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1 IntroductionConsider a group of n people (users, computers, objects, etc.) sharing a scarce resource(e.g., channel, CPU, etc.). The following elimination process can be used to �nd a \winner"or a \leader" that has undisputed and uncontested access to the resource (cf. [2, 5, 19]):All objects involved toss a biased coin, and all players to throw heads are losers while thosewho throw tails remain candidate winners and 
ip the coins again until a single winner(leader) is identi�ed. If all players throw heads at any stage, the toss is inconclusive and allplayers participate again in the contest. How many tosses are needed to identify a winner?The problem was posed for a fair (unbiased) coin tossing process by Prodinger [19] (cf. also[10]), who provided the �rst non-trivial analysis. Recently, for the same fair coin model,Fill et. al. [5] �nd the limiting distribution for the number of rounds. In this paper, weanalyze the same problem but when the coins involved are biased, that is, the probability pof throwing a head is not equal to one half (p 6= 12). In passing, we should mention that sucha randomized elimination algorithm has many applications, notably in electing a \leading"computer after a synchronization is lost in a distributed computer network (e.g., token lostin a token passing ring network). We also remark that a formula for the exact distributionhas been given by Fill et. al. [5] for the fair model and by Fill [6] for the biased case.The above elimination process can be represented as a incomplete trie (cf. [5, 18, 19]) inwhich only one side of the trie is developed while the other side is pruned (all those playerswho throw heads do not participate any more in the process). Therefore, the number ofthrows needed to �nd the winner (leader) is equivalent to the height in such a incompletetrie. Accordingly, we shall call the duration of the above elimination process as height, andwe study asymptotics of its moments and the limiting distribution, if it exists.Tries have been extensively analyzed in the past including the height. The reader isreferred to Knuth [16] and Mahmoud [18] for updated account on recent developments inthis area. In fact, tries and other digital trees were used as a testbed for the \preciseanalytical analysis of algorithms". Several new analytical techniques were developed in theprocess of analyzing di�erent parameters of digital trees (cf. [4, 5, 10, 13, 14, 16, 20, 21, 22]).Recently, the focus of the research was moved towards developing analytical techniques thatcan handle limiting distributions and large deviations results (cf. [5, 11, 12, 14, 15]).In this paper, we continue recent lines of research and establish asymptotic distributiontogether with the �rst two moments of the height. The novelty of this work lies in derivingan asymptotic solution to a certain functional equation that often arises in the analysis ofalgorithms and data structures (cf. [4, 21]). Namely, we consider functional equations of2



the following type: f(z) = f(pz) + f(qz)e�pz + a(z) (1)where p + q = 1 and a(z) is a given function. The point to observe is that there is acoe�cient depending on z in front of f(qz) which makes the problem interesting (otherwisea standard approach can be applied; cf. [7]). While a �rst-order asymptotic for a suchequations, when z !1 in a cone around the positive axis, is rather easy to obtain, second-order asymptotics are more challenging. This demands an evaluation of some constants forwhich a closed-form solution does not exist. We provide a quickly converging numericalprocedure to assess these constants. We must mention that functional equations of type (1)could be alternatively treated by the method proposed in [4] (cf. [21]), however, it seems tous that our method is more straightforward. In addition, in [4] the problem of evaluatingthe constants was not discussed.When dealing with the limiting distribution, we use a two steps approach recently advo-cated in some papers (notably: [5, 11, 12, 14]): That is, we �rst poissonize the problem andthen depoissonize it. By poissonization we mean to replace the �xed size population model(i.e., �xed n) by a model in which the number of persons involved is Poisson distributedwith mean n. Such a model leads to a functional equation of type (1): More precisely, forall integer k � 0 fk+1(z) = fk(pz) + e�pzfk(qz) :This equation is solved inside a cone, and then depoissonized in order to obtain an asymp-totic distribution of the original �xed size model. Actually, during the course of establishingthe limiting distribution we realize that its asymptotic expression exhibits some 
uctuationsleading us to a conclusion that the height does not possess a limiting distribution. Thiswas already observed for the height of tries (cf. [3]) and symmetric (unbiased coin tossing)incomplete trie (cf. [5]).The paper is organized as follows. The next section presents our main results: InTheorem 1 we discuss asymptotics of the mean and the variance of the height. The nextTheorem 2 provides an asymptotic expression for the distribution of the height. We closethis section with a brief discussion of main consequences of our results. Section 3 containsthe proofs of both Theorem 1 and Theorem 2. Since, as we already mentioned above, wework on the Poisson model instead of the original model, we need a tool of depoissonization.For the completeness of our presentation, we brie
y discuss a depoissonization lemma ofJacquet and Szpankowski [15] in Section 3.1. Then, Theorem 1 is proved in Section 3.2,and Theorem 2 in Section 3.3. 3



2 Main ResultsIn this section, we present our main results. We start with a brief description of theelimination process, and introduce some additional notation. To recall, n people use thefollowing randomized elimination algorithm to identify a leader: Players toss a biased coin,and those who throw heads are losers while those who throw tails remain candidate winnersand 
ip the coins again until a single winner (leader) is identi�ed. If all players throw headsat any stage, the toss is inconclusive and all players participate again in the contest. Let pbe the probability of throwing a tail, that is probability of survival. We also write q = 1�p.By Hn we denote the number of tosses needed to identify the winner.As mentioned before, the elimination process can be represented as an incomplete trie.Having this in mind, one can easily derive the basic recurrence equation for the generatingfunction of Hn. Indeed, let for n � 1, Gn(u) = EuHn = Pk�0P(Hn = k)zk be theprobability generating function ofHn, where u is a complex number. We further let G0(u) =0 for convenience. (This corresponds to de�ningH0 =1; as pointed out by Jim Fill [6], thisconvention is reasonable since we never succeed to choose a leader without any candidates.)Then, G1(u) = 1 and for n � 2Gn(u) = u nXk=0 nk!pkqn�kGk(u) + uqnGn(u) : (2)The �rst term of the above is a consequence of the Bernoulli-like split (after the �rst round)of n players into those who still stay in the game. Clearly, the remaining players have Hn�1tosses to �nish the game. The second term of the above, takes care of the inconclusive throw(when all plays throw heads).In this paper, we derive the distribution of Hn as well as the �rst two moments, thatis, EHn and Var Hn. We use the following abbreviated notation: xn = EHn and wn =EHn(Hn � 1). Observing that xn = G0n(1) and wn = G00n(1), we derive from (2):xn = 1 + qnxn + nXk=0 nk!pkqn�kxk ; n � 2 ; (3)wn = 2(xn � 1) + qnwn + nXk=0 nk!pkqn�kwk ; n � 2 ; (4)with x0 = x1 = w0 = w1 = 0.In the next section, we solve asymptotically the above recurrence equations using pois-sonization, Mellin transform and depoissonization. This results in our �rst main �nding.4



Theorem 1 Let P := 1=p and �k := 2�ik= lnP . Then:(i) The mean EHn of the height admits the following asymptotic formulaEHn = logP n+ 12 � 1� 
 � T �1 (0)lnP + �1(logP n) +O(1=n) (5)where 
 = 0:577 : : : is the Euler constant, andT �1 (0) = 1Xn=2 xnqnn ; (6)where xn must be computed from (3) (observe that the series converges geometrically fast).The function �1(x) is periodic function of small magnitude (e.g., for p = 0:5 one provesj�1(x)j � 2� 10�5) given by �1(x) = �Xk 6=0�ke�2�ikx (7)where �k = (1 + �k)�(�k)� T �1 (�k)lnP ;�(s) is the Euler gamma function (cf. [1]) and T �1 (s) is given by (37).(ii) The variance Var Hn = EHn(Hn � 1) +EHn � (EHn)2 satis�esVar Hn = �2=6 � 1 + 2(1� 
)T �1 (0)� 2T �01 (0)� (T �1 (0))2ln2 P + 2T �1 (0) + T �2 (0)lnP + 112� [�21 ]0 + �2(logP n) +O� lnnn � (8)where T �01 (0) = 1Xn=2 xnqnn! �0(n) = 1Xn=2 xnqnn 	(n) ; (9)where 	(z) = �0(z)=�(z) is the psi-function. Observe that for natural n we have 	(n) =�
 +Hn�1 where Hn is the Harmonic number. The constant T �2 (0) can be computed asT �2 (0) = 1Xn=2 wnqnnwhere wn is given by the recurrence (4). Finally, �2(x) is a periodic continuous function ofzero mean and small amplitude. The constant [�21 ]0 =Pk 6=0 j�kj2 is the zeroth term of �21(x)and its value is extremely small (e.g., for p = 0:5 one proves that [�21 ]0 � sup j�1(x)j2 �4� 10�10).
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Table 1: Numerical evaluation of the constants T �1 (0), T �01 (0), T �2 (0), and the varianceVar Hn for various p 2 [0:2::0:8]p T �1 (0) T �01 (0) T �2 (0) Var Hn0.2 2.36 2.38 9.32 5.830.3 1.22 1.09 3.41 3.580.4 0.70 0.56 1.64 2.970.5 0.42 0.30 0.95 3.120.6 0.25 0.17 0.62 4.070.7 0.15 0.09 0.45 6.680.8 0.08 0.04 0.35 14.84In Table 1 we present numerical values of the constants T �1 (0), T �01 (0), T �2 (0), and thevariance Var Hn given by (8) (for large n) as a function of p. In particular, we verify thatour formula (8) on the variance agrees with that of Fill et al. [5] for p = 0:5, where theexact value 1� 
 = 0:422 : : : is given.In order to formulate our next result concerning the distribution of Hn we need a newde�nition. Let a measure � be de�ned on the positive real axis as follows: Partition thepositive real axis into an in�nite sequence of consecutive intervals I0; I1; : : : such that Ikhas length (q=p)s(k), where s(k) is the number of 1's in the binary expansion of k. Thus,I0 = [0; 1]; I1 = [1; 1 + q=p], etc. Note that the total length of the �rst 2m intervalsI0; :::; I2m�1 is p�m, and that these 2m intervals are obtained by repeated subdivisions of[0; p�m], each time dividing each interval in the proportions p : q. Given these intervals,de�ne � by putting a point mass jIkj at the right endpoint of Ik, for each k = 0; 1; ::: Notethat for p = q = 1=2, � consists of a unit mass at each positive integer.Now, we are in a position to present our second main �nding:Theorem 2 The following holds, uniformly for all integers k,P(Hn � k) = F (pkn) +O(n�1); (10)where F (x) = x Z 10 e�xtd�(t) = Z 10 e�td�x(t); (11)with �x denoting the dilated measure de�ned as above for the intervals xI0; xI1; : : : .In particular, when k = blogP nc + � where � is an integer, then for large n the following6



asymptotic formula is true uniformly over �P(Hn � blogP nc+ �) = p��flogP ng Z 10 e�tp��flogP ngd�(t) +O� 1n� ; (12)where flogP ng = logP n� blogP nc.Remarks (i) Limiting Distribution Does Not Exist. The fractional part flogP ng appearingin Theorem 2 is dense in the interval [0; 1) and does not converge. Thus, the limitingdistribution of Hn � blogP nc does not exist. In fact, we observe that:lim infn!1 P(Hn � blogP nc+ �) � p��1 Z 10 e�tp��1d�(t) ;lim supn!1 P(Hn � blogP nc+ �) � p� Z 10 e�tp�d�(t) :(ii) Symmetric Case p = q = 0:5. We observe that for p = q = 0:5 we obtainF (x) = x 1Xj=1 e�jx = xex � 1 ;and our results coincide with those of [5].(iii) It is easily seen that limx!0 F (x) = 1 and limx!1 F (x) = 0. We conjecture that F (x)is always decreasing, as it is for p = 0:5 by the explicit formula in (ii). If F (x) is decreasing,then F (px) is a distribution function, and if Z is a random variable with this distribution,then (10) can be writtenP(Hn � k) = P(Z + logP n � k) +O(n�1):Hence, in this case, the distribution of Hn is well approximated by the distribution ofdZ + logP ne; for example it follows that the total variation distance between the twodistributions tends to 0 as n!1, which is a substitute for the failing limit distribution.(iv) It is possible to obtain further terms in the asymptotic formulae in Theorems 1 and 2using the same methods.3 Analysis and ProofsIn this section, we prove Theorems 1 and 2 using an analytical approach. In the nextsubsection, we transform the problem to the Poisson model (i.e., poissonize it), which is7



easier to solve. Then, we apply Mellin transform (cf. Section 3.2) and a simple functionalanalysis (cf. Section 3.3) to obtain asymptotic solution for the poissonized moments and thepoissonized distribution for the height. Finally, we depoissonize these �ndings to recoverour results for the original model.3.1 Poissonization and DepoissonizationIt is well known that often poissonization leads to a simpler solution due to unique propertiesof the Poisson distribution (cf. [9]). Poissonization is a technique which replaces the �xedpopulation model (sometimes called the Bernoulli model) by a model in which the populationvaries according to the Poisson law (hence, Poisson model). In the case of the leader electionalgorithm, we replace n by a random variable N distributed according to Poisson with meanequal n. We shall apply analytical poissonization (cf. [10, 11, 13, 14, 20]) that makes useof the Poisson transform (i.e., exponential generating function as shown below). One mustobserve, however, that after solving the Poisson model (in most cases we can only solveit asymptotically!), we must depoissonize to recover the Bernoulli model results. In thissubsection, we �rst derive functional equations for the Poisson model, and then present ageneral depoissonization lemma of Jacquet and Szpankowski [15] (cf. also [5, 11, 12, 13, 14,20]) that we apply throughout the paper.We now build the Poisson model. Let us de�neeG(z; u) = 1Xn=0Gn(u)znn! e�z ;eX(z) = 1Xn=0xn znn! e�z ;fW (z) = 1Xn=0wn znn! e�z ;whereGn(u), xn and wn are expressed as (2){(4), respectively. They are poissonized versionsof the corresponding quantities in the Bernoulli model.Remark If z � 0, then eG(z; �) is the probability generating function of HN(z), where thepopulation size N(z) is random with the Poisson distribution Po(z). Note, however, thatbecause of our convention G0 = 0 (or H0 =1), eG(z; �) is a defective probability generatingfunction. This could be recti�ed by instead de�ning H0 = 0, but our choice is moreconvenient for us. Similarly, eX(z) = @@u eG(z; u)ju=1 is for z � 0 the expectation EHN(z)of the height when the population is random Po(z), provided we here use the conventionH0 = 0. 8



To see the achieved simpli�cations, we observe that the recurrences (2){(4) now become:eG(z; u) = u eG(pz; u) + u eG(qz; u)e�pz + (1� u)ze�z ; (13)eX(z) = eX(pz) + eX(qz)e�pz + 1� (1 + z)e�z ; (14)fW (z) = fW (pz) + fW (qz)e�pz + 2 eX(z) + 2 �(e�z � 1) + ze�z� (15)for a complex z. The above functional equations have a simpler form than their correspond-ing Bernoulli model equations, but they are far from being trivial. The main di�culty liesin the fact that there is a factor e�pz in front of eG(qz; u), eX(qz) and fW (qz). Observethat in the symmetric case (i.e., p = q = 0:5) these functional equations reduce to theone analyzed in Szpankowski [22] (cf. also [5, 7, 16]). We solve these functional equationsasymptotically (see the next two subsections) for z large and real. The next step is a depois-sonization of these results, and we present now a general depoissonization result of Jacquetand Szpankowski [15] that generalize previous depoissonization lemmas of [11, 12, 13, 20].Recall that a measurable function  : (0;1) ! (0;1) is slowly varying if  (tx)= (x) ! 1as x!1 for every �xed t > 0.Lemma 1 [Depoissonization Lemma] Assume that eG(z) = P1n=0 gn znn! e�z is an entirefunctions of a complex variable z. Suppose that there exist real constants a < 1, �, � 2(0; �=2), c1, c2, and z0, and a slowly varying function  such that the following conditionshold, where S� is the cone S� = fz : j arg(z)j � �g:(I) For all z 2 S� with jzj � z0, j eG(z)j � c1jzj� (jzj); (16)(O) For all z =2 S� with jzj � z0, j eG(z)ez j � c2eajzj: (17)Then for n � 1, gn = eG(n) +O �n��1 (n)� : (18)More precisely, gn = eG(n)� 12n eG00(n) +O �n��2 (n)� : (19)The \Big-Oh" terms in (18) and (19) are uniform for any family of entire functions eG thatsatisfy the conditions with the same a, �, �, c1, c2, z0 and  .9



3.2 Analysis of MomentsWe now prove Theorem 1 using the Mellin transform and depoissonization techniques. Wethus begin by studying the functions eG(z; u), eX(z) and eV (z) de�ned above, which satisfythe functional equations (13){(15). We write f�(s) or M(f; s) for the Mellin transform ofa function f(x) of real parameter x, that is,f�(s) =M(f; s) = Z 10 f(x)xs�1dxprovided the above integral converges. A beautiful survey on Mellin transform can be foundin [8], and we refer the reader to this paper for details concerning Mellin transform.The Poisson mean eX(z) and second factorial moment fW (z) satisfy function equations(14) and (15), respectively. We observe that from the recurrence equations (3) and (4) weimmediately prove that xn = O(ln(n+ 1)) and wn = O(ln2(n+ 1)). It follows that eX andfW are entire functions. Moreover, it follows easily that eX(x) = O(ln(x + 1)) for x > 0.In order to apply the depoissonization lemma we have to extend this estimate to complexarguments in a cone S�.Thus �x � = �=4, say; we claim thatj eX(z)j = O(ln(jzj+ 1)); z 2 S�: (20)This is proved by induction along increasing domains (cf. [14]) as follows: Let � = max(p; q)�1 >1. Suppose that R and A are such thatj eX(z)j � A ln(jzj); z 2 S�; 2 � jzj � R: (21)If now z 2 S� with R � jzj � �R, then the recursion relation (14) yields, providedRmin(p; q) � 2,j eX(z)j � j eX(pz)j+ j eX(qz)je�pjzj cos � + 1 + (1 + jzj)e�jzj cos �� A ln(jzj) +A ln(p) +A ln(R)e�pR cos � + 2 + (cos �)�1: (22)Now choose R0 � 2=min(p; q) such that ln(p) + ln(R)e�pR cos � � �� < 0 for R � R0. IfA � 3=� cos � and R � R0, then (22) shows that (21) holds also for z 2 S� with R � jzj ��R. Since clearly (21) holds for R = R0 and a suitable large A, (21) holds by induction forR = �nR0 for every n � 0 (with the same A) and (20) follows for jzj � 2; for small jzj weuse eX(z) = O(jzj2), jzj � 2, because x0 = x1 = 0.Similarly one proves, using (15) and (20),jfW (z)j = O(ln2(jzj+ 1)); z 2 S�: (23)10



In particular, (20) and (23) hold for real x > 0. It follows that the Mellin transformsX�(s) and W �(s) exist (and are analytic) in the strip �1 < <s < 0. (In fact, sincex1 = w1 = 0, they exist for �2 < <s < 0, but we do not need this.)Let us now concentrate on the �rst moment. De�neT1(z) = eX(qz)e�pz : (24)Then, T1(z) is an entire function and the Mellin transform T �1 (s) exists at least for �2 <<s <1. Indeed, since every xn � 0, we havej eX(z)ez j � eX(jzj)ejzj (25)and thus j eX(z)j � eX(jzj)ejzj�<z. Hence, if x > 0 and jz � xj < px=4,jT1(z)j � eX(qjzj)eqjzj�<z � eX(qjzj)eqx�x+2jz�xj � eX(qjzj)e�px=2 = O(e�px=2 ln(1 + x)):Thus, by Cauchy's estimate, for every m � 0,T (m)1 (x) = O(x�me�px=2 ln(1 + x)); x > 0:Since further T (m)1 (x) is bounded for 0 � x � 1, the Mellin transform T (m)�1 (s) exists atleast for 0 < <s <1, and is bounded on each line <s = � > 0.Integration by parts yields s(s+1) � � � (s+m� 1)T �1 (s) = (�1)mT (m)�1 (s+m) and thusthe estimate jT �1 (� + i�)j � C(�;m)(1 + j� j)m (26)for each m � 2 and �2 < � <1; C(�;m) is bounded for � in a compact interval of (�2;1)and m �xed. In particular, T �1 (� + i�) is integrable in � for each � > �2.We re-write (14) as follows:eX(z) = eX(pz) + T1(z)� (e�z � 1)� ze�z :Taking the Mellin transform of the above we have, for �1 < <s < 0,X�(s) = p�sX�(s) + T �1 (s)� �(s)� �(s+ 1); (27)where �(�) is the Euler gamma function. Now, we can solve (27) to getX�(s) = �(s) + �(s+ 1)� T �1 (s)(1=p)s � 1 ; �1 < <s < 0: (28)11



The right hand side extends to a meromorphic function in the half plane �1 < <s < 1,with poles at �k = 2�ik= ln(1=p), k = : : : ;�1; 0; 1; 2; : : :. All poles are simple except theone at 0 (k = 0), which is double.It follows from (28) and (26) that for every � 2 (�1; 0) [ (0;1), jX�(�+ i�)j = O((1 +�2)�1) 2 L1(d�). The Mellin (Fourier) inversion formula thus yields for x > 0 the following.eX(x) = 12�i Z �1=2+i1�1=2�i1 x�sX�(s)ds: (29)Shifting the line of integration to <s = R > 0 (using the Cauchy residue theorem) we obtainfor any large R, eX(x) = O(x�R)� 1X�1Res�k(x�sX�(s)): (30)Let �k = Res�kX�(s). If k 6= 0, then�k = ((1 + �k)�(�k)� T �1 (�k))= ln(1=p);in particular this implies �k = O(jkj�n) for each n > 0. Moreover, for k 6= 0,Res�k(x�sX�(s)) = x��kRes�kX�(s) = �ke�2�ik log1=p x:For k = 0, we obtainRes0(x�sX�(s)) = � ln(x)= ln(1=p) + Res0X�(s) = � log1=p x� 12 + 1� 
 � T �1 (0)ln(1=p) :Consequently, for every R > 0,eX(x) = log1=p x+ 12 � 1� 
 � T �1 (0)ln(1=p) + �1(log1=p x) +O(x�R); (31)where �1(t) = �Pk 6=0 �ke�2�ikt is a periodic function with mean 0.We now apply the depoissonization lemma. We have already veri�ed condition (I) in(20), with � = 0 and  (x) = ln(x + 1). Condition (O) can be veri�ed similarly, but it isalso possible to avoid induction and use the recursion just once as follows. First, by (25)and (20), j eX(z)ez j � eX(jzj)ejzj � Cejzj ln(jzj+ 1) for every z. Next, (14) can be writtenez eX(z) = eqzepz eX(pz) + eqz eX(qz) + ez � 1� z;which thus yieldsjez eX(z)j � C ln(1 + jzj) �epjzj+q<z + eqjzj�+ e<z + 1 + jzj;12



and (O) follows.Depoissonization Lemma now gives immediately, by (18), the �rst momentEHn = xn = logP n+ 12 � 1� 
 � T �1 (0)lnP + �1(logP n) +O(lnn=n): (32)The error term can be improved to O(1=n), which yields (5), by instead using (19) andverifying that eX 00(x) = O(x�2), x > 0. The latter estimate is easily obtained by di�erenti-ating (29) twice (moving the derivatives inside the integral) and estimating the integral byresidue calculus as above. The details can be found in [14, 15].Now, the second moment. Let T2(z) = fW (qz)e�pz ; then the Mellin transform T �2 (s)exists for �2 < <s <1 and (15) yields, for �1 < <s < 0,W �(s) = p�sW �(s) + T �2 (s) + 2X�(s) + 2�(s) + 2�(s+ 1); (33)and thus W �(s) = 2X�(s)1� p�s + 2�(s) + 2�(s+ 1) + T �2 (s)1� p�s= �2�(s)� 2�(s+ 1) + 2T �1 (s)((1=p)s � 1)2 � 2�(s) + 2�(s+ 1) + T �2 (s)(1=p)s � 1 : (34)As above, we can obtain an asymptotic expansion of fW (z) by �nding the inverse of theMellin transform. Thus, the Poisson variance eV (z) = fW (z) + eX(z)� eX2(z) becomes, aftersome lengthy but elementary calculations,eV (x) = �26 ln2 p + 112 + 2T �1 (0) + T �2 (0)ln(1=p)+ �1� 2T �01 (0) + 2(1� 
)T �1 (0)� (T �1 (0))2ln2 p + �3(log1=p x) +O(x�R) (35)where �3(t) = �2(t)�[�21 ]0 is a small 
uctuating function. Applying now the DepoissonizationLemma to fW (verifying (O) as for eX), we easily obtain (8). In fact, it follows as above, using(19), that wn = fW (n)+O(lnn=n) ((18) would give O(ln2 n=n)), and this together with thealready proven xn = eX(n) + O(1=n) yields Var Hn = wn + xn � x2n = eV (n) + O(lnn=n)(cf. [14, 15]).To complete the proof of Theorem 1, we need a method of evaluating the constants T �1 (0),T �2 (0), and T �01 (0). Let again xn = EHn which we can compute for any n from the recurrenceabove. We need an evaluation of the Mellin of eX(z) = Pn�2 xn znn! e�z since x0 = x1 = 0.Thus noting that M(e�z; s) = �(s) for <(s) > 0, and furthermore M(zne�z; s) = �(s+ n)for <(s) > �n, we immediately deriveX�(s) = 1Xn=2 xnn!M(zne�z; s) = 1Xn=2 xnn! �(s+ n) (36)13



provided <(s) 2 (�2; 0). Observe that the series converges absolutely in this range by theestimate of xn above.Moreover, T1(z) = eX(qz)e�pz = Xn�2xn (qz)nn! e�z = Xn�2 xnqnn! zne�zand thus, similarly, T �1 (s) = 1Xn=2 xnqnn! �(s+ n) (37)provided �2 < <(s) <1. In particular,T �1 (0) = 1Xn=2 xnqnn! �(n) = 1Xn=2 xnqnn ; (38)which has an exponential rate of convergence.Now, we can move on and estimate T �01 (0). Taking the derivative of (37) at s = 0 andarguing as before we arrive at the following formulaT �01 (0) = 1Xn=2 xnqnn! �0(n) = 1Xn=2 xnqnn 	(n); (39)where 	(s) = �0(s)=�(s) is the Psi function; recall that for n � 2 we have 	(n) = �
+Hn�1(where Hn here is the Harmonic number).Of course, T �2 (0) can be computed in a similar fashion.T �2 (0) = 1Xn=2 wnqnn ; (40)This completes the proof of Theorem 1.3.3 Analysis of the DistributionWe now prove Theorem 2. We start with the functional equation (13). After de�ningeH(z; u) = eG(z; u)=(1 � u) we obtaineH(z; u) = u eH(pz; u) + u eH(qz; u)e�pz + ze�z : (41)Let now eGk(z) = P1n=1P(Hn � k) znn! e�z. Then, eH(z; u) = P1k=0 uk eGk(z) and an identi�-cation of the coe�cients of u in (41) yieldeG0(z) = ze�zeGk+1(z) = eGk(pz) + e�pz eGk(qz) ; k � 0: (42)14



We claim that the above functional equation for eGk(z) is solved byeGk(z) = pkz Z p�k0 e�pkztd�(t) (43)(where � is de�ned just above Theorem 2). In fact, the case k = 0 is simple, because �restricted to [0; 1] only consists of a point mass at 1, and thus the integral equals e�z. Fork � 1, we use the fact that the measure � on (p�k; p�k�1] is obtained from � on (0; p�k] bya translation and dilation, so that for every function f ,Z p�k�1p�k+ f(t)d�(t) = qp Z p�k0 f(p�k + qpt)d�(t)and thus Z p�k�10 f(t)d�(t) = Z p�k0 f(t)d�(t) + qp Z p�k0 f(p�k + qpt)d�(t):It is now easy to see that (43) satis�es (42).Moreover, (43) trivially holds also for k < 0, with both sides zero; hence (43) holds forall integers k.We next observe that, with F (x) de�ned in (11),j eGk(n)� F (pkn)j = pkn Z 1p�k+ e�pkntd�(t) � pkn Z 1p�k e�pkntdt = e�n (44)when k � 0, and similarly j eGk(n) � F (pkn)j = F (pkn) � pkne�pkn + e�n � (n + 1)e�nwhen k < 0. Thus, to complete the proof of Theorem 2 it su�ces to apply DepoissonizationLemma, provided we verify conditions (I) and (O) uniformly for all k (and some �xed �),with � = 0 and  = 1. This can be done as above using induction along increasing domains,but we give a simpler argument. Indeed, in order to verify (I) we can use the exact formula(43) and observe that for any decreasing function f � 0 on (0;1), R10 f d�(t) � R10 f dt;hence if <z > 0,j eGk(z)j � pkjzj Z 10 e�pk<zt d�(t) � pkjzj Z 10 e�pk<zt dt = jzj<z :Consequently (I) holds, uniformly in k, for any � < �=2.For (O) we �rst observe thatjez eGk(z)j � 1Xn=0 jzjnn! = ejzj:Hence (42) yields, for k � 0,jez eGk+1(z)j � jeqzjjepz eGk(pz)j + jeqz eGk(qz)j � eq<z+pjzj + eqjzj � eajzj15
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