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ABSTRACT
Whether they are the audit trails of the events in a computer
system, of traffic in a network, of actions by individuals, or
records of financial transactions monitored for internal com-
pliance by a financial corporation (or monitored externally
by the SEC or FBI), records of events tend to be massive.
In this haystack of events can lie buried valuable informa-
tion whose extraction would be easier if the event record
could be reduced. This paper is a step in this direction, in
that it gives an algorithm that takes as input a sequence of
events that were generated by k Markov models, and sepa-
rates it into k sequences each of which corresponds to the
sub-sequence generated by one of the k models. The input to
the algorithm does not include the state space or transition
matrix of any of the k models, nor does it include the pa-
rameters that were used to mix their respective outputs and
produce the merged sequence; thus making our algorithm
universal within the class of Markov sources. To identify
statistically significant events, we develop an approximate
statistical analysis. Finally, we report experimental results
demonstrating that our algorithm is both fast and accurate.
Our techniques work also remarkably well for higher order
Markovian sources. Unlike previous work in this area, we
present an algorithm that does not assume that the symbols
generated by k different Markov models are disjoint; to our
knowledge we are the first to handle this substantially more
difficult case of k models with overlapping symbols; Our
results are backed by both theoretical analyses and experi-
mental data. Previous work had no experimental results.
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1. INTRODUCTION
The increasing use of proxies and of network address trans-

lation has made it hard to link Internet actions to their
originating source. Sophisticated Web-bots deliberately use
randomly varying sets of proxies to access target sites (so
that 10 simultaneous requests appear to come from 10 differ-
ent random sources), often ignoring the site’s wishes to keep
them out (as expressed in the robots.txt file) and even trying
to masquerade as human users and escape the bot-detection
mechanisms that have been proposed and deployed (see [14]
for some of these). The purpose of this can range from col-
lecting information about a competing corporation, about
a sensitive topic, or simply to foil intrusion-detection and
misuse-detection systems. As a result of this, event-logging
mechanisms are unable to distinguish the true origin of an
event. Moreover, event-logging mechanisms often do not
know ahead of time which subset of events will be of future
interest (e.g., from a forensic point of view), and have no
choice but to err on the conservative side and record more
than what is needed.

Even when the event-logging system knows that only some
types of events may ultimately be of interest, it still typi-
cally records the other events because they may pertain to
the events of interest (this could take the form of correla-
tion or causality). However, an audit log that contains an
over-abundance of data makes the task of processing it more
difficult. One would expect data reduction to be possible if
one has a detailed model of the processes that generate all
the recorded events, and of the process that causes them
to arrive and be recorded in a particular order. But such
a model is typically not available a priori, and must ulti-
mately be derived from the only observable: The recorded
event stream. Other potential applications are in biology
(e.g., finding coding vs noncoding regions) and intrusion de-
tection (i.e., identifying improper use of a system).

This paper shows that data reduction is possible even
without knowing much about the models that generated
the events, or about the observation and logging mechanism
that recorded them: All that is known is that (i) each is
individually Markovian; (ii) they are independent and their
outputs are randomly inter-mixed; and (iii) they generate
event types that may overlap or not. Take the example of
the set of event types where each type corresponds to visiting
a particular web page (or, at a coarser level of granularity, a



Figure 1: Illustration to the Mixing Sources Mode: One observes a mixture of symbols originating from
several different Markov sources and separates the symbols according to the model that generated them.

certain category of web page). They do tend to be Marko-
vian (where we go next tends to depend on where we are
now), independent (what Alice does tends to be unrelated
to what Bob does). The “disjoint” assumption is sometimes
true, often approximately true; our scheme has been tested
and found to work for the case of over-lapping generation of
the same event types by different Markov sources.

The basic issue considered in this paper is the following:
Can the inter-mixed outputs of k distinct Markov models
be separated without knowing anything about each model
(either its state space or transition matrix) or about the way
their respective outputs were inter-mixed to produce the ob-
servable sequence? We give an efficient algorithm for this
problem, and we experimentally demonstrate its effective-
ness both for synthetic data and for test-case data available
on the Internet.

One may view our model as a special case of the hidden
Markov model [6] over the cross-product space with a pro-
jection of this product space to its components. However,
this observation does not translate into a tractable computa-
tional solution. A related problem was discussed in [8] where
switching sources were studied (cf. [3]), but the work most
related to ours is [4] where several intractability results were
proved together with some algorithms for separating Markov
sources for independent and dependent switches when sym-
bols from different sources are distinct or the mixture is of
two identical Markov chains. There are no experimental
results presented in [4]. Lemma 1 of [4] presents some con-
ditions for probability estimates but these conditions can
hardly be verified on real data. In this paper we present
simple universal algorithms for Markov sources (both with
disjoint and overlapping alphabets), together with an ap-
proximate statistical analysis that works remarkably well in
practice.

2. MODEL
For i ∈ {1, . . . , k}, let Mi = (Ai, Ti) be Markovian sources

over the alphabet Ai with probability transition matrix Ti.
Assume that a distinct symbol is associated with each state
of a source model Mi thus allowing us to use the term state
and symbol interchangeable for any specific source model.
We shall denote σi = |Ai| and thus Ti is a σi × σi matrix,

Let Ŝi be a sequence generated by the source model Mi.
Furthermore, let all Ai be pairwise disjoint. Let Ŝ be the se-
quence of events generated by repeatedly flipping a k-sided
coin whose probability of side i is pi: If the outcome of the
coin flip is side i then the next symbol of Ŝ comes from

Figure 2: The alphabets of sample Disjoint and
Overlapping Markov Merging Models.

Ŝi, and that symbol of Ŝi is thereby “consumed” (hence the
next time a coin flip produces side i, it is the next symbol
of Ŝi that appears in Ŝ). An equivalent definition of Ŝ is to

say that Ŝ is obtained by running the textbook k-way merg-
ing algorithm on the Ŝi’s, using the coin flip to determine
the outcome of each k-way comparison done by the merg-
ing algorithm (a coin toss that turns up side i, places the

comparand from Ŝi in the output sequence Ŝ).
The input to the algorithm is a sequence S that is a con-

tiguous portion of the above Ŝ, i.e., a “window of observa-
tion” of width |S| = n. The output of the algorithm is a
partition of the input S into S1, . . . , Sk where Si is the sub-
sequence of S restricted to the events from Ai; hence the
algorithm needs to determine all of the Ai’s. The algorithm
has a small probability of failing to produce such an output;
we shall characterize precisely which inputs cause this.

We define a Markov Merging Model to be the model where
the outputs of Mi are inter-mixed as specified earlier with
respective probabilities p1, . . . , pk. A Disjoint Markov Merg-
ing Model is a Markov Merging Model where Ai ∩ Aj = ∅
∀i 6= j. An Overlapping Markov Merging Model is a Markov
Merging Model where Ai ∩ Aj 6= ∅ for all i 6= j. These
definitions will be used to distinguish between the different
algorithms presented in this paper.

We henceforth use A to denote ∪k
i=1Ai and σ to denote

|A| (hence σ = σ1 + . . .+ σk).

3. PRELIMINARIES
This section presents our analysis that will be needed to

justify our algorithms presented in the next sections.

3.1 Definitions



Each Markov model Mi is time invariant (homogeneous)
so we define the following stationary probabilities for Si:

• Pi(uv) = P (Si[t] = u, Si[t+ 1] = v),

• Pi(v|u) = P (Si[t] = v|Si[t− 1] = u).

The output sequence is stationary, hence we can define
the following stationary probabilities for S:

• P (uv) = P (S[t] = u, S[t+ 1] = v),

• P (v|u) = P (S[t] = v|S[t− 1] = u) = Ti[u, v]

for any u, v ∈ A.

3.2 The Discriminator
The algorithms presented in this paper use a discrimina-

tor, denoted by δ̂, to help determining whether two symbols
are generated by the same Markov source (i.e., for symbols
u and v, does there exist i s.t. u ∈ Ai and v ∈ Ai?).

It is extremely easy to compute δ̂ by counting the number
of occurrences of pairs of symbols. We use the expression
#uv to denote the number of occurrences of the string uv
in S. Then

δ̂(u, v) = #uv −#vu.

Let δ(w) denote the number of w occurrences in S. Clearly
(cf. [12, 13]),

P (w) = lim
n→∞

δn(w)

n
.

where for random S the above limit must be “in probabil-
ity”, and even stronger “almost sure” convergence sense. In
fact, the rate of convergence of the above limit for Markov
processes is exponential [12].

We now estimate δ̂ based on δ defined as

δ = (n− 1) · (P (uv)− P (vu)).

Observe that

lim
n→∞

δ̂

n− 1
=

(n− 1)P (uv)− (n− 1)P (vu)

n− 1

= P (uv)− P (vu)

= δ,

and then

lim
n→∞

(δ − δ̂)

= (n− 1)(P (uv)− P (vu))− ((n− 1)P (uv)− (n− 1)P (vu))

= 0.

Thus for large values of n (when S is long), we can treat δ̂
as an approximation to δ. We will later quantify how good
is this approximation.

We now show that if for some i we have u ∈ Ai and
v ∈ Ai, then δ = 0; therefore, u and v must belong to the
same alphabet. In the case of disjoint sources, this implies
that u and v are generated by the same source model.

Let us now concentrate on disjoint alphabets. We first
calculate P (uv), the probability of occurrence of the string
uv at a certain position in S. Recall that P (uv) is the same
for each position in S thereby allowing us to use the single
notation P (uv) for any fixed position in S.

Observe that P (uv) is the sum of the probabilities of two
disjoint events:

1. The merging process has determined that at position x
in S, the output of the source model Mi will be placed,
and at position x + 1, the next output of the same
source model Mi will be placed. The probability that
the merging process will pick the model i twice is pi

2

and the probability of Mi outputting a u followed by a
v is Pi(uv) = Pi(u)Pi(v|u). Since all k models have to
be accounted for, the overall probability of this event
occurring is

k∑
i=1

pi
2 · Pi(uv).

2. The merging process has determined that at position x
in S, the output of the source model Mi will be placed,
and at position x+ 1, the output of a different source
model Mj (i 6= j) will be placed. The probability that
the merging process will pick model i then j is pipj and
the probability of Mi outputting u and Mj outputting
v is Pi(u)Pj(v). Since all models where i 6= j have to
be accounted for, the overall probability of this event
occurring is ∑

i6=j

pipj · Pi(u) · Pj(v).

These two events are disjoint and hence

P (uv) =

k∑
i=1

pi
2 · Pi(uv) +

∑
i6=j

pipj · Pi(u) · Pj(v).

Similarly,

P (vu) =

k∑
i=1

pi
2 · Pi(vu) +

∑
i 6=j

pipj · Pi(v) · Pj(u).

Hence,

P (uv)− P (vu) =

k∑
i=1

pi
2 · (Pi(uv)− Pi(vu)).

and

δ(u, v) = (n− 1) · (P (uv)− P (vu)) (1)

= (n− 1)

k∑
i=1

pi
2 · (Pi(uv)− Pi(vu)). (2)

The critical observation is that if u and v belong to disjoint
alphabets, then u or v cannot occur in Si and so the strings
uv and vu do not occur in Si. Therefore, Pi(uv)−Pi(vu) =
0 − 0 = 0. In other words, if ∀i ∈ {1, . . . , k}, u /∈ Ai or
v /∈ Aj , then Pi(uv)− Pi(vu) = 0− 0 = 0, and δ(u, v) = 0.

3.3 Estimating the Discriminator
Our algorithms rely on the ability to estimate δ(u, v) and

determine with high probability whether small δ̂ implies
δ(u, v) = 0. As argued, we shall use δ̂ = #uv − #vu as
an estimator of δ(u, v). To simplify our presentation, we

write δ̂n for δ̂(u, v) when the sequence is of length n.

In the sequel, we present a simplified analysis of δ̂n. Our
goal is to assure that if δ̂n ≤ ε for some ε > 0, then with
high probability δ̂n = 0. We accomplish it by appealing to
the Chebyshev inequality

P (δ̂n > ε) ≤ V ar[δ̂n]

ε2
.



Thus, we must aim at evaluating variance V ar[δ̂n].
We shall prove that

V ar((n− 1)δ) = V ar(#uv −#vu) ≈
n(P (uv) + P (vu))− 4(n− 1)(P (u)P (uv) + P (v)P (vu))

To derive this result we start out with a few definitions.
Let Ni(ab) be 1 when S[i] = a and S[i + 1] = b and 0
otherwise (i.e., it is 1 iff string ab appears at position i in
the overall sequence S). Let Di = Ni(uv) − Ni(vu). Our

goal is to derive an approximation for the variance of δ̂n =
#uv −#vu =

∑n
i=1Di. Clearly,

V ar(δ̂n) =

n∑
i=1

V ar(Di) +
∑
i6=j

Cov(Di, Dj).

Since

E[Di] = E[Ni(uv)]− E[Ni(vu)]

= 1 ∗ P (Ni(uv) = 1)− 1 ∗ P (Ni(vu) = 1)

= 0

and

E[Di
2] = E[(Ni(uv)−Ni(vu))2]

= E[(Ni(uv))2 +Ni(uv)Ni(vu) + (Ni(vu))2]

= E[(Ni(uv))2] + E[(Ni(vu))2]

= 12P (Ni(uv) = 1) + 12P (Ni(vu) = 1)

= P (uv) + P (vu)

we arrive at

V ar(Di) = E[Di
2]− E[Di]

2 = P (uv) + P (vu)
n∑

i=1

V ar(Di) = n(P (uv) + P (vu)).

Now we approximate the second summation:

Cov(Di, Dj) = E[(Di − E[Di])(Dj − E[Dj ])].

We find

Cov(Di, Di+1) = E[(Di − E[Di])(Di+1 − E[Di+1])]

= E[DiDi+1]

= E[(Ni(uv)−Ni(vu))(Ni+1(uv)−Ni+1(vu)).]

There are two disjoint events when this value is nonzero:
(1) uv appears at position i in S with probability P (uv)
and u appears at position i+ 2 in S with probability P (u),
causing vu to appear at position i + 1. (2) vu appears at
position i in S with probability P (vu) and v appears at
position i + 2 in S with probability P (u), causing uv to
appear at position i+ 1. Hence,

Cov(Di, Di+1)

= P (uv)P (u)(1− 0)(0− 1) + P (vu)P (v)(0− 1)(1− 0)

= −P (u)P (uv)− P (v)P (vu)

We will only consider the covariances Cov(Di−1, Di) and
Cov(Di, Di+1) for each i. In other words, we will assume
that the effect of Dj on Di, coming from the memory of the
mixing process, is neglected in our analysis when |i− j| > 1
(cf. [13] how to compute it for Markov sources). Thus

∑
i6=j

Cov(Di, Dj) ≈ 2

n∑
i=2

Cov(Di−1, Di) + 2

n−1∑
i=1

Cov(Di, Di+1)

= 4

n−1∑
i=1

(−P (u)P (uv)− P (v)P (vu))

= −4(n− 1)(P (u)P (uv) + P (v)P (vu)).

Finally, combining the two summations, we get:

V ar(δ̂n) = n(P (uv)+P (vu))−4(n−1)(P (u)P (uv)+P (v)P (vu))

as needed.

3.4 Using the Discriminator
We have shown that if u and v do not belong to the same

source model alphabet, then δ(u, v) = 0. Note that the
converse is not necessarily true: if δ(u, v) = 0, then u and v
never belong to the same source model. This leads to the so
called indistinguishable cases (cf. [4]).

We can pinpoint when the converse is not necessarily true.
This happens when ∀i Pi(uv) = Pi(vu). Such a Markov is
called reversible, because the probability of encountering a
uv in S is the same as the probability of encountering a vu
for all pairs (u, v).

Based on the estimator δ̂, we will now define an Attrac-
tion Graph (call it G) which is used by the algorithm for
overlapping sources. The vertices of the attraction graph
consist of the elements of A (the union of all alphabets). If

δ̂ > ε, for some threshold ε > 0, we assume that δ̂n > 0
with high probability and we establish an edge in the graph.
(Notice that δ̂ acts as an estimator for δ̂n.)

4. DISJOINT SOURCES ALGORITHMS
In this section we present our separation algorithms for

known and unknown k.

4.1 Accurate Algorithm for Known k
In the previous section, we saw that δ̂ ≈ 0 is a good in-

dicator that x and y belong to different models. However,
δ̂ 6≈ 0, which indicates that x and y are from the same model,
is an even better indicator because it is only true when x
and y are from the same model. This suggests using δ̂ as
a measure of the likelihood of x and y being in the same
model. Observe that large values of δ̂ may be interpreted
that x and y are likely to be in the same model.

In summary, the discriminator works better for deciding
whether x and y are generated the same model. There-
fore, our algorithm takes action only for pairs x, y for which∣∣∣δ̂(x, y)

∣∣∣ is large. The algorithm relies heavily on this obser-

vation, by grouping pairs x, y in descending order of
∣∣∣δ̂(x, y)

∣∣∣
over all pairs where x 6= y.

The algorithm is as follows:

1. Compute δ̂(x, y) for all x 6= y.

2. Sort the pairs generated in step 1 in descending order

of
∣∣∣δ̂(x, y)

∣∣∣.
3. Place each of the σ event types in a group of its own,

then go through the sorted pairs (x, y) and, if x and y



are in different groups, then merge those two groups.
Stop looking at such pairs (x, y) when exactly k groups
remain.

4. Return the k groups and, along with each group, the
subsequence of S whose symbols come from that group.

We now turn to the implementation and complexity of the
above algorithm.

• The computation of δ(x, y) for all x 6= y can be done in
O(n) time and O(σ2) space as follows: Sweep through
the sequence and count the number of occurrences of
each symbol x (i.e., #x). This takes O(n+σ) time and
O(σ) space. During the same sweep, for every length 2
substring xy of S, increment #(xy). This takes O(n)
time and O(t) space where t is the number of distinct
length 2 substrings of S, hence t ≤ min

{
n, σ2

}
.

• Since there are O(σ2) values in T , sorting them can be
done in O(σ2 log σ) time.

• The repeated merging of groups can be done efficiently
in a total of O(σ2 · α(t, σ)) time, where α is the in-
verse Ackermann function, which is dominated by the
O(σ2 log σ) time of the previous step, and in O(σ2)
space, by using the well known Union-Find data struc-
ture. [2]

Therefore, the overall complexity of the algorithm is O(n+
σ2 log σ) time and O(σ2) space. In any practical situation,
the length n of the event sequence is much larger than the
number σ of event types that we always have n ≥ σ2 log σ.
For this reason, we can say that the algorithm is O(n) time.

4.2 Accurate Algorithm for Unknown k
[Carefully review the content below because it is

brand new.]
If k, the number of source models, is not given, the algo-

rithm in the previous section can be modified to only con-
sider pairs (x, y) for which there is an edge in the Attraction
Graph:

1. Compute the Attraction Graph, G, as defined in the
preliminaries section.

2. Place each of the σ event types in a group of its own,
then for each pair of symbols (x, y), if there exist an
edge in G between x and y, then merge the group of x
with the group of y. If x and y happen to already be
in the same group, skip to the next pair.

3. Return the groups and, along with each group, the
subsequence of S whose symbols come from that group.
The number of resulting groups is the value of k.

The complexity analysis of the above algorithm is similar
to that of the previous one:

• The computation of the Attraction Graph requires δ̂(x, y)
to be computed for each pair where x 6= y. Each
ψ(x, y) can be computed in constant time from δ̂(x, y)
using the closed form equation given in the preliminar-
ies section. The attraction graph can then be built us-
ing an edge list representation by testing each value of
ψ(x, y). Hence computing the Attraction Graph takes
O(n) time and O(σ2) space.

• For the same reason as for the previous algorithm,
the repeated merging of groups can be done in O(σ2 ·
α(t, σ)) time and O(σ) space.

Therefore the overall complexity of this algorithm is O(n+
σ2 · α(t, σ)) time and O(σ2) space. As mentioned earlier, in
any practical situation, the length n of the event sequence
is so much larger than the number σ of event types that we
always have n ≥ σ2 · α(t, σ). For this reason, we can say
that the algorithm is O(n) time.

4.3 A More Robust Algorithm
We propose here another algorithm for sources that may

be approximated by Markovian models but with a little bit
of error. This algorithm is more robust for such sources than
the algorithm in the previous section, but less accurate for
rigorously Markovian sources. We tested it on sequences
that consisted of randomly intermixed text from two dif-
ferent natural languages (subsets of books in English and
Spanish) and it very successfully separated each of them
into its two constituent subsequences. We stress that the
software that did this did not have any information about
the structure or properties of English and Spanish. It could
have just as well worked if the roles of English and Span-
ish had been played by two new unknown languages coming
form outer space.

Let δ̂ be as previously defined:

δ̂(x, y) = #(xy)−#(yx)

The algorithm is then as follows:

1. Compute the pair (x, y) ∈ A2 that minimizes |δ(x, y)|.
Set U = {x, y}. Then, repeat the following until |U | =
k:

(a) Compute w ∈ A that minimizes∑
z∈U

|δ(z, w)|

(b) Include w in U .

2. U should now contain exactly one element from each
of the models, call them u1, . . . , uk. Let V1, . . . , Vk be
sets such that Vi = {ui}.

3. In turn for each y ∈ A − U (in random order), put
y in one of the Vi’s according to the following cri-
terion. Compute the k scalar quantities f(y, Vi) =∑

x∈Vi
|δ(x, y)|, i = 1, . . . , k. The Vi in which y is

inserted is the one that has maximum f(y, Vi); note
that it is the new (augmented) Vi that is used in the
insertion of the next y considered.

4. Return the groups V1, . . . , Vk and, along with each
group, the subsequence of S whose symbols come from
that group.

The complexity of the above is O(n + σ2) by an analysis
similar to the one given in the previous section (minus the
use of the UNION-FIND data structure, which is not needed
in this algorithm).

The basis for the correctness of the above algorithm are
the following observations: A very small value for |δ(x, y)|
is an indicator that x and y are in different models, and this



Figure 3: The merge cost of u and v is defined as the
number of edges that must be added to the subgraph
containing neighbors of u or v in order to make it a
complete graph. In this example, the 4 dotted edges
are not present in the neighborhood ({a, b, c, d, e}) of
u and v so the merge cost g(u, v) is 4.

is used to generate U with k different elements (one from
each model). The second observation, that is the basis of
building the Vi’s, is that a large f(y, Vi) is an indicator that
y is in Vi, which is why the winning Vi (the one that will
gobble up y) is the one having the largest f(y, Vi).

5. OVERLAPPING SOURCES ALGORITHM
One of our main improvements of the work done in [4]

is the formulation of an algorithm which infers mixtures of
overlapping alphabets. In this section, we describe the algo-
rithm. Its steps are as follows.

1. Compute the attraction graph G as described in the
earlier sections.

2. For every pair of distinct vertices u, v in G compute
the grouping cost g(u, v) as follows.

• Let N(u, v) be the set of vertices of G that are
adjacent to u or v or both, and let G(u, v) =
(V (u, v), E(u, v)) be the subgraph of G that is
induced by N(u, v). Then g(u, v) is the number
of pairs x, y of vertices in G(u, v) such that there
is no edge (x, y) in G; equivalently, g(u, v) is the
number of edges that would have to be added to
G(u, v) in order to turn it into a complete graph.
Therefore g(u, v) = |V (u, v)|(|V (u, v)| − 1)/2 −
|E(u, v)|.

3. Sort the vertex pairs {u, v} by increasing g(u, v) values.
Let L be this sorted list of pairs.

4. Initialize a set called Unlabeled to consist of all the
vertices of V . As the algorithm proceeds, vertices will
move out of Unlabeled to one of the following other sets
(all of which are initially empty): Pure1, . . . , Purek,
and Unpure. The intent is that Purei will contain
symbols that are in model i only (i.e., not in any of the
other models), and Unpure will contain the symbols
that are in more than one model. The way this is done
is by processing the elements of L in left to right order
and and creating the pure sets Purei. Advance along
L is as follows.

Figure 4: This Figure illustrates the approach of
the algorithm for overlapping sources of identify-
ing a pure set of symbols and the connected unsure
symbols. The distinction between pure and unpure
vertices is that pure vertices are only connected to
the neighbors of u and v while the unpure vertices
are also connected to at least one vertex that is not
connected to one of u or v.

(a) Pick the next pair (u, v) from the list L subject
to the condition that both u and v are unlabeled.

(b) Put u and v in a new Purei, and move every
vertex x of N(u, v) out of Unlabeled and into one
of two destinations: Move x to Purei if x has
no edge linking it to a vertex outside of N(u, v),
otherwise move x to Unpure.

5. Create a new set Unclassified = Unlabeled∪Unpure.

6. At this point the algorithm has identified the pure
subset, Purei, of each source model’s alphabet, Ai.
The elements that are in Unclassified now need to
be placed in the Ai’s. Unlike the pure elements, the
unclassified elements might belong to more than one
source model alphabet. Use the pure sets as pivots to
determine which alphabets to place the Unclassified
elements in the following way: for each w in Unclassified,
place w in Ai if there is an edge between w and some
element in Purei.

The complexity of this algorithm can be derived:

1. Computing the Attraction Graph takes O(n) time and
O(σ2) space as described in the previous section.

2. Since there are O(σ2) pairs, sorting them can be done
in O(σ2 log σ) time.

3. Iterating through L requires O(σ2) time since L is of
size O(σ2).

The most amount of memory that can be used by the
lists is O(σ2) in the case where each symbol appears in each
alphabet.



Therefore the total time complexity is O(n + σ2), and
because of the previously mentioned insignificant size of σ2

relative to n, the total time complexity can be expressed as
O(n). The total space complexity is O(σ2).

6. ASSOCIATING INSTANCES OF SYMBOLS
TO ALPHABETS

After the alphabets are inferred using one of the algo-
rithms described in the previous sections, an additional al-
gorithm must be run to associate specific a occurrence of
each symbol in the mixed sequence to its source alphabet.
For non-overlapping alphabets, doing this is trivial because
no two alphabets contain the same symbol and so there could
only be one alphabet that generated the symbol. Overlap-
ping alphabets, however, share some of the symbols. In this
section, we propose a sliding window algorithm for associat-
ing occurrences of symbols to overlapping alphabets.

Assume that the overlapping alphabets A1, ..., Ak have
been computed (e.g., using one of the algorithms described
in the previous sections). The goal of the algorithm is to
compute α[i] (i = 1..n), the alphabet from which S[i] came.
So α[10] = 3, indicates that S[10] came from A3. Run the
following algorithm for each symbol S[i].

1. Let w be the window radius. As is discussed later, our
experiments show that w = 5 is a good choice in most
situations.

2. Let X = {x−w, ..., x0, ..., xw} be the interval of length
2w + 1 centered at position i in S (hence x0 = S[i]).

3. For each possible mapping of symbol occurrences to
alphabets α̇ : {−w, ..., w} → {1, ..., k}, let α̇∗ be the
one with the highest probability of occurrence where
the probability is computed as follows:

(a) Based on α̇[−w], ..., α̇[w], let yj be the subsequence
of X containing all of the symbol occurrences mapped
to Aj .

(b) The probability of occurrence of X (consisting of
all y’s) is:

k∏
j=1

|Aj |−1∏
l=1

Pj(yj [l], yj [l + 1])

4. Assign α[i] = α̇∗[0].

There are k2w+1 mappings that need to be considered.
Computing the probability of each mapping takes O(w) time
and O(w) space. The set of mappings need to be computed
for each occurrences of a symbol in the sequence so the total
complexity is O(n·w·k2w+1) time and O(w) space. Although
it is exponential, this complexity is acceptable because w =
5 (constant) and k, the number of alphabets is usually small.

7. EXPERIMENTAL RESULTS
In this section, we show the accuracy with which the al-

gorithm infers the underlying alphabets of a sequence.

Figure 5: This Figure shows inference error as a
function of sequence length for problems consisting
of two 8-state Markov chains with 50% overlap.

7.1 Sequence Length
The longer the length of a sequence, the more accurate

the algorithm is. We show this experimentally.
For each trial the following was done:

1. Create two random Markov chains with alphabets of
8 symbols each. The alphabets are picked such that
exactly 4 of the symbols appear in both.

2. Using the mixture processes defined in this paper, cre-
ate a sequence (lengths differ between trials).

3. Feed the sequence we just generated into the algorithm
described in this paper in order to infer the alphabets.

4. Calculate the error between the alphabets that were
used to generate the sequence and the alphabets in-
ferred by the algorithm.

Error is calculated as follows. Let A∗ and B∗ be the cor-
rect alphabets and A and B be the alphabets inferred by the
algorithm. Then the error is min(|A∗−A|+ |A−A∗|+ |B∗−
B|+ |B −B∗|, |A∗ −B|+ |B −A∗|+ |B∗ −A|+ |A−B∗|).

The results can be seen in Figure 5.

7.2 Comparison to COLT04 Algorithm
The most closely related paper to our work is [4]. This

section compares the algorithm in Section 4.1 to that of [4].
The algorithm described in [4] has a weakness in that it

uses the ”≈” (approximately equal) operator for determining
dependency relationships between symbols. The paper [4]
does not explain how to determine if two values satisfy the ≈
condition. One possible way to test for approximate equality
is to use a constant error margin ε and define x ≈ y as
|x− y| < ε. However, this does not work in practice because
the algorithm is extremely sensitive to the value of ε and ε
is different for every kind of problem.

Our data in Figure 5 shows that even a slight change in the
ε parameter can cause the algorithm to fail every time. The
task in the experiment was to separate a mixed sequence
generated by two 10-state Markov chains. The mixed se-
quences varied in length between 2,000 and 20,000 symbols.



Figure 6: Accuracy Comparison to COLT04 Algo-
rithm

For each set of parameters, accuracy was computed by cal-
culating the percent correct solutions of each algorithm to
50 randomly generated problems. The same set of problems
were given to each algorithm.

In Figure 5, five of the six series show the accuracy of
the COLT04 ([4]) algorithm and the other series shows our
algorithm. The COLT04 algorithm does best when ε (the
error margin) is between 0.001 and 0.002. Values of ε outside
that range result in almost 0% accuracy.

Our algorithm has two advantages over the COLT04 one:
(1) It does not use ≈ (approximate equality) and therefore
does not require an ε parameter. (2) It is much more accu-
rate.

8. CONCLUSION
This paper presents several algorithms for separating ran-

domly intermixed Markov chain sequences.
The accurate algorithm for known k in Section 4.1 is a

major improvement of the algorithm in [4] because it elim-
inates the need to use an error margin to do approximate
comparisons thus making the algorithm several times more
efficient (as shown in Figure 6). This algorithm also requires
a remarkably little amount of data to perform the separa-
tion.

The robust algorithm in Section 4.2 is able to better han-
dle approximately Markovian data at the cost of accuracy.
For purely Markovian data sources this algorithm does not
produce as accurate results as the one in Section 4.1, but for
Markovian data sources with noise, the accuracy is substan-
tially better than both the algorithm in Section 4.1 and the
one presented in [4].

Finally, in Section 5, we provide an algorithm which iden-
tifies the source alphabets even if they share some symbols.
Although this algorithm requires more data than the ones
in Section 4, it tackles a much harder variant of the separa-
tion problem and to the best of our knowledge, it is the first
algorithm which accomplishes this.

Since the number of different symbols is usually much less

than the total sequence length, each of the algorithms pre-
sented in this paper runs in linear time. The algorithms
can also work with the sequence as a stream and require no
more than two passes over the data. This means that the
algorithms scale well for large datasets and could be used on
databases which cannot be entirely stored in RAM.
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