained.

4.1 Case p 6= 1
2

First consider p 6= 1
2 and set

T (z) =
z

1− 2p
+ T̃ (z). (24)
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Then from (10) we obtain for T̃ (z) the functional equation

T̃ (z) = 2(1− e−qz)T̃ (pz)− 2pz

1− 2p
e−qz. (25)

Unlike (10) the non-homogeneous term in (25) decays exponentially for z → ∞. If we

furthermore set

T̃ (z) =

[ ∞∏
`=0

(
1− e−qp`z

)]
S(z). (26)

we find that S satisfies

S(z) = 2S(pz)− 2pz

1− 2p
e−qz

[ ∞∏
`=0

(
1− e−qp`z

)−1
]
. (27)

Solving (27) by iteration leads to

S(z) = − 2pz

1− 2p

∞∑
m=0

(2p)me−qp
mz

[ ∞∏
`=m

(
1− e−qp`z

)−1
]
. (28)

Inverting the transform in (24) leads to

Tn =
n

1− 2p
+ T̃n. (29)

where

T̃n =
n!

2πi

∮
ez

zn+1
T̃ (z)dz. (30)

We expand T̃n for n → ∞ by using a depoissonization argument, first expanding T̃ (z) as

z →∞. Using (28) in (26) we let

m =

⌊
log z

log(1/p)

⌋
+ k =

log z

log(1/p)
− ω(z) + k. (31)

where

ω(z) =

〈
log z

log(1/p)

〉
(32)

and 〈·〉 denotes the fractional part, so that 0 ≤ ω < 1. It follows that

pmz = pkp−ω, 2m = 2k−ω(z)z
log 2

log(1/p) (33)

and then

T̃ (z) =
2p

2p− 1
z

log 2
log(1/p)

∞∑
k=−blog1/p(z)c

(2p)k−ω(z) exp(−qpk−ω)Rk(z), (34)

where

Rk(z) =
m−1∏
`=0

(
1− e−qp`z

)
=

m∏
j=1

[
1− exp(−qpk−ωp−j)

]
=

∞∏
j=1

[
1− exp(−qpk−ωp−j)

]
(1 +O(exp(−qz)) . (35)
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Note that the error in the asymptotic relation in (35) is exponentially small as z →∞. Then

the leading term for T̃ (z) is obtained by replacing the lower limit on the sum in (34) by

k = −∞, and using (35). Thus we have obtained the leading term for T̃ (z) as z → +∞ for

z real, up to an exponentially small error. In view of the appearance of the fractional part

ω, it would appear that there may be a lack of smoothness in the asymptotic approximation.

But this is in fact not the case as in the approximation we can drop the fractional part, thus

replacing ω(z) by log1/p(z), and then p−ω = z. Then the leading term is invariant under the

mapping z → pz (just shift the summation index k → k− 1) and is thus an infinitely smooth

function, for z real and positive. We argue that the asymptotic approximation will also hold

in a sector in the complex z−plane containing the real axis (see the estimates in Section 2).

Then, by depoissonization,

Tn −
n

1− 2p
= n

log 2
log(1/p)P1(n)× (1 +O(

1

n
)) (36)

where

P1(n) =
2p

2p− 1

∞∑
k=−∞

(2p)k−ω(n)e−qp
k−ω(n)

∞∏
j=1

(
1− e−qpk−ω(n)−j

)
(37)

and ω(n) is obtained by replacing z by n in (32). Again, we can replace p−ω(n) by n. While

the error in (37) is of the form 1 + O(n−1), from the depoissonization, we can improve the

estimate by using the identity

n!

2πi

∮
ez

zn+1
zβdz =

Γ(n+ 1)

Γ(n+ 1− β)
, β =

log 2

log(1/p)
(38)

and the fact that the error term in (35) is exponentially small. We use (39) in the numerical

studies in Section 5, while the results in Theorem 1 replace the right-hand side of (39) by nβ,

since n→∞.

We have thus identified explicitly the periodic function P (·) in (4). Writing (38) as the

Fourier series

P1(n) =

∞∑
`=−∞

c`e
2πi` log1/p(n) (39)

we have

c` =
2p

2p− 1

∫ 1

0
e−2πix`

∞∑
k=−∞

(2p)k−xe−qp
k−x

 ∞∏
j=1

(
1− e−qpk−x−j

) dx (40)

=
2p

2p− 1

1

log(1/p)

∫ 1/p

1
exp

(
2πi` log(y)

log(p)

)
y

log 2
log p

∞∑
k=−∞

(2p)ke−qp
ky

 ∞∏
j=1

(
1− e−qpk−jy

) dy.
Here we set y = p−x in the first integral in (41). Comparing (37) to (4) we see that

C[1 + P (log n)] = P1(n) = c0 +
∞∑

`=−∞,` 6=0

c`e
2πi` log1/p(n), (41)
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so that c0 = C and CP (log n) = 1(n)− c0. In particular the zeroth Fourier coefficient is

c0 =
2p

2p− 1

1

log(1/p)

∞∑
k=−∞

(2p)k
∫ 1/p

1
y

log 2
log p e−qp

ky

 ∞∏
j=1

(
1− e−qpk−jy

) dy. (42)

For p = 2/3, numerical evaluation of the right side of (43) yields c0 ≈ 2.1608.

We note that the series in (43) is rapidly convergent, at both k = ±∞. For k → −∞ we

have double exponential decay due to the factor e−qp
ky in the integrand. For k → +∞, the

product in (43) behaves as (with A = qy)

∞∏
j=1

(
1− e−Apk−j

)
= exp

[ ∞∑
`=1

log
(

1− e−Ap−`
)

+
0∑

`=1−k
log
(

1− e−Ap−`
)]

(43)

=
∞∏
`=1

(
1− e−Ap−`

)
exp

[
k−1∑
`=0

log

(
1− e−Ap`

Ap`

)
+ log(Ap`)

]

=
∞∏
`=1

(
1− e−Ap−`

) ∞∏
`=0

(
1− e−Ap`

Ap`

)
Akpk(k−1)/2(1 +O(pk)).

Hence the product is roughly O(pk
2/2), corresponding to Gaussian decay as k → +∞.

4.2 Case p = 1
2

Next we consider p = 1
2 . Setting

T (z) = zT∗(z) (44)

in (10), with p = 1
2 , leads to

T∗(z) = 1 + (1− e−z/2)T∗

(z
2

)
. (45)

Solving (46) by iteration yields

T∗(z) =

∞∑
m=0

m∏
`=1

(
1− e−z2`−m−1

)
. (46)

To expand (47) for z → ∞ we again set m = blog2 zc + k = log2 z − ω + k, as in (31).

Then (47) becomes

T∗(z) =
∞∑

k=−blog2 zc

[
m∏
`=1

(
1− e−2`−1+ω−k

)]
(47)

=
∞∑
k=0

m∏
`=1

(
1− e−2`−1+ω−k

)
+

blog2 zc∑
k=1

[
m∏
`=1

(
1− e−2`−1+ω+k

)
− 1 + 1

]

= blog2 zc+
∞∑
k=0

∞∏
`=1

(
1− e−2`−1+ω−k

)
+
∞∑
k=1

[ ∞∏
`=1

(
1− e−2`−1+ω+k

)
− 1

]
+O(e−z

β
).
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It follows by depoissonization of (45) that

Tn = n log2 n+ nQ∗(n) +O(1), (48)

where

Q∗(n) = −ω(n) +
∞∑
k=0

∞∏
`=1

(
1− e−2`−1+ω(n)−k

)
+
∞∑
k=1

[ ∞∏
`=1

(
1− e−2`−1+ω(n)+k

)
− 1

]
.

The periodic function in (50) may once again be written as the Fourier series

Q∗(n) =
∞∑

`=−∞
c∗`e

2πi` log2(n), (49)

and we have identified thus P∗(log n) in (7). In (49) ω(n) = 〈log2 n〉 but we may drop the

fractional part 〈·〉, as if ω(n) is replaced by log2 n it is easy to verify that Q∗(n) = Q∗(n/2).

Thus the expression below (49) is the same whether ω = 〈log2 n〉 or ω = log2 n. Numerical

studies show that the right side of (50) fluctuates between .629494 and .629513, so this

function is nearly constant, and may be approximated to four significant figures by the

zeroth Fourier coefficient c∗0 in (50).

5 Further Numerical Analysis

Here we develop a semi-numerical semi-analytic method for evaluating the Fourier coefficients

of the periodic functions that appear in Theorem 1. This will require that we compute the

first few Tn numerically and use them to evaluate a rapidly converging series.

Using the analysis in Sections 2 and 3, we can extract the Mellin transform of f(z) from

numerical analysis. For p = 2
3 , for the problem originally proposed by D.E. Knuth [10], we

have the leading term (see also (43))

C =
f∗(s0 + 1)

log p
≈ 2.16086439750354927606532 (50)

where we recall that s0 = −β = log 2/ log p. The k = 1 term in (22)

−
f∗(s0 + 1 + 2iπ

log p)

log p
≈ −7.66× 10−11 + 9.84× 10−12i. (51)

The problem with the analysis in Section 2 is that it is somewhat difficult to extract the

Mellin transform of f(z). Below we propose an easier indirect method in the case β is not

an integer (see also [8]).

Let k be an integer. For all analytic functions F (z) in a complex neighborhood of 0, we

define
∐
k F (z) as the Taylor polynomial of degree k:

∐
k
F (z) =

k∑
j=0

F (j)(0)
zj

j!
(52)
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with F (j)(z) the j-th derivative of function F (z). We also define
∐k F (z) = F (z)−

∐
k F (z).

Let b = bβc and recall that T0 = 0 and T1 = 1. The function
∐b T (z) is O(zb+1) when

z → 0 and is O(zβ) when z → ∞. Thus the Mellin transform T ∗(s) of
∐b T (z) exists for

−b− 1 < <(s) < −β.

We set θ(z) = T (pz)e−qz. Its Mellin transform θ∗(s) exists for <(s) > −1 and satisfies

(cf. also [8])

θ∗(s) =
∑
n≥1

pnTn
Γ(s+ n)

n!
. (53)

Since additive polynomial terms only shift the fundamental strip of the Mellin transform,

from (13) we arrive at

T ∗(s) = −2
θ∗(s)

1− 2p−s
. (54)

Therefore the leading term in T (z) is equal to∑
k∈Z

2
θ∗(sk)

log p
z−sk (55)

where we recall sk = −β + 2ikπ
log p . Thus for all k ∈ Z

f∗(1 + sk) = 2
∞∑
n=1

Tnp
nΓ(n+ sk)

n!
. (56)

Expression (57) is an implicit formula for the f∗(1+sk). The series converges geometrically in

view of the factor pn (and the algebraic growth Tn), but the Tn must be calculated from (1).

For p = 2
3 , by numerically evaluating (57) (using (1) to numerically compute the Tn), we

get the k = 0 term as

C =
f∗(s0 + 1)

log p
≈ 2.16086439750354927606532

and the k = 1 term is

f∗(s0 + 1 + 2iπ
log p)

log p
≈ −7.66× 10−11 + 9.84× 10−12i.

For p = 1
3 these quantities are respectively approximately −1.8219 and −2.662 × 10−4 +

1.853× 10−4i.

Omitting the periodic terms the only asymptotic terms of T (z) are Czβ and z
1−2p . There-

fore, in view of (39), Tn and

C
Γ(n+ 1)

Γ(n+ 1− β)
+

n

1− 2p

converge exponentially fast (still omitting the periodic terms). Table 2 illustrates this for

p = 2/3, where the exact Tn are computed from the recurrence (1).
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n Tn C Γ(n+1)
Γ(n+1−β) + n

1−2p

1 1.00000000000000000000 –2.30174306232304985900

10 74.19014780949336492932 73.91603109473686910765

20 291.00460566996026651879 291.00361735959358501362

30 619.38760608108754323680 619.38760213254548663704

40 1046.04525284496893107557 1046.04525440741658728759

60 2164.10852244470855065774 2164.10852363157796067744

80 3603.01754773643508459982 3603.01754785633937946726

100 5336.44933450906552767752 5336.44933395400537596930

Table 2: Exact vs Asymptotic Valus of Tn for p = 2/3.
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