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We survey recent work on non-linear recurrence equations that arise in com-

puter science or combinatorics.We consider the examples of the height of digital
trees, the QUICKSORT algorithm, height of binary search trees, and enumera-

tion problems concerning random binary trees characterizedby nodes and path
lengths. In each case a singular perturbation analysis of the recurrence yields

insights into the asymptotic behavior, such as limiting distributions and tail
probabilities.

1. Introduction

Many problems that arise in theoretical computer science lead naturally
to solving non-linear recurrence or difference equations. These may some-
times be solved exactly but more frequently this is not the case, and an
approximate analysis is necessary. Often the problems have a natural large
parameter suggesting that an asymptotic analysis is appropriate. This large
parameter could be the number of strings that are to be stored in a digital
tree, or the number of items that are to be sorted by some algorithm. Some
of the problems that arise are basic combinatorial enumeration problems.

Recent books that describe and analyze these types of problems are by
Flajolet and Sedgewick [1] and Szpankowski [2].

In recent years we have analyzed some basic problems in computer sci-
ence by using asymptotic methods of applied mathematics. These include
methods for asymptotically evaluating sums and integrals, as well as pertur-
bation methods such as matched asymptotics and WKB-type expansions.
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The latter are especially useful for difficult non-linear problems that cannot
be solved explicitly.

In this note we survey some of the problems and the asymptotic solu-
tions that we obtained. We consider digital trees, sorting algorithms, binary
search trees, and enumeration problems that arise in studying numbers of
nodes and paths in random binary trees.

2. Digital trees

Suppose that we have a set S of n strings, say S = {s1, s2, . . . , sn}
with each sj being a finite or infinite sequence of 0’s and 1’s. Thus, e.g.,
s1 = 1 0 0 1 0 1 1 . . .. We assume a probabilistic model, namely that in a
given position a 0 or 1 occurs with equal probability = 1/2, and that
the positions are independent of one another. This is called a “symmet-
ric Bernoulli model”. We store the n strings in a tree. Different trees are
obtained by using different rules for this storage. In a “trie” we store the
string to the left or right of the root if |S| = 1, according to whether the
first symbol is a 1 or a 0. If |S| > 1 we split the set of strings into two
subsets according to whether the first symbol is a 1 or a 0. The trie is
then built recursively and in Fig. 1 we illustrate this for an example with 4
strings. A second type of digital tree is a “PATRICIA trie”, which can be
obtained from a trie by eliminating nodes that have only one branch (see
Fig. 1). A “digital search tree (DST)” is a further refinement that stores
the strings in the internal nodes of the tree. To measure how efficiently a
digital tree will store a large number n of strings we consider the “height”
of the tree, which is defined as the largest path in the tree, and is related
to the maximum search time. In the examples in Fig. 1 the heights are 3,
2, 2 for the respective cases of the trie, PATRICIA and DST.

s1 s2

s4s3

1

1 0

1
0

0

0

trie Patricia

s1 s2 s4s3

DST

s1

s4

s3s2

Fig. 1. A sketch of the three types of digital trees, as they each store the 4 strings
s1 = 1 11 00 . . . , s2 = 1 01 11 . . . , s2 = 00 11 0 . . . and s4 = 0 00 01 1 . . . .
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The height is a random variable whose probability distribution we de-
note by

hT(k, n) = Prob
[
HT

n 6 k
]

(1)

where T is used to denote trie. Similarly we define the heights of PATRICIA
and DST by HPAT

n and HDST
n . The distribution functions satisfy the respec-

tive recurrences

hT(k + 1, n) = 2−n
n∑

i=0

(
n

i

)
hT(k, i)hT(k, n − i), k > 0; (2)

hT(0, 0) = hT(0, 1) = 1; hT(0, n) = 0, n > 2;

hPAT(k + 1, n) = 21−nhPAT(k + 1, n)

+ 2−n
n−1∑

i=0

(
n

i

)
hPAT(k, i)hPAT(k, n − i), n > 2, k > 0; (3)

hPAT(0, 0) = hPAT(0, 1) = 1; hPAT(0, n) = 0, n > 2;

hDST(k + 1, n + 1) = 2−n
n∑

i=0

hDST(k, i)hDST(k, n− i), k > 0; (4)

hDST(0, 0) = hDST(0, 1) = 1; hDST(0, n) = 0, n > 2.

These three recurrences look very similar but their solutions turn out to
be much different. They can be recast as functional equations by introducing
exponential generating functions, with Hk(z) =

∑∞
n=0 h(k, n)zn/n!. For

example, for DST we obtain H ′
k+1(z) = [Hk(z/2)]2. The case of tries can

be explicitly solved and the mean height satisfies

E
[
HT

n

]
∼ 2 log2(n), n → ∞. (5)

The distribution follows a double exponential or extreme value law as
n → ∞ [3,4].

For the case of PATRICIA we analyzed (3) asymptotically as n → ∞
using perturbation methods and found that hPAT(k, n) behaves differently
for the three scales (i) k = n−O(1), (ii) k = log2 n+O(1) and (iii) 2k−n =
O(1). Below we give some of our asymptotic formulas:

(i) k = n − j, j = O(1), n → ∞

1 − hPAT(k, n) = Prob
[
HPAT

n > k
]
∼ 2−n2/22(j−3/2)nn!ρ0Kj ,
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Kj = 2−j−2/223j/2 1
4πi

∮
z1−jez

∞∏

m=0

[
1 − exp

(
−z2−m−1

)

z2−m−1

]
dz

ρ0 =
∞∏

`=2

(1 − 2−`)−1 = 1.731 . . . .

(ii) k, n → ∞; ξ = n2−k(1), 0 < ξ < 1

hPAT(k, n) ∼
√

1 + 2ξΦ′(ξ) + ξ2Φ′′(ξ)e−nΦ(ξ)

where Φ(ξ) > 0 was determined numerically. Also, as ξ → 0+

Φ(ξ) ∼
1
2
ρ0e

φ(log2 ξ)ξ3/2 exp
(
−

log2 ξ

2 log2

)
,

φ(x) =
log2

2
x(x + 1) +

∞∑

`=0

log

[
1 − exp

(
−2x−`

)

2x−`

]

+
∞∑

`=1

log
[
1 − exp

(
−2x+`

)]
,

and as ξ → 1−

Φ(ξ) ∼ D1 + (1 − ξ) [log(1 − ξ) − 1 − logD2] ,

D1 = 1 + log (K∗
0) , D2 = K∗

1K
∗
0/e

K∗
0 = .6832 . . . , K∗

1 = 1.259 . . ..

(iii) k, n → ∞; 2k − n = M = O(1)

hPAT
n (k, n) ∼

√
2π

M !
DM

2 nM+1/2e−D1n.

We can view (i) as the right tail and (iii) as the left tail of the distribution.
Most of the probability mass is concentrated in that range of k where hPAT

changes from being ≈ 0 to being ≈ 1. We can show that this occurs in
the asymptotic matching region between cases (i) and (ii). By using the
behavior of Φ(ξ) as ξ → 0+ (which is in the matching region) we conclude
that most probability mass occurs at the single point

k1 = k1(n) = 1 +
⌊
log2 n +

√
2 log2 n − 3/2

⌋
.

Thus hPAT(k1(n)− 1, n) ≈ 0 while hPAT
n (k1(n), n) ≈ 1. This is true outside

of very special subsequences of n, which lead to mass at exactly two points
and which we precisely characterized in [5]. The mean thus satisfies

E
[
HPAT

n

]
= log2 n +

√
2 log2 n + O(1), (6)
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which is smaller than the mean for tries (cf. (5)) by a factor of 1/2. Results
similar to (6) were also obtained in [6,7] by probabilistic methods.

In Fig. 2 we illustrate the height distribution occurring at one or two
points.

n=620000000

x
21-1-2

1

0.8

0.6

0.4

0.2

n=500000000

x
21-1-2
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0.6

0.4

0.2
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Fig. 2. Asymptotic distributions for the height and their corresponding lower and upper

bounds for PATRICIA tries with n = 6.2 · 108 (one point distribution) and n = 5 · 108

(two point distribution).

An analogous analysis of (4) for the DST model showed [8] that there
are now four ranges of (k, n) that must be analyzed, which includes the
three cases for PATRICIA and also the new scale where k, n → ∞ with
k/n ∈ (0, 1). We give below only our results for the mean

E
[
HDST

n

]
= log2 n +

√
2 log2 n − log2

(√
2 log2 n

)
+ O(1), (7)

which shows that the DST height is typically smaller than the PATRICIA
height by the O(log log n) term. The first two terms in (7) were previously
obtained in [9] by probability arguments, but his is not enough to distin-
guish DST from PATRICIA.

3. QUICKSORT algorithm

A popular sorting algorithm, that is taught in even elementary computer
science classes, is QUICKSORT. This gives an efficient method of sorting n

items. We assume that all possible n! orderings of the items are equally
likely and let Ln be the number of comparisons needed to sort completely
the list.
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In the algorithm we choose randomly one of the n items and then
compare its rank to the remaining (n − 1) items. This divides the re-
maining items into two sublists, and these sublists are then sorted re-
cursively by this method. It is well known [10] that as n → ∞ the
mean E[Ln] ∼ 2n logn = O(n logn), while the best case performance is
∼ n log2 n, and the worst case is ∼ n2/2. Thus the mean is of the same
order as the best case, with a larger constant since 2 > 1/ log 2. Higher
order moments are also readily computable but the full distribution of Ln,
Pr[Ln = k], seems much harder. Its generating function

Ln(u) =
∞∑

k=0

Pr [Ln = k] uk (8)

satisfies the non-linear recurrence

Ln+1(u) =
un

n + 1

n∑

i=0

Li(u)Ln−i(u), L0(u) = 1. (9)

We wish to study this equation for n → ∞. We found that several different
ranges of u lead to different expansions, but focus here only on one specific
range of u, which will correspond to that range of k where most of the
probability mass accumulates.

If we set u = 1 + w/n (thus u − 1 = O(n−1)) with

Ln(u) = eAn(u−1)G(n(u − 1); n) = eAnw/nG(w; n), (10)

An = E[Ln] = 2(n + 1)

[
n∑

i=1

1
i

]
− 2n

then G(w; n) → G0(w) as w → ∞ where G0 satisfies the non-linear integral
equation

e−wG0(x) =
∫ 1

0

e2φ(x)wG0(wx)G0(w − wx) dx, (11)

φ(x) = x logx + (1 − x) log(1 − x), G0(0) = 1, G′
0(0) = 0.

Furthermore, Pr[Ln − E[Ln] = ny] ∼ n−1P (y) where P (y) satisfies the
double integral equation

P (y + 1) =
∫ 1

0

∫ ∞

−∞
P

(
xt +

y − 2φ(x)
2(1 − x)

)

× P

(
−(1 − x)t +

y − 2φ(x)
2(1 − x)

)
dt dx, (12)



June 25, 2008 17:25 WSPC - Proceedings Trim Size: 9in x 6in knesslnonlinear

7

∫ ∞

−∞
P (y) dy = 1,

∫ ∞

−∞
yP (y) dy = 0.

The functions G0 and P are closely related, in fact G0(w) =∫ ∞
−∞ ewyP (y) dy is just the moment generating function of the continuous

probability density P (y).
An asymptotic analysis of (11) and (12) yielded [11] the following results

for G(w) as w → ±∞:

G0(w) ∼ 2
√

2√
π log 2

√
−w exp

[(
1

log 2
− 2

)
w log(−w) + β0w

]
, (13)

w → −∞

G0(w) ∼ C∗

w
e−w2

e(1−2γ−2 log 2)w exp
[∫ w

1

2eu

u
du

]
, w → +∞. (14)

Here γ is the Euler constant, and β0 and C∗ are constants that must be
evaluated numerically. The corresponding results for P (y) as y → ±∞ (the
tails of the limiting QUICKSORT density) are

P (y) ∼ 1
πe

√
2
a

exp
[
β0 − y

a
− a

e
exp

(
β0 − y

a

)]
, y → −∞, (15)

a = 2 − 1
log 2

,

P (y) ∼ C∗√
8π

√
y

1 − 1/w∗
e−w2

∗e−(2γ+2 log 2)w∗

× exp
[
−yw∗ +

∫ w∗

1

2eu

u
du

]
, y → +∞ (16)

where w∗ = w∗(y) is defined implicitly from

y =
2

w∗
ew∗ ; w∗ ∼ log

(y

2

)
, y → ∞. (17)

It follows that the left tail of P (y) is very thin (decaying as a double ex-
ponential) while the right tail is slightly thinner than an exponential (with
log[P (y)] ∼ −y logy as y → +∞). Our results are much sharper than
previous estimates in [12,13,14].
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4. Binary search trees

Binary search trees are the most fundamental data structure used for
searching. The height distribution Lk

n = Prob
[
HBST

h 6 k
]

satisfies the re-
currence

Lk+1
n+1 =

1
n + 1

n∑

`=0

Lk
` Lk

n−`, k > 0, (18)

with L0
0 = 1 and L0

n = 0 for n > 1. We contrast (18) to the digital tree
recurrences in (2)–(4). Some previous analyses of this model for n → ∞ are
given in [15,16,17].

In [18] we analyzed (18) for k, n → ∞, identifying the following five
asymptotic ranges: (i) n−k = O(1), (ii) 0 < k/n < 1, (iii) k/ logn = ν fixed
and ν > A = 4.311 . . . , (iv) k = A logn + B log log n + O(1), B = −3

2
A

A−1 ,
(v) n2−k = ω fixed and 0 < ω < 1, and (vi) 2k − n = O(1). The most
interesting case is (iv) where we have Lk

n ∼ f(ζ), ζ = k−A logn−B log log n

and f satisfies the non-linear integral equation

f(ζ + 1) =
∫ 1

0

f(ζ − A log t)f (ζ − A log(1 − t)) dt, (19)

for ζ ∈ R. While not being able to solve (19) exactly, matched asymptotics
can be used to argue the tail behaviors

1 − f(ζ) ∼ c1ζ exp
[
−

(
1 − A−1

)
ζ
]
, ζ → +∞ (20)

f(ζ) ∼ 2

√
2c0

π

√
A log 2

A log 2 − 1
e−β∗ζ exp

[
−c0e

−β∗ζ
]
, ζ → −∞ (21)

where c0, c1 are constants that were found numerically, β∗ =
log2/(A log 2−1) = .3486 . . . and A > 1 satisfies A log A−A−A log 2+1 = 0
(thus A = 4.311 . . .).

We therefore see that the right tail is exponential with an additional
algebraic factor of ζ, and the left tail is again a very thin double exponential.

5. Binary trees

In Fig. 3 we sketch a typical binary tree with n = 5 nodes. Each node has
an associated left and right path length. In going from the root of the tree
to a given node we take a number of steps to the left and a number of steps
to the right. The sum of these over all nodes is the right (resp. left) path
length R (resp. L) for the tree. The (total) path length is P = R+L, which
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Fig. 3. A sketch of a binary tree with 5 nodes, total path length P = 6, right path
length R = 4, and left path length L = 2 (thus J = 2).

is the sum of the depths of the nodes in the tree. We then let J = R− L
be the difference between the right and left path lengths.

We let b(n, p) be the number of binary trees with n nodes and total
path length p. The generating function Bn(w) =

∑∞
p=0 b(n, p)wp satisfies

Bn+1(w) = wn
n∑

k=0

Bk(w)Bn−k(w), n > 0 (22)

with B0(w) = 1. It was previously established that Bn(1), the total number
of trees with n nodes, is the Catalan number Cn = 1

n+1
( 2n

n ). Also, the frac-
tion of trees with n nodes that have path length p, b(n, p)/

∑∞
p=0 b(n, p),

follows an Airy distribution [19] with the scaling p = O(n3/2). A more diffi-
cult problem is to fix the path length p and then study the distribution of the
number of nodes, i.e., b(n, p)/

∑∞
n=0 b(n, p), or to study the double sequence

b(n, p). In [20] we analyzed b(n, p) for the following scales: (i) p, n → ∞ with
p = ( n

2 ) − O(1), (ii) p = O(n2), (iii) p = O(n3/2) (leading to leading order
to the Airy distribution), (iv) p = O(n4/3), and (v) p = n log2 n + O(n).
Having a thorough understanding of b(n, p) in all of the different ranges
allowed us to first estimate the number of trees (regardless of the number
of nodes) that have path length p. Its exponential growth rate takes the
form

log

[ ∞∑

n=0

b(n, p)

]
=

2p log2 2
logp

[
1 − C0(log p)−2/3 + O

(
(log p)−1

)]
(23)

where p → ∞ and C0 = (2 log2)1/3|r0|, where r0 = max{z : Ai(z) = 0} =
−2.3381 . . . is the maximal root of the Airy function. The leading term
in (23) was also obtained using combinatorial arguments by Seroussi [21].
To understand the fraction of trees that have n nodes for a fixed path
length p we must analyze the asymptotic matching region between cases (iv)
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and (v) above. Examining carefully the scale p = n log2 n + O[n(logn)1/3]
we obtained the Gaussian limit law

b(n, p)∑∞
n=0 b(n, p)

≈ 1√
2πV(p)

exp
[
− (n −N (p))2

2V(p)

]
(24)

where the mean and variance are

N (p) =
p log 2
logp

[
1 − 24/3

3
(log 2)1/3 |r0|

(logp)2/3
+ O

(
(log p)−1

)]
(25)

V(p) ∼ p

(log p)5/3

21/3

9
(log2)1/3|r0|.

We next examine binary trees, but now distinguish between the left
and right paths. We let b(n, r, `) be the number of such trees with right
(resp., left) path = r (resp., `). Its double generating function Gn(w, v) =∑∞

r=0

∑∞
`=0 b(n, r, `)wrv` satisfies

Gn+1(w, v) =
∞∑

k=0

wkvn−kGk(w, v)Gn−k(w, v) (26)

with G0(w, v) = 1, and we note that (18) and (26) are related by
Gn(w, w) = Bn(w). In [22] we analyzed the joint left–right path distribu-
tion for n → ∞ with the scaling P(n3/2) and J (n5/4). Here we only discuss
the path length difference, whose generating function is Gn(w, w−1). The
fraction of trees whose path length difference is J = n5/4β = O(n5/4)
satisfies the limit law

1
Cn

∑

`

b(n, ` + J , `) ∼ n−5/4p−(β) (27)

as n → ∞, where p−(β) is a continuous density that satisfies p−(β) =
p−(−β),

∫ ∞
−∞ p−(β) dβ = 1 and has the properties

p−(β) ∼
√

5
6
(5β)1/3C̃ exp

[
−3

4
51/3β4/3

]
, β → ∞,

C̃ = .5513 . . . ,

p−(0) = .4572 . . . , p′′−(0) = −.7146 . . . .

Also, p−(β) has a unique inflection point for β > 0, at β = .7589 . . . (see
Fig. 4). Other recent investigations into the path length difference and
its asymptotic properties appear in [23,24]. We also show in [22] that the
moment generations function of p− is

∫ ∞

−∞
eβθp−(β) dβ = 1 +

√
π H(θ)
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where H(θ) = θ6/5∆(θ4/5) = B3/2∆(B) (B = θ4/5) and ∆(B) satisfies the
non-linear integral equation

∫ B

0

∆(ξ)∆(B − ξ) dξ + 2B2∆(B) + 2

√
B

π
=

4√
π

∫ B

0

∆′(ξ)√
B − ξ

dξ. (28)

This characterizes the moment generating function for θ real and positive.
For θ purely imaginary we let θ = ix, y = x4/5, H(ix) = −y3/2Λ(y) and
U(φ) =

∫ ∞
0

e−yθΛ(y) dy. Then U(φ) satisfies the non-linear ODE

2U′′(φ) + U2(φ) + 4
√

φU(φ) = φ−3/2, (29)

which is closely related to the first Painlevè transcendent.

0

0.1

0.2

0.3

0.4

0.5 1 1.5 2 2.5 3
beta

Fig. 4. The density p−(β) for β ∈ [0,3].

6. Summary

We have shown that many classic problems in theoretical computer science
and combinatorics involve solving non-linear recurrences, where the non-
linearity takes the form a convolution sum, as in (3), (4), (9), (18), (22)
or (26). In each case an exact solution seems out of the question, but a
singular perturbation analysis is fruitful and yields valuable asymptotic
results. Thus applied math techniques which are now fairly standard tools,
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such as WKB expansions and matched asymptotics, have proved useful in
a new area of applications.
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