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Abstract

With ever increasing amount of available data on proteoigin interaction (PPI) networks and
research revealing that these networks evolve at a modedat, Idiscovery of conserved patterns
in these networks becomes an important problem. Recentlyoged algorithms for aligning PPI
networks target simplified structures such as conservdovags to render these problems computa-
tionally tractable. However, since conserved structunas are parts of functional modules and pro-
tein complexes generally correspond to dense subnetsjthige that are able to extract conserved
patterns in terms of general graphs are necessary. Withrthivation, we focus on discovering
protein sets that induce subnets that are highly consenvidetiinteractome of a pair of species. For
this purpose, we develop a framework that formally definegtirwise local alignment problem for
PPI networks, model the problem as a graph optimizationlpnopand present fast algorithms for
this problem. In order to capture the underlying biologisaicesses accurately, we base our frame-
work on duplication/divergence models that focus on undading the evolution of PPl networks.
Detailed experimental results from an implementation efghoposed framework show that our al-
gorithm is able to discover conserved interaction patteeng effectively, both in terms of accuracies

and computational cost.

1 Introduction

Increasing availability of experimental data relating iolbgical sequences, coupled with efficient tools
such as BLAST and CLUSTAL have contributed to fundamentaleustanding of a variety of biolog-

ical processes [1, 32]. These tools are used for discoveongnon subsequences and motifs, which
convey functional, structural, and evolutionary inforinat Recent developments in molecular biology

have resulted in a new generation of experimental data et delationships and interactions between



biomolecules [16]. An important class of molecular intéi@t data is in the form of protein-protein
interaction (PPI) networks. These networks provide theegrpental basis for understanding modular
organization of cells, as well as useful information forgpoéing the biological function of individual
proteins [33]. High throughput screening methods such ashybrid analysis [18], mass spectrome-
try [13], and TAP [9] provide large amounts of data on thesevoeks.

As revealed by recent studies, PPl networks evolve at a raotivel [39] and consequently, under-
standing conserved substructures through alignment gethetworks can provide basic insights into
a variety of biochemical processes. However, although ammstunts of high-quality data is becoming
available, efficient network analysis counterparts to BIAfd CLUSTAL are not readily available for
such abstractions. As is the case with sequences, key prslda graphs derived from biomolecular
interactions include aligning multiple graphs [34], fingiinequently occurring subgraphs in a collection
of graphs [22], discovering highly conserved subgraphs paia of graphs, and finding good matches
for a subgraph in a database of graphs [20]. In this paperpeeifically focus on discovering highly
conserved subnets in a pair of PPI networks. With the expentdhat conserved subnets will be parts of
pathways, complexes, or modules, we base our model on tbevéis/ of two subsets of proteins from
each PPI network such that the induced subnets are highseceed.

Based on the understanding of the structure of PPl netwbiksatre available for several species,
theoretical models that focus on understanding the ewlutf protein interactions have been devel-
oped. Among these, the duplication/divergence model hais leown to be successful in explaining the
power-law nature of PPI networks [36]. In order to capture tinderlying biological processes accu-
rately, we base our framework on duplication/divergenceeoby defining duplications, matches, and
mismatches in a graph-theoretic framework. We then recheegsulting alignment problem to a graph

optimization problem and propose efficient heuristics twesthis problem. Experimental results based



on an implementation of our framework show that the prop@dgdrithm is able to discover conserved
interaction patterns very effectively. The proposed athor can be also adapted to finding matches for
a subnet query in a database of PPI networks.

The rest of this paper is organized as follows: we start wiihief overview of duplication/divergence
models for the evolution of PPI networks in Section 2. In #ecB, we define the alignment problem
based on these models of evolution, formulate the problemgaph optimization problem, and pro-
pose efficient heuristics for the solution of the problem. Wistrate the effectiveness of the proposed
framework on comprehensive pairwise alignment of the PRVowks for three eukaryotic species in Sec-
tion 4. We then discuss existing literature on network atignt and compare the proposed framework

with existing methods in Section 5. We conclude our disarssi Section 6.

2 Theoretical Models for Evolution of PPl Networks

There have been a number of studies aimed at understandingetieral structure of PPl networks.
These studies suggest that PPI networks can generally beledday power-law graphsge., the relative
frequency of proteins that interact withproteins is roughly proportional to~", where~ is a network-
specific parameter [5]. In order to explain this power-latung, Barabasi and Albert have proposed [5] a
network growth model based on preferential attachment;hvisi able to generate networks with degree
distribution similar to PPI networks. According to this nebchetworks expand continuously by addition
of new nodes and these new nodes prefer to attach to wellectegoh nodes when joining the network.
Observing that older proteins are better connected, Ee&sgrdmd Levanon [8] explain the evolutionary
mechanisms behind such preference by the strength ofiselecessure on maintaining connectivity of

strongly connected proteins and creating proteins toantewith them. Furthermore, in a relevant study,



it is observed that the interactions between groups of prethat are temporally close in the course of
evolution are likely to be conserved, suggesting synaogsiection during network evolution [27].

A common model of evolution that explains preferential @ttaent is the duplication/divergence
model, which is based on gene duplications [25, 36, 37, 38Lofding to this model, when a gene is
duplicated in the genome, the node corresponding to theuptad this gene is also duplicated together
with its interactions. An example of protein duplicationsisown in Figure 1. A protein loses many
aspects of its functions rapidly after being duplicatedisTranslates to divergence of duplicated (par-
alogous) proteins in the interactome through eliminatiott @anergence of interactions. Elimination of
an interaction in a PPI network implies the loss of an intéoadbetween two proteins due to structural
and/or functional changes. Similarly, emergence of anmacteon in a PPI network implies the introduc-
tion of a new interaction between two non-interacting pritecaused by mutations that change protein
surfaces. Examples of elimination and emergence of inierecare also illustrated in Figure 1. If an
elimination or emergence is related to a recently duplatatetein, it is said to be correlated; otherwise,
it is uncorrelated [25]. Since newly duplicated proteins arore tolerant to interaction loss because of
redundancy, correlated elimination is generally more pbddthan emergence and uncorrelated elimina-
tion [36]. It is also theoretically shown that network grommodels based on node duplications generate
power-law distributions [6].

Since the elimination of interactions is related to seqedruel mutations, one can expect a positive
correlation between similarity of interaction profiles asdjuence similarity for paralogous proteins [37].
Indeed, the interaction profiles of duplicated proteinsltenalmost totally diverge in about 200 million
years, as estimated on the yeast interactome. On the othdr tiee correlation between interaction
profiles of duplicated proteins is significant for up to 150liom years after duplication, with more than

half of interactions being conserved for proteins that anglidated less than 50 million years back [37].



Consequently, when we consider the PPI networks that betohgo separate species, the in-paralogs
will be likely to have more common interactions than outgb@gs. Here, we use the terms in-paralog and
out-paralog for proteins that are duplicated before aret afieciation, respectively. While comparatively
analyzing the proteome and interactome, it is importantistirdjyuish in-paralogs from out-paralogs
since the former are more likely to be functionally relat&this, however, is a difficult task since out-
paralogs also show sequence similarity.

In order to accurately identify and interpret conservatibnnteractions, complexes, and modules
across species, we base our framework for the local alighaf&1 networks on duplication/divergence
models. While searching for highly conserved groups ofrattons, we evaluate mismatched interac-
tions and paralogous proteins in light of the duplicatiarédyence model. Introducing the concepts of
match (conservation), mismatch (emergence or eliminpéo duplication, which are in accordance
with widely accepted models of evolution, we are able toalec alignments that also allow speculation

about the structure of the network in the common ancestor.

3 Pairwise Local Alignment of PPI Networks

In light of the theoretical models of evolution of PPI netk®rwe develop a framework for the compar-
ison of PPI networks in two different species. We formallfime a computational problem that captures
the underlying biological phenomena using matches, mismeat and duplications. We then formulate
PPI network alignment as a graph optimization problem amggse efficient heuristics to effectively

solve this problem.



3.1 The PPI Network Alignment Problem

A PPI network is conveniently modeled by an undirected grapt, £), whereU denotes the set of
proteins andiu’ € F denotes an interaction between proteins U andu’ € U. For pairwise alignment
of PPI networks, we are given two PPl networks belonging mdifferent species, denoted (U, F)
and H(V, F). The homology between a pair of proteins is quantified by dlaiity measure that is
defined as a functiof : (UUV) x (UUV) — R. Foranyu,v € UUV, S(u,v) measures the degree of
confidence in, andv being orthologous, whei@ < S(u,v) < 1. If w andv belong to the same species,
then S(u, v) quantifies the likelihood that the two proteins are in-pagal S is expected to be sparse,
i.e., each protein is expected to have only a few potential ootigl We discuss the methodology for
deriving similarity scores from sequence alignments intise.1.3.

For PPI networks:(U, E) and H(V, F), a protein subset paiP = {U,V} is defined as a pair
of protein subsetd/ C U andV C V. Any protein subset pai® induces a local alignment
A(G,H,S,P) = {M,N,D} of G and H with respect toS, characterized by a set of duplications
D, a set of matched, and a set of mismatchég. The biological analog of duplicationis the dupli-
cation of a gene in the course of evolution. Each duplicagassociated with a score that reflects the
divergence of function between the two proteins, estimagaag their similarity. Amatchcorresponds
to a conserved interaction between two orthologous prqdairs, which is rewarded by a match score
that reflects our confidence in both protein pairs being ¢otimus. Amismatch on the other hand, is
the lack of an interaction in the PPI network of one organigtwieen a pair of proteins whose orthologs
interact in the other organism. A mismatch may corresporidé@mergence of a new interaction or the
elimination of a previously existing interaction in one betspecies after the split, or an experimental
error. Thus, mismatches are penalized to account for thergiwice from the common ancestor. We

provide formal definitions for these three concepts to qoiest basis for the formulation of local align-



ment as an optimization problem. Note that although PPI okdsvare undirected graphs, interactions
are regarded as ordered pairs in the following definitionsdémveniencei, e, for an interactionuu’ € E,

there is also an interactiariu € E, which is essentially the same interaction.

Definition 1 Local Alignment of PPI networks.

Given protein interaction networlG (U, E), H(V, F), let functionsA¢(u, v') and Ay (v, v") denote the
distance between two corresponding proteins in the intesagraphsG and H, respectively. Given a
pairwise similarity functionS defined over the union of their protein sétsJ 1/, and a distance cutoff

A, any protein subset paiP = (U, V) induces a local alignment (G, V, S, P) = {M, N, D}, where

M= { wu eU,vveV:Suwv) >0, Sk, v)>0,

1)
(uu' € EAAp(v,0") <A)V (v € FAAg(u,u') <A)) '}
N= { wuecUnwvveV:Suv)>0, S, v)>0,
2)
(uu' € EANAp(v,0") > A)V (v € FAAg(u,v’) > A)) }
D= {uucU:Suu)>0} U {vveV:Swvv)>0} (3)

Each matchM € M, mismatchNV € N, and duplicationD € D are associated with scoreg M),

v(N) andd(D), respectively.

Following the definition of match and mismatch, while assgsthe conservation of interactions, we
take into account not only direct but also indirect intei@ts. If two proteins directly interact with each
other in one organism, and their orthologs are reachabie &ach other via at mos\ interactions in
the other, we consider this a match. Conversely, a mismatgksponds to the situation in which two
proteins cannot reach each other MXanteractions in one network while their orthologs diredtiteract
in the other. This approach is motivated by two observatidfisst, proteins that are linked by a short
alternate path are more likely to tolerate losing theirriattion because of relaxation of evolutionary

8



pressure. Second, high-throughput methods such as TABdBlify complexes that are associated with
a single central protein and these complexes are recordégk imteraction database as star networks
with the central protein serving as a hub. Therefore, allggns that are part of a particular complex can

be viewed as interacting by setting= 2.

3.1.1 Scoring Match, Mismatch, and Duplications

For scoring matches and mismatches, we define the similzttyeen two protein pairs as follows:

S(uu',vv") = S(u,v)S',v") (4)

S(uu',vv") quantifies the likelihood that the interactions betweemdv, andw’ andv” are orthologous.
Consequently, a match that corresponds to a conservedfpaithologous interactions is rewarded as
follows:

p(un’; vv') = @S (uu', vo’) (5)

Here, i is the match coefficient that is used to tune the relative tedff matches against mismatches
and duplications, based on the evolutionary distance lestiiee species that are being compared.

A mismatch may correspond to the functional divergencetbkeinteracting partner after speciation.
It might also be due to a false positive or negative in one @fgtworks that is caused by incompleteness
of data or experimental error [33]. However, consideringjriect interactions as matches compensates
for the second case to a certain extent. In most cases, étiteygartners that are part of a common
functional module are linked by short alternative pathser€fore, even if an existing direct interaction
is not observed, it is likely that a short alternate pathitigkhem will exist in the data. Based on these

observations, we penalize mismatches for possible dinesm function as follows:

v(uu',vv') = =S (ud, vv') (6)



As for match score, mismatch penalty is also normalized byedficient that determines the relative
weight of mismatches w.r.t. matches and duplications.

While aligning PPI networks, the motivation is to identifyreserved patterns of interactions between
orthologous proteins. For assessing the likelihood ofaloidpy between proteins, the similarity score
defined above relies on sequence homology. However, oatgua, which are proteins that are dupli-
cated before the species split hence cannot be considatemlays, often show sequence similarities
as well [28]. Since duplicated proteins rapidly lose theteractions, it is more likely that in-paralogs,
i.e., the proteins that are duplicated after a split, will shamgerinteracting partners than out-paralogs
do [37]. Therefore, penalizing mismatches implicitly fescealorthologs by penalizing the out-paralogs
for each interaction that is lost after duplication. Furthere, we employ sequence similarity as a means
for distinguishing in-paralogs from out-paralogs. Thiba@sed on the observation that sequence simi-
larity provides a crude approximation for the age of dupiara[38]. With the expectation that recently
duplicated proteins, which are more likely to be in-paralaghow more significant sequence similarity

than older paralogs, we define duplication score as follows:

S(u,u’) = 6(S(u,u') — d) (7

Hered is the cut-off for being considered in-paralogsSlfu, v') > d, suggesting that andu’ are likely
to be in-paralogs, the duplication is rewarded by a posgeae. IfS(u, ') < d, on the other hand, the

proteins are considered out-paralogs, therefore the catfwin is penalized.

3.1.2 Alignment Score and the Optimization Problem

The above formulation of match, mismatch, and duplicatranglates the problem of distinguishing
orthologs and in-paralogs from out-paralogs to an optitirongproblem that accounts for the trade-off
between conservation of sequences and interactions. Mmhldes accurate identification of conserved

10



interactions between ortholog protein pairs, while allogvus to define the pairwise local alignment for

inter-species comparison of PPI networks as an optimizgioblem.

Definition 2 Alignment Score and PPl Network Alignment Problem.
Given PPI networks: and H, the score of alignmend (G, H, S, P) = { M, N, D} is defined as:

o(A)= > uM)+ > v(N)+ > D). (8)

MeM NeN DeD

The PPI network alignment problem is one of finding all maxipratein subset pairs” such that
o(A(G, H, S, P)) is locally maximalj.e. the alignment score cannot be improved by adding individual

proteins to or removing proteins from.

We aim to find local alignments with locally maximal scoreg@ing an analogy to sequence align-
ment [31],high-scoring subgraph pal.

We illustrate the concepts of match, mismatch, and dupdicaising a simple example. Consider
the two interaction networké&' and H shown in Figure 2(a). The alignment induced by the protein
subset pail/ = {uy, us, us, us} andV = {vy, vs, v3} is shown in Figure 2(b), where we st = 1.
The only duplication in this alignment (%, u»). If this alignment is chosen to be a “good” one, then,
based on the existence of this duplication in the alignmiértt(us, v;) < S(uq,v1), we can speculate
that u; andwv; have evolved from the same gene in the common ancestor, while an in-paralog
that emerged from duplication af, after split. The match set consists of interaction p&iss:; , v1v1),
(urug, viv1), (ugus, v1v3), and(uqug, v104). Observe that, is mapped to both; andu, in the context
of different interactions. This is associated with the timtal divergence ofi; andu, after duplication.
Furthermore, the self-interaction of in H is mapped to an interaction between paralogous proteins in

G.
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The mismatch set is composed (@f uy, v1v2), (ugus, v1v1), (ugus, vivs), and (usug, vsvs). The
interactionusu4 in G is left unmatched by this alignment, since the only posgillie of proteins inl/
that are orthologous to these two proteins ay@ndv,, which do not interact iff. One conclusion
that can be derived from this alignment is the eliminatioreorergence of this interaction in one of
the species after the split. The indirect path betwegand v, throughv; may also serve as a basis
for the tolerance to the loss of this interaction. IndeedayefsetA = 2, then this pair of a direct and
an indirect interaction would be considered a match. Howeéf/eve includewv, in V as well, then the
induced alignment is able to matehu, andwvsvs. This strengthens the likelihood that this interaction
existed in the common ancestor. Howevgrcomes with another duplication since it is paralogousto
Hence, ifS(vy, v4) > d, the alignment that includes will be favored over the present one. However,
if S(vy,v4) < d, thenv, must compensate for the duplication penalty with the stitengits matching

interactions in order to be included in the alignment.

3.1.3 Estimation of Similarity Scores

The similarity scoreS(u,v) quantifies the likelihood that proteinsand v are orthologous. We can
approximate this likelihood using the BLAST [Bvalue for the alignment of andv, E(u,v). Given
an E-value cutoffz andO,,, representing the event thatandv are orthologousP (E(u,v) > z|O.,)
denotes the fraction of orthologs witgvalues worse than (greater than) If we assume that the
probability of a protein pair being orthologous is a mondatalty decreasing function of the-value,
this quantity is a measure of the likelihood that two prateiwith E-value x are orthologous. This

monotonicity assumption is intuitive and we validate thsgng COG as well.
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3.2 Alignment Graph and the Maximum-Weight Induced Subgraph Problem

It is possible to represent information regarding matches mismatches between two PPI networks
using a single alignment graph. This graph is a modified warsi the graph Cartesian product that
takes orthology into account. Assigning appropriate wesidb the edges of the alignment graph, the
local alignment problem defined in the previous section aanelduced to an optimization problem on

this alignment graph. We define the following alignment ¢rap

Definition 3 Alignment Graph.
For a pair of PPI networksG(U, E), H(V, F'), and protein similarity functiort, the corresponding

weighted alignment grap&:(V, E) is computed as follows:
V={v={u,v}:ueUwveVandS(u,v) > 0}. 9)

In other words, we have a node in the alignment graph for eahqf ortholog proteins. Each edge

vv’ € E, wherev = {u,v} andv’ = {«/, v}, is assigned weight
w(vv') = p(ud, vv") + v(ud', v0") + 6 (u,u') + (v, v"). (10)
Here, u(uu', vo’) = 0if (uu’,vv") ¢ M, and similarly for mismatches and duplications.

Consider the PPI networks in Figure 2(a). To construct tieesponding alignment graph, we first
compute the product of these two PPl networks to obtain fivaesdhat correspond to five ortholog
protein pairs. We then insert an edge between two nodes ®fthph if the corresponding proteins
interact in both networksnfatch edgkg interact in only one of the networksn{smatch edge or at
least one of them is paralogouduplication edgg resulting in the alignment graph of Figure 3(a).
Note that the weights assigned to these edges, which arensghae figure, are not constant, but are
functions of their incident nodes. Observe that the edgedet{u,, v; } and{u,, v, } acts a match and

13



duplication edge at the same time, allowing analysis of tmservation of self-interactions of duplicated
proteins. This construction of the alignment graph allowgaiformulate the alignment problem as a

graph optimization problem defined below.

Definition 4 Maximum Weight Induced Subgraph Problem (MAWISH). Given graphG(V, E) and
a constant, find a subset of node¥, € V such that the sum of the weights of the edges in the subgraph

induced byV is at leaste, i.e, W(V) = Y, g w(vv') > e

Not surprisingly, this problem is equivalent to the deamsi@rsion of the local alignment problem

defined in the previous section, as formally stated in thieohg theorem:

Theorem 1 Given PPI networksr, H, and a protein similarity functioty, let G(V, E, w) be the cor-
responding alignment graph. ¥ is a solution to the maximum weight induced subgraph problem

on G(V,E,w), thenP = {U,V} induces an alignment(G, H, S, P) with ¢(A) = W (V), where

U={uecU:FweVst{uv}ecV}landV ={veV:3ucUst{uv}ecV}

Proof. Follows directly from the construction of alignment graph.

The induced subgraph that corresponds to the local alighmé&igure 2(b) is shown in Figure 3(b).

It can be shown that MWISH is NP-complete by reduction from maximum-clique, by assign
unit weight to edges andoo to non-edges. This problem is closely related to the maxiradge sub-
graph [14] and maximum dispersion problems [17], which dse BIP-complete. However, the positive
weight restriction on these problems limits the applicatbexisting algorithms to the maximum weight
induced subgraph problem. Nevertheless, the local PPlanktalignment problem aims to find all lo-
cally maximal alignments, consequently, locally optimalusions of MAWISH are sufficient. Observ-

ing the similarity between min-cut graph partitioning andWISH, we develop fast heuristics based
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on common graph partitioning algorithms to identify logathaximal heavy subgraphs in the alignment

graph.

3.3 Algorithms for Local Alignment of PPl Networks

In terms of protein-protein interactions, functional mtetuare likely to be densely connected while be-
ing separable from other modulds., a protein in a particular module interacts with most piregen
the same module either directly or through a common modulte While it is only loosely connected
to the rest of the network [35]. Since analysis of conservetifareveals that proteins in highly con-
nected motifs are more likely to be conserved, suggestiaigsiich dense motifs are parts of functional
modules [39], high-scoring local alignments are likely tsrespond to functional modules. Therefore,
in the alignment graph, we can expect that proteins thanigeio a conserved module will induce heavy
subgraphs, while being loosely connected to other parteefytaph. This observation motivates the
process of greedily growing a subgraph seeded at heavy ndtessapproach is shown to perform well
in discovering conserved [29] or dense [4] subnets in PRIowds.

For min-cut graph partitioning, the most commonly appliedifistics are based on starting with a
seed partition and repeatedly moving or swapping nodes m@Rimum gain on the objective func-
tion [21]. The key point here is that the move is performedche¥é is associated with a negative gain
in order to climb over poor local optima. Observe that miimg the total weight of the cut edges
(min-cut) in graph partitioning is equivalent maximizirtgettotal weight of internal edges. This is very
similar to the objective function of MWISH. The difference is that the total weight of only one part is
considered in MWISH, and node balance is not an issue. Therefore, we apply #négiite improve-
ment based heuristic to MVISH in order to find locally maximal heavy subgraphs. The initiahvy

subgraph is constructed by selecting the node with maximumber of matched interactionsd,, a
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conserved huyand adding all nodes that share a match edge with this natie subgraph.

A sketch of this iterative improvement based algorithm fodiing a single conserved subgraph on
the alignment graph is shown in Figure 4. Each pass the loop between lines 3-13) of this algorithm
works in linear time. In practice, we also limit the numbercohtiguous moves with negative gain. This
allows us to tune the locality of identified patterns.

To find all non-redundant heavy subgraphs, we start with tiiesealignment graph and find a max-
imally heavy subgraph. If this subgraph is statisticallgngiicant, we record the alignment that cor-
responds to this subgraph and mark its nodes. We repeatrtitegs by considering only unmarked
nodes. Once a new heavy subgraph is identified, we add thmpstwmarked nodes that are positively
connected to this subgraph. This approach allows ideridicaf overlapping alignments while avoid-
ing redundancy. Finally, we rank all subgraphs based om significance and report the corresponding

alignments.

3.4 Statistical Significance

To evaluate the statistical significance of discoveredsigiring alignments, we compare them with a
reference model generated by a random source. In the retereadel, it is assumed that the interac-
tion networks that belong to the two organisms are indeparidem each other as well as the protein
sequences. To accurately capture the power-law naturel afed®Rorks, we assume that the interactions
are generated randomly from a distribution characterized hiven degree sequence. (Note that the
power law nature of the graphs is not critical to our alganthThe degree distribution can be com-
puted explicitly from the database of interactions)u lnd«’ are interacting with/,, andd,,, proteins,
respectively, then the probability,,, of observing an interaction betweerand«’ can be estimated as

Guw = dudy /Y ,cp doy [7]. We assume that the sequences are generated by a messasglece, such

16



thatu € U andv € V are orthologous with probability. Similarly, u, ' € U andv,v’ € V are paral-
ogous with probabilityy;; andpy,, respectively. Since the similarity function provides aasre of the

ucU,wEV. S(u,v)

probability of true homology between a given pair of proggwe estimate by b GG . Hence,
E[S(u,v)] =pforu € U,v € V. The probabilities of paralogy are estimated similarly.

Recall that the weight of a subgraph of the alignment gragligl to the score of the corresponding
alignment. Hence, in the reference model, the expectea\@lthe score of an alignment induced by
VCVisEWWV)]=3%

v,vev E[w(VV/)L where

E[’LU(VV/)] - ﬁp2Quu/%v’ - Dp2(quu’(1 - QUU’) + (1 - Cqu’)qu/) (11)

+0(pu(pv — d) + pv(pv — d))
is the expected weight of an edge in the alignment graph. Wihsimplifying assumption of inde-

pendence of interactions, we haver (W (V)] = 3 o Varjw(vv’)], enabling us to compute the

v,V eV
z-score to evaluate the statistical significance of eachodesed high-scoring alignment, under the nor-
mal approximation that we assume.

While the approach described above enables quick caloalafisignificance without repeated sim-
ulations or extensive numerical computations, it has a feartsomings. First, the significance of an
identified pattern is estimated for the proteins involvethiat conserved subgraph, rather than comput-
ing the probability of the existence of the pattern anywhetée networks. Second, the model does not
take into account the variability in the distribution of motogs. These cause low variability of align-
ment score in the reference model, leading to overestimatabres, since the observed variances in
alignment score are fairly high, which indeed is statistycsignificant. While these shortcomings can

be addressed explicitly, the cost associated with the ctatipn of significance scores also increases

accordingly.
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3.5 Extensions to the Model

The proposed model can be extended to account for dataygashtell as algorithm parameters.

3.5.1 Accounting for Experimental Error.

PPI networks obtained from high-throughput screening aveeto errors in terms of both false nega-
tives and positives [33]. While the proposed framework canged to detect experimental errors through
cross-species comparison to a certain extent, experiieoitee can also degrade the performance of
the alignment algorithm. In other words, mismatches shoelghenalized for lost interactions during
evolution, not for experimental false negatives. To actdansuch errors while analyzing interaction
networks, several methods have been developed to quamgfijkelihood of an interaction or complex
co-membership between proteins [2, 15, 19]. Given the priobability distribution for protein interac-
tions and a set of observed interactions, these methodsutertiye posterior probability of interactions
based on Bayesian models. Hence, PPI networks can be mdueledighted graphs to account for
experimental error more accurately.

While the network alignment framework introduced in Setthl assumes that interactions are
represented by unweighted edges, it can be easily gerestatiza weighted graph model as follows.
Assuming that weighto,,, represents the posterior probability of interaction betve andv, we can
define match score and mismatch penalty in terms of theira®devalues derived from these posterior

probabilities. Therefore, for any, v’ € U andv, v’ € V', we have

p(un, vv") = aS(un', v0") @y @ (12)

v(uu', vv") = DS (uu', v0") (wuw (1 — @) + (1 — Wy )0 )- (13)
Note that match and mismatch sets are not necessarilyrijeie in contrast to the unweighted graph
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model, which is a special case of this model.

3.5.2 Tuning Model Components and Parameters.

Contracting Paralog#\n alternate approach for handling duplications is conitngcthe proteins in the
same species that are likely to be in-paralogs. This apprhicinto the alignment graph model since
in-paralogs are expected to be consistently orthologotisesame set of proteins in the other organ-
ism. It also reduces the computational complexity sincentimaber of nodes will be decreased by node
contraction and the edges that correspond to duplicatioth®eveliminated. Contraction of nodes is
also shown to be effective for multiple alignment of metabphthways using graph mining [22]. How-
ever, clustering proteins in the same organism to identifgaralogs requires preprocessing to solve a
difficult problem. Clustering algorithms that are specificdesigned for this purpose, such as INPARA-
NOID [28] serve as a reliable tool. However, the resultingpdrs may produce conservative alignments
since the search space is narrowed down by the clusteringotdips [23]. In contrast, accounting for
duplications using duplication edges provides more fléityind uses conservation of interactions as
additional information to distinguish in-paralogs fromt-garalogs, as discussed above.

Shortest-path mismatch modéh the above discussion, while we consider proteins thatiaked
by at mostA interactions as interacting, we do not take into accountdis&ance while penalizing

mismatches. We can extend this to a shortest-path mismatidklidefined as follows:
v(uu', vv') = 0S(uu/, vo’) (max{Ag(u, u'), Ag(v,0)} — A), (14)

While this model may improve the alignment algorithm, it@wputationally expensive since it requires
solution of the all pairs shortest path problem on both PRVakks.

Linear duplication modell he alignment graph model forces each duplicate pair inignm@lent to be
scored. For example, if an alignment containgaralogous proteins in one specié§), duplications are
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scored to account for each duplicate pair. However, in tiodugionary process, each paralogous protein
is the result of a single duplicationge., n paralogous proteins are created in only- 1 duplications.
Therefore, we refer to the current model @gadratic duplication modesince the number of scored
duplications is a quadratic function of number of duplisat&Vhile this might be desirable as being
more restrictive on duplications, to be more consistenththe underlying biological processes, it can
be replaced by &near duplication modelln this model, each duplicate protein is penalized onlyepnc
based on its similarity with the paralog that is most sintiteitself. This model can be incorporated into
the alignment graph model of Section 3.3 with a simple madlifon of the algorithm that dynamically

reassigns weights to edges that correspond to duplications

4 Experimental Results

4.1 Data & Implementation

We implement the proposed algorithms in the C programminguage and test on PPl networks that
belong to three commonly studied eukaryotic organisms.sbiuece code of the software is available at
http://ww. cs. purdue. edu/ hones/ koyut ur k/ mawi sh/ along with detailed alignment re-
sults. The interaction data are downloaded from BIND [3] Bxtél [40] molecular interaction databases.
The statistics for the PPI networks of S. Cerevisiae (ye&sttlegans (nematode), and D. Melanogaster
(fruit fly) are shown in Table 1.

We align all pairs of these three organisms using a fixed spacdmeters to be able to compare
the results with each other. We set these parameters catigely in order to obtain a compact set of
illustrative results. For any pair of PPl networks, we setfwvalue threshold adaptively based on the

estimated similarity scores so that the minimum similasitgre for any pair of potential orthologs is 0.6.
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In other words, two proteins that belong to two different@ps are considered potentially orthologous
only if they have a BLASTE-value less than 60% of ortholog pairs in COG. On the othedhase set

d = 0.9, i.e, two proteins in the same organism are considered poténifzralogs only if they have
BLAST E-value less than 90% of protein pairs in this organism thairathe same COG. For potential
out-paralogs, we consider protein pairs that have a BLAS/A&lue less than 0.1 but greater than 10%
of the ortholog pairs in COG. By setting these cut-off valoassimilarity score, we only consider the
homologous protein pairs that have the highest positiveegative contribution on the alignment score.
This eliminates noise to a certain extent while improving domputational efficiency. However, for
more detailed analysis and discovery of loosely visiblagoas, it may be necessary to relax and set

these parameters based on the evolutionary distance betheavo organisms being compared.

4.2 Results & Discussion

We perform pairwise alignment of the three PPI networks byntythe alignment parameters;io= 1.0,
v = 1.0, andd = 0.1. Detailed statistics on alignment of the three pairs of eydtic PPI networks are
shown in Table 2. In this table, we list the number of nodefiendlignment graph, nodes with at least
one matched edge, matches, mismatches and duplicatiomshrolganisms. The number of matches
and the number matched nodes are shown for two valuds where only direct interactions = 1 and
indirect interactions through a single protéin= 2 are considered as matches. In practice, we eliminate
all nodes that do not have any matching interactions fromatig;mment graph. As evident in the table,
this improves the computational performance of the algorisignificantly.

Alignment of S. Cerevisiae PPI network with D. Melanoga$tBt network results in identification
of 412 conserved subnets. Eight of the conserved subndishighest alignment scores are shown in

Table 3. Similarly, sample high-scoring conserved subigetstified by the alignment of S. Cerevisiae
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vs C. Elegans and C.Elegans vs D. Melanogaster PPI netwalshawn in Tables 4 and 5, respectively.
In total, 83 conserved subnets are identified on S. Cerevasia C. Elegans, and 146 are identified on
C. Elegans and D. Melanogaster. For each conserved submeguwnt the biological processes that the
proteins in the subnet take part in, according to GO anrwtatiWe identify the biological process that
is represented by the largest number of proteins in an @gaas the dominant biological process for
that organism. The dominant biological processes for thesewed subnets are also shown in the ta-
bles. While most of the conserved subnets are dominated éyarticular processes and the dominant
processes are generally consistent across species, tbeexsst different processes in different organ-
isms that are mapped to each other by the discovered aliggmehis illustrates that the comparative
analysis of PPI networks is effective in not only identifyiparticular functional modules, pathways, and
complexes, but also in discovering relationships betweterent processes in separate organisms and
crosstalk between known functional modules and pathways.

A selection of interesting conserved subnets is shown imr€igp. The alignments in the figure
illustrate that the alignment algorithm takes into accatetconservation of interactions in addition to
sequence similarity while mapping orthologous proteinsaoch other. In all of the alignments shown in
the figure, the interactions of proteins that belong to theesarthologous group are highly conserved,
suggesting relatively recent duplications.

Detailed examination of the conserved subnets in S. Ceaevégd D. Melanogaster shows that many
of them do correspond to some functional modules. There alépte instances of 20S proteosome
(10,11). All seven of the alpha subunits in the 20S prote@sarsubcomplex of the 26S proteosome
involved in protein degradation, are present in the aligmr#d0 [11]. In addition, there is a subnet for
the proteosome regulatory particle (6,9) as well as onedtmiwom induced pathways (2). Interestingly,

proteins that make up the regulatory particle of the 26Sgmsime (Rptl, Rpt2, Rpt3, Rpt4, Rpt5 and
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Rpt6) are also present in the alignment #9 [10]. The methsd détected a number of components
involved in calcium-dependent stress-activated siggghathways (Cmdl, Cnal, Cnha2 and Cnbl) as
well as those associated with budgrowth of yeast (Cmd1, MyaPMyo4) in alignment #2 [12]. Many of
the subnets found for yeast are overlapping, possibly teflpthe fact that drosophila uses a functional
module in various contexts.

In some cases, the self-interaction of a single protein i@ @mganism is aligned with a clique of
interactions between its orthologs that are part of a paeieanodule. For example, in alignment #7, five
proteosome regulatory particle proteins (Rptl, Rpt3, RRpt5, Rpt6) are mapped to one protein (Rpt4)
in drosophila.

Based on these results, we establish pairwise alignmerRlai&works as a tool for not only identi-
fying conserved modules, but also assessing functionf@rdiices and similarities of homologous pro-
teins based on shared and missing interactions. Moreoigmnaent results provide a means for dis-
covery of new functional modules in relatively less studieglanisms through mapping of functions at a

modular level rather than at the level of single protein htmgi@s.

5 Related Work

As partially complete interactomes of several species pecavailable, researchers have explored the
problem of identifying conserved topological motifs infdilent species [24, 39]. These studies reveal
that many topological motifs are significantly conservethui and across species and proteins that are
organized in cohesive patterns tend to be conserved to ahigiyree. A publicly available tool, Path-
BLAST, adopts the ideas in sequence alignment to PPI nesaoréliscover conserved protein pathways

across species [20]. By restricting the alignment to pagiswize., linear chains of interacting proteins,
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this algorithm renders the alignment problem tractablelempreserving the biological implication of
discovered patterns. PathBLAST accounts for gaps and nuses by allowing unrepeated jumps and
matching of non-orthologous proteins, based on the nokliahthe orthologous counterpart of a pair of
interacting proteins in one species will, likely, be corteelcvia a short path in the other. In [26], Pinter
et al. align metabolic pathways based on subtree homeornsanpbbserving that this model not only
leads to tractable solutions, but also can describe thati@ms in metabolic pathways effectively.

In a recent study, Sharan et al. [29] have proposed probtbihodels and algorithms for identifying
conserved complexes in bacteria and yeast through cressespnetwork comparison. Their approach
is similar to the framework proposed here in that they caestan orthology graph with nodes that
correspond to pairs of ortholog proteins. The edges of ttieotwgy graph are weighted according to a
probabilistic framework that compares null and consen@dmex models based on log-likelihood. In
contrast to their model, our framework is based on concdpismtches, mismatches and duplications and
the edges are weighted in order to reward or penalize thedet@nary events. This allows tuning of the
parameters based on relative divergence of the specieg b@mpared and interpretation of discovered
alignments in terms of evolutionary models. One may theeetonclude that their model is designed to
identify conserved complexes while our framework is desthfor comparative analysis of PPI networks
that belong to two different species. The idea of constngcfiroduct graphs by joining orthologous

nodes is also applied to the comparative analysis of PPlarksithat belong to multiple species [30].

6 Conclusion

This paper presents a framework for local alignment of pnatageraction networks. The framework is

guided by theoretical models of evolution of these networkse model is based on discovering sets
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of proteins that induce conserved subnets based on scotghrand mismatch of interactions, and
duplication of proteins. An implementation of the proposdglorithm reveals that this framework is

successful in uncovering conserved substructures iniprivteraction data.
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/ /
Duplication Elimination Emergence
u9 us us us U9 us (%) us

Figure 1: Duplication/divergence model for evolution ofl PBtworks. Starting with three interactions

between three proteins, protein is duplicated to add into the network together with its interactions

(dashed circle and lines). Then, loses its interaction withu; (dotted line). Finally, an interaction

betweenu; andw is added to the network (dashed line).
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us Uy V3 (O}

(@) (b)

Figure 2: (a) An instance of the pairwise local alignmenthbean. The proteins that have non-zero
similarity scoresi(e., are potentially orthologous), are colored the same. N@estdoes not necessarily
induce a disjoint grouping of proteins in practice. (b) Adbalignment induced by the protein subset
pair {uq, us, us, us} and{vy, vz, v3}. Ortholog and paralog proteins are vertically aligned. sErg
interactions are shown by solid lines, missing interaditirat have an existing ortholog counterpart are
shown by dotted lines. Solid interactions between two &jproteins in separate species correspond to
a match, one solid one dotted interaction between two aligmeteins in separate species correspond to

a mismatch. Proteins in the same species that are on the satitaMine correspond to duplications.
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Figure 3: (a) Alignment graph corresponding to the instasfdéig. 2(a). Note that match scores, mis-
match and duplication penalties are functions of incideddas, which is not explicitly shown in the
figure for simplicity. (b) Subgraph induced by node 3&t= {{u, v}, {us, v1}, {us, vs}, {1, vs}},

which corresponds to the alignment shown in Fig. 2(b).
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procedure HEAVIESTSUBGRAPH(G)
> Input G(V, E, w): Alignment graph
> Output V: Subset of nodes that induces a maximally heavy subgragh in
1 v« argmax.y|{v' € V:(v,v')is amatch edgd
2 V.« {¥}U{v e V:(¥,v)isamatch edge
3 repeat

4 Q—{veVikey(v)=—-Y guwv,V)if veV, key(v) =3, g w(v,V)else

5 Winae <— W (V)

6 while Q # 0

7 v «— EXTRACTMAX(Q)

8 if ve VthenV «— V )\ {v} elseV — V U {v}

9 if W(V) > Wiae then Wi, p. — W(V), bestmove «— v
10 for all v/ such thatvv’ € E updatekey(v’)

11  endwhile

12 roll back all moves aftdrestmouve
13 until bestmove = NULL

14 return V

Figure 4: Fast heuristic for finding a subset of nodes thaiéed a subgraph of maximal total weight on

the alignment graph.
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Figure 5: Sample conserved subnets identified by the alighaigorithm. Orthologous and paralogous
proteins are either vertically aligned or connected by lolatted lines. Existing interactions are shown
by green solid lines, missing interactions that have anotetious counterpart are shown by red dashed
lines. The rank of each alignment in the set of alignmentsodisred for the respective pair of organisms

is indicated in its label.
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Table 1: Description of aligned PPI networks.

Organism # Proteins  # Interactions
S. Cerevisiae 5157 18192

C. Elegans 3345 5988

D. Melanogaster 8577 28829
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Table 2: Alignment statistics for the three pairs of eukéinyorganisms. For each alignment, the number
of nodes in alignment graphs (# of orthologous pairs), nurobaodes with at least one matched edge,
number of matches, number of mismatches and number of @tipls for both organisms are shown.

Number of mismatches fak = 2 can be derived from other statistics.

Organism # Nodes # Matched nodes # Matches # Mismatches #cBitiphs

pair A=1 A=2 A=1 A=2 A=1 Org.1 Org. 2

SCvs CE 2746 312 1230 412 3007 40262 6107 6886
SCvsDM 15884 1730 8622 2061 42781 1054241 6107 32670

CEvsDM 11805 491 3391 455 6626 205593 6886 32670
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Table 3: Eight high-scoring conserved subnets identifiedhgyalignment of S. Cerevisiae and D.
Melanogaster. For each conserved subnet, its rank (R)e $89r number of nodes in alignment graph
and corresponding number of proteins in each organism (¢per of matches (#M), number of mis-
matches (#N), and number of duplications in each organidd) &fe shown in the corresponding row.
The dominant biological process in which the majority oftpins in the conserved subnet participate is

shown for each organism, in the first and second rows, respBct

R S #HP #M  #N  #D Dominant Process

1 1597 18(16,5) 28 6 (4,0) protein amino acid phosphoyta(B)
JAK-STAT cascade (2)

2 1393 13(8,6) 16 6 (3,1) endocytosis (4)
calcium-mediated signaling (3)

3 1244 22(14,4) 32 10 (3,0) protein amino acid phosphaoyiad)
protein amino acid phosphorylation (2)

6 8.05 8 (5, 3) 12 2 (0,1) ubiquitin-dependent protein cataiyo(4)
proteolysis and peptidolysis (1)

7 6.96 5(5,1) 10 5 (0,0) ubiquitin-dependent protein cdtaiyo(5)
ubiquitin-dependent protein catabolism (1)

8 6.83 6 (4, 4) 12 6 (0,1) pseudohyphal growth (3)
polarity specification of anterior/posterior axis (1)

9 6.76 8 (6, 3) 16 9 (0,1) ubiquitin-dependent protein cataiyo(5)
proteolysis and peptidolysis (1)

10 6.75 10(7,3) 24 12 (0,1) ubiquitin-dependent proteiatwalism (7)

biological process unknown(2)
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Table 4: Five high-scoring conserved subnets identifiethbyatignment of S. Cerevisiae and C. Elegans.

R S #HP #M #N  #D Dominant Process

1 36.14 13(5,3) 65 24 (0,3) ubiquitin-dependent proteialmalism
protein catabolism

2 847 20(11,5) 19 4 (1,1) protein amino acid phosphorytafit)
protein amino acid phosphorylation (2)

3 6.28 8(6,3) 21 12 (0,0) ubiquitin-dependent protein aaliain (6)
ubiquitin-dependent protein catabolism (3)

8 3.23 4(3,3) 4 1 (1,1) mismatch repair (2)
mismatch repair (1)

15 1.70 3(3,3) 2 0 (0,0) vesicle-mediated transport (2)

physiological process (2)
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Table 5: Five high-scoring conserved subnets identified H®y dlignment of C. Elegans and D.

Melanogaster.

R S #HP #M  #N  #D Dominant Process

1 26.75 17(4,9) 52 4 (0,4) thermosensory behavior (1)
regulation of transcription from RNA polymerase Il promo{é)
2 465 9(5,3 8 0 (2,1) translational initiation (2)
translational initiation (1)
3 457 75,4 9 2 (1,0) protein amino acid phosphorylation (2
protein amino acid phosphorylation (2)
6 400 6@4,6) 8 2 (0,2) signal transduction (2)
signal transduction (1)
10 348 5(4,4) 6 3  (1,0) regulation of transcription, DNApdadent (2)

regulation of transcription from RNA polymerase Il promof8)
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